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Modelling the dynamic relationship 
between spread of infection 
and observed crowd movement 
patterns at large scale events
Philip Rutten1*, Michael H. Lees1, Sander Klous1, Hans Heesterbeek2 & Peter M. A. Sloot1

Understanding how contact patterns arise from crowd movement is crucial for assessing the spread 
of infection at mass gathering events. Here we study contact patterns from Wi-Fi mobility data of 
large sports and entertainment events in the Johan Cruijff ArenA stadium in Amsterdam. We show 
that crowd movement behaviour at mass gathering events is not homogeneous in time, but naturally 
consists of alternating periods of movement and rest. As a result, contact duration distributions are 
heavy-tailed, an observation which is not explained by models assuming that pedestrian contacts 
are analogous to collisions in the kinetic gas model. We investigate the effect of heavy-tailed 
contact duration patterns on the spread of infection using various random walk models. We show 
how different types of intermittent movement behaviour interact with a time-dependent infection 
probability. Our results point to the existence of a crossover point where increased contact duration 
presents a higher level of transmission risk than increasing the number of contacts. In addition, we 
show that different types of intermittent movement behaviour give rise to different mass-action 
kinetics, but also show that neither one of two mass-action mechanisms uniquely describes events.

Understanding how contact patterns arise from crowd movement is crucial for assessing the risk presented by 
mass gatherings for the spread of infectious diseases. The cancellation of mass gathering events was part of the 
unprecedented social distancing measures taken by governments worldwide, in response to the coronavirus dis-
ease 2019 (COVID-19)  pandemic1. Examples of mass gatherings are large sporting, religious, and musical events 
in public sites. Although the risk of infection spreading at mass gatherings is generally  recognised2, there is as 
yet no clear evidence-based understanding of the risk presented by these  events3. Data-driven epidemiological 
models that estimate spread of infection at mass gatherings can help build a comprehensive quantitative frame-
work for risk  assessment4,5. Such models can evaluate benefits of mitigation strategies, assess the risk involved 
with lifting restrictions, and inform effective planning of mass gathering  events6–8.

The transmission risk presented by mass gatherings depends on the specific contact patterns that arise from 
crowd movements during events. How contact patterns arise in dense crowds remains largely  unexplored9,10. 
Epidemic models used in studies of disease spreading are typically based on the assumption of homogeneous 
mixing  (see11 for a detailed exposition). Steps toward refinement of these assumptions have come from various 
directions, mostly driven by the availability of large data sets containing detailed information from mobility and 
communication networks, such as records from mobile phone  users12. Network studies in particular have investi-
gated how disease spread is affected by the connectivity patterns which characterise social  networks13,14. Indeed, 
contact patterns due to any kind of social interaction can be represented as networks. Contact networks based on 
physical proximity data, and the dynamic nature of these networks, have gained increased attention  recently15–19. 
However, proximity data is not easy to obtain and experiments so far have not included dense crowds at large 
events. In parallel, a small number of studies have investigated the direct effect of different movement models 
on mass-action assumptions. Rhodes and Anderson (2008) examined the contact rates resulting from a kinetic 
model of mobile individuals, and found that their results were in good agreement with homogeneously mixing 
mass-action  models20. Hu et al. investigated the scaling of contact rates with population density, and proposed 
a non-linear function to describe the increase of contact rates from lower to higher  densities9. Buscarino et al. 
investigated the effect of different movement models on epidemic spreading by analysing the dynamic contact 
networks arising from  them21. More recently, Fofana and Hurford reviewed the effects of several common 
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animal movement models on contact rates and epidemic  spread22. They found that infection rates from different 
movement models, such as simple (uncorrelated) random walks or Lévy walks, do not deviate from mass-action 
assumptions, and do not significantly impact epidemic thresholds.

None of the studies described above specifically target pedestrian movement or crowd dynamics during 
mass gatherings, which may partially be explained by a lack of appropriate data available for scientific analysis. 
These studies, though not always explicitly, focus on human mobility involving travel by various transportation 
modes, and are not strictly confined to pedestrian movement. To date, the few studies which specifically address 
contact patterns in dense crowds are based on the decreasing relationship of pedestrian velocity with crowd den-
sity (e.g.23), which makes the contact patterns analogous to collisions in the kinetic gas model, as described  in9.

What all the studies described above have in common is that they approach the problem of modelling contact 
patterns corresponding to a specific scenario (not necessarily mass gatherings), using a single type of move-
ment model which is homogeneous in time. However, real life mass gathering events consist of multiple phases 
and conditions, which exist simultaneously or occur in chronological order. Every mass gathering event can 
be characterised as occurring in a number of distinct phases such as ingress or crowd gathering, dwell times, 
and egress. During these phases fundamental crowd conditions, such as density, change. Human movement 
behaviour is not homogeneous in time, and consists of changing behavioural  modes24. People are not expected 
to move continuously, and individual movement behaviour naturally consists of alternating periods of move-
ment and rest. This kind of intermittent movement behaviour also typically occurs during large crowded events 
that span long time  periods25,26. Crowds at large events exhibit different types of movement behaviour, possibly 
corresponding to the different phases of the  event27. Different types of movement behaviour present different 
levels of transmission risk. Depending on the disease in question, changing contact patterns will make different 
phases of an event more or less dangerous. Including these aspects in quantitative models is important if we 
aim for a realistic assessment and understanding of the way infection can spread during mass gathering events.

Here we study contact patterns from crowd movement data from large sports and entertainment events in 
the Johan Cruijff ArenA stadium in Amsterdam. We use localization of smart phones based on Wi-Fi detections 
to reconstruct individual trajectories, and use this as a proxy for human movement. We focus on the complex 
interplay between intermittent movement behaviour, consisting of alternating periods of movement and rest, and 
infection transmission. We build on previous work, in which we characterised the motion patterns, such as the 
intermittent pattern of movement and rest and corresponding waiting time  distributions25,26. Throughout this 
paper we compare two events representing two types of collective crowd movement and corresponding forms of 
intermittency. We derive weighted contact networks from the collective trajectories, which are aggregated over 
the course of the event. These weighted networks have heavy-tailed weight distributions, which is not consistent 
with the gas kinetic model for contact patterns in dense crowds. Using random walk models, we demonstrate 
that the heavy-tailed weight distributions are explained by intermittent movement behaviour. Using simulation, 
we investigate how the different types of intermittent movement behaviour interact differently with a time-
dependent infection probability. The longitudinal nature of the data sets allows us to track important measures 
such as incidence rates throughout the duration of the events. We show that the different types of intermittent 
crowd movement (in the two events) give rise to different mass-action kinetics. We show that mass gathering 
events are predominantly characterised by one of two mass-action mechanisms, but we also show that they are 
not uniquely described by either one of them. Taken together, our findings suggest that there is a need to revisit 
our assumptions about the relation between crowd behaviour and the transmission of infectious diseases. We 
propose an important refinement, and show the way forward to fill the gap in our understanding of pathogens 
spreading at mass gathering events.

We focus our analyses on the spread of an infectious disease that is directly transmitted during close contact 
or in physical proximity by droplets or aerosol transport, due to speech or inhalation of exhaled breath. The 
stadium consists of spaces with different dimensions, ventilation rates, air filtration, et cetera, which are expected 
to influence the probability of infection transmission in very large or outdoor  spaces28. However, to isolate the 
effect of movement patterns on transmission, we regard the stadium as one continuous space with homogene-
ous conditions. We assume an incubation period which is longer than the timespan of the events we examine, 
so that secondary infections (i.e. individuals passing on the infection after being infected) play no role. These 
conditions correspond to many influenza-like diseases and match the virus transmission of SARS-CoV-2. The 
focus on primary infections limits the importance of contact network structure for the transmission dynamics. 
Network structure becomes relevant once we take spreading paths (through the network) into account. Therefore, 
network topology, as well as the time-order of contacts represented by a temporal network, are of less importance 
here, and we show contact networks only to convey some basic properties of the contact patterns.

We analyse two events, namely an ‘Eredivisie’ (premier division) football match, and a large dance event 
with DJ show. These two events represent two different levels of regulation of collective crowd movement. For a 
football match, movement is mostly regulated: during the episodes of the match people sit and watch, and after 
the match they leave the building. In contrast, for the dance event people were free to walk around the stadium, 
including the pitch. The event lasted more than 6 h, and the only important external drivers were the start and 
end of the DJ show, which lasted approximately 4 h. We expect that movement during the dance event is based 
on individual decisions about when (and where) to move. We expect statistical properties of the motion patterns 
to be emergent rather than imposed. We reproduce both forms of intermittency, regulated and individual, in 
random walk models, and investigate their effect on disease spread.

The rest of the paper is organized as follows. In Section “Data” we describe the data sets, preprocessing and 
translation to movement tracks, and the selection of devices. In Section “Movement track analysis we extract 
characteristics from the movement data which we use for random walk simulation models. In Section “Aggre-
gated contact networks” we show several key properties of the aggregated contact networks from the movement 
data. In Section “Random walk models” we reproduce the observed characteristics of the contact networks using 
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random walk models, and investigate their impact on the spread of infection. In Section “Transmission over 
the network” we show the time evolution of several important measures throughout the event, and in Section 
“Discussion” we discuss the findings.

Data
We analyse movement data derived from Wi-Fi detections in the Johan Cruijff Arena stadium in Amsterdam. In 
previous work we have described various data and methods used to analyse the movement tracks obtained in this 
stadium, details of these can be found in our previous  papers25,26. In those papers we analyse spatial and temporal 
aspects of the collective motion patterns. In this study we use the same methods as described in our most recent 
 work26 and we therefore refer the reader to that reference for a detailed description of the data processing and 
movement track reconstruction. Here, we provide a brief overview.

The wireless network in the stadium consists of nearly 600 access points (APs) with known spatial coordinates. 
We estimate locations of anonymised smart phones using proximity  detection29. At regular time intervals �t = 10 
s we determine the position of a device at one of the APs and generate temporal sequences of AP locations. Draw-
ing a line between successive locations produces a trajectory, or movement track. To deal with the considerable 
amount of fluctuation due to noise, we use a simple moving average to smooth the movement tracks (see Fig. 1 
for examples). We ignore the z-coordinate and simplify the analysis to two-dimensions.

We restrict our analyses to movement tracks that fulfil certain requirements. When someone is not using his/
her smartphone, the device eventually pauses all wireless communication. Therefore detection periods of devices 
alternate with periods without any detection. First we select devices whose detection periods span a minimum 
length of time, for which we use the duration of the main show of the events. For the football match the main 
show is the match, while for the dance event this was the DJ show. We select movement tracks with a minimum 
amount of detection gaps. We close the detection gaps using the interpolation method used by Rhee et al.30. We 
filter out devices that did not move at all during the whole event, as these likely represent static devices and not 
mobile phones.

Figure 1.  Examples of movement tracks during (a) the football match Ajax–Feyenoord, and (b) the Armin 
van Buuren dance event. (c, d) The same movement tracks as 1D time series of projections on the x-axis. Colors 
represent different individuals. Grey areas between dotted vertical lines indicate start and end times of (c) the 
football match, and (d) the DJ show. This figure is adopted from our previous  work26.
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Due to the gappy nature of the data, applying these criteria drastically reduces the number of devices that 
allow tracking. After filtering we have movement tracks of 362 devices of the football match, and 1048 devices 
of the dance event.

Movement track analysis
Movement tracks of selected devices are characterised by an intermittent movement pattern. Periods of rest 
(‘waiting times’) alternate with episodes of movement that form larger displacements. This aspect of the move-
ment data shows up clearly in the 1D projections of the movement tracks onto the x- and y-axes (see Fig. 1 for 
examples). The observation also agrees with our intuition about human behaviour. People stay in one place for 
some time, and then decide to change location, usually in one continuous movement bout. During the movement 
episodes individuals move with some degree of directional persistence. We have characterised these aspects in 
our previous  works25,26.

The intermittent movement pattern is present in the movement data of both events. However, the reason 
behind the intermittent pattern is different in both events. For the football match, movement is mostly regulated 
and has a predictable character. We expect a typical movement trajectory that will remain mostly within a small, 
bounded region, and with larger displacements only at ingress, half time, and egress. For the dance event on the 
other hand, movement is based on individual decisions about when (and where) to move. We expect a pattern 
of multiple waiting times at different locations, and with variable duration. In Fig. 1 we show examples of both 
types of movement track from each event that agree with this intuition.

The accuracy of the movement tracks is too low for a meaningful spatial analysis of the contact patterns. 
However, the movement data demonstrate important properties of movement patterns in mass gathering events, 
namely intermittency and persistence. To study the exact effect of the movement patterns on the transmission of 
infection, we reproduce these properties in simulations (see Section “Random walk models”).  In25 we show that 
individuals move with directional persistence and superdiffusively up to a scale set by the size of the stadium. It 
is this aspect of the motion that we wish to reproduce in simulations with dimensionless parameters (i.e. that do 
not mimic the spatial properties of the stadium). In Section “Random walk models” we explain how we do this. 
To simulate the intermittent movement patterns of the dance event we need to correctly characterise the waiting 
times. We extract waiting times from the movement tracks using a method similar to Boyer et al.31. (Note that 
we have investigated waiting times more extensively in our previous  work26. To make the current research self-
contained we repeat part of the analyses here.) We discretise the stadium into square cells of size 10× 10 m, a size 
that roughly corresponds to the measurement error. Waiting times t are measured as the number of consecutive 
time intervals ( �ti ) in the same grid cell. In Fig. 2 we show the distribution of waiting times on log–log scales. 
The data approximate a straight line on log–log scales, which indicates the waiting times are heavy-tailed. We fit 
statistical distributions to the measured waiting times, using maximum likelihood estimation (MLE) methods. 
We determine whether the data are better fit by an exponential distribution, a truncated power law, a log-normal, 
or stretched exponential distribution (see Appendix “Statistical methods and model selection”  for details of the 
models and the MLE fitting). The exponential distribution is an indication of waiting times following a Poisson 
process. There have been a number of reports showing evidence that waiting times in the movement patterns of 
various animals (e.g.31,32), and also  humans30, follow power law distributions. In our case, the waiting times are 
limited by the duration of the event and can only be reasonably identified as a truncated power law. The stretched 
exponential and log-normal distributions are models commonly used to describe heavy-tailed phenomena in 
complex  systems33. Model selection based on Akaike’s information criterion (AIC)51 indicates that the most 
appropriate model is the truncated power law (see Appendix “Statistical methods and model selection”  for 
details). The MLE value of the exponent α = 1.89 (95% CI 1.8844–1.9028).

Figure 2.  Probability distribution function of the waiting times on log–log scale, together with the MLE fits 
of the exponential, truncated power law, log-normal, and stretched exponential distributions. Model selection 
shows that the power law with exponent α = 1.89 provides the best description (see Appendix “Statistical 
methods and model selection”  for details).
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Aggregated contact networks
We build contact networks by checking, at each time step, whether the pairwise proximity between devices i and 
j falls within a threshold distance (radius) r = 1.5 m. We build a network aggregated over the whole event, which 
implies that any two individuals who are within a distance < r in at least one time interval, have an edge between 
them in the network. In Fig. 3 we show a visualisation of the network of the football match Ajax-Feyenoord.

The networks of both the football match and dance event are dense, and have small-world  properties34. In 
Fig. 4 we show the empirical degree distributions, together with Poisson distributions

where 〈k〉 is the average node degree. The degree distributions are not heavy-tailed but, particularly for the dance 
event, the variance is much larger than the variance of the Poisson prediction. The observation that the degree 
distributions are not heavy-tailed suggests that ‘superspreaders’, interpreted here as individuals with relatively 
many different contacts, are possibly rarer than one would expect at such an event. However, this observation is 
based solely on the analysis of movement patterns and does not take into account other possible aspects giving 
rise to superspreading, such as heterogeneity in the infectiousness of individuals.

We compare the networks to random graphs of the same size N and average degree 〈k〉 . The graphs are Erdős-
Rényi models G(N, p), in which each pair of nodes is connected with probability p = �k�/(N − 1)13. We see that 

p(k) ∼ e−�k� �k�k
k!

Figure 3.  Visualisation of the aggregated network of the football match Ajax–Feyenoord. Color and size of 
nodes correspond to their degree.

Figure 4.  Degree distributions P(k) (red) together with Poisson predictions (blue), of (a) the football match 
Ajax–Feyenoord, and (b) the Armin van Buuren dance event, using threshold distance r = 1.5 m. Grey lines 
illustrate the sensitivity of P(k) to r, and represent degree distributions in the range r = 0.5, 1.0, ..., 5.0 m.
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the empirical networks show the small-world phenomenon L � Lrandom and C ≫ Crandom , especially for the 
football match (see Table 1).

The aggregated networks highlight an important difference with the assumptions of the existing model for 
dense  crowds9, which proposes that pedestrian contacts are analogous to the collision process in the kinetic gas 
model. According to this model, when density increases, movement becomes increasingly impeded, and contacts 
are restricted to nearby individuals. Thus, contacts are expected to be local, which gives rise to lattice-like contact 
networks, without small-world properties. Clearly, these assumptions are valid within a sufficiently short time 
frame during an event. The model breaks down at the time scale of the whole event. During the phases of an 
event when crowd density is not at peak conditions, pedestrians are free to make larger displacements without 
difficulty. In addition, even during high density conditions individuals may relocate to visit bars, toilets, et cet-
era. Therefore, any crowd movement model in a bounded space and over longer time periods will give rise to a 
contact network with small-world properties.

Another important property which does not directly emerge from the kinetic gas model, is revealed when 
we look at temporal aspects of the interactions. The longitudinal nature of the data allows us to record for each 
pair of individuals i and j, a sequence of time intervals in which interaction occurred. A list of such sequences 
constitutes a temporal  network17. From the contact event list we extract two measures of the interaction dynam-
ics, namely the distributions of (1) contact duration �tij between i and j, and (2) weights wij , which represent the 
total contact time between i and j during the event. We measure pairwise contact duration �tij as continuous 
periods of physical proximity, where we simply merge and count the number of time intervals (in which physi-
cal proximity was detected) that are directly consecutive (zero gap length between them). In Fig. 5a we show 
the empirical probability distributions of contact duration P(�tij) of both the football match and dance event 
on log–log scales. We see that the data of both events have broad tails, which indicates that the contact duration 
is heterogeneously distributed. The two distributions are also very similar, despite differences in the underly-
ing event types and corresponding crowd dynamics. In Fig. 5b we show the distribution of weights P(wij) on 
log–log scales. We see that distributions of both events are heavy-tailed, and for a part decay with similar slope 
values. We apply model selection to the empirical probability distributions of the dance event, using the same 
model set as in Section “Movement track analysis” (see Fig. 2). This shows that the truncated power law provides 
the best fit for both contact duration and weights. The MLEs of the power law exponents are α = 1.45 (95% CI 
1.4473–1.4593) for the contact duration, and α = 1.63 (95% CI 1.6202–1.6298) for the weights. In 5a and b we 
show only the exponential and truncated power law fits (see Appendix “Statistical methods and model selection” 
for details of the model selection). The distribution of measured contact duration may depend on the chosen 
value of distance threshold r. In Fig. 5a and b we show the distributions of contact duration and weights of the 
dance event for a range of values from r = 2 to 10 m (grey lines). We see that the shape of the distributions is 
robust against variation in r. We note that the emergence of heavy-tailed contact duration distribution seems 

Table 1.  Average path length L and cluster coefficient C of the two events, compared to random graphs of the 
same size N and average degree 〈k〉. The values shown in the table are averages over 20 random realisations.

Lactual Lrandom Cactual Crandom

Ajax–Feyenoord 2.814 2.37 0.401 0.048

Armin van Buuren 1.852 1.846 0.355 0.154

Figure 5.  (a) Contact durations. (b) Weight distributions of the aggregated contact networks of the Armin van 
Buuren dance event (red), and the football match Ajax-Feyenoord (blue), on log–log scales. We show the MLE 
fits of the best models for the dance event according to model selection (see Appendix “Statistical methods and 
model selection” for details). We also show the distributions of contact duration and weights of the dance event 
for a range of values from r = 2 to 10 m (grey).
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independent of the positioning accuracy of the underlying movement data. While we do not wish to propose 
a definite model for describing contact duration statistics in crowds, we expect heavy-tailed contact duration 
distributions to be the norm rather than the exception for mass gathering events. That the statistics of contact 
duration are robust across different settings has been observed before in social  networks15,35, but it has not been 
demonstrated to characterise contact patterns in crowds. In the next section we propose an explanation for the 
heterogeneity in contact duration in terms of simple random walk models.

Random walk models
In this section we investigate the effect of the empirically observed movement patterns on disease spreading 
dynamics. To do so, we reproduce the observed characteristics of the movement patterns in random walk (RW) 
models, and demonstrate the effect on infection transmission in simulations. The specific characteristics we 
reproduce are persistence and intermittency. To study their effects we first add different forms of intermittency 
to simple random walks, and next we create random walks which show both intermittency and persistence. We 
first illustrate the effect of these characteristics on the aggregated, weighted networks, and see whether we can 
reproduce the temporal features (as shown in Fig. 5). We run simulations of systems of random walkers and 
derive weighted contact networks as explained in Section “Aggregated contact networks”. We consider a system 
of N = 1000 individuals for T = 500 time steps. We use a threshold radius r = 1 to define interaction by physical 
proximity. The individuals start at random positions in a 100× 100 area, measured in units of the radius r. At 
each time step the individuals make a step of length 2, in a random direction taken from the uniform distribution 
on the interval [−π ,π ] . Note that these settings are similar to the simulations  in22. All modifications we make 
to these settings (below), are parameterised to fit in with this framework.

To study the effect of intermittent movement behaviour, we divide each random walk into alternating periods 
of movement and rest. For the simulation of the regulated intermittency of the football match, we simply insert 
two collective breaks in the simulation, each lasting 100 time steps and starting at t1 = 50 and t2 = 250 . To 
simulate the spontaneous, individual intermittency of the dance event, we take a stochastic approach. We divide 
each simulation time step in two parts. First, an individual draws a waiting time from a power law distribution 
φ(t) = t−α , where α = 1.9 , and t � 5 . The parameter value α = 1.9 is as observed in the empirical data. The 
random walker remains at its current position for a number of n = ⌈t⌉ steps. Next, an individual draws a ‘flight 
time’ from a stretched exponential distribution

The flight times following the stretched exponential with stretching parameter β = 0.86 are as empirically 
observed  (see25). The parameter � controls the mean flight times. Larger flight times make the CTRW converge 
to the normal RW within the finite simulation time T. We show results for a range of values (see below). The 
random walker then takes a number of n = ⌈τ⌉ consecutive step lengths similar to the non-interrupted model 
described above. As these models are variations on the continuous-time random walk framework we refer to 
the regulated one as regCTRW, and the stochastic model as CTRW 36.

In Fig. 6 we show the resulting weight distributions of the simple RW, regCTRW, and CTRW. The simulated 
regCTRW weight distribution (green) shows a pronounced bimodal distribution (driven by the perfectly regu-
lated collective breaks). We see that the weights of both the RW (blue) and regCTRW decay exponentially, but 
that the regCTRW distribution has a second peak at 100 time steps, which corresponds to the length of one break. 
A small number of individuals must have been in close proximity during both breaks, as there are observations 
at 200 time steps. The empirical weight distribution of the football match (Fig. 5b) shows a less pronounced 

f (τ ) = β�τβ−1 exp
(

− �(τβ − aβ)
)

Figure 6.  Weight distributions for the contact network from simulated random walkers, on log–log scales, of 
the random walk (RW)(blue), the RW interrupted by collective breaks (regCTRW)(green), and the stochastic 
CTRW (red). We show weight distributions of the CTRW for a range of values for � = 0.1, 0.05, 0.033, 0.02 
(grey). We show the MLE fit of an exponential distribution to the simple RW, and a power law to the weights of 
the CTRW with flight times using � = 0.033 . MLEs are obtained using the Python powerlaw  package37.
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bimodal distribution, but there is a clear peak in contact duration distribution (Fig. 5a) associated with the 
length of the match. The weights of the stochastic CTRW model (Fig. 6, red) follow a heavy-tailed distribution. 
We show weights of the CTRW for a range of values for � = 0.1, 0.05, 0.033, 0.02 . We show the MLE fit of an 
exponential distribution to the simple RW, and a power law p(w) ∼ w−α to the weights of the CTRW with flight 
times using � = 0.033 . The MLE of the power law exponent α = 2.55 . The resulting weight distribution of the 
CTRW resembles the empirically observed weight distributions as both are heavy-tailed distributions that can 
be described by a power law over a certain range (Fig. 5b). The exact forms of the distributions and relationship 
with the underlying movement models are out of scope for this paper.

Next we investigate the effect of the empirical movement patterns on the spread of infection. To do so, we 
need to reproduce both characteristics of the observed motion patterns, persistence and intermittency, in random 
walk simulations. In our previous  work25 we have shown that during the movement episodes individuals do not 
diffuse randomly, but move with some degree of directional persistence and superdiffusively up to a scale set by 
the size of the stadium. Although these characteristics are Lévy-like, we did not find evidence of pure Lévy walk 
behaviour. In random walk models, persistence in direction is expressed through autocorrelation in turning 
angles between successive movement steps. This behaviour can be modelled using a correlated random walk 
(CRW)38,39. Angles between successive movement steps are sampled from the Von Mises  distribution40. Again, 
we compare three RWs, where the first is the (continuously moving) CRW, the second is the CRW interrupted 
by collective breaks, and the third is a stochastic intermittent CRW. The waiting times are added to the models 
according to the mechanisms described above. As these models are now continuous-time correlated random 
walks we refer to them as regCTCRW, and CTCRW.

We compare the infection spreading dynamics of the three models (CRW, regCTCRW, and CTCRW). We 
focus on a basic susceptible-exposed (SE) model, which we run on top of the simulated random walks. Due to 
the short time span of the events we’re simulating, we ignore transitions E → I , and recovery ( I → R ). We divide 
the population in the three states susceptible (S), exposed (E), and infectious (I). At t = 0 we introduce a number 
of infectious individuals I0 (seeds), which remains constant throughout the simulation. If a susceptible agent 
interacts with an infectious agent, there is a probability pinf  that the susceptible agent transfers to the exposed 
state. In Fig. 7 we compare the time evolution of the number of exposed E(t) of the CRW, with both (a) the 
regCTCRW, and (b) CTCRW, using I0 = 1 and pinf = 1 . Not surprisingly, the spreading stops completely during 
the breaks for the regCTCRW (Fig. 7a), and is slowed down for the CTCRW (Fig. 7b), due to agents effectively 
moving less, and having less encounters with other agents.

In reality, infection transmission requires prolonged contact between two individuals, instead of occurring 
instantaneously. We assume that the number of infectious units an individual is exposed to increases with con-
tact duration, and that the risk of infection increases accordingly. To implement this, we introduce an infection 
probability as a function of contact duration, defined as

where tij is the cumulative contact duration between individuals i and j, which is measured as the number of time 
steps spent in proximity, and µ is a parameter modulating the increase of pinf  with tij . Equation (1) is based on a 
model proposed by Riley et al.41, and further developed in a number of publications (e.g.  see42–45). Note that the 
time steps spent in close contact are not necessarily consecutive. Because this model produces lower numbers 
of exposed agents, we set I0 = 10 to enhance the effect within the simulation time. In Figure 7 we show the 
time evolution of the number of exposed E(t) of the CRW and (a) the regCTCRW, and (b) the CTCRW, using 
µ = 0.04 in Eq. (1). The parameter value µ = 0.04 is arbitrarily chosen and serves illustrative purposes of the 
simulations. Below we explore further some of the implications of this parameter. We see that in this case (i.e. 
pinf ∼ tij ), the number of exposed agents on the regCTCRW model (red dashed curve) jumps up at the start 
of each break (shaded grey areas), due to individuals having prolonged contacts with other agents. However, 
we also see that the curve rapidly saturates, due to exhaustion of the number of susceptibles near an infectious 
individual. Because of this, the spreading on the regCTCRW ends up producing lower numbers of exposed than 
the CRW. This shows that a stationary (e.g. seated) crowd imposes an increased infection risk if the infection 
probability is time-dependent, but that the total number of exposed individuals is bounded by the number of 
individuals in proximity.

(1)pinf(t) = 1− e−µ tij

Figure 7.  Time evolution of the number of exposed E(t) of the CRW and (a) the regCTCRW, and (b) the 
CTCRW, using pinf = 1 , and pinf ∼ tij . (c) The final number of exposed 〈E(t)〉 at T = 500 of the CRW and 
CTCRW, versus transmissibility parameter µ [in Eq. (1)]. All results are averaged over 30 simulations.
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In Fig. 7b we see that the CTCRW model produces higher numbers of exposed agents than the CRW. The 
infection spreading again benefits from agents occasionally not moving, and having prolonged contacts with 
other agents. However, due the random, non-overlapping periods of rest there are no saturation effects. This result 
points to the fact that, if the infection probability is time-dependent (i.e. pinf ∼ tij ), there exists a crossover point 
where prolonged contacts present more risk than encountering new individuals. If the transmissibility [i.e. µ in 
Eq. (1)] becomes lower/higher disease transmission benefits more/less from longer contact duration. In Fig. 7c we 
show the dependency of the final number of exposed E(t) at T = 500 , produced by both the CRW and CTCRW, 
on the value of µ [in Eq. (1)]. We see a clear crossover where the two curves intersect and one model poses a 
higher level of transmission risk than the other. This shows that, if the infection probability is time-dependent, 
an intermittently moving but freely mixing crowd may present the highest level of transmission risk.

These results also show that the actual transmission risk imposed by different types of crowd movement (i.e. 
stationary/dynamic) depends on the infection probability. As real crowded events are expected to consist of 
mixtures of different crowd movement behaviours, estimating the risk involved is not straightforward.

Transmission over the network
So far, we have studied the effect of two types of intermittent crowd movement (regulated and stochastic) on 
the spread of infection, in simulations with constant population density. Real life events occur in a number of 
distinct phases such as ingress, dwell times, and egress. During these phases the crowd density changes. In this 
section we show how the two types of intermittent crowd movement relate to crowd density and give rise to dif-
ferent mass-action kinetics. The data give information about how contact patterns are formed over time. More 
specifically, it gives information on when contacts occur in time. The longitudinal nature of the data set allows 
us to see when, and for how long, these contacts occur. Instead of aggregating the contacts and representing it 
as a static network (as in Section “Aggregated contact networks”), we look at the network in each separate time 
interval. We can refer to these networks as ‘time slices’. The number of edges in each time slice represents the 
number of contacts in the time interval. In Fig. 8 we show the time evolution of the number of contacts. Note 
that this is similar to ‘collisions’ within the gas kinetic framework (Cf.9). Tracking the contact rate over time 
enables us to study its dependence on the total crowd size, i.e. its effective mass-action kinetics. The contact 
curves can be seen to have a similar shape as the crowd size (N) curves (red lines in Fig. 8). We can visualise 
this aspect better by normalising the contacts using crowd size N(t), see Fig. 9. The contact curves can now both 
be seen as fluctuating around a constant value. This suggests contact rates increase linearly with crowd size or 
density. However, we also see that, especially in the case of the dance event, there is considerable fluctuation. 
This suggests that additional factors are required to explain variations in the contact patterns. We return to this 
issue at the end of this section.

To explore transmission of infection based on the empirical contact patterns, we consider an SEIR model 
which we run on top of the measured contact networks. We divide the population in the three states susceptible 
(S), exposed (E), and infectious (I). Due to the short time span of the events, we ignore transitions E → I , and 
recovery ( I → R ). Therefore, secondary infections (i.e. individuals passing on the disease after being exposed) 
are not included. We randomly select an individual which we introduce as an infectious seed, while all other 
individuals are susceptible. We assume transmission takes place at first encounter (i.e pinf = 1 ), and when there 
is contact between the seed and a susceptible, the last one changes into the exposed (E) state. We record this 
event, and track the growth of the number of exposed individuals from one particular seed over time, which is 
the cumulative incidence curve. We run this process for each individual in the sample. In Fig. 10 we show for 

Figure 8.  The number of contacts per time interval �t , during (a) the football match Ajax–Feyenoord (blue), 
and (b) the Armin van Buuren dance event (green). Also shown are crowd sample size N versus time curves 
(red). Note that, as a visual aid, the crowd sample size curve of the football match in (a) is arbitrarily scaled so 
that it overlays the contacts curve (blue). The grey areas indicate start and end times of the match and DJ show.
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both events all individual incidence curves (grey), and also the means (blue and green). Note that the cumulative 
incidence curves are simply the growth of the node degrees k over time, and the mean is just the time evolution 
of the mean degree 〈k〉.

We are especially interested in possible variation in the growth rate of the incidence curves during the event. 
This is better visualised by recording the number of infectious contacts per time interval. In Fig. 11 we show 
incidence rate curves 〈(dE/�t)〉 , where the brackets 〈...〉 denote averaging over all possible individuals in the 
sample. Note that the incidence curves in Fig. 10 are simply the integral over this. The incidence rate curves 
represent newly exposed individuals per time interval, where we assume disease transmission takes place at first 
encounter between an infectious and a susceptible individual (i.e pinf = 1 ). We see that both curves in Fig. 11 
are fluctuating. For the football match the curve can be seen to fluctuate around a constant value, but it is slowly 
declining and then has large peak after the match. Note that this particular shape has no obvious relationship 
with density (see crowd sample curve in Fig. 8), and if at all, seems negatively correlated. For the dance event the 
curve has a more pronounced shape, with the largest peak occurring just before the start of the DJ show, and a 
second peak right after the end of the show.

It is interesting to evaluate Figs. 8, 9, 10 and 11 in relation to the two different approaches to mass-action 
assumptions of homogeneous  mixing9,20,46. According to the density-dependent mechanism, the rate of increase 
of exposed individuals follows (within a SEIR framework) dE/dt = βSI , where β is the transmission rate param-
eter. According to the frequency-dependent mechanism, the relation is dE/dt = βSI/N . For the density-depend-
ent mechanism to hold, the spatial area must be constant so that an increase in population size is an increase 

Figure 9.  The number of contacts per time interval �t normalised by the crowd sample size N(t), during (a) 
the football match Ajax–Feyenoord (blue), and (b) the Armin van Buuren dance event (green). The grey areas 
indicate start and end times of the match and DJ show.

Figure 10.  The cumulative number of exposed individuals per time interval �t , during (a) the football match 
Ajax–Feyenoord (blue), and (b) the Armin van Buuren dance event (green). The grey areas indicate start and 
end times of the match and DJ show.
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in density. The frequency-dependent mechanism is not only more in agreement with our natural intuition, but 
also more supported by empirical  evidence20,47.

Seen from this perspective, the results of the football match and the dance event paint two different pictures. 
Note that in the density-dependent regime the exposed rate curve should scale in a linear fashion with population 
density, while in the frequency-dependent regime the exposed rate curve should assume a constant value, inde-
pendent of the crowd density. In Fig. 8 we see that contact patterns (collision frequency) evolve similarly as the 
crowd size curves (red dashed lines). This suggests contact rates increase linearly with crowd size, and both events 
are in the density-dependent regime. Figure 9 shows that this aspect is stronger for the football match, while the 
dance event shows more deviation from this rule. This distinction between the events is more pronounced in 
Fig. 11. In Fig. 11a we see that for the football match, dE/dt, as approximated by 〈(dE/�t)〉 , seems to fluctuate 
around a constant value, which indicates the transmission rate is in agreement with the frequency-dependent 
mechanism (i.e. ∼ βSI/N ), and independent of population size N or density. On the other hand, Fig. 11b shows 
that, for the dance event, dE/dt still closely resembles the crowd size curve N(t) (red dashed line in Fig. 8b). This 
suggests that at least for some part of the event, the transmission rate increases linearly with population size (i.e. 
∼ βSI ), as formulated by the density-dependent mass-action law. These observations agree with our intuition 
as the area of the stadium is constant and an increase in crowd size means an increase in density. However, this 
effect is much less important for the football match, where the amount of mixing is constrained. Apart from entry 
and exit, people remain seated with a fixed number of individuals in close proximity, independent of the total 
crowd size. It would therefore be natural that contact patterns in the regulated crowd movements of the football 
match follow the frequency-dependent regime, while the contact patterns from the freely moving dance event 
visitors follow the density-dependent mechanism.

Nevertheless, in Figs. 8, 9, 10 and 11 we also see considerable deviation from both mass-action mechanisms. 
We see that, even at constant N (e.g. during the DJ show), contact rates and 〈(dE/�t)〉 vary. For both events 
we see a slow decline of 〈(dE/�t)〉 which might be explained by the exhaustion of susceptible individuals in 
someone’s proximity. However, in both events we see a large peak at the end of the event, despite a decrease in 
crowd size N at that point in time. This suggests that the transmission rate β is not constant and varies over time, 
independent of S, I, or N. The transmission rate β is the product of infection probability p and contact rate C, 
i.e. β = p C47. In the simulation analysis (i.e. Fig. 11) p = 1 is constant, so it is the contact rate C which is time-
varying. These observations support the idea that neither the density-dependent mechanism or the frequency-
dependent mechanism uniquely describes the scaling of contact rates in relation to crowd density, and that in 
many situations the contact rate is a combination of the two  extremes9,20. However, the results also suggest that, 
in addition to the two types of mass-action mechanisms, additional factors are required to explain variations in 
the contact patterns, and that these factors are related to changes in crowd movement behaviour during an event.

Discussion
In this study we present several important features of the transmission of pathogens at large mass gathering 
events. These features, brought to light by enlarging the observational time frame, are illustrated by the temporally 
weighted contact networks, aggregated over the course of the event. First of all, the observed small-world property 
of the contact networks is not explained by the conceptual framework of existing contact models. According to 
this framework, contacts are restricted to nearby individuals, which gives rise to lattice-like contact networks, 
without small-world properties. This assumption is applicable only to a sufficiently short time frame. The fact 
that the contact networks fall somewhere between a lattice and a complete (fully connected) network indicates 
that pedestrian movements at events naturally consist of a mixture of local and long-distance displacements. This 

Figure 11.  The number of newly exposed individuals per time interval �t , during (a) the football match Ajax–
Feyenoord (blue), and (b) the Armin van Buuren dance event (green). The grey areas indicate start and end 
times of the match and DJ show.
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shows that movement behaviour during large events is not homogeneous in time, and key movement parameters 
are time-varying. Secondly, the aggregated contact networks have heavy-tailed contact duration distributions. We 
show that this observation is independent of the positioning accuracy of the underlying Wi-Fi-based movement 
data. Using simple random walk models we demonstrate the link between intermittent movement behaviour, 
consisting of alternating periods of movement and rest, and heavy-tailed contact duration distributions. Hetero-
geneously distributed contact duration is common to social networks but so far has not been demonstrated for 
crowds. We note that intermittent movement behaviour, and corresponding heterogeneously distributed contact 
duration, are expected to be the norm rather than the exception for mass gathering events.

Using simulation, we have shown how different types of intermittent movement behaviour interact with key 
infection processes, indicating that the temporal dynamics of the contact patterns strongly influence transmis-
sion dynamics at mass gatherings. Our results expose the existence of a crossover point where increased contact 
duration presents a higher level of transmission risk than increasing the number of contacts. Therefore, under-
standing the temporal dynamics of the underlying crowd movements as well as specific disease transmission 
characteristics are both essential for estimating transmission rates at mass gathering events.

To isolate the effect of movement patterns on pathogen transmission, we have made several simplifying 
assumptions, such as conditions being constant throughout the stadium, and only considering transmission 
during close contact or in physical proximity. In addition we have assumed key epidemiological parameters, such 
as infection probability and susceptibility, to be equal for all individuals. Both of these are certainly simplifica-
tions. Investigating the impact of heterogeneity in these factors on the spreading dynamics at crowded events 
are important opportunities for further research.

The longitudinal nature of the data set has allowed us to study how contact rates and incidence evolve in 
relation to crowd size. We have shown that different types of events give rise to one of two types of mass-action 
kinetics. We have also shown that contact rates and spreading on the empirical movements are time-varying. This 
suggests that contact rates are probably the result of a dynamic combination of the two mass-action mechanisms. 
During an event one of the two mechanisms may become more dominant due to changes in collective move-
ment behaviour. However, even within one of the two mass-action frameworks, parameters are not necessarily 
constant, giving rise to even more variation in contact rates. For example, individual movement parameters such 
as velocity, step length and persistence may change over time, possibly in response to external factors. These 
results indicate that a detailed understanding of pedestrian movement behaviour in dense crowds is crucial for 
predicting the specific mass-action process that will emerge.

Our work shows the importance of a more integrative approach to mass gathering events, which considers 
these events in their full spatio-temporal complexity. Here we have taken a first step and show how different 
event scenarios, with different intermittent crowd behaviours, lead to different contact rates. A more holistic 
approach to events is essential if we want models to inform policy makers on specific types of events and the 
risks they present. It will also increase our understanding of the different phases during mass gathering events 
and the varying levels of risk they present in relation to the transmission characteristics of specific pathogens. 
This could ultimately serve event organisers in planning a safe return to normal operations as well as developing 
long-term risk protocols for large mass gatherings.

Data availability
The analysis of Wi-Fi detection data in the current study is licensed under a contractual agreement between 
the University of Amsterdam and the Johan Cruijff Innovation Amsterdam. Derived movement tracks, and all 
custom code used to analyse the data in this study, are freely available at: https:// github. com/ phili prn/ Crowd- 
Epide miolo gy.

Appendix: Statistical methods and model selection
We use statistical methods of Clauset et al.48 and Edwards et al.49 for fitting the distributions. We also check results 
using the Python powerlaw  package37, which has implemented the methods  from48.

Models. We fit the following statistical distributions to various measured quantities:

• The exponential distribution, with probability density function defined as: 

• The truncated power law distribution distribution, with probability density function defined as: 

• The stretched exponential distribution, with probability density function defined as: 

• The log-normal distribution, with probability density function defined as: 

where tc is the exponential cutoff value, and a is the lower bound of the fitting range.

(2)p(t) = � exp
(

− �(t − a)
)

(3)p(t) = (t + a)−αe−t/tc

(4)p(t) = β�tβ−1 exp
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)
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√
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https://github.com/philiprn/Crowd-Epidemiology
https://github.com/philiprn/Crowd-Epidemiology
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Maximum likelihood estimation. The maximum likelihood estimate (MLE) of the parameter � of the 
exponential distribution p(x) = �e−�(x−a) is given by

where n is the number of data points, and a is the lower bound of the fitting range. In this research a is loosely 
determined as the value after which the decay starts in the empirical frequency distribution.

There are no analytical solutions for the MLEs of the truncated power law distribution, stretched exponential, 
and log-normal distributions. In this case we numerically minimise the negative log-likelihood function

For the numerical minimisation we use Python library functions  (following37).

Confidence intervals of estimated parameters. To compute confidence intervals we use the likeli-
hood profile  method50. The method compares the likelihood of the MLE of a parameter θ with other values of 
that parameter. According to statistical theory

has a chi-square distribution with one degree of freedom. We can find 95% confidence interval boundaries by 
using the fact that Pr{χ2 � 3.84} = 0.95 , and numerically solving L(θ)− L(θmle) = 1.92 . For models with two 
parameters we perform the test for each parameter separately. We systematically vary the parameter of interest, 
and at each instance compute the value for the other parameter that maximises the likelihood at that point.

Akaike model selection. To compute Akaike weights we need the Akaike Information Criterion (AIC)

for which we require the value of the negative log-likelihood function at the maximum (MLE), and where K is 
the number of parameters to be  estimated49,51. The AIC differences are

where AICmin is the AIC of the model with the minimum AIC, which is considered as the best model. The Akaike 
weights are give by

where M is the set of models to be compared.

Model selection results. Waiting times In Section “Movement track analysis” we fit the statistical models 
given in Appendix “Models” to the measured waiting times (see Fig. 2). In Table 2 we show model selection 
results based on Akaike weights, using a = 6�t ( = 60 s). The truncated power law ( wtpl = 1 ) provides the best 
description of the data.

Contact duration In Section “Aggregated contact networks” we fit the statistical models given in Appendix 
“Models” to the measured contact duration distribution (see Fig. 5a). In Table 3 we show model selection results 
based on Akaike weights, using a = 2�t ( = 20 s). The truncated power law ( wtpl = 1 ) provides the best descrip-
tion of the data.

(6)�̂ = 1
/(

n
∑

i=1
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)

(7)L(θ) = −
n
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log p(xi
∣
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(8)R = 2
[

L(θ)− L(θmle)
]

(9)AIC = 2L(θmle)+ 2K

(10)�i = AICi − AICmin

(11)
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exp (− 1
2�i)

M
∑

m=1
exp (− 1

2�m)

Table 2.  Overview of the model selection results for the measured waiting times (see Fig. 2), based on Akaike 
weights.

Model MLE parameters 95% CI �AIC Akaike weights

Exponential � = 0.02812 (0.0279, 0.0284) 60,105 0

Truncated power law α = 1.8936 (1.8844, 1.9028) 0 1

Log-normal
µ = 2.8523 (2.8426, 2.8621)

38,245 0
σ = 1.0606 (1.0537, 1.0675)

Stretched exponential
� = 108.02 (108.01, 108.03)

247 0
β = 0.0085 (0.0085, 0.0085)
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Weights In Section “Aggregated contact networks” we fit the statistical models given in Appendix “Models” to 
the measured weights (see Fig. 5b). In Table 4 we show model selection results based on Akaike weights, using 
a = 1�t ( = 10 s). The truncated power law ( wtpl = 1 ) provides the best description of the data.
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