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a b s t r a c t 

Weather forecasting is dominated by numerical weather prediction that tries to model accurately the 

physical properties of the atmosphere. A downside of numerical weather prediction is that it is lacking 

the ability for short-term forecasts using the latest available information. By using a data-driven neural 

network approach we show that it is possible to produce an accurate precipitation nowcast. To this end, 

we propose SmaAt-UNet , an efficient convolutional neural networks-based on the well known UNet ar- 

chitecture equipped with attention modules and depthwise-separable convolutions. We evaluate our ap- 

proaches on a real-life datasets using precipitation maps from the region of the Netherlands and binary 

images of cloud coverage of France. The experimental results show that in terms of prediction perfor- 

mance, the proposed model is comparable to other examined models while only using a quarter of the 

trainable parameters. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Computational weather forecasting is an ubiquitous feature 

f modern, industrialized societies and is used for planning, or- 

anization and management of a wide range of both personal 

nd economic aspects of life. To date, the primary method for 

eather forecasts is numerical weather prediction (NWP). NWP re- 

ies on mathematical models that take into account different phys- 

cal properties of the atmosphere such as air velocity, pressure 

nd temperature. The NWP-based models can generate accurate 

eather predictions of several hours to days into the future. How- 

ver, they involve solving highly complex mathematical models 

hich are computationally expensive and require enormous com- 

uting power and thus usually are performed on expensive super- 

omputers [27] . 

Due to their high computational and time requirements, NWP 

odels are less suitable for short-term forecasts ranging from 

inutes to up to 6 h, also referred to as nowcasting [12] . Now-

asting models are able to use the latest available observational 

eather data to create their predictions, making them more re- 

ponsive compared to the NWP models [8] . This responsiveness 

s critical to increase the accuracy of predictions for dynamic and 

apidly changing environments such as the atmosphere. Nowcasts 
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ave therefore become important tools to complement NWP ap- 

roaches, especially in the context of meteorologically unstable 

onditions typical for severe weather hazards such as thunder- 

torms and heavy rainfall [8] . As highlighted by a status report 

o the American Meteorological Society, nowcasting thunderstorms 

nds pertinent applications across a variety of fields such as in avi- 

tion, the construction industry, power utilities and ground trans- 

ortation [34] . Nowcasting was also used in the 2008 Olympic 

ames in Beijing to ensure the safety of the athletes [33] . Not least,

eather nowcasts can also be useful for planning ordinary activi- 

ies of everyday life. 

Recent advances in artificial neural network architectures 

ANNs) have enabled data-driven based models to bridge the 

resent gap for short-term forecasting [28,29,31,36] . The key dif- 

erence between NWP and a ANNs is that the former is a model- 

riven and the latter a data-driven approach. Unlike the model- 

riven approaches, data-driven models do not base their prediction 

n the calculations of the underlying physics of the atmosphere. 

nstead, they analyze and learn from historical weather data such 

s past wind speed and precipitation maps to predict the future. 

In this paper, we introduce a novel artificial neural network 

ased model to predict precipitation on a high-resolution grid 

0 min into the future. The input data for our model consists of 

recipitation maps, i.e. cartographic radar images showing the ac- 

umulated rainfall over a period of time. In addition, the applica- 

ility of the proposed model is also shown on cloud cover now- 

asting task. In previous studies, convolutional neural networks 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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ave been described as an effective approach to process image 

ata. Convolutions are kernel-based operations that slide over the 

mage which enables the model to capture local invariant features 

n a more efficient manner than other feedforward approaches 

18] . They have been successfully applied in various fields includ- 

ng not only the processing of images but also of other types of 

ignals. For instance, the authors of [2] used a CNN-based model 

o create captions for an input image while [11] employed a CNN 

or object detection in images. The authors in [22] introduced a 

-dimensional CNN-based model to predict the wind speed in dif- 

erent cities in Denmark. In another study, a CNN-based architec- 

ure is applied on signals from a smartphone’s accelerometer to 

lassify a user’s transportation mode [20] . The authors in [30] in- 

roduced multidimensional convolutional neural networks for wind 

peed forecasting. 

Given the usefulness of CNNs for tasks involving image in- 

ut, they offer a promising solution for the purpose of precipita- 

ion nowcasting. In this paper, we propose Small Attention-UNet 

SmaAt-UNet) model. It uses the UNet architecture [25] as core 

odel and is equipped with attention modules and depthwise- 

eparable convolutions (DSC). (see Section 3 for more details). The 

dvantage of our model is that we are able to reduce the model 

arameter size to a quarter of the original UNet implementation 

hile maintaining a comparable performance to the original UNet 

rchitecture. This reduction in model size opens up the possibil- 

ty to the use of precipitation models on small computation units 

uch as smartphones, similar to Howard et al. [14] . This could en- 

ble the use of personalized and up-to-date precipitation forecasts 

y creating a forecast on user request with the latest available data 

ithin seconds. Furthermore, a model size reduction with similar 

erformance than bigger models is crucial for creating efficient ar- 

hitectures that require less training and computational power. 

This paper is organized as follows. A brief overview of related 

esearch on weather forecasting using machine learning architec- 

ures is presented in Section 2 . In Section 3 , we describe the pro-

osed SmaAt-UNet architecture and other models for precipitation 

s well as cloud cover nowcasting. Section 4 describes the con- 

ucted experiments and the obtained results. A discussion of the 

esults is given in Section 5 . Lastly, we end with some conclusive 

emarks in Section 6 . 

. Related work 

A common approach to precipitation nowcasting based on deep 

earning uses neural networks that have some kind of memory 

uch as a Long-short term memory (LSTM) [13] . In standard feed- 

orward models, the input is passed on in a straight forward fash- 

on from one timestep to the next. In contrast, LSTMs are, broadly 

peaking, networks that enable the input signal to remain in the 

etwork’s state for multiple time steps enabling the network to 

emember past inputs. This is especially useful for time-series pre- 

ictions because past inputs can have valuable information about 

rends which, in turn, can be useful for predicting future values. 

The authors in [36] created a convolutional LSTM that cap- 

ures spatiotemporal correlations better than other approaches in 

 time-series task for images. Extending on this, the authors of 

31] created a spatiotemporal-LSTM that increases the amount of 

emory connections inside the network which aims at enabling 

n efficient flow of spatial information. The memory function and 

emory flow of this model were optimized in another implemen- 

ation that added stacked memory modules [32] . 

Another approach for precipitation nowcasting has been de- 

cribed in [1] . They proposed a network structure that is based on 

 well-known encoder-decoder architecture called UNet [25] . Un- 

ike LSTMs, UNet has no explicit modelling of memory. It takes 

n input image (or multiple concatenated images) and outputs a 
179 
ingle classification map. The implementation of [1] aimed at clas- 

ifying four different rain intensities ( < 0 . 1 mm/h, < 1 . 0 mm/h, <

 . 5 mm/h, > 2 . 5 mm/h ) one hour into the future. To this end, mul-

iple precipitation maps (of the past hour) are concatenated and 

sed as input to the UNet architecture. In a similar study in [28] ,

s opposed to the model described in [1] the authors classified 512 

lasses instead of just four, thereby resulting in a much finer reso- 

ution of rain intensities. This is similar to our approach; however, 

ather than predicting classes, our model predicts exact rain inten- 

ities. A common baseline in precipitation nowcasting is the persis- 

ence method. The persistence model uses the last input image of 

 sequence as the prediction image. This is based on the assump- 

ion that the weather will not change significantly from time point 

to t + 1 . Especially in nowcasting this baseline is not trivial to be

utperformed because the time differences between images are so 

hort (e.g., 2 or 5 min) that often weather conditions remain the 

ame [27] . 

Recently, it was shown that attention in CNNs can be a 

ery useful tool to enhance performance for an underlying task 

4,15,16,23,37] . Attention is a mechanism that amplifies wanted sig- 

als and suppresses unwanted ones. This directs the network to 

ay more attention to features important for the task at hand. 

n our proposed model, we employ convolutional block attention 

odules (CBAMs) that take the input image and apply attention in 

equence to the channels and then to the spatial dimensions [35] . 

he result of a CBAM is a weighted feature map that takes into ac- 

ount the channels and also the spatial region of the input image. 

o the best of our knowledge, it is the first time to include CBAM 

echanism within a UNet-based architecture. In another applica- 

ion of attention, authors of [23] added attention gates to a UNet 

rchitecture for a medical segmentation task. They found that their 

nhanced model achieved better results than the original UNet im- 

lementation by Ronneberger et al. [25] . 

Having fewer parameters in a network reduces the chance of 

ossible overfitting, because the model is simpler and can’t adapt 

oo closely to the training set’s distribution. A possible downside to 

his simplification is that the model may be too simple to learn the 

esired task. In order to reduce the number of parameters with- 

ut sacrificing a lot of performance, depthwise-separable convo- 

utions (DSC) are used in many recent architectures [6,9,10,14,19] . 

SCs split up the regular convolutional operation into two separate 

perations: a depthwise convolution followed by a pointwise con- 

olution. This results in fewer mathematical operations and also 

ewer parameters compared to non-separated convolutions. The 

uthors in [9] created a UNet with DSCs instead of regular convo- 

utions and their model has eight times less parameters than the 

riginal UNet implementation. They show that their model is able 

o have a similar performance as UNet on medical segmentation 

asks [9] . 

. Methods 

.1. Proposed SmaAt-UNet 

The model that we propose here builds upon and extends the 

Net architecture [25] . As shown in Fig. 1 , the UNet architecture 

onsists of an encoder-decoder structure resulting in a U-shape. 

he encoder-part (corresponding to the left half of Fig. 1 ) ap- 

lies max-pooling (red arrows) and a double convolution (blue ar- 

ows) which halves the image size and doubles the number of fea- 

ure maps, respectively. The encoders are subsequently followed 

y the same amount of decoders (corresponding to the right half 

f Fig. 1 ). Following the original implementation of UNet, here we 

lso use four encoder-decoder modules. 

A decoder consists of three parts: a bilinear upsampling opera- 

ion (green arrows) to double the feature map size, a concatenation 
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Fig. 1. An example of an input fed through our proposed SmaAt-UNet (best viewed in color). Each bar represents a multi-channel feature map. The numbers above each bar 

display the amount of channels; the vertical numbers on the left side correspond to the x-y-size. 

o

v

t

t

p  

p

v

t

t

o

a  

d

e

m

w

p

t

i

p

t

a

t

t

a

a

r

i

f

m

s

Table 1 

Number of parameters of the compared models. 

Model Parameters 

UNet 17,272,577 

UNet with CBAM 17,428,781 

UNet with DSC 3,955,185 

SmaAt-UNet 4,111,389 
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1 available at https://github.com/HansBambel/SmaAt-UNet . 
f the resulting feature maps with the previous encoder’s output 

ia skip-connections (grey arrows), and lastly a double convolution 

o half the number of feature maps. The skip-connections enable 

he model to use multiple scales of the input to generate the out- 

ut. Finally, the last layer in our model is a 1 × 1 convolution (pur-

le arrow) which outputs a single feature map representing the 

alue predicted by the network. 

The advantage of using different scales is that they can cap- 

ure differently sized objects in the input which can be impor- 

ant for some tasks. Typically, UNets are applied to classification 

r segmentation tasks in which the network is trained to predict 

 class for each pixel. However, we applied it to a time series pre-

iction task in which the network has to predict an exact value for 

ach pixel. Our novel Small Attention-UNet (SmaAt-UNet) model 

akes two modifications in the original UNet architecture. Firstly, 

e propose to add the CBAM attention mechanism to the encoder 

art. Secondly, we transform the regular convolutional operations 

o depthwise-separable convolutions. As described in Section 2 , us- 

ng attention in a CNN facilitates the network to focus on specific 

arts of the input. For our model, we use convolutional block at- 

ention modules for the purpose of identifying important features 

cross channels and spatial regions of the image [35] . In CBAMs, 

he attention mechanism is applied first across the channels of 

he image and subsequently to the spatial dimension. The CBAMs 

re placed after the first double convolution and every encoder to 

mplify important features and suppress unimportant ones on the 

espective image scale (yellow arrows in Fig. 1 ). Importantly, the 

nput to the encoders is the convoluted and downsampled image 

rom the previous encoder and not the image with the attention 

echanism applied. This way, the original image features are pre- 

erved until the last encoder. The attention modules only feed into 
180 
he corresponding upsampling part of the network to which they 

re connected through the skip-connections. Following the lines of 

14,19] , we used depthwise-separable convolutions in our model in 

rder to reduce the number of parameters. In particular, we substi- 

ute all convolutions of the original UNet model with depthwise- 

eparable convolutions. However, in the convolutional block atten- 

ion modules we still apply regular convolutions. 

.2. Other models 

For comparison, we also trained other UNet architectures that 

ave either none or only one of the two modifications that we 

roposed. This results in a total of four models being compared 

n this study, i.e. the original UNet, UNet with CBAM, UNet with 

SCs, and our proposed model. Table 1 shows a comparison of the 

odels’ parameters. When looking at the standard UNet architec- 

ure and our proposed modified UNet architecture it can be seen 

hat the latter has significantly fewer parameters, i.e. ≈17m com- 

ared to ≈4m. In our PyTorch implementation 

1 we use DSCs with 

wo kernels-per-layer. 

https://github.com/HansBambel/SmaAt-UNet
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Table 2 

Parameters of the two radars. 

Characteristics De Bilt Den Helder 

Wavelength (cm) 5.293 5.163 

Pulse repetition frequency (Hz) 250 250 

Peak power (kW) 268 264 

Pulse duration ( μs) 2.02 2.04 

3-db beamwidth ( ◦) 1 1 

Antenna rotation speed ( ◦ s −1 ) 18 18 

No. of samples per range ( km 

−1 ) 4 4 

a

a  

3  

F

t  

s

e

s

c

o

v

o

t

i

a  

T

n

r  

T

a

c

t

t

n

c

w

t

p

a

f

i

l

t

w

o

e  

w

p

t

u

e  

d

h

f

i  

d

2

.3. Training 

All four previously described models were trained for a max- 

mum of 200 epochs. We employed an early stopping criterion 

hich stopped the training process when the validation loss did 

ot increase in the last 15 epochs. The early stopping criterion was 

et in all training iterations so that the maximum of 200 epochs 

as never reached. Additionally, we used a learning rate scheduler 

hat reduced the learning rate to a tenth of the previous learning 

ate when the validation loss did not increase for four epochs. The 

nitial learning rate was set to 0.001 and we used the Adam opti- 

izer [17] with default values. The training was done on a single 

Vidia 2070 Super with 8Gb of VRAM. 

.4. Model evaluation 

The loss function used in this study is the mean squared error 

MSE) between the output images and the ground truth images. 

he MSE is calculated as follows: 

SE = 

∑ n 
i =1 (y i − ˆ y i ) 

2 

n 

(1) 

here n is the number of samples, y i is the value of the ground

ruth and ˆ y i is the value of the prediction. In addition to the MSE, 

e calculate different scores for performance evaluation, such as 

recision, Recall (probability of detection), Accuracy and F1-score, 

ritical success index (CSI), false alarm rate (FAR) and Heidke Skill 

core (HSS). In case of the precipitation map dataset, these scores 

re calculated for rainfall bigger than a threshold of 0 . 5 mm/h . To

o this, we convert each pixel of the predicted output and tar- 

et images to a boolean mask using this threshold. In case of 

he cloud cover dataset, the data is already binarized 

2 . From this, 

ne can calculate the true positives (TP) (prediction = 1, target = 1), 

alse positives (FP) (prediction = 1, target = 0), true negatives (TN) 

prediction = 0, target = 0) and false negatives (FN) (prediction = 0, 

arget = 1). Subsequently the CSI, FAR and HSS metrics can be com- 

uted as follows: 

SI = 

T P 

T P + F N + F P 
, (2) 

AR = 

F P 

T P + F P 
, (3) 

nd 

SS = 

T P × T N − F N × F P 

(T P + F N)(F N + T N) + (T P + F P )(F P + T N) 
. (4) 

he threshold of 0 . 5 mm/h (the first dataset) was chosen in line

ith the works by Shi et al. [26] , Xingjian et al. [36] and it differ-

ntiates between rain and no rain. 

. Experiments 

.1. Precipitation map dataset 

We used a precipitation data from the Royal Netherlands Me- 

eorological Institute (Koninklijk Nederlands Meteorologisch Insti- 

uut, KNMI) as the first dataset to train and compare our mod- 

ls. It contains rain maps in 5-minute intervals from the last four 

ears (2016-2019) of the region of the Netherlands and the neigh- 

oring countries. In total, the dataset comprises about 420,0 0 0 rain 

aps. The data is generated by two C-band Doppler weather radar 

tations situated in De Bilt (52.10 ◦N, 5.18 ◦E, 44 m MSL) and Den

elder (52.96 ◦N, 4.79 ◦E, 51 m MSL), the Netherlands. To acquire 
2 Both datasets are described in Section 4 . 

p

t

t

181 
 rain map, the two radars perform four azimuthal scans of 360 ◦

round a vertical axis beam elevation angles of 0.3 ◦, 1.1 ◦, 2.0 ◦, and

.0 ◦. Additional parameters of the radars can be found in Table 2 .

urthermore, the rain maps are rain-gauge adjusted with more de- 

ails being described in [24] . We split up the dataset into a training

et (years 2016-2018) and a testing set (year 2019). Additionally, for 

very training iteration, a validation set was created by randomly 

electing 10% of the training set. 

The raw rain maps have a dimension of 765 × 700 and one pixel 

orresponds to the accumulated rainfall in the last five minutes on 

ne square kilometer. The amount of rainfall is noted as an integer 

alue in the unit of a hundredth of millimeter. For instance, a value 

f 12 means there was 0.12 mm of rainfall in the last five minutes. 

As a data preparation step, we divided the values of both the 

raining and testing set by the highest occurring value in the train- 

ng set to normalize the data. Furthermore, we cropped the image 

nd only used a subset of the original precipitation map ( Fig. 2 ).

his was done due the fact that many pixels of the raw image have 

o-data values because the raw image is larger than the maximum 

ange of the radar (see the white margin in the left panel of Fig. 2 ).

he area within the range of the radar has a circular shape and 

 diameter of 421 pixels corresponding to 421 kilometers. When 

ropping the image in a way that preserves the entire radar image 

here are still many pixels with no-data values (white corners in 

he middle panel of Fig. 2 ). Since training a neural network with 

o-data values is more difficult, we therefore applied an additional 

enter crop of 288 pixels (right panel of Fig. 2 ). 

The input for the models is a sequence of 12 precipitation maps 

hich are stacked along the channel dimension. This corresponds 

o one hour of past weather observations ( 12 × 5 min). The out- 

ut is the precipitation map 30 min later than the last input im- 

ge. Therefore, the task for the network is to predict exact rain- 

all intensities for every pixel of the 288 × 288 rain map 30 min 

nto the future. The dataset contains many rain maps with very 

ittle to no rain. Therefore, in order to avoid biasing the network 

owards predicting zero values we created two additional datasets 

hose target images have a minimum amount of rainy pixels. One 

f the two datasets has samples with at least 20% of rainy pix- 

ls in the target images and the other one with at least 50% ; we

ill call them NL-20 and NL-50, respectively. The number of sam- 

les in these two datasets is necessarily significantly smaller than 

he original dataset, but they also more appropriately apply to the 

se-case of the model, i.e. predicting rain. A comparison of differ- 

nt sample sizes of the three datasets can be found in Table 3 . The

ata sets can be obtained by submitting a request to the authors. 

We trained the models on the dataset in which the target image 

as at least 50% of rain in the pixels (NL-50). This should set the 

ocus of the trained networks on instances of rain. Something sim- 

lar was done by the authors of [36] who select the top 97 rainy

ays of their dataset of three years for training. 

Furthermore, this enables the use of the dataset with at least 

0% of rain (NL-20) as an additional performance indicator. More 

recisely, we can use it as an indicator for the generalizability of 

he models. The trained models have not seen a single precipita- 

ion map of this test dataset. Furthermore, the models may have 
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Fig. 2. (a) Transformations applied on the raw data. (b) Cutout of max range of radars. (c) Center crop of 288 pixels of max radar range. 

Table 3 

Comparison of the dataset sizes. The original dataset has a lot of images with little 

to no rain. 

Name Required rain pixels Train Test Subset 

NL-Full 0% (original) 314940 105003 100% 

NL-20 20% 31674 11276 10.23% 

NL-50 50% 5734 1557 1.74% 
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een biased towards predicting more rain due to the nature of pre- 

ominantly rainy precipitation maps. Therefore it is possible that 

he performance of the models on this test set is worse than the 

ne that closely resembles the data they are trained on. 

.2. Cloud cover dataset 

Here, the cloud cover data introduced in [5] is used as the sec- 

nd dataset to compare the proposed models. It contains binary 

mages containing cloud position on each pixel with 1 indicating 

he cloud coverage and 0 indicating no cloud on the pixel. All im- 

ges have size of 256 × 256 pixels and include the spatial area of 

rance. Furthermore, each data sample consist of ten binary im- 

ges: four images as an input and six images as the ground truth 

utput. The images in each data sample are spaced by 15 min, 

hich results in the time span of 1 h for the input and 1 h and

0 min for the output, totalling 2 h and 30 min per sample. More 

etails about this dataset can be found in [5] . Exemplary sample 

f the discussed dataset is presented in Fig. 3 . As the cloud cover

ataset includes images with binary values of 0 and 1 only, we 

o not apply any data normalization or image cropping. The cloud 

over dataset is used for the training, evaluation and testing in its 

riginal form. The task of the network is to predict the probability 

f the presence of a cloud on each pixel. 

. Results and discussion 

Following training of the four discussed models, we selected 

or each model the one with the lowest validation loss from their 
Fig. 3. An example of clou

182 
raining run. These best performing models were then used to cal- 

ulate several metrics, introduced in Section 3 , on the test set. 

he models were trained, evaluated and tested on the Precipitation 

ap dataset as well as the cloud cover dataset separately. 

.1. Evaluation on precipitation map dataset 

The results obtained on the Precipitation map dataset (NL-50) 

re tabulated in Table 4 . Note that the MSE is calculated after de- 

ormalizing the model predictions to the original rain intensities 

mm/5 min). Additionally, we calculated MSE values divided by the 

verage pixel value of the two different datasets. The result is a 

ormalized MSE (NMSE) with which we can have a fair compari- 

on of error values between the different datasets. 

The obtained results show that on the Precipitation map 

ataset, the common persistence baseline is outperformed by ev- 

ry model we tested by a large margin. This is noteworthy because, 

s mentioned before, it can be difficult to outperform this baseline 

n nowcasting due to the small time changes between the input 

nd target. We found that adding the proposed two modifications, 

.e. DSCs and CBAMs, to the UNet architecture altered the models 

erformance in comparison to the original UNet implementation 

n the Precipitation map dataset. On the one hand, implementing 

ach modification alone slightly decreased the performance. On the 

ther hand, however, our proposed model, SmaAt-Unet which in- 

orporates both modifications into plain UNet, resulted in a better 

erformance than UNet combined with each of the modifications 

lone. It should be noted that equipping UNet with only CBAMs, 

esulted in the highest MSE on the Precipitation map dataset with 

.0171. 

Concerning our second modification, i.e. substituting the regu- 

ar convolutions with DSCs, the results are more mixed. On the one 

and, performance of the UNet with DSCs is worse than the origi- 

al UNet model (0.0127 and 0.0122, respectively). However, it still 

erforms better than the UNet model with CBAMs. On the other 

and, it is important to note that substituting regular convolutions 

y DSCs reduced the network’s model size to a quarter of the orig- 

nal UNet. 
d cover data sample. 
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Table 4 

MSE, NMSE and scores on rainfall bigger than 0 . 5 mm/h indicating rain or no rain on the NL-50 dataset. Best result for that score is in bold. A ↑ 
indicates that higher values for that score are good whereas a ↓ indicates that lower scores are better. 

Model MSE ↓ NMSE ↓ Accuracy ↑ Precision ↑ Recall ↑ F1 ↑ CSI ↑ FAR ↓ HSS ↑ Model size 

Persistence (baseline) 0.0248 847.67 0.756 0.678 0.643 0.660 0.493 0.320 0.235 - 

UNet 0.0122 416.38 0.836 0.740 0.855 0.794 0.658 0.259 0.329 1 ×
UNet with CBAM 0.0171 584.46 0.820 0.707 0.871 0.780 0.640 0.293 0.315 1 . 01 ×
UNet with DSC 0.0127 435.86 0.812 0.700 0.856 0.770 0.626 0.300 0.306 0 . 23 ×
SmaAt-UNet 0.0122 416.10 0.829 0.730 0.850 0.786 0.647 0.270 0.322 0 . 24 ×

Table 5 

MSE and scores of the models on the test set from the NL-20 dataset. Calculated scores on rainfall bigger than 0 . 5 mm/h indicating rain or no rain. 

Best result for that score is in bold. A ↑ indicates that higher values for that score are good whereas a ↓ indicates that lower scores are better. 

Model MSE ↓ NMSE ↓ Accuracy ↑ Precision ↑ Recall ↑ F1 ↑ CSI ↑ FAR ↓ HSS ↑ Model size 

Persistence (baseline) 0.0227 1413.45 0.827 0.559 0.543 0.551 0.380 0.441 0.221 - 

UNet 0.0111 691.48 0.880 0.666 0.782 0.719 0.562 0.334 0.321 1 ×
UNet with CBAM 0.0147 913.40 0.860 0.607 0.812 0.695 0.532 0.393 0.303 1 . 01 ×
UNet with DSC 0.0115 714.93 0.857 0.605 0.779 0.681 0.516 0.395 0.295 0 . 23 ×
SmaAt-UNet 0.0111 692.08 0.867 0.626 0.801 0.703 0.542 0.374 0.309 0.24s 
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Fig. 4 shows an example of the models output for a precip- 

tation nowcast on the Precipitation map dataset. In contrast to 

he ground truth image (top left panel) the predicted precipita- 

ion maps of all models are quite blurry. One reason for this is the 

se of MSE as guiding loss which is biased towards blurry images 

7] . The bias towards blurriness is due to the fact that, given the 

any possibilities for future frames based on the input sequence, 

he model is trying to keep the error low by predicting a value 

hat is closest to all possible outcomes [21] . Or, as Babaeizadeh et 

l put it, ”the models trained with a mean squared error loss func- 

ion generate the expected value of all the possibilities for each 

ixel independently, which is potentially inherently blurry” [3] . 

Furthermore, one can see in Fig. 4 that SmaAt-Unet is able to 

apture the development of intense rain clusters (lower left corner) 

etter than the other models. UNet with DSCs predicts a spread 

hat is too big on the horizontal elongation. UNet with CBAM does 

his better, but predicts values that are too conservative. UNet pro- 

uces a similar output than SmaAt-UNet, but does not predict well 

nough the vertical spread of the precipitation of the left rain clus- 

er. 

Moreover, we have calculated several metrics of the perfor- 

ance of our models on the Precipitation map dataset. The ob- 

ained scores are also tabulated in Table 4 . This table shows that 

hile the original UNet implementation performs best in most 

cores, our SmaAt-UNet performs second best in six out of the 

even scores. Thus, the SmaAt-Unet is able to approximate UNet’s 

erformance even though it only has 1/4 of its parameters. This fa- 

ilitates research labs and individuals that do not possess a lot of 

omputing power to also work on these computationally intensive 

alculations. This in turn can lead to a more rapid advancement in 

he development of radar-based short term rainfall prediction. 

In order to test the generalizability of the models we use the 

ther subset of our dataset that was described in Section 4 , i.e. NL-

0. The MSE, NMSE and scores for this test set are given in Table 5 .

As can be seen in this table, the results are similar to the ones 

n Table 4 . Specifically, when ranking the models we can see that 

he original UNet implementation performs best in almost all met- 

ics and our SmaAt-UNet comes in as close second in almost all 

etrics as well. This means that although the models have not 

een many inputs with little rain, UNet and SmaAt-UNet are able to 

xtrapolate best from the limited data that was available to them 

t training time. An explanation for the lower MSE in this dataset 

s that more values of the precipitation maps are close to zero (due 

o little rain) and therefore do not increase the overall MSE by a 

arge margin if the model also predicts small values. Therefore, us- 

s

183 
ng NMSE for comparison is a better metric as it takes the pixel 

alue distribution into account. Here, UNet is slightly better than 

maAt-UNet, but both their performance is way better than the 

ther compared models. Fig. 5 , depicts example feature maps from 

he attention part of the encoder modules on the Precipitation map 

ataset. This figure illustrates that the network’s attention maps 

earn to focus on particular parts of the input sequence, demon- 

trating the learning effect of the attention mechanism. The rows 

epict the different stages of the encoders which can be seen by 

 decrease in resolution in each row. Furthermore, it can be seen 

hat the attention feature maps focus on different characteristics of 

he input. For example, in the first row, some feature maps focus 

n a rain cluster in the lower left corner (maps 2 and 8) while oth-

rs focus on the parts with little to no rain (maps 4, 5 and 7). The

ottom row shows feature maps from the last encoder stage of the 

maAt-UNet which have a resolution of 18 × 18 . As the images in 

he bottom row illustrate, this low resolution leads the network to 

dentify coarse patterns such as the rain cluster at the bottom of 

he maps (maps 2, 3, 5 and 7). 

.2. Evaluation on cloud cover dataset 

We also train the four discussed UNet-based models on the 

loud cover dataset. The results of several metrics performance 

re tabulated in Table 6 . The cloud cover dataset contains samples 

ith binary values and thus we do not calculate NMSE error here. 

urthermore, the dataset format is set as four input images and six 

utput images per sample. 

From Table 6 , one can observe that the lowest MSE score be- 

ongs to UNet with CBAM. However, the results are comparable for 

ll models. The difference between the highest and the lowest MSE 

btained on the cloud cover dataset for all the four models ex- 

mined is 0.0019. The small difference is particularly worth men- 

ioning for SmaAt-UNet and Unet with DSC, which contain roughly 

/4 of the parameters compared to UNet or UNet with CBAM. For 

ost of the reported metrics in Table 6 , UNet with CBAM reaches 

he best scores. In two cases UNet with CBAM is comparable to 

nother model, i.e. with UNet for F1 score and with UNet with 

SC for FAR score. For this dataset SmaAt-Unet yields the best Re- 

all score. Similarly as for MSE score, the other reported scores 

re also comparable and the differences are minor. It shows that 

n cloud cover dataset, on which the model task is to predict the 

loud probabilities between 0 and 1, the proposed combination of 

Net with convolutional block attention modules reaches the best 

cores in most of the cases. Nevertheless, the proposed SmaAt- 
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Fig. 4. An example of precipitation nowcasting using the examined models. 

Fig. 5. Example of 8 feature maps from each attention layer given an input sample. The same input sequence as was used in Fig. 4 . Top row to bottom row show examples 

of the five different attention layers. It is clear to see that the resolution of the images gets lower with each layer. In addition, it can also be seen that feature maps focus 

on different parts of the input. 

184 
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Table 6 

MSE and scores on the cloud cover dataset [5] . Best result for that score is in bold. A ↑ indicates that higher values for that 

score are good whereas a ↓ indicates that lower scores are better. 

Model MSE ↓ Accuracy ↑ Precision ↑ Recall ↑ F1 ↑ CSI ↑ FAR ↓ HSS ↑ Model size 

UNet 0.0785 0.890 0.895 0.919 0.907 0.829 0.105 0.386 1 ×
UNet with CBAM 0.0775 0.891 0.902 0.913 0.907 0.831 0.098 0.388 1 . 01 ×
UNet with DSC 0.0793 0.889 0.902 0.908 0.905 0.827 0.098 0.386 0 . 23 ×
SmaAt-UNet 0.0794 0.889 0.892 0.921 0.906 0.829 0.108 0.385 0 . 24 ×
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Net reaches very similar performance with approximately 1 / 4 pa- 

ameters of original UNet and UNet with CBAM. It should be noted 

hat in case of the cloud cover dataset, the differences between 

he scores are smaller compared to those of the precipitation map 

ataset, because the data values of the cloud cover dataset are bi- 

ary. The evaluated models predict values between 0 and 1 for the 

loud cover data (presence or absence of the cloud) which results 

n smaller differences compared to the evaluation on the precipi- 

ation map dataset (see Tables 4 and 5 ). 

. Conclusion and future work 

In this paper we proposed SmaAt-UNet which is a smaller and 

ttentive version of a UNet architecture. It has been shown that 

t performs on par to similar architectures that are way bigger 

han itself on a precipitation nowcasting task. The development of 

mall and efficient neural networks, such as SmaAt-UNet, enables 

heir application in smartphones. For instance, creating an appli- 

ation with multiple trained SmaAt-Unets with different forecast- 

ng times allows precipitation forecasting with the latest available 

ata at the users request. Furthermore, creating energy efficient ar- 

hitectures, such as SmaAt-UNet, reduces the carbon footprint. Be- 

ng mindful of the resources that are required for training a neu- 

al network is a crucial step towards sustainable machine learning 

ractices. 
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