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The human brain effortlessly solves the complex computational task of sound localization using a
mixture of spatial cues. How the brain performs this task in naturalistic listening environments (e.g. with
reverberation) is not well understood. In the present paper, we build on the success of deep neural net-
works at solving complex and high-dimensional problems [1] to develop goal-driven, neurobiological-
inspired convolutional neural network (CNN) models of human spatial hearing. After training, we visual-
ize and quantify feature representations in intermediate layers to gain insights into the representational
mechanisms underlying sound location encoding in CNNs. Our results show that neurobiological-inspired
CNNmodels trained on real-life sounds spatialized with human binaural hearing characteristics can accu-
rately predict sound location in the horizontal plane. CNN localization acuity across the azimuth resem-
bles human sound localization acuity, but CNN models outperform human sound localization in the back.
Training models with different objective functions - that is, minimizing either Euclidean or angular dis-
tance - modulates localization acuity in particular ways. Moreover, different implementations of binaural
integration result in unique patterns of localization errors that resemble behavioral observations in
humans. Finally, feature representations reveal a gradient of spatial selectivity across network layers,
starting with broad spatial representations in early layers and progressing to sparse, highly selective spa-
tial representations in deeper layers. In sum, our results show that neurobiological-inspired CNNs are a
valid approach to modeling human spatial hearing. This work paves the way for future studies combining
neural network models with empirical measurements of neural activity to unravel the complex compu-
tational mechanisms underlying neural sound location encoding in the human auditory pathway.

� 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Humans use spatial hearing to rapidly localize events in the
environment and to separate sound sources into coherent auditory
objects in multi-source listening environments (e.g. to focus on the
voice of a friend from background sounds in a noisy bar). Despite
extensive research into human sound localization, it remains
unclear how the brain computes the location of real-life sounds
in real-world listening environments. That is, prior studies of neu-
ral sound location processing mainly focus on simple sounds (i.e.
tones, clicks, noise bursts) in controlled listening environments
(i.e. without reverberation) that have low ecological validity [2]
Additionally, computational studies targeting the representational
and computational mechanisms underlying the transformation
from binaural sound wave to neural location representation are
rare [2,3].

In the present paper, we develop goal-directed, neurobiological-
inspired convolutional neural network (CNN) models of human
spatial hearing. CNNs have proven very successful as computa-
tional models of neural sensory encoding [4], for example to unra-
vel processing in visual cortex [5,6]. However, neural network
models of sensory processing in the auditory system are still in
its infancy (but see for example [7]). Here, we propose CNN archi-
tectures that loosely resemble the anatomy of the early stages of
the subcortical human auditory pathway. Crucially, these
neurobiological-inspired CNNs operate on real-life sounds as they
are perceived by humans in a real-world listening environment
(including reverberation) and in an anechoic listening environment
(without reverberation). We originally introduced this approach in
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our previous study [8]. Here, we extend our approach by testing
the effect of three different implementations of binaural integra-
tion corresponding to the various forms of neuronal encoding of
binaural disparity cues that take place in the human auditory path-
way [9]. Additionally, we examine the effect of different objective
functions on localization acuity by training CNNs to minimize
either the Euclidean or the angular distance. Finally, in order to
obtain an understanding of how the networks form spatial repre-
sentations, we investigate the computational and representational
mechanisms emerging after training by analyzing the feature rep-
resentations of intermediate layers. This provides crucial insights
for future development of deep neural network models of human
neural sound location encoding.

1.1. Deep neural network models of sound localization

Most prior neural network models of sound localization were
developed in the context of computational environmental analysis,
i.e. focusing on advanced signal processing methods to retrieve
information from everyday listening scenes (for recent overviews,
see [10,11]). Typically, these network architectures contain a num-
ber of convolutional layers followed by one or multiple recurrent
layers. Neural networks are trained to localize sound sources using
either a classification task or a multi-output regression task to esti-
mate sound location on a continuous scale in Cartesian coordi-
nates. Often, networks are trained to perform dual tasks such as
sound localization and event detection. Using such set-ups, neural
network models have become very successful at predicting sound
location accurately, with average location prediction errors as
small as 3�(e.g. [10,11]).

While these models provide important insights into the utility
of neural networks for signal processing and acoustic scene analy-
sis, they provide little insight into human spatial hearing. That is,
input to these networks is typically derived from microphone
arrays that consist of four or more channels, while humans only
have two channels at their disposal. Moreover, networks typically
operate on pre-processed sounds or a priori extracted features
such as phase, time, and/or spectral inter-channel differences
[10,11]. Neural network models of human sound location encoding
– that is, with binaural, unprocessed sounds – are rare. Recently,
Francl and McDermott (2020)[25] succeeded at reproducing
human sound localization behavior by training deep neural net-
work models on real-life spatialized sounds. Yet, this work did
not investigate sound location processing in the human auditory
pathway. Hence, the study does not explore neurobiological-
inspired network architectures, or the representational mecha-
nisms employed by the neural networks.

1.2. Human spatial hearing

Humans localize sounds in the horizontal plane utilizing binau-
ral spatial cues: interaural level and time differences (ILD and ITD,
Fig. 1. Overview of human spatial hearing. (A) Humans utilize binaural disparity cues
horizontal plane. (B) Human localization acuity is highest around the interaural midline a
the green to red color scale. (C) Schematic overview of the first stages of the human sub
LL = lateral lemniscus. IC = inferior colliculus. (D) Colored circles indicate the 36 target
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respectively). These binaural disparity cues arise from the position
of the head in between the two ears (Fig. 1 A). Monaural, spectral
cues provide an additional source of information to disambiguate
sound locations in the front from locations in the back [2]. The
extraction and computation of these cues takes place in the sub-
cortical auditory pathway, with binaural integration starting at
the level of the superior olivary complex ([12], Fig. 1 C). That is,
ILDs are processed in the lateral superior olive (LSO) based on ipsi-
lateral excitatory and contralateral inhibitory (EI) input from the
cochlear nuclei. In contrast, ITDs are computed in the medial supe-
rior olive (MSO) based on excitatory-excitatory input (EE) from the
cohlear nuclei. At the level of the inferior colliculus, processing of
spatial cues is mostly completed [9]. This information is then prop-
agated via the thalamus to the auditory cortex, which is implicated
in goal-oriented sound localization, spatial processing of complex
sounds, and spatial hearing in complex listening scenes [2].

Human spatial hearing acuity is highest around the interaural
midline and deteriorates towards the periphery and back
([13,14], Fig. 1 B). Further, humans are prone to making front-
back reversals: ILDs and ITDs are identical for source locations in
the front and back that are at equal angular distance from the
interaural axis, making it difficult to resolve the front from the
back. Humans make use of very small head movements or, in the
absence thereof, monaural, spectral cues to resolve these front-
back ambiguities [15]. Finally, localization acuity is affected by
both low-level and high-level sound properties. For example,
mammals localize broadband sounds more accurately than
narrow-band sounds [16,17], and humans localize behaviorally rel-
evant sounds more accurately than less relevant sounds [18].
2. Methods

2.1. Data generation and pre-processing

We created a database of binaural nerve representations of spa-
tialized, real-life sounds in different acoustic environments
(500 ms duration). Real-life sounds included speech, music, animal
sounds, nature, tools, and urban environments. First, sound clips
were spatialized to 36 locations covering the entire azimuth
(elevation = 0�, distance = 1.5 m) at an angular resolution of 10�
(starting from 0�, Fig. 1 D) using human binaural hearing character-
istics. In total, we spatialized 2,087 monaural sound clips to 36
locations in two different acoustic environments, resulting in a
total of 150,263 training sounds. We also created a separate data
set of 13,608 spatialized sounds to evaluate model performance
(i.e. 169 monaural sound clips spatialized to 36 locations in two
different listening environments); this data was not used for
training.

Sound clips were spatialized to the relevant azimuth location in
two different acoustic environments in order to encourage the net-
work to predict sound location irrespective of environment-
specific acoustic properties (e.g. differences in reverberation). To
– interaural time and level differences (ITD and ILD) – to localize sounds in the
nd deteriorates towards the periphery and especially the back, as indicated here by
cortical auditory pathway. CN = cochlear nucleus. SOC = superior olivary complex.
locations used for training and testing the neural networks.
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spatialize the monaural sound clips to a given azimuth location
and acoustic environment, we used a head related transfer func-
tion (HRTF) describing human binaural hearing characteristics,
and a 3D sound rendering technique capturing room-specific
acoustic properties (e.g. reflections). That is, the HRTF describes
listener-specific properties and simulates listening to a loud-
speaker at a given location in an anechoic environment. In addi-
tion, we simulated listening to a sound source in a real-life
acoustic environment - i.e. a lecture hall (10 x 14 m) with reflec-
tions - we modelled a binaural room impulse response (BRIR
[19]). Specifically, we modelled the BRIR by convolving the HRTF
with the direct sound part of the b-format recorded room impulse
response and by linearly combining the later reflections part of the
b-format signal channels. This results in a BRIR with the same
spectral and spatial cues as would be expected for a BRIR recorded
in the same circumstances (for full details, see [19]). In this way,
the BRIR reflects the combination of listener and room specific
acoustic properties. Thus, in total, we spatialized sounds to two
acoustic environments using a HRTF and BRIR: an anechoic envi-
ronment, and a large lecture hall with early and late reflections.
Listening environments did not include background noise as the
aim of the present paper was to model single-source sound local-
ization. This procedure resulted in spatialized, stereo sound clips
with clear and realistic binaural disparity cues as they are typically
present in human hearing (Fig. 2).

Finally, we use a model of cochlear sound processing to convert
each channel of the stereo sound clip into the expected activation
pattern at the level of the left and right auditory nerve, respec-
tively. Specifically, we modelled a bank of 100 gammatone filters
to simulate movement of the basilar membrane in the cochlea
resulting in a multi-channel spectral analysis over time [20]. Cen-
ter frequencies of the filters spanned 50–8,000 Hz and were
equidistantly spaced in terms of auditory filter bandwidth [21].
Here, the filter gain reflects the transfer function of the outer and
middle ear (utilizing the implementation of [22,23]). In this way,
we simulate the output of the cochlea by generating auditory nerve
(AN) representations: Spectrogram representations of the sound
wave at the spectral and temporal resolution (i.e. 1,500 Hz) of
the human auditory nerve fibers (Fig. 2).

2.2. Neural network architecture

The neural network architectures evaluated here are inspired by
the basic feedforward, hierarchical architecture of the first stages
Fig. 2. Schematic illustration of sound pre-processing procedure in two listening environ
hemifield (+40 degrees) in an anechoic environment by convolving the sound clip with an
wave arriving at the left and right ear respectively (middle). The spatialized, binaural sou
using a model of cochlear processing (right, see main text). Bottom: A monaural sound c
(lecture hall) by convolving the sound clip with a BRIR (see main text). Middle and righ
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of the human subcortical auditory pathway (Fig. 1 C). Specifically,
the input to the network comprises the simulated bilateral AN rep-
resentations described in the aforementioned section which corre-
spond to the input to the human auditory pathway. These bilateral
AN representations are passed to the first layer, which consists of
two uncoupled branches resembling the initial stage of the left
and right auditory pathway, i.e. the cochlear nucleus (CN). Here,
spectral and temporal features in the AN representations are
learned in a convolution-pooling block. A block comprises a 2D
convolutional layer (CNN) with 32 kernels and a rectified linear
unit (ReLu) activation function [24], a drop-out layer (drop-out
rate = 20%) and a max pooling layer reducing the dimensionality
along the frequency axis (pool size = 1 x 2).

The next layer simulates binaural integration in the human
superior olivary nucleus by merging the feature maps of the two
branches. We created three different architectures corresponding
to three different implementations of binaural integration: sub-
traction, addition, or concatenation (Fig. 3). These architectures
were selected for their correspondence to human binaural integra-
tion for ILD encoding (excitatory-inhibitory integration in the LSO
modeled here as subtraction [see Human sound localization]) and
for ITD encoding (excitatory-excitatory integration in the MSO
modeled here as addition [see Human sound localization]), and
to explore the effects of an unconstrained architecture in which
features from the left and right stream remain available through-
out the network (concatenation).

In order to test specific effects of the binaural integration mech-
anisms, we model binaural integration solely in one of the bilateral
streams the human auditory pathway (Fig. 1 C). tThat is, it is still
unclear how the left and right auditory pathway interact during
sound localization [2]. We therefore aimed to investigate the loca-
tion representations and localization accuracy that emerge based
on binaural integration on one side of the auditory pathway. Here,
the implementation of subtraction models binaural integration in
the left superior olivary complex: Subtraction is modeled as left
minus right, and concatenation is modeled by concatenating the
feature maps of the right stream to the feature maps of the left
stream. Because the order of the feature maps is not relevant for
addition and concatenation, the model does not map a specific
(i.e. left or right) site for these methods of binaural integration.

The resulting merged feature maps are used as input to a series
of three convolution-pooling blocks, each consisting of a 2D CNN
layer with ReLu activation function, a drop-out layer (drop-out
rate = 20%) and a max pooling layer (pool size = 2 x 2 for first
ments. Top pane: A monaural sound clip (left) is spatialized to a position in the right
HRTF. This results in spatialized, binaural sound waves corresponding to the sound
nd waves are converted into a simulation of bilateral auditory nerve representation
lip (left) is spatialized to the same position in a reverberant listening environment
t panels similar to top.



Fig. 3. Schematic of neurobiological-inspired neural network architectures. Bilateral auditory nerve representations are fed into two uncoupled convolution-pooling blocks.
The outputs of this stage are merged (layer in blue) using one of three implementations of binaural integration (concatenation, subtraction, addition). The merged outputs are
fed into a series of three convolution-pooling blocks, followed by a flattening layer. The final step consists of a fully connected layer with two nodes corresponding to the x
and y-coordinate of the location predictions. The number and size of convolution kernels evaluated here vary, see Table 1 for an overview.
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two blocks, and 3 x 2 for last block). After flattening and a final
drop-out layer (drop-out rate = 20%), the output activation of the
final convolution-pooling block is fed into a fully connected (FC)
layer with two nodes corresponding to the two outputs (x and y
coordinates) and a tanh activation function (Fig. 3). The tanh acti-
vation function ensures that location estimates are restricted to the
unit circle with axes [�1,1] [10].

Note that we selected a CNN architecture for the present study
for the following reasons. First, as the network learns to predict
sound location of stationary sounds, a one-time output of sound
location fits the task of the model. Further, sound statistics of sta-
tionary sounds are translation invariant in the temporal dimension
and temporal convolution therefore plausible. Additionally, in the
frequency dimension, local approximate translation invariance is
plausible [25]. Finally, using a CNN architecture enables us to
investigate the internal representations of the network in a
straightforward manner.

Finally, to find the optimal network parameters, we tested var-
ious numbers of convolution kernels per layer and two different
kernel heights. Further, as mentioned above, we varied the model
of binaural integration as well as the use of two different loss func-
tions (Table 1).
2.3. Training procedure

We trained CNN architectures to predict sound location on a
unit circle around the head (axes [�1,1]), using two regressors that
correspond to the x and y coordinates. Networks were trained
twice, utilizing a different loss function each time: mean square
error (MSE) and angular distance (AD). These loss functions are
of interest here because they quantify different aspects of the local-
ization task. First, MSE quantifies the Euclidean distance between
two points in 2D Cartesian coordinates (i.e. x; y-coordinates) and
is commonly used in DNN approaches to sound localization
[10,11].
Table 1
Tested network parameters. All models had the same number of layers, and convolution ke
well as the model of binaural integration (merging).

Layer Layer type Nr. of kernels

1 Convolution 32
2 Merge –

3 Convolution [32,64]
4 Convolution [64,128]
5 Convolution 128
6 Flatten –
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MSE ¼ 1
n

Xn

i¼1

ðx̂i � xiÞ2 þ ðŷi � yiÞ2 ð1Þ

Here, x̂i; ŷi refers to the predicted x; y-coordinates, and xi; yi to
the actual x; y-coordinates (i.e. the label). However, the MSE is
independent of the direction of the error and is therefore influ-
enced not only by the azimuth position (i.e. the angle), but also
by the distance with respect to the ‘listener’ (i.e. the microphones).
For example, the MSE will be the same for a prediction that is at the
correct azimuth position but at an incorrect distance, and a predic-
tion that has a deviant azimuth position but that is at the correct
distance. Because we aim to develop CNNs estimating sound azi-
muth position, we therefore also trained the CNNs with an angular
distance (AD) loss.

AD ¼
cos�1ð

Pn

i¼1
ðx̂i ;ŷiÞðxi ;yiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðx̂i ;ŷiÞ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðxi ;yiÞ2

p Þ
p ð2Þ

Similar to Eq. (1), the predicted x; y-coordinates are indicated as
x̂i; ŷi, and the actual x; y-coordinates (i.e. the labels) are indicated as
xi; yi.

Training sounds were divided into a train and test set (75% and
25%, respectively). We trained the networks using Adam optimizer
(default parameters) and early stopping to prevent overfitting to
the training data (training was stopped if performance did not
improve for 10 epochs). Training occurred in mini batches. We con-
ducted a search for optimal batch size per loss function, resulting
in batch size = 64 for models trained with MSE loss and batch
size = 128 for models trained with AD loss. Networks were imple-
mented with Keras library [26] with a Tensorflow backend [27].

The proposed architectureswere evaluated on a held-out dataset
consisting of 13,608 spatialized sounds, using the MSE and AD as
metrics. Given that our aim is to develop neural networks that accu-
rately predict sound location in the horizontal plane (that is, the
anglewith respect to the listener), themost relevantmetric is theAD.
rnels always had the same width. We varied number of kernels and kernel height, as

Kernel height Merging

[5, 7] –
– [subtraction, addition,

summation]
5,7] –
[5,7] –
[5,7] –
– –
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2.4. Extracting internal feature representations

To better understand the representational mechanisms utilized
by the neural networks for encoding sound location - and to com-
pare feature encoding strategies across loss functions and imple-
mentations of binaural integration – we visualize and quantify
the internal feature representations of the trained networks. That
is, the intermediate layers of neural networks extract feature rep-
resentations that contribute to the task at hand, in this case: sound
localization. Thus, the internal feature representations are
expected to differentiate between the target sound locations. To
reveal these feature representations, we construct a feature selec-
tivity vector for all nodes within a feature map of a given layer. Fol-
lowing the approach of Nagamine and Mesgarani [28], the feature
selectivity vector of node m is computed as the average activation
hm to a target location k across all samples in the evaluation data-
set, for all target locations k 2 f1; . . . ;Kg. In this way, the feature
selectivity of a given feature map in a layer is summarized by
K �M � N½ � matrix consisting of M � N½ � feature selectivity vectors.
Here, K corresponds to the number of target locations, M to the
number of nodes in the time dimension and N to the number of
nodes in the frequency dimension.

To characterize the complexity of the feature representations
within each layer, we perform unsupervised hierarchical clustering
based on the similarity of the feature maps. Here, we focus on spa-
tiospectral feature representations, collapsing feature maps over
the time dimension (i.e. averaging over time). To perform unsuper-
vised hierarchical clustering, we first compute the pairwise Eucli-
dean distance between all feature maps within a layer. Next, we
perform unsupervised hierarchical clustering using the ‘ward’
method [29]. Using a distance cut-off criterion of 0.4 of the maxi-
mum distance, we extract the number of distinct clusters within
each layer as a measure of the complexity of feature representa-
tions. That is, if feature representations reveal broad feature tun-
ing, feature representations are not strongly differentiated from
each other. This will result in a relatively small number of different
clusters at the level of the distance cut-off criterion. In contrast, if
feature representations show sharp feature tuning, feature repre-
sentations are highly differentiable. This will result in a relatively
large number of different clusters.
3. Results

3.1. Overall model performance

We evaluated the trained networks on an unseen data set of
13,608 sounds that were spatialized in the same manner as the
training sounds. We compared performance across the different
implementations of binaural integration (concatenation, addition
and subtraction) and the type of loss function used during training
(MSE loss or AD loss). Table 2 shows the average model perfor-
mance for each combination of binaural integration implementa-
Table 2
Model performance on a held-out evaluation data set. Depicted are the evaluation
metrics for the best performing model within the tested parameters per combination
of binaural integration and type of training loss. Best scores on evaluation metrics are
in bold and marked by an asterisk.

Training
loss

Binaural
integration

Angular distance
(AD)

Mean square error
(MSE)

MSE concatenation 4.8� 0.011�

addition 4.8� 0.013
subtraction 5.3� 0.014

AD concatenation 3.7�� 0.139
addition 3.9� 0.107
subtraction 5.2� 0.160
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tion and training loss (raw data without correction for front-back
reversals). For the angular distance metric, models trained with
AD loss perform better than models trained with MSE loss (lowest
error = 3.7� versus 4.8�). For the MSE metric, models trained with
MSE loss outperform models trained with AD loss (lowest error =
0.011 verus 0.107).

Comparing the performance of the proposed networks to the
performance of other neural network models of sound localization
is not straightforward. As mentioned above, existing models are
mostly developed in the context of computational environmental
analysis and are often trained to localize sounds in the horizontal
and vertical plane simultaneously, or to localize multiple sound
sources at the same time (i.e. operating on more complex acoustic
environments). Further, these models typically operate on multi-
channel input at a higher temporal resolution than the input to
the present networks, or on a priori extracted features (see Intro-
duction). Nevertheless, the best performing model for single-
source sound localization in the horizontal plane proposed here,
localizes sound sources with a precision that is comparable to or
higher than the precision of such neural networks. For example,
the best performing models at the IEEE AASP Challenge on Detec-
tion and Classification of Acoustic Scenes and Events report local-
ization errors of 3.2� or larger [11]. Adavanne et al. (2018) [10]
report error ranges as small as 3.4� for their proposed network
architecture, although errors are higher for more challenging envi-
ronments. Thus, although our models received different inputs
(two channels versus multi-channel, lower temporal resolution,
no a priori feature extraction) and were tested in different acoustic
environments, the present results provide a good indication that
our models adequately predict sound location in the horizontal
plane and may compete with other models of sound localization.

The CNN models of Francl and McDermott (2020) [25], which
aim to reproduce human sound localization behavior, are closest
to the networks considered here. These models predict single-
source sound location with an error range of 5–13% across azimuth
positions. This is higher than the error of our best performing mod-
els, but this may be due to the inclusion of the horizontal as well as
the vertical plane, and the addition of noise to the acoustic envi-
ronments tested [25].

Furthermore, we observe that the selected implementation of
binaural integration affects model performance. Specifically, com-
paring localization performance across models of binaural integra-
tion shows that concatenation and addition models perform better
than subtraction models. This applies both to CNNs trained with
MSE loss and CNNs trained with AD loss. Interestingly, perfor-
mance of addition and concatenation models is nearly equal, espe-
cially in terms of angular distance. This shows that constrained
models mimicking human spatial hearing by implementing binau-
ral integration similar to binaural integration in the auditory path-
way (i.e. the addition models) perform equal to unconstrained
models that have all data at their disposal (i.e. the concatenation
models).

3.2. Localization acuity as a function of target location

To obtain a more detailed understanding of model performance,
we examine location prediction error as a function of target loca-
tion. That is, human sound localization errors are not uniform
across the azimuth (Fig. 1 B). Therefore, we expect CNNs trained
on sounds spatialized with human binaural hearing characteristics
to depict similar non-uniform error patterns. Fig. 4 A shows that
concatenation and addition models indeed exhibit a specific pattern
of prediction errors (i.e. angular distance) that resembles approxi-
mately localization errors made by humans. Specifically, localiza-
tion acuity is highest for frontal locations close to the interaural
midline, and decreases towards more peripheral locations (com-



Fig. 4. Location prediction error per target location. (A) Polar plots display the average angular distance (AD) for each target location. Shaded area reflects standard deviation.
Blue colors refer to CNNs trained with MSE loss, green colors to CNNs trained with AD loss. (B) Mean square error per azimuth location for CNNs trained with MSE loss (blue,
left panel) and models trained with AD loss (green, right panel). Error bars reflect standard error of the mean.
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pare to Fig. 1 B). This is similar to human sound localization acuity
[13,14]. However, unlike humans, CNNs also predict locations in
the back close to the interaural midline relatively accurately (Fig. 4
B). Further, the subtractionCNNtrainedwithAD loss doesnotpredict
sound location around the interaural midline accurately, while it
predicts locations around the interaural axis (�90�and +90�) more
accurately than would be expected for humans.

Fig. 4 also shows that prediction errors made by the models
trained with MSE loss are relatively similar for target locations
on the left and on the right, while models trained with AD loss pro-
duce more asymmetric error patterns. A statistical comparison
between the errors in the left and in the right hemifield confirms
that neural networks trained with MSE loss are unbiased and make
similar errors for locations in the left and in the right hemifield
(paired samples t-test, p > 0.05, Fig. 5 A and Fig. 6). In contrast, sev-
eral CNNs trained with AD loss indeed exhibit biased localization
acuity. Specifically, the subtraction CNN trained with AD loss had
lower MSE for locations in the left hemifield than in the right hemi-
field (paired samples t-test, p = 7.28E-6 corrected for multiple
comparisons using the False Discovery Rate [FDR][30] at q <

0.05). The AD also appeared smaller for locations in the left hemi-
field than locations in the right hemifield for this network (Fig. 5 B),
but this difference was not statistically significant (p > 0.05).

Strikingly, this pattern of localization errors (smallest errors in
ipsilateral hemifield) is in close agreement with observations of
neural location encoding in the mammalian left LSO. That is, ILD
encoding in the LSO takes place through the integration of
ipsilateral excitatory and contralateral inhibitory input, and most
neurons represent ipsilateral sound locations (Pickles, 2015). Addi-
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tionally, lesion studies of mammalian LSO report mainly ipsilateral
localization errors (Celesia, 2015), indicating that the LSO con-
tributes mainly to ipsilateral sound localization. Note that our
implementation of binaural integration used here – i.e. left–right
– corresponds to the excitatory-inhibitory binaural integration tak-
ing place in the left human LSO. As the output of the LSO mostly
crosses to the contralateral auditory stream [12] (see also Fig. 1
C), the stages of our CNN after binaural integration conceivably
reflect encoding in the right human auditory pathway. Hence, the
biased localization acuity favoring locations in the left hemifield
by subtraction CNNs trained with AD loss, indicates that our imple-
mentation of excitatory-inhibitory integration in CNN models as a
simple subtraction may indeed resemble human neural location
processing in the LSO.

Further, the concatenation CNN trained with AD loss also exhi-
bits biased location predictions with lower AD scores in the right
hemifield (paired samples t-test, p = 0.023, FDR corrected for mul-
tiple comparisons, q < 0.05, Fig. 5 A and Fig. 6). Thus, the direction
of the localization acuity bias for the concatenation CNN is the
opposite as for the subtraction CNN, favoring the right hemifield
rather than the left hemifield. Interestingly, this is in agreement
with expectations based on ITD encoding in the left human MSO
based on excitatory-excitatory binaural integration, which is tuned
mostly to contralateral locations [9,12]. Our results indicate that
the concatenation CNNs may learn a similar excitatory-excitatory
mechanism for binaural integration. As the output of the MSO is
uncrossed, the stages after binaural integration for the concatena-
tion CNNs conceivably reflect location processing in the left
auditory pathway, predicting optimal localization in the contralat-



Fig. 5. Prediction errors specified per hemifield, and front-back reversals. (A) Bars depict the average error across locations in the left hemifield and locations in the right
hemifield (left pane = MSE, right pane = AD). A horizontal line with asterisk indicates a significant difference between the left and right hemifield (paired samples t-test, p <

0.05, FDR corrected for multiple comparisons (q < 0.05). Error bars indicate standard error of the mean. (B) Plotted is the percentage of front-back reversals in location
predictions for the evaluation data set. Each bar depicts the result of the best performing model for each type of binaural integration architecture (i.e. concatenation, addition
or subtraction). Blue bars depict scores for models trained with MSE loss, green bars depict scores for models trained with AD loss.

Fig. 6. Location predictions for a series of target locations per implementation of binaural integration and type of loss function. Colored circles indicate location predictions
for all sounds at a given target location in the evaluation test set. Colored crosses indicate target locations. The large circle depicts the unit circle on which all target locations
lie.
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eral - i.e. right - hemifield. Finally, the addition CNNs trained with
AD and MSE loss do not exhibit significant differences in error
scores between the left and right hemifield (p > 0.05). This was
expected given that the addition CNN does not model a specific
auditory stream (i.e. left or right) because the order of feature maps
for integration through addition is irrelevant (see Section 2.2 Neu-
ral network architecture).

Taken together, our results provide a first indication that
implementing binaural integration in a neurobiological-inspired
CNN as subtraction or concatenation, gives rise to location encod-
ing mechanisms that correspond to different types of binaural
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integration in the human auditory pathway that underlie ITD
and ILD encoding.

Remarkably, CNNs made very few front-back reversals in loca-
tion predictions (less than 1% of the predicted locations for all
models). In contrast, humans make front-back reversals up to
10% of localization judgements at zero elevation, especially for
locations at the back of the head [14]. Other neural network archi-
tectures report front-back reversal rates of around 35–55% [25].
However, the latter study included localization judgements at
varying elevations, which is expected to lead to higher front-back
reversal rates [14].



Fig. 7. Visualization of features in intermediate layers of trained CNN models. For
each layer, we depict some typical feature maps. Each map belongs to an individual
cluster resulting from the hierarchical clustering analysis. Note that the first layer
(‘Conv. layer 1’) consists of two uncoupled streams ‘left’ and ‘right’.
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Finally, visualizing the actual location predictions highlights the
different location encoding mechanisms employed by the CNNs
(Fig. 6). That is, training models to minimize the Euclidean distance
(i.e. using MSE loss) results in location predictions that minimize
not only the Euclidean distance between the target and prediction
in a given direction, but also between the prediction and the unit
circle. That is, these CNNs simultaneously optimize the distance
in a given direction and the distance with respect to the origin
(i.e. the ‘listener’) . As a consequence, the angular distance for some
of target locations is relatively high (see for example the AD for tar-
get location +90�in Fig. 6). Training models with AD loss results in a
very different pattern of location predictions. Specifically, Fig. 6
shows that – in contrast to the predictions made by the MSE loss
models – a large proportion of the location predictions lies close
to the origin (i.e. the listener). However, because the models
trained with AD loss only aim to minimize the angular distance,
the AD is relatively small at many locations. Note that these loca-
tion predictions show that the relatively high MSE score at frontal
locations that we observed for CNNs trained with AD loss (Fig. 5 B,
right panel) is a consequence of predictions lying very close to the
origin, rather than to large angular distances. Additionally, these
plots also highlight the relative absence of front-back reversals.

Thus, while MSE loss is utilized most often to train deep neural
network models of sound localization (for example [10,11]), our
findings emphasize that the optimal loss function is dependent
on the specific goal: If the distance to the target is not relevant
for the task at hand, training neural networks to minimize angular
distance may give better results than training models to minimize
the Euclidean distance.

3.3. Representational mechanisms underlying sound location encoding
in CNNs

We computed feature selectivity vectors for all nodes in the fea-
ture maps of intermediate layers of trained networks to reveal the
representational mechanisms underlying sound location encoding.
Fig. 7 shows representative examples of the resulting feature selec-
tivity maps of each intermediate layer. Maps are collapsed (i.e.
averaged) over the time dimension of the input, resulting in spa-
tiospectral representations. Visual inspection of the feature maps
highlights several observations. First, similar to feedforward CNN
models of visual processing [1,6], the present CNN models of audi-
tory processing exhibit a hierarchical gradient of spatial encoding.
This is visible in the relatively broad feature (i.e. spatial) selectivity
in early layers, and increasingly sparse representations of features
(i.e. locations) in deeper layers. This resembles findings in visual
deep neural network (DNN) models. For example, in DNN models
trained to perform visual object recognition, feature representa-
tions in deep layers are specific and sparse, comprising entire
objects [5,6]. In the auditory CNN model of sound localization
developed here, feature representations in deep layers contain
sparse representations of a specific target location.

A further confirmation of the existence of a gradient of increas-
ing spatial selectivity in the auditory CNN models is provided by
the results of a hierarchical clustering analysis. Specifically, Table 3
shows that for all proposed models, the number of clusters
increases in deeper layers as compared to early layers. The high
number of clusters in the final layer indicates that feature maps
contain sparse and highly differentiable feature representations.
In contrast, the low number of clusters in the first layer point at
broad and relatively similar feature representations.

A second observation is that the feature representations at the
first CNN layer are very similar across CNN models, irrespective
of the implemented binaural integration and type of training loss
(Fig. 7, Conv. Layer 1). Specifically, at the first layer, there appear
to be three distinct feature representations in CNNs trained with
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MSE loss and two distinct feature representations in CNNs trained
with AD loss. That is, the most frequent feature representation con-
tains high frequency nodes exhibiting a strong response to sound
locations in the ipsilateral hemifield, in combination with low fre-
quency nodes with a uniform response to all sound location. The
second largest cluster of distinct feature representations contains
low-frequency nodes exhibiting strong activation to all sound loca-
tions, without a pronounced activation of high frequency nodes.
The third recurring feature representation concerns a group of high
frequency nodes with strong activations to sound locations around
in the interaural axis in the contralateral hemifield (only for CNNs
trained with AD loss and concatenation CNNs; examples of these
three feature representations can be found in every row in Fig. 7,
panel ‘Conv. layer 1’).

The consistent presence of these three feature representations
suggests that the first layer of the models - prior to binaural
integration - learns a spatial representation that is invariant to
model of binaural integration and type of training loss. Interest-



Table 3
Number of clusters in feature representations defined with unsupervised hierarchical clustering. We used a distance cut-off criterion of 0.4. Prior to clustering, feature maps
without activation were removed.

Training loss Binaural integration Layer 2 (left) Layer 3 (right) Layer 9 Layer 12 Layer 15

MSE concatenation 7 6 7 15 15
addition 6 5 7 18 18
subtraction 6 5 11 7 25

AD concatenation 6 6 8 31 43
addition 5 5 8 16 33
subtraction 6 5 9 12 71
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ingly, these representations are in close agreement with neuronal
responses to sound location in the cochlear nucleus (CN), the first
stage of the human auditory pathway after the auditory nerve.
That is, neurons in the CN tend to exhibit strongest responses to
sounds at ipsilateral locations, with little further differentiation
[12].

Even in the first layer after binaural integration (Fig. 7, Conv.
layer 2), feature representations appear relatively similar across
model classes despite the different implementations of binaural
integration (concatenation, addition, subtraction). Feature repre-
sentations start to diverge between models from the third convo-
lutional layer onwards. Note that the final layer of CNNs trained
with MSE loss has some feature maps with broad spatial represen-
tations, while CNNs trained with AD loss only have highly selective
spatial representations in feature maps in the final layer (Fig. 7,
panels on the right). This observation is supported by the results
of the unsupervised hierarchical clustering, which demonstrates
that the final layer of models trained with AD loss contains sparser
representations than the final layer of models trained with MSE
loss (Table 3, Fig. 8).

Ultimately, the proposed CNNs and their internal feature repre-
sentations may be used as encoding models in empirical studies
investigating neural sound location encoding at various stages of
the human auditory pathway. Here, we can already begin to make
qualitative comparisons between feature representations and our
current knowledge of neuronal spatial tuning. For example, the
internal representations of the first layer that we described previ-
ously are in close agreement with neuronal responses to sound
location in the cochlear nucleus (CN). The CN is the first stage of
the human auditory pathway after the auditory nerve. Neurons
Fig. 8. Unsupervised hierarchical clustering of feature maps in th
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in the CN tend to exhibit strongest responses to sounds at ipsilat-
eral locations with little further differentiation [12], similar to the
majority of the observed feature representations resulting after the
first convolutional layer (Fig. 7). Interestingly, several of the feature
representations in the second convolutional layer exhibit clusters
of nodes at high frequencies that exhibit strong responses to a
range of peripheral locations centered around the interaural axes
(i.e. �90�or +90�). Most neurons throughout the spatial auditory
pathway display similar spatial tuning, responding broadly to a
range of locations – most often in the contralateral hemifield
[31–34].

However, there are also discrepancies between the observed fea-
ture representations andour currentunderstandingofneuronal spa-
tial tuning. That is, many of the feature representations in the third
convolutional layer exhibit specific activations to the interaural
midline (0�and 180�, Fig. 7). While the auditory pathway also con-
tains neurons responding specifically to these locations, these are
lessprevalent. Further, the systematic relationshipbetween location
and frequency tuning that appears to be present in several feature
representations in the third convolutional layer (see inverted V-
shapes) is not known for neuronal spatial tuning [2]. Finally, the fea-
ture representations that we observe in the final layer of the pro-
posed CNNs – especially for CNNs trained with AD loss – are more
selective for sound location than neuronal tuning at higher stages
of the human auditory pathway. Specifically, even though neuronal
spatial tuning sharpens during active, goal-oriented sound localiza-
tion [35,36], the feature representations at the final stages appear
more selective than neuronal spatial tuning.

Taken together, the feature representations emerging from the
first layers of the proposed goal-oriented, neurobiological-
e final convolutional layer. Columns represent feature maps.
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inspired CNNs appear to bear some resemblance to current knowl-
edge of neuronal spatial tuning in the human brain. At the same
time, feature representations emerging in later layers are less in
agreement with brain responses to sound location. Future studies
may explore other network architectures such as recurrent neural
networks or spiking neural networks [37,38] that may resemble
brain processing of sound location more closely. Importantly, our
work shows that deep neural network models generate testable
hypotheses about neuronal spatial tuning whose validity can be
assessed in with empirical measurements of neuronal responses
to sound location, an approach that has been led to many valuable
insights into neuronal sensory encoding in the visual domain (see
for example [5]).
4. Conclusions and future work

In this paper we present goal-driven, neurobiological-inspired
CNN models of human sound localization. We showed that such
CNNs make accurate location predictions, that training on mini-
mizing the Euclidean distance versus the angular distance results
in different location encoding strategies, and that there is a hierar-
chical gradient of increasing spatial selectivity in the feature repre-
sentations from shallow to deeper layers. The proposed models
make a crucial contribution to the development of biologically as
well as ecologically valid computational models of naturalistic spa-
tial hearing, and opens up avenues for empirical work testing neu-
ral sound location encoding in the human auditory pathway. Our
future work focuses on developing auditory neural network mod-
els that mimic more closely sound (location) processing in the
brain, for example through the use of spiking neural networks
[37,38] and biologically plausible back propagation algorithms
(e.g. [39]).
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