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Abstract: Latent semantic analysis (LSA) and correspondence analysis (CA) are two tech-
niques that use a singular value decomposition (SVD) for dimensionality reduction. LSA
has been extensively used to obtain low-dimensional representations that capture relation-
ships among documents and terms. In this article, we present a theoretical analysis and
comparison of the two techniques in the context of document-term matrices. We show that
CA has some attractive properties as compared to LSA, for instance that effects of margins
arising from differing document-lengths and term-frequencies are effectively eliminated,
so that the CA solution is optimally suited to focus on relationships among documents
and terms. A unifying framework is proposed that includes both CA and LSA as special
cases. We empirically compare CA to various LSA based methods on text categorization
in English and authorship attribution on historical Dutch texts, and find that CA performs
significantly better. We also apply CA to a long-standing question regarding the author-
ship of the Dutch national anthem Wilhelmus and provide further support that it can be
attributed to the author Datheen, amongst several contenders.
Keywords: Latent semantic analysis; Correspondence analysis; Singular value decompo-
sition; Text categorization; Authorship attribution.

1 Introduction

Latent semantic analysis (LSA) is a well-known method used in computational linguistics
that uses singular value decomposition (SVD) for dimensionality reduction in order to ex-
tract contextual and usage-based representations of words from textual corpora. Amongst
many other tasks, LSA has been used extensively for information retrieval, by using asso-
ciations between documents and terms (Deerwester, Dumais, Furnas, Landauer, & Harsh-
man, 1990; Dumais, 1991; Dumais, Furnas, Landauer, Deerwester, & Harshman, 1988). The
exact factorization achieved via SVD has been shown to achieve solutions comparable in
some ways to those obtained by modern neural network based techniques (Levy & Gold-
berg, 2014; Levy, Goldberg, & Dagan, 2015), commonly used to obtain dense word repre-
sentations from textual corpora.

Correspondence analysis (CA) is a popular method for the analysis of contingency
tables (Greenacre, 1984, 2017). It provides a graphical display of dependence between
rows and columns of a two-way contingency table (Greenacre & Hastie, 1987). Like LSA,
CA is a dimensionality reduction method. The methods have much in common as both use
SVD. In both cases, after dimensionality reduction, many text mining tasks, such as text
clustering, may be performed in the reduced dimensional space rather than in the higher
dimensional space provided by the raw document-term matrix.
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While a few empirical comparisons of LSA and CA, with mixed results, can be found
in the literature, a comprehensive theoretical comparison is lacking. For example, Morin
(1999) compared the two methods in the automatic exploration of themes in texts. Séguéla
and Saporta (2011) compared the performance of CA and LSA with several weighting
functions in a document clustering task, and found that CA gave better results. On the
other hand, Séguéla and Saporta (2013) compared the performance of CA and LSA with
TF-IDF on a recommender system, but found that CA performs less well.

The present article presents a theoretical comparison of the two techniques, and places
them in a unifying framework. We show that CA has some favourable properties over
LSA, such as a clear interpretation of the distances between documents and between terms
of the original matrix, and a clear relation to statistical independence of documents and
terms. Also, CA can eliminate the margins of documents and terms simultaneously. Sec-
ond, we empirically evaluate and compare the two techniques, by applying them to text
categorization and authorship attribution in two languages. For text categorization we
use the BBCNews, BBCSport, and 20 Newsgroups datasets in English. In authorship attri-
bution we evaluate the two techniques on a large set of historical Dutch texts written by
six well-known Dutch authors of the sixteenth century. Here, we additionally use CA to
determine the unknown authorship of Wilhelmus, the national anthem of the Netherlands,
whose authorship is controversial: CA attributes Wilhelmus to the author Datheen, out of
the six contemporary contenders. To the best of our knowledge, this is the first application
of CA to the Wilhelmus. In both cases, we find that CA performs better.

The rest of the article is organized as follows. Section 2 and Section 3 elaborate on the
techniques LSA and CA in turn. A unifying framework is proposed in Section 4. In Section
5 we compare LSA and CA in text categorization using the BBCNews, BBCSport, and 20
Newsgroups datasets. Section 6 evaluates the performance of LSA and CA for authorship
attribution of documents where the author is known, and of the Wilhelmus, whose author
is unknown. The article ends with a conclusion.

2 Latent semantic analysis

Latent Semantic Analysis (LSA) has been extensively used for improving information re-
trieval by using the associations between documents and terms (Deerwester et al., 1990;
Dumais et al., 1988), amongst many other tasks. Since individual terms provide incom-
plete and unreliable evidence about the meaning of a document, in part due to synonymy
and polysemy, individual terms are replaced with derived underlying (latent) semantic
factors. Although LSA is a very well-known technique, we first present a detailed analysis
of the mathematics involved in LSA here as this is usually not found in the literature, and
in a later section, it will help in making the comparison between LSA and CA explicit. We
start with LSA of the raw document-term matrix and then discuss LSA of weighted matri-
ces, namely a matrix with row-normalised elements with L1, with L2, and a matrix that is
transformed by term frequency-inverse document frequency (TF-IDF).
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The discussion is illustrated using a toy data set, with the aim to present a clear view
of the properties of the dataset captured by LSA and CA, see Table 1. The toy data set
has 6 rows, the documents, and 6 columns, the terms, with the frequency of occurrence
of terms in each document in the cells (Aggarwal, 2018). Based on term-frequencies in
each document, the first three documents can be considered to primarily refer to cats, the
last two primarily to cars, and the fourth document to both. The fourth term, jaguar, is
polysemous because it can refer to either a cat or a car. We will see below how the LSA
approaches, and later CA, represent these properties in the data.

Table 1: A document-term matrix F : size 6×6

lion tiger cheetah jaguar porsche ferrari
doc1 2 2 1 2 0 0
doc2 2 3 3 3 0 0
doc3 1 1 1 1 0 0
doc4 2 2 2 3 1 1
doc5 0 0 0 1 1 1
doc6 0 0 0 2 1 2

2.1 LSA of raw document-term matrix

LSA is an application of the mathematical tool SVD, and can take many forms, depending
on the matrix analysed. We start our discussion of LSA with the SVD of a raw document-
term matrix F , having size m × n, with elements fij , i = 1, ...,m and j = 1, ..., n (Berry,
Dumais, & O’Brien, 1995; Deisenroth, Faisal, & Ong, 2020). Without loss of generality we
assume that n ≥ m and F has full rank.

SVD can be used to decompose F into a product of three matrices: U f , Σf , and V f ,
namely

F = U fΣf (V f )T (1)

Here U f is a m ×m matrix with orthonormal columns called left singular vectors so that
(U f )TU f = I , V f is a n × m matrix with orthonormal columns called right singular
vectors so that (V f )TV f = I , and Σf is a m×m diagonal matrix with singular values on
the diagonal in descending order.

We denote the first k columns of U f as the m× k matrix U f
k , the first k columns of V f

as the n× k matrix V f
k , and the k largest singular values on the diagonal of Σf as the k× k

matrix Σf
k (k ≤ m). Then U f

k Σf
k(V f

k )T provides the optimal rank-k approximation of F
in a least-squares sense. That is, X = U f

k Σf
k(V f

k )T minimizes Equation (2) amongst all
matrices X of rank k:

||F −X||2F =
∑
i

∑
j

(fij − xij)2 (2)

The idea is that the matrix U f
k Σf

k(V f
k )T captures the major associational structure in the

matrix and throws out noise (Dumais, 1991; Dumais et al., 1988). The total sum of squared
singular values is equal to tr((Σf )2), where tr is the sum of elements on the main diagonal
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of a square matrix. The proportion of the total sum of squared singular values explained
by the rank k approximation is tr((Σf

k)2)/tr((Σf )2).
SVD can also be interpreted geometrically. As F is of size m × n, each row of F can

be represented as a point in an n-dimensional space with the row elements as coordinates,
and each column can be represented as a point in anm-dimensional space with the column
elements as coordinates. In a rank-k approximation, where k < (m,n), each of the original
m documents and n terms are approximated by only k coordinates. Thus SVD projects
the sum of squared Euclidean distances from these row (column) points to the origin in
the n (m)-dimensional space as much as possible to a lower, a k-dimensional space. The
Euclidean distances between the rows of F are approximated by the Euclidean distances
between the rows of U f

k Σf
k from below, and the Euclidean distances between the rows of

F T are approximated by the Euclidean distances between the rows of V f
k Σf

k from below.
The choice of k is crucial in many applications (Albright, 2004). A lower rank approx-

imation cannot always express prominent relationships in text, whereas the higher rank
approximation may add useless noise. How to choose k is an open issue (Deerwester et
al., 1990). In practice, the value of k is selected such that a certain criterion is satisfied,
for example, the proportion of explained total sum of squared singular values is at least a
pre-specified proportion. Also, the use of a scree plot, showing the decline in subsequent
squared singular values, can be considered.

As F is a non-negative matrix, the first column vectors in U and V have the spe-
cial property that the elements of the vectors depart in the same direction from the origin
(Frobenius, 1912; Hu et al., 2003; Perron, 1907). We give an intuitive geometric explanation
for the m rows of F . Each row is a vector in the non-negative n-dimensional subspace of
Rn. As a result, the first singular vector, being in the middle of the m vectors, is also in
the non-negative n-dimensional subspace of Rn. As each vector is the non-negative sub-
space, the angle between each vector with the first singular vector is between 0 and 90
degrees, and therefore the projection of each of the m vectors on the first singular vector,
corresponding to the elements of U1, is non-negative (or each is non-positive, as we will
discuss now). The same holds for the columns of F and the first singular vector V1. The
reason that the elements of U1 and V1 are all either non-negative or non-positive is that
U f

1 Σf
1(V f

1 )T = −U f
1 Σf

1(−V f
1 )T , as the singular values are defined to be non-negative. As

the lengths of the row (column) vectors in n-dimensional space are influenced by the sizes
of the documents (i.e. the marginal frequencies), larger documents have larger projections
on the first singular vector, and the first dimension mainly displays differences in the sizes
of the margins.

As it turns out, the raw document-term matrix F in Table 1 does not have full rank; its

4



Table 2: The singular values, the squares of singular values, and the proportion of ex-
plained total sum of squared singular values (PSSSV) for each dimension of LSA of F , of
F L1, of F L2, and of F TF-IDF.

methods items dim1 dim2 dim3 dim4 dim5

LSA-RAW
singular value 8.425 3.261 0.988 0.574 0.272
square of singular value 70.985 10.635 0.976 0.330 0.074
PSSSV 0.855 0.128 0.012 0.004 0.001

LSA-NROWL1
singular value 1.070 0.692 0.123 0.114 0.046
square of singular value 1.146 0.479 0.015 0.013 0.002
PSSSV 0.692 0.289 0.009 0.008 0.001

LSA-NROWL2
singular value 2.095 1.228 0.239 0.198 0.092
square of singular value 4.388 1.507 0.057 0.039 0.009
PSSSV 0.731 0.251 0.009 0.007 0.001

LSA-TFIDF
singular value 11.878 5.898 1.565 1.017 0.449
square of singular value 141.088 34.782 2.451 1.034 0.202
PSSSV 0.786 0.194 0.014 0.006 0.001

rank is 5. The SVD of F in Table 1 is

F = UfΣf (V f )T

=



−0.411 0.175 0.825 0.252 −0.239

−0.646 0.314 −0.562 0.301 −0.279

−0.232 0.127 0.034 −0.099 0.503

−0.562 −0.203 0.044 −0.603 0.333

−0.099 −0.456 −0.024 −0.404 −0.672

−0.186 −0.778 −0.034 0.556 0.223




8.425 0 0 0 0

0 3.261 0 0 0

0 0 0.988 0 0

0 0 0 0.574 0

0 0 0 0 0.272




−0.412 0.214 0.655 −0.344 0.486

−0.488 0.311 0.087 0.180 −0.540

−0.440 0.257 −0.748 −0.259 0.339

−0.611 −0.369 0.039 0.366 −0.148

−0.101 −0.441 −0.014 −0.783 −0.426

−0.123 −0.679 −0.048 0.186 0.392



T

(3)

For the raw matrix, LSA-RAW in Table 2 shows the singular values, the squares of the
singular values, and the proportions of explained total sum of squared singular values
(denoted as PSSSV). Together, the first two dimensions account for 0.855 + 0.128 = 0.983
of the total sum of squared singular values. Therefore, the documents and the terms can
be approximated adequately in a two dimensional representation using U f

2 Σf
2 and V f

2 Σf
2

as coordinates. As the Euclidean distances between the documents and between the terms
in the two-dimensional representation, i.e., between the rows of U f

2 Σf
2 and the rows of

V f
2 Σf

2 , approximate the Euclidean distances between rows and between columns of the
original matrix F , such a two dimensional representation simplifies the interpretation of
the matrix considerably.

On the other hand, it is somewhat more difficult to examine the relation between a
document and a term. The reason is that, by choosing a Euclidean distance-representation
both for the documents and for terms, the singular values are used twice in the coordinates
U f

2 Σf
2 and V f

2 Σf
2 , and the inner product of coordinates of a document and coordinates
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LSA−NROWL1
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LSA−NROWL2
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LSA−TFIDF

Dimension 1: 141.088 (78.6%)
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Figure 1: A two-dimensional plot of documents and terms (a) for raw matrix F ; (b) for
row-normalized data F L1; (c) for row-normalized data F L2; (d) for matrix F TF-IDF.
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of a term does not approximate the corresponding value in F . Directions from the origin
can be interpreted, though, as the double use of the singular values only leads to relatively
reduced coordinates on the second dimension in comparison to the coordinates on the first
dimension.

The two-dimensional representation of LSA-RAW is shown in Figure 1(a). Documents
5 and 6 are close and therefore they appear to be similar. On the first dimension all docu-
ments and terms have a negative coordinate (see above). There is an order of 5, 6, 3, 1, 4,
and 2 on the first dimension. This order is related to the row margins of Table 1, where 2
and 4 have the highest frequencies and therefore are further away from the origin. Over-
all, the two-dimensional representation of the documents reveals a mix of the sizes of the
documents, the row margins Σjfij , and the relative use of the terms by the documents,
i.e., for row i this is the vector of elements fij/Σjfij , also known as the row profile for row
i. This mix makes the graphic representation difficult to interpret. Similarly, porsche and
ferrari are lower left but close to the origin, tiger, cheetah, and lion are upper left and fur-
ther away from the origin, and jaguar is far away at the lower left. Also there is a mix of
the sizes of the terms, i.e., for column j this is column margin Σifij , and the relative use
of the documents by the terms, i.e., for column j this is the vector of elements fij/Σifij ,
also known as the column profile for column j. The terms porsche and ferrari are related to
documents 5 and 6 as they have the same position w.r.t. the origin, and similarly for tiger,
cheetah, and lion to documents 1, 2, and 3, and jaguar to document 4.

Although the first dimension accounts for 85.5 per cent of the total sum of squared
singular values, it provides little information about the relations among documents and
terms. In particular, from Table 1 we expect that documents 1 to 3 are similar, documents
5 and 6 are similar, and document 4 is in-between; term jaguar is between cat terms (tiger,
cheetah, and lion) and car terms (porsche and ferrari), but we cannot see that from the first
dimension. This is because the margins of Table 1 play a dominant role in the first dimen-
sion.

2.2 LSA of weighted document-term matrix

Weighting can be used to prevent differential lengths of documents from having differ-
ential effects on the representation, or be used to impose certain preconceptions of which
terms are more important (Deerwester et al., 1990). The frequencies fij in the raw document-
term matrix F can be transformed with the aim to provide a better approximation of
the interrelations between documents and terms (Nakov, Popova, & Mateev, 2001). The
weight wij for term j in document i is normally expressed as a product of three compo-
nents (Ab Samat, Murad, Abdullah, & Atan, 2008; Kolda & O’leary, 1998; Salton & Buckley,
1988)

wij = L(i, j)×G(j)×N(i) (4)

where the local weighting L(i, j) is the weight of term j in document i, the global weight-
ing G(j) is the weight of the term j in the entire document set, and N(i) is the normaliza-
tion component for document i.
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When L(i, j) = f(i, j), G(j) = 1, and N(i) = 1, the weighted F is equal to F . In matrix
notation, Equation (4) can be expressed as W = NLG, where N is a diagonal matrix with
diagonal elements N(i) and G is a diagonal matrix with diagonal elements G(j). Notice
that pre- or post-multiplying by a diagonal matrix leaves the rank of the matrix L intact.

We examine two common ways to weight fij . One is row normalization (Ab Samat et
al., 2008; Salton & Buckley, 1988) with L1 and L2. The other is TF-IDF (Dumais, 1991).

2.2.1 SVD of matrix with row-normalized elements with L1

In row-normalized weighting with L1, we use Equation (4) with L(i, j) = fij , G(j) = 1,
and N(i) = 1/

∑n
j=1 fij , and apply an SVD to this transformed matrix that we denote as

F L1, which consists of the row profiles of F . See Table 3. The last row, the average row
profile, is the row profile of the column margins of Table 1.

Table 3: Row profiles of F

lion tiger cheetah jaguar porsche ferrari total
doc1 0.286 0.286 0.143 0.286 0.000 0.000 1.000
doc2 0.182 0.273 0.273 0.273 0.000 0.000 1.000
doc3 0.250 0.250 0.250 0.250 0.000 0.000 1.000
doc4 0.182 0.182 0.182 0.273 0.091 0.091 1.000
doc5 0.000 0.000 0.000 0.333 0.333 0.333 1.000
doc6 0.000 0.000 0.000 0.400 0.200 0.400 1.000

average row profile 0.171 0.195 0.171 0.293 0.073 0.098 1.000

We perform LSA of F L1 and find Table 2, part LSA-NROWL1. This shows that a rank
2 matrix approximates the data well as 0.692 + 0.289 = 0.981 of the total sum of squared
singular values is explained by these two dimensions. The first two columns of LSA of
F L1 can be used to approximate F L1, see Equation (5).

F L1 ≈ UL1
2 ΣL1

2 (V L1
2 )T

=



−0.423 0.327

−0.415 0.332

−0.408 0.349

−0.401 0.097

−0.384 −0.575

−0.417 −0.567


[

1.070 0

0 0.692

]


−0.347 0.374

−0.382 0.417

−0.326 0.350

−0.692 −0.174

−0.232 −0.428

−0.310 −0.592



T

(5)

Documents and terms can be projected on a two dimensional space using UL1
2 ΣL1

2 and
V L1
2 ΣL1

2 as coordinates, see Figure 1(b). In this representation documents 1, 2, and 3 are
quite close, and so are 5 and 6. Also, the terms ferrari and porsche are close and related to 5
and 6, tiger, lion, and cheetah are close and related to 1, 2, and 3.

Although the first dimension accounts for 69.2 per cent of the total sum of squared
singular values, this dimension does not provide information about different use of terms
by the documents as all documents have a similar coordinate. This is caused by the same
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marginal value 1 for each of the documents in F L1, which leads to almost the same distance
from the origin. Also, we would expect jaguar to be in between cat terms (tiger, cheetah, and
lion) and car terms (porsche and ferrari), but on the first dimension it appears as a separate,
third group. This is caused by the high values in its column in F L1, which lead to a larger
distance from the origin.

2.2.2 SVD of matrix with row-normalized elements with L2

In row-normalized weighting with L2, we use Equation (4) withL(i, j) = fij ,G(j) = 1, and
N(i) = 1/

√∑n
j=1 f

2
ij . The transformed matrix, denoted as F L2, is shown in Table 4. We

then perform LSA on Table 4. Table 2, part LSA-NROWL2, indicates that a rank 2 matrix
approximates the data well, as the sum of the PSSSV of the first two dimensions 0.731 +
0.251 = 0.982 contributes to 98.2 per cent of the total sum of squared singular values. The
first two columns of LSA of F L2 can be used to approximate F L2, see Equation (6).

F L2 ≈ UL2
2 ΣL2

2 (V L2
2 )T

=



−0.443 0.259

−0.445 0.271

−0.444 0.295

−0.476 0.017

−0.293 −0.635

−0.310 −0.608


[

2.095 0

0 1.228

]


−0.394 0.323

−0.432 0.362

−0.374 0.304

−0.659 −0.263

−0.178 −0.460

−0.227 −0.625



T

(6)

Table 4: A row-normalised document-term matrix F L2

lion tiger cheetah jaguar porsche ferrari
doc1 0.555 0.555 0.277 0.555 0.000 0.000
doc2 0.359 0.539 0.539 0.539 0.000 0.000
doc3 0.500 0.500 0.500 0.500 0.000 0.000
doc4 0.417 0.417 0.417 0.626 0.209 0.209
doc5 0.000 0.000 0.000 0.577 0.577 0.577
doc6 0.000 0.000 0.000 0.667 0.333 0.667

Documents and terms can be projected on a two dimensional space using UL2
2 ΣL2

2 and
V L2
2 ΣL2

2 as coordinates, see Figure 1(c). In this representation documents 1, 2, and 3 are
quite close, and so are 5 and 6. Also, the terms ferrari and porsche are close and related to 5
and 6, tiger, lion, and cheetah are close and related to 1, 2, and 3.

Although the first dimension accounts for 73.1 per cent of the total sum of squared
singular values, and so, a major portion of the information in the matrix, we do not find
the important aspect in the data that document 4 should be in between documents 1-3 on
the one hand and documents 5-6 on the other hand on this dimension. This is caused by
the high values in the row for doc4 in Table 4, which lead to a larger distance from the
origin than the other documents have. Also, we would expect jaguar to be in between cat
terms (tiger, cheetah, and lion) and car terms (porsche and ferrari), but on the first dimension
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it appears as a separate, third group. This is caused by the high values in its column in
Table 4, which lead to a larger distance from the origin.

2.2.3 SVD of the term frequency-inverse document frequency matrix

TF-IDF is one commonly used transformation of text data. We use equation (4) with
L(i, j) = fij , G(j) = 1 + log(ndocs

dfj
), and N(i) = 1, one form of TF-IDF, where ndocs is

the number of documents in the set and dfj is the number of documents where term j

appears, and then apply an SVD to this transformed matrix that we denote as F TF-IDF, see
Table 5. As is common in the literature, here we choose 2 as the base of the logarithmic
function.

Table 5: A document-term matrix F TF-IDF

lion tiger cheetah jaguar porsche ferrari
doc1 3.170 3.170 1.585 2 0 0
doc2 3.170 4.755 4.755 3 0 0
doc3 1.585 1.585 1.585 1 0 0
doc4 3.170 3.170 3.170 3 2 2
doc5 0.000 0.000 0.000 1 2 2
doc6 0.000 0.000 0.000 2 2 4

We perform LSA of Table 5 and find Table 2, part LSA-TFIDF. This shows that a rank
2 matrix approximates the data well as 0.786 + 0.194 = 0.980 of the total sum of squared
singular values is explained by these two dimensions. The matrix F TF-IDF in Table 5 is
approximated in the first two dimensions as follows:

F TF-IDF ≈ UTF-IDF
2 ΣTF-IDF

2 (V TF-IDF
2 )T

=



−0.411 0.175

−0.654 0.296

−0.239 0.112

−0.563 −0.245

−0.086 −0.469

−0.148 −0.768


[

11.878 0

0 5.898

]


−0.466 0.151

−0.554 0.231

−0.499 0.184

−0.429 −0.236

−0.134 −0.502

−0.159 −0.763



T

(7)

Figure 1(d) is a two-dimensional plot of the documents and terms using UTF-IDF
2 ΣTF-IDF

2

and V TF-IDF
2 ΣTF-IDF

2 as coordinates for the 6×6 sample document-term matrix F TF-IDF. The
configuration of documents in Figure 1(d) is very similar to that in Figure 1(a). The config-
uration of terms in Figure 1(d) is different from that of terms in Figure 1(a). In Figure 1(d),
there is an order of porsche, ferrari, jaguar, lion, cheetah, and tiger on the first dimension,
whereas in Figure 1(a), there is an order of porsche, ferrari, lion, cheetah, tiger, and jaguar on
the first dimension. Compared with Figure 1(a), the first dimension of Figure 1(d) shows
that jaguar is in between cat terms (tiger, cheetah, and lion) and car terms (porsche and ferrari).

10



2.2.4 Out-of-sample documents

Representing out-of-sample documents in the k-dimensional subspace of LSA is impor-
tant for many applications. Suppose a out-of-sample document d is a row vector. To
represent d in lower dimensional space, first the out-of-sample document d can be trans-
formed in the same way as the original documents (Dumais, 1991). Transformations for
the above four applications of LSA are df

w = d, dL1
w = d/

∑n
j=1 dj , d

L2
w = d/

√∑n
j=1 d

2
j ,

and dTF-IDF
w = [d1G(1), · · · , dnG(n)]. The coordinates of the out-of-sample document d in

LSA-RAW, LSA-NROWL1, LSA-NROWL2, and LSA-TFIDF are then calculated by df
wV f ,

dL1
w V L1, dL2

w V L2, and dTF-IDF
w V TF-IDF, respectively (Aggarwal, 2018).

2.3 Conclusions regarding LSA of different matrices

In the raw document-term matrix the relationships among the documents and terms is
blurred by differences in margins arising from differing document-lengths and marginal
term-frequencies. Thus LSA of the raw matrix leads to a mix of margins, and relationships
among documents and terms. In order to provide a better approximation of the interrela-
tions between documents and terms, weighting schemes were used.

Normalizations of the documents have a beneficial effect. Yet, the properties of the
frequencies that are evident from Table 1 where we expect, for example, that jaguar lies in
between porsche and ferrari on the one hand and tiger, cheetah, and lion on the other hand,
are not fully represented on the first dimension. This is due to the fact that the column
margins of Tables 3 and 4 still play a role on the first dimension. The TF-IDF transforma-
tion also has a positive effect. Yet LSA is not successful, for example, in representing the
expected relationships between documents on the first dimension that documents 1 to 3
are similar, 5 and 6 are similar, and document 4 is in-between. This is due to the fact that
the row margins of Table 5 still play a role on the first dimension.

Generally, solutions of LSA have the drawback that they include the effect of the mar-
gins as well as the dependence. In the first dimension these margins play a dominant role
as all points depart in the same direction from the origin. We can try to repair this property
of LSA, by applying transformations of the rows and columns of Table 1 simultaneously.
However, the transformations appear ad hoc. Instead we present in the next section a
different technique, which better fits the properties of the data: CA.

3 Correspondence analysis

CA provides a low-dimensional representation of the interaction or dependence between
the rows and columns of the contingency table (Greenacre & Hastie, 1987), which can be
used to reveal the structure in the data (Hayashi, 1992). CA has been proposed multiple
times, apparently independently, emphasizing different properties of the technique (Gifi,
1990). Some important contributions are provided in the Japanese literature, by Hayashi
(1956, 1992), who emphasizes the property of CA that it maximizes the correlation coef-
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ficient between the row and column variable by assigning numerical scores to these vari-
ables; in the French literature, by Benzécri (1973), who emphasizes a distance interpreta-
tion, where Greenacre (1984) expressed Benzécri’s work in a more conveniential mathe-
matical notation; and in the Dutch literature, by Gifi (1990) and Michailidis and De Leeuw
(1998), who emphasize optimal scaling properties. We present CA here mainly from the
French perspective.

The aim of CA as developed by Benzécri is to find a representation of the rows (columns)
of frequency matrix F in such a way that Euclidean distances between the rows (columns)
in the representation correspond to so-called χ2-distances between rows (columns) of F
(Gifi, 1990). We work with P with elements pij = fij/f++, where f++ is the sum of all
elements of F . In the χ2-distance profiles play an important role. The squared χ2-distance
between the kth row profile with elements pkj/rk and the lth row profile with elements
plj/rl is

δ2kl =
∑
j

(pkj/rk − plj/rl)2

cj
(8)

where ri (also called the average column profile) and cj (the average row profile) are the
row and column sums of P respectively. Thus the difference between the jth elements
of the two profiles is weighted by column margin (i.e. the last row of Table 3), cj , so that
this difference plays a relatively more important role in the χ2-distance if it stems from a
column having a small value cj .

A representation where Euclidean distances between the rows of the matrix are equal to
χ2-distances is found as follows. In matrix notation, the matrix whose Euclidean distances
between the rows are equal to χ2-distances between rows of F is equal to D−1r PD

− 1
2

c ,
where Dr is a diagonal matrix with ri as diagonal elements and Dc is a diagonal matrix
with cj as diagonal elements. Suppose we take the SVD of

D
− 1

2
r PD

− 1
2

c = U spΣsp(V sp)T (9)

Here D
− 1

2
r PD

− 1
2

c is a matrix with standardized proportions, hence the superscripts sp on
the right hand side of the equation. Then, if we pre-multiply both sides of Equation (9)

with D
− 1

2
r , we get

D−1r PD
− 1

2
c = D

− 1
2

r U spΣsp(V sp)T (10)

Thus a representation using the rows of D
− 1

2
r U spΣsp as row coordinates leads to Euclidean

distances between these row points being equal to χ2-distances between rows of F . Sim-
ilar to Equation (8) we can also define χ2-distances between the columns of F , and in

matrix notation this leads to the matrix D
− 1

2
r PD−1c . Then, in a similar way as for the χ2-

distances for the rows, Equation (9) can be used as an intermediate step to go to a solution

for the columns. Post-multiplying the left and right hand sides in Equation (9) by D
− 1

2
c

provides us with the coordinates for a representation where Euclidean distances between

the column points (the rows of D
− 1

2
c V spΣsp as coordinates for these columns) are equal to
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χ2-distances between the columns of F . Notice that Equation (9) plays the dual role of an
intermediate step in going to a solution both for the rows and the columns.

The matrices D
− 1

2
r U spΣsp and D

− 1
2

c V spΣsp have a first column being equal to 1, a so-
called artificial dimension. This artificial dimension reflects the fact that the row margins
of the matrix D−1r P with the row profiles of Table 1 are 1 and the column margins of the
matrix PD−1c with the column profiles of Table 1 are 1. This artificial dimension is elimi-

nated by not taking the SVD of D
− 1

2
r PD

− 1
2

c but of D
− 1

2
r (P −E)D

− 1
2

c , where the elements
of E are defined as the product of the margins ri and cj . Due to subtracting E from P ,

the rank of D
− 1

2
r (P −E)D

− 1
2

c is m − 1, which is 1 less than the rank of F . Notice that the

elements of D
− 1

2
r (P −E)D

− 1
2

c are standardized residuals under the independence model,
and the sum of squares of these elements yields the so-called total inertia, which is equal
to the Pearson χ2 statistic divided by sample size f++. By taking the SVD of the matrix of
standardized residuals, we get

D
− 1

2
r (P −E)D

− 1
2

c = U srΣsr(V sr)T (11)

and
D−1r (P −E)D−1c = ΦsrΣsr(Γsr)T (12)

where Φsr = D
− 1

2
r U sr and Γsr = D

− 1
2

c V sr. We use the abbreviation sr for the matrices on
the right hand side of Equation (11) to refer to the matrix of standardized residuals on the
left hand side of the equation. CA simultaneously provides a geometric representation of
row profiles and column profiles of Table 1, where the effects of row margins and column
margins of Table 1 are eliminated. Φsr and Γsr are called standard coordinates of rows
and columns respectively. They have the property that their weighted average is 0 and
weighted sum of squares is 1:

1TDrΦ
sr = 0T = 1TDcΓ

sr (13)

and
(Φsr)TDrΦ

sr = I = (Γsr)TDcΓ
sr (14)

Equation (13) reflects the fact that the row and column margins of P −E vanish (Van der
Heijden, De Falguerolles, & De Leeuw, 1989).

We can make graphic displays using Φsr
k Σsr

k and Γsr
k Σsr

k as coordinates, which has
the advantage that Euclidean distances between the points approximate χ2-distances both
for the rows of F and for the columns of F , but it has the drawback that Σsr

k is used
twice. We can also make graphic displays using Φsr

k Σsr
k and Γsr

k , or Φsr
k and Γsr

k Σsr
k .

Thus, from Equation (12), this has the advantage that the inner product of the coordi-
nates of a document and the coordinates of a term approximates the corresponding value
in D−1r (P −E)D−1c .

If we choose ΦsrΣsr for the row points and Γsr for the column points, then CA has
the property that the row points are in weighted average of the column points, where
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the weights are the row profile values. Actually, Γsr can be seen as coordinates for the
extreme row profiles projected onto the subspace. The extreme row profiles are totally
concentrated into one of the terms. For example, [0, 0, 1, 0, 0, 0] represents the row profile
of a document that is totally concentrated into cheetah. At the same time, if we choose
Φsr for the row points and ΓsrΣsr for the column points, column points are in weighted
average of row points, where the weights are the column profile values. In a similar way
as for the rows, Φsr provide coordinates for the extreme column profiles projected onto the
subspace. The relationship between these row points and column points can be shown by
rewriting Equation (11) and using Equation (13) as

D−1r PΓsr = ΦsrΣsr (15)

and
D−1c P TΦsr = ΓsrΣsr (16)

These equations are called the transition formulas. In fact, using transition formulas is one
of the ways in which the solution of CA can be obtained: starting from arbitrary values
for the columns, one first centers and standardizes the column coordinates so that the
weighted sum is 0 and the weighted sums of squares is 1, next places the rows in the
weighted average of the columns, then places the columns in the weighted average of the
rows, and so on, until convergence. This is known as reciprocal averaging (Hill, 1973,
1974). Using the transition formula (15), the coordinates of the out-of-sample document d
is (d/

∑n
j=1 dj)Γ

sr (Greenacre, 2017).
The origin in the graphic representation for the rows stands for the average row profile,

which can be seen as follows. Let D−1r PD
− 1

2
c be the matrix where Euclidean distances

between the rows are χ2-distances between rows of F . Assume we plot the rows of this
matrix using the n elements of each row as coordinates. Then, eliminating the artificial

dimension in D−1r PD
− 1

2
c leads to the subtraction of the average row profile from each

row, as D−1r E is a matrix with the average row profile in each row. In other words, the
cloud of row points is translated to the origin, with the average row profile being exactly
in the origin (compare Equation (13): 0T = 1TDcΓ

sr). When two row points are departing
in the same way from the origin, they depart in the same way from the average profile,
and when two row points are on opposite sides of the origin, they depart in opposite
ways from the average profile. If the documents and terms are statistically independent,
then pij/ri = cj , and all document profiles would lie in the origin. Thus comparing row
profiles with the origin is a way to study the departure from independence and to study the
relations between documents and terms. Similarly, the origin in the graphic representation
for the columns stands for average column profile.

We now analyse the example discussed in the LSA section. Table 6 shows the matrix

D
− 1

2
r (P − E)D

− 1
2

c of standardized residuals (in lower-case notation, the elements of the
matrix are (pij − eij)/

√
eij).

We perform an SVD of D
− 1

2
r (P−E)D

− 1
2

c in Table 6 and find Table 7. Due to subtracting
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Table 6: The matrix D
− 1

2
r (P −E)D

− 1
2

c of standardized residuals

lion tiger cheetah jaguar porsche ferrari
doc1 0.115 0.085 -0.028 -0.005 -0.112 -0.129
doc2 0.014 0.091 0.128 -0.019 -0.140 -0.162
doc3 0.060 0.039 0.060 -0.025 -0.084 -0.098
doc4 0.014 -0.016 0.014 -0.019 0.034 -0.011
doc5 -0.112 -0.119 -0.112 0.020 0.260 0.204
doc6 -0.144 -0.154 -0.144 0.069 0.164 0.338

Table 7: The singular values, the inertia, and the proportions of explained total inertia for
each dimension of CA.

dim1 dim2 dim3 dim4
singular value 0.689 0.131 0.124 0.044

inertia 0.475 0.017 0.015 0.002
the proportion of inertia 0.932 0.034 0.030 0.004

E from P , the rank of the matrix in Table 6 is 4, which is 1 less than that in Table 1. The
proportion of the total inertia explained by only the first dimension accounts for 0.932 of

the total inertia. The matrix D
− 1

2
r (P −E)D

− 1
2

c in Table 6 is approximated in the first two
dimensions as follows:

D
− 1

2
r (P −E)D

− 1
2

c ≈ U sr
2 Σsr

2 (V sr
2 )T

=



−0.286 0.789

−0.368 −0.517

−0.231 −0.025

0.007 −0.138

0.547 −0.206

0.656 0.220


[

0.689 0

0 0.131

]


−0.301 0.544

−0.338 0.090

−0.303 −0.761

0.102 0.152

0.512 −0.275

0.656 0.136



T

(17)

Figure 2(a) is the map with a symmetric role for the rows and the columns, having
Φsr

2 Σsr
2 and Γsr

2 Σsr
2 as coordinates. The larger the deviations from document (term) points

to the origin are, the larger the dependence between documents and terms. Looking only
at the first dimension and document profiles’ positions, we can see that the groups furthest
apart are documents 1-3 on the left-hand side, opposed to documents 5-6 on the right-hand
side. They differ in opposite ways from the average row profile that lies in the origin. For
the term points on the first dimension, the cat terms (tiger, cheetah, and lion) lie on the
left, and car terms (porsche and ferrari) on the right. They differ in opposite ways from
the average column profile. Importantly, CA clearly displays the properties we see in the
the data matrix, as document 4 lies between documents 1-3 and documents 5-6, and the
term jaguar lies between cat terms and car terms, unlike all four of the LSA based analyses
presented in Figure 1.

Figure 2(b) is the asymmetric map with documents in the weighted average of the
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Figure 2: The data of Table 1 using CA for (a) symmetric map; (b) asymmetric map.

terms (Φsr
2 Σsr

2 and Γsr
2 as coordinates, notice that the position of the documents is identical

as in Figure 2(a)). From this graphic display we can study the position of the documents as
they are in the weighted average of the terms, using the row profile elements as weights.
For example, document 1 is closer to lion and tiger than to porsche and ferrari, because it
has higher profile values than average values on terms lion and tiger (both 0.286 in com-
parison with the average profile values 0.171 and 0.195) and lower profile values on the
terms porsche and ferrari (both 0.000 in comparison to 0.073 and 0.098), see Table 3. Thus
document 1 is pulled into the direction of lion and tiger.

3.1 Conclusions regarding CA

In CA, an SVD is applied to the matrix D
− 1

2
r (P −E)D

− 1
2

c of standardized residuals. Due to
E, in CA the effect of the margins is eliminated—a solution only displays the relationships
among documents and terms. In CA all points are scattered around the origin and the
origin represents the profile of the row and column margins of F .

In comparison, LSA also tries to capture the relationships among documents and terms,
which is not easy. The reason is that these relations are blurred by the effect of the margins
that are also displayed in the LSA solution. CA does not have this property. Therefore it
appears that CA is a better tool for information retrieval, natural language processing, and
text mining.

4 A unifying framework

Here we present a unifying framework that integrates LSA and CA. This section also serves
the purpose of showing their similarities and their differences.
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To first summarize LSA (see section 2.2 for details), a matrix is weighted, and the
weighted matrix is decomposed. Assume we start off with the document-term matrix
F , the row weights of F are collected in the diagonal matrix N , the column weights in the
diagonal matrix G, and there may be local weighting of the elements fij of F leading to
a locally weighted matrix L. Thus the weighted matrix W can be written as the matrix
product

W = NLG (18)

Subsequently, in LSA the matrix W is decomposed using SVD into a product of three
matrices: the orthonormal matrix U , the diagonal matrix Σ with singular values in de-
scending order, and the orthonormal matrix V , namely

W = UΣV T (19)

with
UTU = I = V TV (20)

Graphic representations are usually made using UΣ as coordinates for the rows and V Σ

for the columns.
In contrast, in CA we take the SVD of the matrix of standardized residuals. Let P be

the matrix with proportions pij = fij/f++, where f++ is the sum of all elements of F ; let
E be the matrix with expected proportions under independence eij = ricj , where ri and cj
are the row and column sums of P respectively; let Dr and Dc be diagonal matrices with
row and column sums ri and cj respectively. Thus the matrix of standardized residuals is

D
− 1

2
r (P −E)D

− 1
2

c . If we take the SVD of this matrix we get (11),

D
− 1

2
r (P −E)D

− 1
2

c = UΣV T (21)

In CA the matrices U and V are further adjusted by

Φ = D
− 1

2
r U ,Γ = D

− 1
2

c V (22)

so that we can write
D−1r (P −E)D−1c = ΦΣΓT (23)

with
ΦTDrΦ = I = ΓTDcΓ (24)

Graphic representations are usually made using ΦΣ and ΓΣ as coordinates for the rows
and columns respectively.

This brings us to the point where we can formulate a unifying framework. We distin-
guish the matrix to be analysed and the decomposition of this matrix. For the matrix to be
analyzed the weighted matrix defined in (18) can be used by LSA as well as by CA. Equa-

tion (18) is sufficiently general for LSA. For CA, using (21), we set N = D
− 1

2
r , L = (P −E)
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and G = D
− 1

2
c . This shows that the matrix decomposed in CA in (21) can be formulated in

the LSA framework in (18).
The decomposition used in LSA leads to orthonormal matrices U and V used for coor-

dinates, see (20), whereas in CA the decomposition leads to weighted orthonormal matri-
ces Φ and Γ , see (24). If we rewrite (20) as UT IU = I = V T IV , we see this is a difference
between using an identity metric I and a metric defined by the margins that are collected
in Dr and in Dc. The influence of this metrics used in CA is most clearly visible in the
definition of the chi-squared distances (8), that makes that, for example, for row profiles
i and i′, equally large differences between columns j and j′ are weighted by the margins
of j and j′ in such a way that a column with a smaller margin takes a larger part in the
chi-squared distance between i and i′.

5 Text categorization

LSA is widely used in text categorization. However, to our best knowledge, few papers on
text classification use CA, even though CA is similar to LSA. In this section, we compare
the performance of LSA and CA in text categorization of three English datasets: BBCNews,
BBCSport, and 20 Newsgroups. These datasets have recently been studied in the evalua-
tion of text categorization, for example Barman and Chowdhury (2020).

5.1 Datasets and methods

The BBCNews dataset (Greene & Cunningham, 2006) consists of 2,225 documents that are
divided into five categories: ”Business” (510 documents), ”Entertainment” (386), ”Politics”
(417), ”Sport” (511), and ”Technology” (401). The BBCSport dataset (Greene & Cunning-
ham, 2006) consists of 737 documents that are divided into five categories: ”athletics” (101),
”cricket” (124), ”football” (265), ”rugby” (147), and ”tennis” (100). The 20 Newsgroups
dataset, i.e. the 20news-bydata version (Rennie, 2005), consists of 18,846 documents that
are divided into 20 categories. The dataset is sorted into a training (60 per cent) and a test
set (40 per cent). We use a subset of these documents. Specifically, we choose 2,963 doc-
uments from three categories: ”comp.graphics” (584 documents for training set and 389
documents for test set), ”rec.sport.hockey” (600 and 399), and ”sci.crypt” (595 and 396).

To pre-process these datasets we project all characters to lower case, remove punctua-
tion marks, numbers, and stop words, and apply lemmatization. Subsequently, terms with
frequencies lower than 10 are ignored. In addition, we remove unwanted parts of the 20
Newsgroups dataset, such as headers.

We use two approaches to compare LSA and CA. One is visualization, where we use
LSA and CA to visualize documents by projecting them onto two dimensions. The other
is to use distance measures to quantitatively evaluate and compare performance in text
categorization. We use four different methods based on Euclidean distance for measuring
the distance from a document to a set of documents (Guthrie, 2008; Kestemont, Stover,
Koppel, Karsdorp, & Daelemans, 2016; Koppel & Seidman, 2013). We choose the Euclidean
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distance because it plays a central role in the geometric interpretation of LSA and CA (see
section 2 and 3).

Centroid Euclidean distance between the document and the centroid of the set of docu-
ments. The centroid for a set of documents is calculated by averaging the coordinates
across all these documents.

In the other three methods we first calculate the Euclidean distance between the document
and every document of the set of documents.

Average average of these Euclidean distances

Single the minimum Euclidean distance among the Euclidean distances

Complete the maximum Euclidean distance among the Euclidean distances.

These four methods are similar to the procedures of measuring the distance between clus-
ters in hierarchical clustering analysis, using the centroid, average, single, and complete
linkage method respectively (Jarman, 2020).

In line with the foregoing sections, we denote the raw document-term matrix by F .
In the case of LSA we examine four versions: LSA of F (LSA-RAW), LSA of the row-
normalized matrices F L1 (LSA-NROWL1) and F L2 (LSA-NROWL2), and LSA of the TF-
IDF matrix F TF-IDF (LSA-TFIDF). In addition, we also compare performance with the raw
document-term matrix, denoted as RAW, where no dimensionality reduction has taken
place.

5.2 Visualization

The 2,225 documents of the BBCNews dataset lead to a document-term matrix of size 2,225
× 5,050. Figure 3 shows the results of an analysis of this document-term matrix by the
four LSA methods (LSA-RAW, LSA-NROWL1, LSA-NROWL2, LSA-TFIDF) and CA. On
this dataset, we find that, although the percentage of the total sum of squared singular
values in the first two dimensions for CA is lower than the four LSA methods, the four
LSA methods do not separate the classes well but CA does a reasonably good job. This is
because the margins play an important role in the first two dimensions for the four LSA
methods and the relations between documents are blurred by these margins.

The 737 documents of BBCSport dataset lead to a document-term matrix of size 737 ×
2,071. Figure 4 shows the results of an analysis of this document-term matrix. Again, we
find that the LSA methods do not separate the classes well, but CA does a reasonably good
job.

The 2,963 documents of 20 Newsgroups dataset lead to a document-term matrix of size
2,927 × 2,834.1 Figure 5 shows the results of an analysis of this document-term matrix. On
this dataset, we find that CA is doing a reasonably good job, and so do LSA-NROWL1 and
LSA-NROWL2.

1After preprocessing, 36 documents out of 2,963 became empty documents and were removed.
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Figure 3: The first two dimensions for each document of BBCNews dataset by (a) LSA-
RAW; (b) LSA-NROWL1; (c) LSA-NROWL2; (d) LSA-TFIDF; (e) CA.
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Figure 4: The first two dimensions for each document of BBCSport dataset by (a) LSA-
RAW; (b) LSA-NROWL1; (c) LSA-NROWL2; (d) LSA-TFIDF; (e) CA.
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Figure 5: The first two dimensions for each document of 20 Newsgroups dataset by (a)
LSA-RAW; (b) LSA-NROWL1; (c) LSA-NROWL2; (d) LSA-TFIDF; (e) CA.
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5.3 Distance measures

For the 20 Newsgroups dataset, there is a training and a test set, and we assess the accuracy
as a measure for the correct classification of the documents of the test set. For BBCNews
and BBCSport datasets, in order to evaluate LSA methods and CA, we use five-fold cross
validation (Gareth, Daniela, Trevor, & Robert, 2021). That is, the dataset is randomly di-
vided into five folds. The four folds (80 per cent of the dataset) are used as training set
and the remaining one fold (20 per cent of the dataset) is as validation set. The accuracy is
averaged across five folds.

In these experiments, we apply all four varieties of LSA and CA to all documents of
the training set, which form a document-term matrix. The documents of the validation set
(for 20 Newsgroups the test set) are projected into these reduced dimensional space, see
Section 2.2.4 and Section 3.

Table 8 shows the maximum accuracy for LSA-RAW, LSA-NROWL1, LSANROWL2,
LSA-TFIDF, and CA for the four distance measures2, along with the minimum optimal di-
mensions k where this maximum accuracy is reached 3. First, if we ignore the complete
distance method as it has low accuracy overall, CA yields the maximum accuracy over the
RAW matrix (i.e. without dimensionality reduction) as well as over all four LSA methods
for each combination of dataset and other distance measurement method, except for the
BBCSport dataset with the average method, where CA has the second largest accuracy.
Second, for each dataset CA is doing best overall. Specifically, CA with the centroid, the
single, and the centroid distance method provides the best accuracy for BBCNews, BBC-
Sport, and 20 Newsgroups datasets, respectively.

In order to further explore different dimensionality reduction methods under optimal
distance measurement method which provides highest accuracy, Figure 6 shows the ac-
curacy as a function of the numbers of dimensions under centroid, single, and centroid
methods for BBCNews, BBCSport, and 20 Newsgroups datasets, respectively. CA in com-
bination with the optimal distance measurement method performs better than the other
methods over a large range, especially for BBCNews dataset, almost irrespective of di-
mension.

6 Authorship attribution

In this section we examine the performance of LSA and CA on a dataset originally set
up for authorship attribution. We first use the dataset to see how well LSA and CA are
able to assign documents with a known author to the correct author. Second, we assign a
document with unknown author to one of the known authors.

Authorship attribution is the process of identifying the authorship of a document; its
applications include plagiarism detection and resolving of authorship disputes (Bozkurt,

2For BBCSport dataset, we explore the number of all dimensions of dimensionality reduction methods. For
BBCNews and 20 Newsgroups datasets, we vary the number of dimension k from 1 to 450.

3There is not one single optimal number of dimensions that provides the maximum accuracy; for reasons
of space, we show only the lowest in Tables 8, 9.
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Table 8: The minimum optimal dimensionality k and the accuracy in k for LSA-RAW, LSA-
NROWL1, LSA-NROWL2, LSA-TFIDF, and CA, and the accuracy (Acc) for RAW using dif-
ferent distance measurement methods with the BBCNews, BBCSport, and 20 Newsgroups
datasets.

Datasets Methods
Centroid Average Single Complete
k Acc k Acc k Acc k Acc

BBCNews

RAW 0.921 0.339 0.791 0.229
LSA-RAW 401 0.921 7 0.714 24 0.942 1 0.237

LSA-NROWL1 339 0.947 5 0.898 30 0.948 5 0.723
LSA-NROWL2 385 0.950 23 0.930 450 0.951 5 0.829

LSA-TFIDF 381 0.942 13 0.725 32 0.953 13 0.253
CA 318 0.970 5 0.943 22 0.961 4 0.647

BBCSport

RAW 0.917 0.418 0.852 0.193
LSA-RAW 72 0.919 9 0.843 33 0.930 9 0.332

LSA-NROWL1 275 0.950 10 0.928 129 0.946 5 0.613
LSA-NROWL2 96 0.952 103 0.950 175 0.955 5 0.873

LSA-TFIDF 486 0.931 9 0.806 20 0.970 7 0.241
CA 565 0.978 24 0.936 35 0.982 4 0.420

20
Newsgroups

RAW 0.647 0.330 0.688 0.328
LSA-RAW 214 0.648 9 0.409 26 0.847 2 0.342

LSA-NROWL1 358 0.897 4 0.847 306 0.852 83 0.412
LSA-NROWL2 357 0.857 54 0.885 6 0.858 3 0.735

LSA-TFIDF 201 0.617 1 0.347 70 0.863 1 0.340
CA 84 0.908 7 0.888 27 0.902 11 0.465

Baghoglu, & Uyar, 2007), and is particularly relevant for historical texts, where other his-
torical records are not sufficient to determine authorship. Both LSA and CA have been
used for authorship attribution before. For example, Soboroff, Nicholas, Kukla, and Ebert
(1997) applied LSA with n-grams as terms to visualize authorship among biblical Hebrew
texts. McCarthy, Lewis, Dufty, and McNamara (2006) applied LSA to lexical features to au-
tomatically detect semantic similarities between words (Stamatatos, 2009). Satyam, Dawn,
and Saha (2014) used LSA on a character n-gram based representation to build a similarity
measure between a questioned document and known documents. Mealand (1995) studied
the Gospel of Luke using a visualization provided by CA. Mealand (1997) also measured
genre differences in Mark by CA. Mannion and Dixon (2004) applied CA to study author-
ship attribution of the case of Oliver Goldsmith by visualization.

The Wilhelmus is the national anthem of the Netherlands and its authorship is unknown
and much debated. There is a substantive amount of qualitative research attempting to
determine the authorship of the Wilhelmus, with quantitative or statistical methods be-
ing used relatively recently. To the best of our knowledge, the authorship of the Wilhel-
mus was first studied by statistical methods and computational means in Winkel (2015),
whose results on authorship attribution were inconclusive. After that, Kestemont, Stronks,
De Bruin, and Winkel (2017a, 2017b) studied the question using PCA and the General Im-
posters (GI) method, attributing the Wilhelmus to the writer Datheen. Vargas Quiros (2017)
used the data of Kestemont et al. (2017a, 2017b), and applied the KRIMP compression al-

24



0 100 200 300 400

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

BBCNews (centroid method)

Number of dimension

A
cc

u
ra

cy

CA
LSA−RAW
LSA−NROWL1
LSA−NROWL2
LSA−TFIDF
RAW

(a)

0 100 200 300 400 500 600

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

BBCSport (single method)

Number of dimension

A
cc

u
ra

cy

CA
LSA−RAW
LSA−NROWL1
LSA−NROWL2
LSA−TFIDF
RAW

(b)

0 100 200 300 400

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

20 Newsgroups (centroid method)

Number of dimension

A
cc

u
ra

cy

CA
LSA−RAW
LSA−NROWL1
LSA−NROWL2
LSA−TFIDF
RAW

(c)

Figure 6: Accuracy as a function of dimension for RAW, the LSA methods, and CA

gorithm (Van Leeuwen, Vreeken, & Siebes, 2006) and Kullback-Leibler Divergence — they
tended to agree with Kestemont et al. (2017a, 2017b), even though the KRIMP attributed
the Wilhelmus to another author when a different feature selection method was used. Thus,
the results were inconclusive, with a tendency to prefer Datheen. Our paper provides fur-
ther evidence in favour of attributing the authorship to Datheen.

6.1 Data and methods

We use a total of 186 documents by six writers, consisting of 35 documents written by
Datheen, 46 by Marnix, 23 by Heere, 35 by Haecht, 33 by Fruytiers, and 14 by Coornhert.
These documents contain tag-lemma pairs as terms, obtained through part-of-speech tag-
ging and lemmatizing of the texts, and are made publicly available by Kestemont et al.
(2016, 2017a, 2017b). The average marginal frequencies range from 406 for documents by
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Fruytiers to 545 for documents by Haecht. See Kestemont (2017) for more details regard-
ing the dataset. Similar to Section 5, in this section we also use visualization and distance
measures to compare LSA and CA.

6.2 Visualization

We first examine all documents of two authors Marnix and Dathleen4, using the 300 most
frequent tag-lemma pairs. These form a document-term matrix of size 81 × 300. Figure 7
shows the results of analysing this document-term matrix using the four LSA methods
(LSA-RAW, LSA-NROWL1, LSA-NROWL2, LSA-TFIDF), and CA. The Wilhelmus docu-
ment is not included in the data matrix but it is projected into the solutions for illustrative
purposes by W, in red, see Section 2.2.4 and Section 3. As seen in Figure 7, all four varieties
of LSA fail to show a clear separation, while CA separates documents by the two authors
clearly, even though the first 2 dimensions for CA account for a much smaller percentage of
the total sum of squared singular values than the first 2 dimensions for the four LSA meth-
ods. This is because the margins play an important role in the first two dimensions for the
four LSA methods and the relations between documents are blurred by these margins. We
also see that in CA the Wilhelmus is clearly attributed to Datheen.

Given the effectiveness of CA and the attribution of the Wilhelmus to Datheen in the
above analysis, we now show visualisations of CA for documents by Datheen and four
other authors in turn (Figure 8). For three out of four authors, there is a clear separation
between that author and Datheen. In the case Haecht however (sub-figure (b)), there is
no clear separation from Datheen. In all three cases where there is a clear separation,
Wilhelmus is attributed to Datheen, as before.

Finally, we apply all four varieties of LSA and CA to all documents of the six authors,
which form a document-term matrix of size 186 × 300. Figure 9 shows the results of the
analysis of this matrix by LSA-RAW, LSA-NROWL1, LSA-NROWL2, LSA-TFIDF, and CA.
The Wilhelmus is projected into the solutions afterwards. Again we find that, although the
percentage of the total sum of squared singular values in the first two dimensions for CA
is lower than the four LSA methods, CA separates the documents quite well compared
with the four LSA methods. For instance, documents written by Marnix are effectively
separated from the documents written by other authors. The documents of the other au-
thors also seem to form much more distinguishable clusters, as compared to LSA, except
for Datheen and Haecht.

6.3 Distance measures

To evaluate LSA methods and CA, we use leave-one-out cross-validation (LOOCV) (Gareth
et al., 2021) with the 186 documents of six authors. Using LOOCV, each time we discern
the following four steps. At the first step, a single document of the 186 documents is used

4We chose these two authors specifically, out of our dataset, as they are the two main contenders for the
authorship of Wilhelmus – Marnix has been the most popular candidate from qualitative analyses, and since
the work of Kestemont et al. (2017a, 2017b) Datheen is also a serious candidate.
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Figure 7: The first two dimensions for each document of author Datheen and author
Marnix, and the Wilhelmus (in red) by (a) LSA-RAW; (b) LSA-NROWL1; (c) LSA-NROWL2;
(d) LSA-TFIDF; (e) CA.
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Figure 8: The first two dimensions for each document of author Datheen and another
author, and the Wilhelmus (in red) using CA: (a) Heere; (b) Haecht; (c) Fruytiers; (d) Coorn-
hert.
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Figure 9: The first two dimensions for each document of six authors, and the Wilhelmus (in
red) by (a) LSA-RAW; (b) LSA-NROWL1; (c) LSA-NROWL2; (d) LSA-TFIDF; (e) CA.
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Table 9: The minimum optimal dimensionality k and the accuracy in k for LSA-RAW, LSA-
NROWL1, LSA-NROWL2, LSA-TFIDF, and CA, and the accuracy for RAW using different
distance measurement methods with Wilhelmus dataset.

Methods
Centroid Average Single Complete

k Accuracy k Accuracy k Accuracy k Accuracy
RAW 0.720 0.522 0.672 0.177

LSA-RAW 51 0.720 70 0.554 14 0.720 1 0.296
LSA-NROWL1 93 0.731 116 0.645 22 0.710 75 0.226
LSA-NROWL2 59 0.742 41 0.699 21 0.715 77 0.301

LSA-TFIDF 84 0.720 90 0.538 23 0.731 1 0.231
CA 151 0.930 12 0.790 19 0.785 95 0.452

as the validation set and the remaining 185 documents make up the training set. The 185
documents of training set form a document-term matrix with 185 rows and 300 columns.
At step two, we perform LSA-RAW, LSA-NROWL1, LSA-NROWL2, LSA-TFIDF, and CA
on this document-term matrix to obtain the coordinates of the 185 documents. The single
document of validation set is projected into the solutions, see Section 2.2.4 and Section 3.
At step three, using the centroid, average, single, and complete method, the distance is
computed between the single document and the six author groups of documents. For this
single document, the predicted author of the document is the author with the smallest
distance. At the final step, we compare the predicted author with the true author of the
single document. We repeat this 186 times, once for each single documents. The accuracy
is calculated by the ratio: number of times an author is correctly predicted divided by 186.

Table 9 shows the maximum accuracy for LSA-RAW, LSA-NROWL1, LSA-NROWL2,
LSA-TFIDF, and CA for the four distance measures 5, along with the minimum optimal
dimensions k. First, CA yields the maximum accuracy for all distance measurement meth-
ods, over the RAW matrix, as well as over all four LSA methods. Second, CA with the
centroid method provides the highest accuracy.

In order to further explore the centroid method, Figure 10 shows the accuracy with dif-
ferent numbers of dimensions for LSA-RAW, LSA-NROWL1, LSA-NROWL2, LSA-TFIDF,
and CA. Figure 10(a) displays all dimensions on the horizontal axis, and Figure 10(b) fo-
cuses on the first 10 dimensions. CA in combination with the centroid method performs
better than the other methods almost irrespective of dimension, except for the very first
ones. Also, the accuracy of CA in combination with the centroid method is very high over
a large range.

6.4 Authorship attribution of the Wilhelmus

Since CA in combination with the centroid method appears to be the best overall, we use
them to determine the authorship of the Wilhelmus. In the 34 optimal dimensions (di-
mensions 151-184), we find that the Wilhelmus is attributed to the author Datheen, while
Haecht is the second most likely candidate. The distance of the Wilhelmus to the centroid

5For Wilhelmus dataset, we explore the number of all dimensions of dimensionality reduction methods
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Figure 10: Accuracy versus the number of dimensions (centroid method) for CA, RAW,
LSA-RAW, LSA-NROWL1, LSA-NROWL2, and LSA-TFIDF with Wilhelmus dataset.

of documents of Datheen averaged across 34 optimal dimensions is 0.825, to Haecht 0.880,
to Marnix 0.939, to Heere 1.015, to Fruytiers 1.064, and to Coornhert 1.253. Thus, CA at-
tributes Wilhelmus to Datheen, and provides more weight using an independent statistical
technique, to prior results by Kestemont et al. (2017a, 2017b) in resolving this debate.

7 Conclusion

LSA and CA both allow for dimensionality reduction by the SVD of a matrix; however
the actual matrix analysed by LSA and CA is different, and therefore LSA and CA capture
different kinds of information. In LSA we apply an SVD to F , or to a weighted F . In CA,

an SVD is applied to the matrix D
− 1

2
r (P −E)D

− 1
2

c of standardized residuals. The elements

in D
− 1

2
r (P − E)D

− 1
2

c display the departure from the margins, that is, departure from the
expected frequencies under independence collected in E. Due to E, in CA the effect of
the margins is eliminated — a solution only displays the dependence between documents
and terms. Concluding, in LSA, the effect of the margins as well as the dependence is part
of the matrix that is analysed and these margins usually play a dominant role in the first
dimension of the LSA solution as usually on the first dimension all points depart in the
same direction from the origin. On the other hand, in CA all points are scattered around
the origin and the origin represents the profile of the row and column margins of F .

In summary, although LSA allows a study of the relations between documents, be-
tween terms, and between documents and terms, this study is not easy. The reason is that
these relations are blurred by the effect of the margins that are also displayed in the LSA
solution. CA does not have this property. Therefore it appears that CA is a better tool for
studying the relations between documents, between terms, and between documents and
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terms. Also, discussed in Section 3, CA has many nice properties like providing a geomet-
ric display where the Euclidean distances approximate the χ2-distances between the rows
and between the columns of the matrix, and the relation to the Pearson χ2 statistic. Over-
all, from a theoretical point of view it appears that CA has more attractive properties than
LSA. Empirically, we evaluated and compared the two methods on text categorization in
English and authorship attribution in Dutch, and found that CA can both separate docu-
ments better visually, and obtain higher accuracies on text categorization and authorship
attribution as compared to LSA techniques.

A document-term matrix is similar to a word-context matrix, commonly used to repre-
sent word meanings, in the sense that it is also a matrix of counts. However, in the context
of word-context matrices the ways in which the counts are transformed are usually dif-
ferent from the way they are transformed for document-term matrices, and therefore, due
to space limitations, we defer a comparison of CA and LSA of word-context matrices to
future work.
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