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Abstract. Workarounds can give valuable insights into the work pro-
cesses that are carried out within organizations. To date, workarounds are
usually identified using qualitative methods, such as interviews. We pro-
pose the semi-automatedWORkaround Detection (SWORD) framework,
which takes event logs as input. This extensible framework uses twenty-
two patterns to semi-automatically detect workarounds. The value of
the SWORD framework is that it can help to identify workarounds more
efficiently and more thoroughly than is possible by the use of a more
traditional, qualitative approach.
Through the use of real hospital data, we demonstrate the applicability
and effectiveness of the SWORD framework in practice. We focused on
the use of three patterns, which all turned out to be applicable to the
characteristics of the data set. The use of two of these patterns also led
to the identification of actual workarounds. Future work is geared to the
extension of the patterns within the framework and the enhancement of
techniques that can help to identify these in real-world data.

Keywords: Workarounds · Automated Detection · Event data · Health-
care · Process Mining · Business Process Analysis.

1 Introduction

Many organizations use standard operating procedures to streamline their work.
When procedures are clear, people know what to do. Still, it often happens
that work is performed in a way that is different from the prescribed procedure.
When confronted with unexpected situations, limited time, or a lack of resources,
workers may be unable to follow a procedure and may feel compelled to perform
a workaround to solve a problem [13].

Some workarounds are beneficial and can be leveraged to improve organiza-
tional procedures [2,6]. In other cases, not following a procedure may be harmful
or outright dangerous. Workarounds can result in noncompliance, privacy issues,
or negative effects in the process downstream [15, 16]. Whatever the effect, it is
important that process owners are provided with insights into the occurrence
of workarounds. These insights can help to prevent workarounds from happen-
ing again or to improve the concerned procedure [6]. In addition, being able to
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structurally and comprehensively identify workarounds would allow for the mon-
itoring of their emergence, diffusion, and evolution, potentially enabling process
analysts to detect and respond to new workarounds faster than with current
techniques. This motivates our focus on workaround detection.

To date, most studies in which workarounds were identified and analyzed re-
lied on qualitative methods, primarily through interviewing and observing users
during their work [6]. This approach has led to valuable insights related to the
mechanics and effects of workarounds, as well as the motivations of the people
using them [3,15,32]. However, the use of qualitative methods is labor-intensive;
furthermore, users may not disclose their normal behavior when they are aware
of being observed [33]. Similar to how process mining is used to solve an other-
wise time-consuming problem [1], our focus is on the use of event logs and other
quantitative analysis techniques.

In this paper, we introduce the Semi-automated WORkaround Detection
(SWORD) framework. The automated part of the SWORD framework uses 22
patterns to identify potential workarounds from an event log. Of these patterns,
16 are based on existing literature, while the remaining six patterns are new.
Whether any pattern can be used in a particular situation is dependent on the
characteristics of the data in the event log at hand. While the detection of po-
tential workarounds can be performed in a highly automated fashion, the actual
confirmation of the occurrence of workarounds still needs to be done by domain
experts. This proposed approach can be expected to partly mitigate the change
in behavior that people might exhibit when they are aware of being observed
because the data is collected in a non-obtrusive way. Also, since the SWORD
framework automates the analysis of event data, it is less labor-intensive to use
than finding workarounds through interviews.

In earlier work, we already established that event logs from a Health Infor-
mation System (HIS) can be used to automatically detect and monitor known
workarounds [5]. We stay in line with our earlier focus on the healthcare domain
with this present work. Studies have shown that in hospital settings specifically
workarounds are a widespread phenomenon [28]: Nurses share each other’s pass-
words to save time, physicians send each other X-rays via WhatsApp to get
quick second opinions, and secretaries use shadow systems on paper to track
the department’s occupation. The principles behind the SWORD framework are
nonetheless transparent and we expect that many of the patterns can be trans-
ferred to other domains.

To show the potential of the SWORD framework, we apply three of the
patterns to real hospital data in the setting of an illustrative case study. The
data was obtained through our cooperation with the University Hospital Utrecht
(UMCU). Our evaluation shows that the proposed approach is feasible in the
sense that the patterns allow for an automated analysis of the data. Furthermore,
the use of the SWORD framework was helpful to identify actual workarounds in
medical practice.

The structure of this paper is as follows. In Section 2, we will first clarify
what workarounds are and to what extent they can be detected, according to
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related work. We will explain in more detail how we analyzed the literature as
well as the set-up of our case study in Section 3. The results of these steps are
reported upon in Section 4. Finally, we will discuss the implications of our work
in Section 5.

2 Related Work

Workarounds occur when users intend to reach a goal but perceive a block to
do so using the official procedure [13]. Similar to the conformance-checking field
of process mining, we can look for differences between process variants to detect
them [23]. However, we see two important differences. First of all, a workaround
requires an intent to reach a business goal. So, fraud, deception, and errors
are not in scope. Secondly, the user is unable to achieve this goal by using the
intended procedure [13]. So, accidentally following a different route is not a
workaround.

In addition, while non-conformance usually supposes strict rules [18,22] or a
known process model to conform to [29], workarounds can occur without these.
Deviance mining also uses process mining but looks at smaller deviations be-
tween processes [24], which may also be useful to mine for workarounds. Quite
different from a deviance, a workaround can be very common. If a workaround is
sufficiently effective, it may be shared throughout the organization, potentially
becoming more common than the official procedure [17].

One approach specifically used to automatically detect workarounds is to use
deep learning [33]. Neural networks are trained to recognize different workaround
types from event logs. These methods can be difficult to use in practice because
they require a large amount of labeled training and testing data. In addition,
even if neural networks reach a high classification accuracy, it is difficult to
explain why this is happening [26], which is often required if you want to use
the results in a healthcare environment.

Outside of the control-flow, the time, resource, and data perspectives are
valuable for conformance checking [23]. By investigating workarounds discovered
using qualitative methods, such as interviews and observations, previous studies
show that these perspectives can also be used to recognize different types of
workarounds [5]. We will continue this multi-perspective approach to investigate
if, in addition to recognizing workarounds, we can discover new workarounds
using event logs.

3 Research Method

Our research method consists of two phases: a phase in which we define a list
of workaround detection patterns and a phase in which we test them. The two
phases and their underlying activities are depicted in Figure 1. We will describe
the phases in more detail in this section.
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Phase 1: Defining workaround 
detection patterns

Phase 2: Testing workaround 
detection patterns

1a: Literature 
review

1b: Workaround 
analysis

2a: Data 
exploration

2b: Illustrative 
case study

Fig. 1: The phases of our research method

3.1 Phase 1: Defining the workaround detection patterns

As described in the previous section, detecting workarounds has similarities with
several approaches in process mining, such as conformance checking. Both focus
on differences between the intended and actual process. To investigate these
approaches, we carried out a literature review to collect an overview of process
mining approaches that can be applied to workaround detection.

After an initial literature search, we selected five (systematic) literature
reviews as the starting point of our own study. The reviews focused on sev-
eral (sometimes overlapping) process mining topics, namely conformance check-
ing [12], process variant analysis [31], predictive process monitoring [11], deviance
mining [24], and process mining in healthcare [4]. In the next step, we selected
relevant papers from these reviews. We used the following inclusion criteria:
(1) the described approach focuses on the differences between process variants,
from the control-flow, data, resource, or time perspective, and (2) the described
approach uses event data for their analysis.

For example, we did not include supervised learning methods because it is
not feasible to label all traces with a workaround or normative label. Note, also,
that we keep to the main pattern in situations where slightly differing variants
exist. For example, there are multiple version of trace alignment; we do not
distinguish between these here. Discovered papers were also searched for new
references using reverse snowballing until no new detection patterns came up.
Overall, we analyzed 37 papers in detail and included 12 papers in our final
analysis, covering 16 detection patterns. The result of this activity is presented
in Table 2.

Second, we carried out an analysis of 81 workarounds. These were gathered
in previous studies that have been carried out in five different healthcare or-
ganizations [5]; a general hospital, two district hospitals, and two specialized
care centers. The authors were able to detect multiple discovered workarounds
using quantitative methods in a completely different top clinical hospital. This
shows that we can expect similar behavior in other healthcare organizations.
They are documented as ‘workaround snapshots’ and include a description of
(1) the setting in which the workaround was found, (2) the workaround com-
pared to the normative process, (3) a motivation, and (4) the expected effect
of the workaround on cost, time, quality, and flexibility. For an example, see
Table 1.
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Table 1: Example snapshot

Setting At a urology clinic. Before a nurse administers medication to a
patient, she checks with another nurse to see it is the correct
medicine/dosage.

Workaround The nurses do not register the verification check in the HIS.

Motivation Registering the check takes a lot of time, so the nurses only do
this check vocally.

Effect This workaround saves time and thus costs, but the data
quality is lower. Since the information is not registered, it may
lead to errors at a later time.

Using the comparison between the workaround and the normative process,
we determined if and how each workaround could be monitored using (event log)
data. Similar detection patterns were grouped together. This workaround anal-
ysis yielded another six patterns, which have been added to the list in Table 2.

3.2 Phase 2: Testing the workaround detection patterns

In the second phase of our study, we evaluated the list of workaround detection
patterns. We followed a two-step approach for this. First, we wanted to establish
whether the data necessary to detect a pattern was stored in the HISs. Therefore,
we analyzed the data structure of the tables in which the event data of the
relevant processes and workarounds are stored. For each pattern, we searched
for a table containing the required data to identify it. At this point, we considered
if we could use that data to discover new workarounds, or if the pattern relied
on specific knowledge and could only be used to monitor known workarounds.

Second, we conducted an illustrative case study in which we took three of
the identified workaround detection patterns and tried to find them in real data.
We selected patterns that could be applied to the available data and with which
we expected to find meaningful differences. The goal of this step was to con-
firm whether our approach would work on real data. At the same time, the
IT department of the University Medical Center (UMC) Utrecht was exploring
to implement process mining techniques to better facilitate quality improvement
projects and consulted us for our expertise. We then performed a technical proof-
of-concept on deploying process mining techniques to detect workarounds using
the data from the UMC Utrecht. This academic hospital cares for more than
200,000 patients and has around 12,000 employees. SQL was used to capture
the event data that we used in our analyses from the HIS used by the UMC
Utrecht (HiX, ChipSoft, Amsterdam). We pseudonymized the data as early as
possible by assigning random unique values to all patient, resource, and hospi-
talization identifiers. After data extraction, we used R for further analysis and
visualization.
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Time between activities out of bounds The first pattern covers one of
the most common workarounds: batching. When taking patient measurements,
hospital staff should register the results directly in the HIS, before doing anything
else. Instead, they often take measurements from multiple patients in a row, write
the results down on a note and register all patient data afterward. This behavior
can be detected using the “Time between activities” pattern.

All manually entered patient measurements in the hospital, except for data
from the intensive care unit and operating room, are stored in a single table.
We extracted the patient ID, resource ID, and registration timestamp of all
measurements between two defined moments. To ensure the right events are
captured, directly subsequent measurement registrations of the same patient
by one resource are removed. Not doing so could result in counting multiple
consecutive registrations for the same patient, which would obviously not be
batching.

We compared the three shifts of an average, regular Tuesday, which had
some overlap. The day shift ran from 7:00h until 16:00h, the evening shift from
15:00h until 0:00h, and the night shift from 23:00h until 8:00h. There were 1403
measurement events, covering 942 unique patients and 460 resources during the
day shift, 785 measurement events, 488 unique patients and 320 resources during
the evening shift, and 371 measurement events, 245 unique patients and 132
resources during the night shift.

Long duration between time of event and time of logging The second
workaround covers the registration delay by comparing the difference between
the time of activity and the time of registration. This data is registered in the
same measurements table we used during the batching workaround. We again
used the patient ID and timestamps of the registration. We also extracted the
time of activity and the type of measurement, to see if there are differences
in delays between types. Note that the time of activity is generally registered
manually, so it is unlikely these are exact values.

We have checked this over the same day we used for the first pattern. This
time, we did not separate the three shifts, so we included all measurements that
occurred between 7:00h on day one and 8:00h on day two. A single measurement
registration could cover multiple measurement types. For example, a registration
could cover both a length and weight measurement at the same time. In those
cases, we counted these as a separate registration for each measurement type,
all using the same timestamps. In total, there were 10118 measurements by 638
resources, covering 1032 unique patients and 204 different measurement types.

Activities executed by a single resource The final workaround we inves-
tigated concerns resources that stay the same, while they should have differed
over the trace. During the triage process at the emergency department (ED),
both a nurse and a physician should see the patient. The main ED table in
the HIS logs both the “seen by nurse” and “seen by physician” activities. We
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also extracted the resource logging the activities and ED registration identifiers,
which is unique for every ED registration and makes for a good case ID.

We have used the data covering one year. This contained 5993 ED regis-
trations. Both the “seen by nurse” and the “seen by physician” activities were
logged 5508 times (92%). In 5460 cases (91%) both had seen the patient.

4 Results

4.1 Workaround Detection Patterns – Literature Review

Researchers in process mining fields other than workaround mining, such as con-
formance checking, deviance mining, predictive process monitoring, and process
performance analysis, have developed patterns to detect differences between sim-
ilar process variants. Since we can recognize different workarounds using varying
perspectives, we have structured our review the same way. We start with control-
flow and follow this with the data, resource, and time perspective.

The control-flow perspective is used in most fields, often by comparing traces
to process models [5,8,27]. Alternatively, some activities should never co-occur [8]
or should occur close to specific others [21]. Some events on their own can already
be interesting to monitor [7, 9, 24]. Repeated behavior can also be an indication
something is going wrong. We can look at how often activities repeat [8,9,24,30]
or if there are loops in a trace [9, 20,24,30,34].

We find the most use of the data perspective in the conformance checking
field, where we can simply look at the values of data objects [5, 8–10, 19, 31]. If
they deviate too much, this can show unintended behavior in the trace. Alterna-
tively, the exact value might not be important, but the value should not change
during the trace [8, 10,19].

The resource perspective shows similar patterns. Some events should always
be executed by a specific resource or it needs to stay the same during (part of)
the trace [5,19]. For example, certain medications should only be prescribed by
a physician. While not a detection pattern in itself, earlier mentioned patterns
can also be used using a resource as case ID. In this way, we can investigate the
behavior of resources. For example, if we do so and notice a resource is repeating
the same activity often, something might be going wrong [30].

We can find deviating patterns using the time perspective in multiple fields.
From a conformance checking viewpoint, some activities may need to be executed
at a specific time [19]. Process performance analysis naturally takes time into
account too. We can use the time of activity since the start of the trace to
predict the performance of the entire trace [7]. Multiple fields distinguish between
process variants by looking at the time between activities [10, 19, 30, 34], the
duration of a single activity [30,31,34], or the total time of a trace [31].

Table 2 shows an overview and description of all 22 detection patterns.
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Table 2: Workaround detection patterns

C
o
n
tr
o
l-
fl
ow

Occurrence of an
activity

A specific activity occurs [7, 9, 24]

Occurrence of recurrent
activity sequence

A recurrent activity sequence
occurs within a trace

[9, 20,24,
30,34]

Frequent occurrence of
activity

An activity frequently occurs within
a trace

[8,9,24,30]

Occurrence of activities
in an order different
from process model

The order of activities in a trace is
other than in a predefined process
model

[8, 27]

Occurrence of mutually
exclusive activities

Specific activities occur that are
mutually exclusive within a trace

[8]

Occurrence of unusual
neighboring activities

An activity is directly followed by
an activity other than usual

[21]

Occurrence of directly
repeating activity

An activity is immediately repeated
within a trace

Missing occurrence of
activity

A specific activity is missing in the
trace

D
a
ta

Data object with value
outside boundary

The value of a data object deviates
from the usual values

[8–10,19,
31]

Change in value
between events

Data values change unexpectedly
between events

[8, 10,19]

Specific information in
free-text fields

Information is logged in free-text
fields instead of dedicated fields

R
es
o
u
rc
e

Activity executed by
unauthorized resource

An activity is executed by a
resource other than those
authorized

[19]

Activities executed by
multiple resources

Activities within the same trace are
executed by multiple resources

[19]

Activities executed by a
single resource

Activities within the same trace are
all executed by the same resource

[30]

Frequent occurrence of
activity for a resource

An activity occurs more frequently
for one resource compared to other
resources

Frequent occurrence of
value for a resource

A data value occurs more
frequently for one resource
compared to other resources

Detection pattern Explanation Reference

Continued on next page
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Table 2: Workaround detection patterns (Continued)

T
im

e

Occurrence of activity
outside of time period

An activity occurs outside of the
usual time period

[19]

Delay between start of
trace and activity is out
of bounds

There is a deviation in the delay
between the start of the trace and
the time of an activity

[7]

Time between activities
out of bounds

There is a deviation in the time
between activities

[10, 19,30,
34]

Duration of activity out
of bounds

There is deviation in the duration
of an activity

[30,31,34]

Duration of trace out of
bounds

There is a deviation in the duration
of a trace

[31]

Delay between event
and logging is out of
bounds

There is a deviation in the delay
between time of event and time of
logging

Detection pattern Explanation Reference

4.2 Detection pattern analysis

To investigate what data is required to detect each workaround detection pattern,
we have used the data structure of HiX. Using this specific HIS, we explored
which columns in the data we would need to use to find each pattern.

To apply these patterns, it should always be clear to which trace an event
belongs. Depending on the available data, we can use timestamps (e.g., by group-
ing events that are temporally close), specific activities (e.g., a trace starts with
logging in and ends with logging out), or dedicated case IDs.

Table 3 shows an overview of the required data. We distinguish between
four data types that may be required: activity, time, data, and resource. Each
detection pattern can require a different level of quality for these types.

– Some patterns need specific data. This data must be known beforehand. E.g.,
a data field may require a certain value. Because of the huge number of data
fields, it is not feasible to find these values automatically. We cannot find
new workarounds with these patterns, only monitor discovered ones.

– We generally require high-quality data. Activity names should be distin-
guishable from each other, timestamps need to determine when an event
happened, data needs to be complete, or we need to know which resource
executed the event. The exact requirements differ per process. E.g., for one
case, “register measurement” is a good activity name, but for another, we
need the measurement type.

– For time, low-quality data may be sufficient if high-quality is not available. In
that case, timestamps only need to be precise enough to determine a correct
event order.
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– Some data types are not be needed to find a pattern. For example, if we
investigate if the right resource performed an activity, we do not require
timestamps.

Note that these patterns do not require a specific case ID focus. Patient IDs can
be useful to check if people do not repeat work that has already been done by
someone else. On the other hand, using resource IDs would show more informa-
tion about how a single person is working.

Table 3: Workaround detection patterns with the required data. Those marked
with * can only be used to monitor known workarounds.

C
o
n
tr
o
l-
fl
ow

*Occurrence of activity Specific - - -

Occurrence of recurrent
activity sequence

High
Quality

Low
Quality

- -

Frequent occurrence of
activity

High
Quality

- - -

*Occurrence of activities in
an order different from
process model

Specific+
Process
Model

Low
Quality

- -

*Occurrence of mutually
exclusive activities

Specific - - -

*Occurrence of unusual
neighboring activities

Specific Low
Quality

- -

Occurrence of directly
repeating activity

High
Quality

Low
Quality

- -

*Missing occurrence of
activity

Specific - - -

D
a
ta

*Data object with value
outside boundary

- - Specific -

Change in value between
events

- Low
Quality

High
Quality

-

*Specific information in
free-text fields

- - Specific -

Detection patterns Activity Time Data Resource

Continued on next page
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Table 3: Workaround detection patterns with the required data. Those marked
with * can only be used to monitor known workarounds. (Continued)

R
es
o
u
rc
e

Activity executed by
unauthorized resource

- - - High
Quality

Activities executed by
multiple resources

High
Quality

Low
Quality

- High
Quality

Activities executed by a
single resource

High
Quality

Low
Quality

- High
Quality

*Frequent occurrence of
activity for a resource

High
Quality

- - Specific

*Frequent occurrence of
value for a resource

- - High
Quality

Specific

T
im

e

Occurrence of activity
outside of time period

High
Quality

High
Quality

- -

Delay between start of trace
and activity is out of bounds

High
Quality

High
Quality

- -

Time between activities out
of bounds

High
Quality

High
Quality

- -

Duration of activity out of
bounds

High
Quality

High
Quality

- -

Duration of trace out of
bounds

- High
Quality

- -

Delay between event and
logging out of bounds

- High
Quality

High
Quality

-

Detection patterns Activity Time Data Resource

4.3 Illustrative Case Study

We selected three patterns to test if we could apply the SWORD framework:
“Time between activities out of bounds”, “Delay between event and logging out
of bounds”, and “Activities executed by a single resource”.

Time between activities out of bounds We tested if we could find the
batching workaround in real data. While we are confident that this workaround
is likely to be used when measurements in a hospital setting are manually being
logged, we do not know where and when it is used in the UMC Utrecht. We
can detect this workaround by analyzing the time between events. Since we are
interested in resource behavior, we use resources as the case ID. We only need
to look at measurement registration events. If the time between the events is
very short, there cannot have been enough time to measure a patient, so the
employee is most likely practicing batching. This workaround is relatively easy
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to recognize and does not require a field expert to do so, allowing us to test the
SWORD framework without requiring interviews with them.

Figure 2 shows graphs containing only manual measurement registration
events for the three different shifts in a single day. Every row contains the mea-
surements of a single resource. Since we removed directly subsequent measure-
ments of the same patient, horizontally close events show registrations where
there cannot have been enough time to do a new measurement and thus can be
considered batching, these are marked in red. We can see that batching occurs
more often at the start and end of shifts, which is especially clear during the day
shift in Figure 2a.

09:00 12:00 15:00
Timestamp

R
es

ou
rc

e Activity

Batch registration

Register measurements

(a) Day shift

15:00 18:00 21:00 00:00
Timestamp

R
es

ou
rc

e Activity

Batch registration

Register measurements

(b) Evening shift

00:00 03:00 06:00
Timestamp

R
es

ou
rc

e Activity

Batch registration

Register measurements

(c) Night shift

Time Patient Measurements

8:58:07 1 "HR" "NIBP" "Resp" "SpO2" "Temp"

8:59:03 2 "HR" "NIBP" "Resp" "SpO2" "Temp"

8:59:50 3 "HR" "NIBP" "Resp" "SpO2" "Temp"

9:00:24 4 "HR" "NIBP" "Resp" "SpO2" "Temp"

9:00:53 5 "HR" "NIBP" "Resp" "SpO2" "Temp"

(d) Example batching during the day shift.
Note that patient IDs are pseudonymized.

Fig. 2: Measurement events per resource for three consecutive shifts. Grey dots
are normal measurements. Red dots are part of batching.
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Delay between event and logging out of bounds We compared the time
of activity and the time of registration to determine the registration delay. Since
there were 204 different measurement types, we limit our results to the most com-
mon ten: early warning score (EWS), heart rate (HR), length, non-invasive blood
pressure (NIBP), resting pulse (Resp), oxygen saturation (SpO2), temperature
(Temp), visual analog scales (VAS), numeric VAS during activity (VASNRSact),
and weight. To aid visibility, we filtered out delays of over an hour.

Figure 3 shows the results. Every measurement type has a boxplot showing
the delays linked to it. Every type has its own distribution and thus every type
has its own time delays that are considered outliers. All outliers can be considered
to be different from the common process, but without an expert, we cannot
conclude these are workarounds, mistakes, or something else.
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Fig. 3: Boxplot showing the delay from measurement to registration per mea-
surement type

Activities executed by a single resource We compared the resource linked
to the “seen by nurse” and “seen by physician” activities within the same ED
registration, intending to find cases where both events were logged by one person
instead of two. Surprisingly, in all 5460 cases with both activities, the resource
was the same. This could indicate a structural difference between the prescribed
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procedure and the process in practice. The official procedure could also be dif-
ferent than what we expect, so this would require expert input.

Conclusion We have tested three of the detection patterns in our SWORD
framework to see if we could use them with real data. We were able to apply all
three patterns and found meaningful results in that they either clearly point to
workarounds or warrant further investigation.

5 Discussion and Conclusion

In this paper, we have introduced the SWORD framework. With our review,
we have discovered twenty-two patterns that are incorporated in this frame-
work. Sixteen of them are based on literature. We determined the remaining six
patterns based on previously discovered workarounds.

Our illustrative case study shows that we can detect workarounds using sim-
ple data. We successfully used the time between measurements to find batching
and we found clear differences in delays between measurements and their regis-
tration for different measurement types.

Our framework is based on the mixed methods approach that is used to
recognize various known workarounds in data [5]. We use the same perspectives
for detection; control-flow, data, resource, and time. The framework points to
specific patterns that can be used for each of these perspectives.

Compared to a neural network approach [33], the SWORD framework is
more focused. Instead of using a full event log, the patterns have simpler data
requirements. They also do not require data to be labeled as a workaround or
normative process beforehand. This saves time and effort from experts. Also, we
can find workarounds that are not similar to those in the data.

Note that we have only tested three of the twenty-two patterns with real
data. While the requirements for remaining patterns are determined using the
HIS structure, in practice, the actual data may not fit completely to it. Multiple
snapshots from [5] describe this behavior. While some data should be logged in
a certain field, users find it easier to log it in free-text fields instead. This can
make it difficult to find these patterns. In the future, we will investigate to what
extent these workarounds patterns can be detected with real data.

The SWORD framework uses the patterns as singular options to detect dif-
ferences, but some workarounds can be detected with multiple patterns [5]. To
improve detection, we could use machine learning methods, such as classifica-
tion [25] or clustering [14]. These can combine detection patterns, allowing us to
effectively consider processes from multiple angles at the same time.
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