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Flexible Extensions to Structural Equation Models Using Computation Graphs
Erik–Jan van Kesteren and Daniel L. Oberski

Utrecht University

ABSTRACT
Structural equation modeling (SEM) is being applied to ever more complex data types and questions, 
often requiring extensions such as regularization or novel fitting functions. To extend SEM, researchers 
currently need to completely reformulate SEM and its optimization algorithm – a challenging and time– 
consuming task. In this paper, we introduce the computation graph for SEM, and show that this approach 
can extend SEM without the need for bespoke software development. We show that both existing and 
novel SEM improvements follow naturally. To demonstrate, we introduce three SEM extensions: least 
absolute deviation estimation, Bayesian LASSO optimization, and sparse high–dimensional mediation 
analysis. We provide an implementation of SEM in PyTorch – popular software in the machine learning 
community – to accelerate development of structural equation models adequate for modern–day data 
and research questions.
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Introduction

Structural equation modeling (SEM) is a popular tool in the social 
and behavioral sciences, where it is being applied to ever more 
complex data types. For example, SEM extensions now perform 
variable selection in high–dimensional situations (Jacobucci et al., 
2018; Van Kesteren & Oberski, 2019), modeling of intensive long
itudinal data (Asparouhov et al., 2018; Voelkle & Oud, 2013),and 
analysis of intricate online survey experiments (Cernat & Oberski, 
2019). In these situations, the SEM model often needs to be 
reformulated and traditional optimization approaches need to be 
extended to obtain parameter estimates—a challenging and time– 
consuming task. For example, applying SEM to high–dimensional 
data necessitates parameter penalization, and special model types 
such as genomic SEM (Grotzinger et al., 2019) or network models 
(Epskamp et al., 2017) can lead to alternative fitting functions. 
Additionally, even before the extension of SEM to novel data 
structures there have been several examples of the instability of 
the latent variable approach—such as Heywood cases (Kolenikov 
& Bollen, 2012) and convergence problems in multitrait–multi
method (MTMM) models (Revilla & Saris, 2013), which may 
benefit from regularization to obtain a stable result.

While the current growth of new types of structural equa
tion models is exciting, developments in SEM are still far from 
caught up with the state–of–the–art in modern data analysis. In 
particular, the machine learning literature has exploded over 
the past decades to develop methods that deal with the complex 
nature of modern data, making great strides in difficult data 
analysis problems, including computer vision, natural language 
processing, and genomics (see Goodfellow et al., 2016, and the 
references therein for an overview). Each of these data sources 
holds great potential for research questions from the social, 
behavioral, ecological, or biomedical sciences where SEM is 

commonly used. However, traditional implementations of 
SEM are difficult to integrate with the modern data solutions 
pioneered in the field of machine learning.

In this paper, we propose allowing direct integration of SEM 
and methods from the field of deep learning, by specifying SEM 
as a computation graph. A computation graph is 
a representation of the mathematical steps needed to compute 
a loss function such as the likelihood. Because the graph allows 
for automatic differentiation, this computation graph can then 
not only be used to estimate the maximum likelihood estimates 
of SEM, but it can also be adjusted to incorporate penalties on 
specific parts of the SEM model, or to use a completely differ
ent loss function. We demonstrate the utility of our approach 
by straightforwardly implementing three potentially useful 
extensions to SEM, of which two are novel:

(1) We implement Least Absolute Deviation (LAD) estima
tion, which exhibits robustness to outliers in the resi
dual covariance matrix (Siemsen & Bollen, 2007).

(2) To deal with high–dimensional indicators, we create 
a novel Bayesian LASSO estimation procedure (Park 
& Casella, 2008), and we apply it to an existing dataset 
to obtain a sparse linear combination of audio record
ing features related to Parkinson’s disease status at the 
latent variable level.

(3) To analyze mediation models in which there are more 
potential mediators than rows, we develop a variant of 
sparse high–dimensional mediation analysis based on 
unweighted least squares (ULS). Using this method, we 
perform exploratory mediator selection in an epigenetic 
dataset (Schaid & Sinnwell, 2020; Van Kesteren & 
Oberski, 2019; Zhang et al., 2016).
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These extensions are intended to demonstrate the power and 
flexibility of the proposed approach. The main purpose of this 
paper is to make this approach available to the SEM commu
nity to facilitate rapid development of novel extensions to SEM 
that will be useful in modern–day applications. To this end, we 
also provide an open source software package, tensorsem 
(https://doi.org/10.5281/zenodo.3957287).

This paper is structured as follows. First, SEM will be 
framed as an optimization problem, and a brief overview will 
be given of the current methods of SEM parameter estimation. 
Then, we will introduce the concept of computation graphs, as 
used in the field of deep learning. Subsequently, we will develop 
the computation graph for SEM, after which we show how this 
can be used to extend SEM to novel situations. Lastly, we 
discuss the implications of this novel framework for SEM and 
we provide directions for future research. The methods intro
duced this paper are implemented in open–source software, 
combining the popular R package lavaan (R Core Team, 2018; 
Rosseel, 2012) and the PyTorch neural network software 
(Paszke et al., 2019). All the examples associated with this 
paper are reproducible using the code in the supplementary 
material.

Background

SEM as an optimization problem

SEM in its basic form (Bollen, 1989) is a framework to model 
the covariance matrix of a set of observed variables. Through 
separation of structural and measurement models, it enables 
a wide range of multivariate models with both observed and 
latent variables. SEM generalizes many common data analysis 
methods, such as linear regression, seemingly unrelated regres
sion, errors–in–variables models, confirmatory and explora
tory factor analysis (CFA/EFA), multiple indicators multiple 
causes (MIMIC) models, instrumental variable models, ran
dom effects models, and more.

Below, we reiterate how the parameter configuration of the 
SEM framework creates a model–implied covariance matrix. 
Then, we show how this matrix is the basis for fitting functions 
representing the distance between the model–implied and the 
observed covariance matrix. Next, we show how such fitting 
functions are used to estimate the parameters of interest in the 
maximum likelihood (ML) and generalized least squares (GLS) 
frameworks.

The most commonly used formulations of SEM are the 
LISREL notation (Jöreskog & Sörbom, 1993) used in software 
packages such as lavaan (Rosseel, 2012) and the Reticular 
Action Model (RAM) notation (McArdle & McDonald, 1984) 
used in software such as OpenMX (Neale et al., 2016). In this 
paper, we adopt a variant of the LISREL notation known as the 
“all–y” version: 

z ¼ Ληþ ε ðMeasurement modelÞ
η ¼ B0ηþ � ðStructural modelÞ (1) 

where z represents a vector of centered observable variables of 
length P, and η, ε, and � are random vectors such that ε is 
uncorrelated with � (Neudecker & Satorra, 1991). The para
meters of the model are encapsulated in four matrices: Λ 

contains the factor loadings, Ψ contains the covariance matrix 
of �, B0 contains the regression parameters of the structural 
model, and Θ contains the covariance matrix of ε. From these 
matrices, we construct the full parameter vector δ as follows: 

δ ¼ ðvecΛÞT ; ðvechΘÞT ; ðvechΨÞT ; ðvecB0Þ
T

h iT
(2) 

where the vec operator transforms a matrix into a vector by 
stacking the columns, and the vech operator does the same but 
eliminates the supradiagonal elements of the matrix. Specific 
models impose specific restrictions on this parameter vector. 
This leads to a subset of free parameters θ. δ is identified 
through predefined restrictions: δ ¼ δðθÞ. The model–implied 
covariance matrix 

P
ðθÞ is a function of the free parameters, 

defined as follows (Bock & Bargmann, 1966; Jöreskog, 1966): 
X
ðθÞ ¼ ΛB� 1ΨB� TΛT þΘ (3) 

where B ¼ I � B0 is assumed to be non–singular – that is, the 
structural path model B0 is assumed to be identified.

In order to estimate θ, an objective (“fitting”) function needs 
to be defined. All common SEM objectives are measures of the 
distance between the model–implied covariance matrix 

P
ðθÞ

and the observed covariance matrix S: the model fits better if 
the model–implied covariance matrix more closely resembles 
the observed covariance matrix. The maximum–likelihood 
(ML) objective function FML is such a distance measure. 
Under the assumption that the observed covariance matrix 
follows a Wishart distribution or, equivalently, the observa
tions follow a multivariate normal distribution, the maximum– 
likelihood (ML) fitting function is the following (Bollen, 1989; 
Jöreskog, 1967): 

FMLðθÞ ¼ log
X
ðθÞ

�
�
�

�
�
�þ tr S

X� 1
ðθÞ

h i
(4) 

Note that the ML fitting function is a special case of the 
generalized least squares (GLS) fitting function (Browne, 
1974) which is defined as the following quadratic form: 

FGLSðθÞ ¼ ðs � σðθÞÞTWðs � σðθÞÞ (5) 

Where s ¼ vechS, and δðθÞ ¼ vech
P
ðθÞ. Here, FGLS ¼ FML 

when W¼ 2� 1DTð
P� 1
ðθÞ �

P� 1
ðθÞÞD (Neudecker & 

Satorra, 1991), where D is the duplication matrix and �
indicates the Kronecker product. Other choices for W lead to 
other estimators, such as unweighted least squares (ULS) or 
diagonally weighted least squares (DWLS).

With this formulation, the gradient gðθÞ of FGLS with 
respect to the parameters θ and the Hessian HðθÞ – the matrix 
of second–order derivatives – were derived by Neudecker and 
Satorra (1991). These two quantities are the basis for standard 
errors, robust statistical tests for model fit (Satorra & Bentler, 
1988), as well as fast and reliable Newton–type estimation 
algorithms (Lee & Jennrich, 1979). One such algorithm is the 
Newton–Raphson algorithm, where the parameter estimates at 
iteration iþ 1 are defined as the following function of the 
estimates at iteration i 
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θðiþ1Þ ¼ θðiÞ � H� 1ðθðiÞÞ � gðθðiÞÞ (6) 

Together, the objective function and the algorithm comprise an 
estimator—a way to compute parameter estimates using the 
data. Note that this estimator is developed specifically for GLS 
estimation of SEM. With every extension to GLS, this work 
needs to be redone: a bespoke new estimator (fitting function, 
gradient, Hessian, and algorithm) needs to be derived and 
implemented.

Optimization problems as computation graphs

In this paper, we suggest implementing the SEM optimization 
problem as a computation graph, to leverage the advances of 
the deep learning field for extending the SEM framework. 
A computation graph is a graphical representation of the 
operations required to compute a loss or objective value FðθÞ
from (a vector of) parameters θ (Abadi et al., 2016). The full 
computation is split into a series of differentiable smaller com
putational steps. Each of these steps is represented as a node, 
with directed edges representing the flow of computation 
toward the final result. Because the nodes are differentiable, 
computing gradients of the final (or any intermediate) result 
with respect to any of its inputs is automatic. Gradients are 
obtained by applying the chain rule of calculus starting at the 
node of interest and moving against the direction of the arrows 
in the graph. Thus, computation graphs are not only 
a convenient way of representing an objective function in 
a computer, but they also immediately provide the derivatives 
(and second derivatives), which are necessary to optimize 
functions or estimate standard errors. For example, consider 
the familiar ordinary least squares objective for linear 
regression: 

FLSðβÞ ¼
X

i
ðyi � xiβÞ2 ¼ ðy � XβÞTðy � XβÞ (7) 

The computation graph of this objective function can be con
structed as in Figure 1. This figure represents the objective by 
“unnesting” the equation from the inside outward into separate 

matrix operations: first, there is a matrix–vector multiplication 
of the design matrix X with the parameter vector β. Then, the 
resulting n� 1 vector by is subtracted elementwise from the 
observed outcome y, and the result is squared, then summed to 
output a single squared error loss value FLS. The nodes in 
a computation graph may represent scalars, vectors, matrices, 
or even three – and higher–dimensional arrays. Generally, 
these nodes are referred to as tensors.

Each of the operations in the graph has a registered 
derivative function. If it is known that the “square” opera
tion f ðxÞ ¼ x2 is applied as in Figure 1, the derivative f 0ðxÞ is 
2x and the second–order derivative f 00ðxÞ is 2. Thus, the 
gradient of the squared error tensor with respect to the 
residual tensor r is 2r.

Although automatic differentiation is an old idea (Wengert, 
1964), its combination with state–of the art optimizers (see 
Appendix A) in software such as Torch (Collobert et al., 2002; 
Paszke et al., 2017) and TensorFlow (Abadi et al., 2016) have 
paved the way for the current pace of deep learning research. 
Before the development and implementation of the computation 
graph, each neural network configuration (model) required spe
cialized work on the part of the researchers who introduced it to 
provide a novel estimator. Thanks to computation graphs, 
researchers can design generic neural nets without needing to 
invent a bespoke estimator. This development has greatly accel
erated progress in this area. For SEM, we see a similar situation at 
the moment: each development or extension of the model cur
rently requires a new algorithm that is capable of estimating its 
parameters. By applying computation graphs to SEM, we hope to 
greatly accelerate the process of developing novel SEM models. In 
the next section we combine the parameter configuration devel
oped for SEM with the computation graphs and optimizers devel
oped for deep learning to create a more flexible form of SEM.

Flexible extensions to SEM using computation graphs

In this section, we develop the computation graph and para
meter configuration to perform default ML–based structural 
equation modeling using PyTorch (Paszke et al., 2019). Then, 

Figure 1. Least squares regression computation graph, mapping the regression coefficients (β) to the least squares objective function FLS. The gray parts contain 
elements which do not change as the parameters are updated, in this case observed data.
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we outline how this computation graph can be edited to extend 
SEM to novel situations, and how additional penalties can be 
imposed on any parameter in the model. The last part of this 
section discusses obtaining standard errors in the computation 
graph approach to SEM. In the next section, we then show the 
flexibility of the computation graph approach described here 
by implementing and evaluating several useful extensions to 
traditional SEM.

The SEM computation graph

The SEM computation graph for the LISREL all–y notation is 
displayed in Figure 2. From left to right, a parameter vector δ is 
first instantiated with constrained elements, such that the free 
parameters represent θ. Then, this vector is split into the 
separate vectors as in Equation (2). These vectors are then 
reshaped into the four SEM all–y matrices, using duplication 
indices for the symmetric matrices Ψ and Θ.

In the next part, these matrices are transformed to the 
model–implied covariance matrix 

P
ðθÞ by unwrapping 

Equation (4) from the inside outward: B� 1 is constructed as 
ðI � B0Þ

� 1, then Ψ is premultiplied by this tensor and post
multiplied by its transpose. Then, the resulting tensor itself is 
pre – and postmultiplied by Λ and ΛT , respectively. Lastly, Θ is 
added to construct the implied covariance tensor.

The last part is the graphical representation of the ML fitting 
function from Equation (4). 

P
ðθÞ is inverted, then premulti

plied by S, and the trace of this tensor is added to the log 
determinant of the inverse of 

P
ðθÞ. The resulting tensor, 

a scalar value, is the FMLðθÞ objective function for SEM.
Each operation in Figure 2 contains information about its 

gradient. PyTorch can therefore automatically compute gradi
ents of the model parameters with respect to the fitting func
tion in the SEM computation graph. The Hessian can also be 
obtained automatically by applying the same principle to the 
gradients. Note that these correspond to the observed score 

and information matrix, rather than their expected versions 
derived under the null hypothesis of model correctness. 
PyTorch also provides state–of–the–art optimizers such as 
Adam (Kingma & Ba, 2014) to optimize computation graphs 
using these quantities (see Appendix A for more background 
on these optimizers). The repository at https://doi.org/10.5281/ 
zenodo.3957286 contains a software package which imple
ments this computation graph, along with example code to 
estimate lavaan models using this package. Additionally, 
Appendix B shows that using the software we developed, it is 
possible to exactly replicate SEM analyses: in its basic imple
mentation, the computation graph approach is equivalent to 
traditional SEM estimation approaches. Note that for specific 
models, additional optimization steps may be needed (see 
Discussion section for more).

Editing the objective function

The computation graph approach allows alternative objective 
functions to be implemented in SEM with relative ease. One 
such objective was coined by Siemsen and Bollen (2007), who 
introduce least absolute deviation (LAD) estimation. Their 
motivation is the performance of the LAD estimator as 
a robust estimation method in other fields. Note that while 
Siemsen and Bollen find limited relevance for this SEM esti
mator in terms of performance, we consider it to be an excel
lent showcase of the flexibility of our approach. This objective 
does not fit in the GLS approach of Browne (1974). The LAD 
estimator implies the following objective: 

FLADðθÞ ¼
X

i;j

X
ðθÞi;j � Si;j

�
�
�

�
�
� (8) 

A computational advantage of this objective relative to the ML 
fit function is that there is no need to invert 

P
ðθÞ. The work of 

Siemsen and Bollen (2007) focuses on developing a greedy 
genetic evolution numerical estimation algorithm which 

Figure 2. Full computation graph for all–y structural equation model, mapping the parameters (δ) to the maximum likelihood fit function FML. The gray parts contain 
elements which do not change during model fitting, meaning either observed data or constrained parameters. (NB: The constrained elements in this graph are not 
representative of a specific model).
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performs a search over the parameter space. Using this opti
mization algorithm, they show that the LAD estimator may 
outperform the ML estimator in very specific situations.

Constructing the LAD estimator in the computation graph 
framework means replacing the ML fitting operations with the 
LAD operations. This is shown in Figure 3. Note that compared 
to the ML objective, there are fewer operations, and the inver
sion operation of the implied covariance matrix is removed. This 
change is trivial to make given the SEM computation graph, and 
we will show later in the Implementations section that such 
alternative objective functions can be estimated using PyTorch.

Adding parameter penalization

Another modification of default SEM is the addition of penal
ties to the parameters of structural equation models (Holmes 
Finch & Miller, 2020; P. H. Huang et al., 2017; Jacobucci et al., 
2016). Such penalties regularize the model, which may prevent 
overfitting and improve generalizability (Hastie et al., 2015). 
There is a wide variety of parameter penalization procedures, 
but the most common methods are ridge and LASSO. In 
regression, the widely used elastic net (Zou & Hastie, 2005) is 
a combination of the LASSO and ridge penalties. The objective 
function for elastic net is the following: 

FENðβÞ ¼ FLSðβÞ þ λ1 βk k1 þ λ2 βk k2
1 (9) 

where βk k1 ¼
P

p jβpj, and λ1 and λ2 are hyperparameters 
which determine the amount of LASSO and ridge shrinkage, 
respectively. By setting λ1 to zero we obtain L2 (ridge) shrink
age, and setting λ2 to zero yields the L1 (LASSO). Nonzero 
values for both parameters combines the two approaches, 
which has been shown to encourage a grouping effect in 
regression, where strongly correlated predictors tend to be in 
or out of the model together (Zou & Hastie, 2005).

Friedman et al. (2010) have developed an efficient algorithm 
for estimating the elastic net for generalized linear models and 
have implemented this in their package glmnet. For SEM, 

(Jacobucci et al., 2016) have created a package for performing 
penalization by adding the elastic net penalty to the ML fit 
function. Their implementation uses the RAM notation 
(McArdle & McDonald, 1984), and their suggestion is to pena
lize either the A matrix (factor loadings and regression coeffi
cients), or the S matrix (residual covariances).

In the field of deep learning, parameter penalization is one 
of the key mechanisms by which massively overparameterized 
neural networks are estimated (Goodfellow et al., 2016). 
Regularization is therefore a core component of various soft
ware libraries for deep learning, including PyTorch. The opti
mizers implemented in these libraries, such as Adam (Kingma 
& Ba, 2014), are tried and tested methods for estimation of 
neural networks with penalized parameters, which is an active 
field of research (e.g., Scardapane et al., 2017).

In the SEM computation graph, the LASSO penalty on the 
regression parameters can be readily implemented by adding 
a few nodes to the ML fit graph. This is displayed in Figure 4. 
The absolute value of the elements of the B0 tensor are 
summed, and the resulting scalar is multiplied by the tuning 
parameter. The resulting value is then added to the maximum 
likelihood fit tensor to construct the lasso objective FLASSOðθÞ.

Ridge penalties for the B0 matrix can be implemented in 
similar fashion, but instead of an “absolute value” operation, 
the first added node is a “square” operation. These penalties 
can be added to any tensor in the computation graph, meaning 
penalization of the factor loadings or the residual covariances, 
or even a penalty on B is readily implemented. The elastic net 
penalty specifically can be implemented by imposing both 
a ridge and a lasso penalty on the tensor of interest.

Note that each additional penalty comes with its own para
meter to be selected – a process called “hyperparameter tun
ing.” Tuning of penalty parameters is traditionally done 
through cross–validation; glmnet (Friedman et al., 2010) pro
vides a function for automatically selecting the penalization 
strength in regression models through this method. Another 
method is through inspecting model fit criteria. For example, 
Jacobucci et al. (2016) suggest selecting the penalty parameter 

Figure 3. Full SEM computation graph for the least absolute deviation (LAD) objective. Compared to the ML fit function, the last part of the graph contains different 
operations.

STRUCTURAL EQUATION MODELING: A MULTIDISCIPLINARY JOURNAL   237 



through the BIC or the RMSEA, where the degrees of freedom 
is determined by the amount of nonzero parameters, which 
changes as a function of the penalization strength. Another 
example is penalized network estimation, where Epskamp et al. 
(2018) suggest hyperparameter tuning through an extended 
version of the BIC. There is another option, used in both 
deep learning as well as Bayesian statistics: a prior can be set 
on the hyperparameters. In this way, the parameter itself is 
learned along with the model: the “full Bayes” approach (van 
Erp et al., 2019). In the deep learning literature, this is called 
Bayesian optimization or gradient–based optimization of 
hyperparameters (Bengio, 2000). In the Implementations sec
tion, we show how the Bayesian LASSO approach (Park & 
Casella, 2008) can be leveraged for sparse factor analysis in 
SEM, a completely novel extension.

Standard errors and model tests

In SEM, standard errors can be calculated through the Fisher 
information method, requiring only the Hessian of the log– 
likelihood at the maximum and the assumption that the dis
tribution on which this log–likelihood is based (usually 
Normal–theory) is correct. Additionally, the distributional 
assumption can be relaxed by using sandwich estimators, in 
SEM known as Satorra–Bentler (robust) standard errors. These 
need both the Hessian and the N � P outer product matrix Δ 
– the case–wise first derivatives of the parameters w.r.t. the 
implied covariances σðθÞ (Savalei, 2014). Sandwich estimators 
also lead to robust test statistics which are not sensitive to 
deviations from normality. In econometrics, many variations 
of the sandwich estimator are available, depending on whether 
the expected or observed information matrix is used 
(Kolenikov & Bollen, 2012).

Computation graphs as outlined in this section are a general 
approach for obtaining parameter estimates of structural equa
tion models. Moreover, for the ML computation graph 
(Figure 2) it is also possible to obtain accurate standard errors 

because the observed information matrix – the inverse of the 
Hessian of the log–likelihood – is available automatically 
through the gradient computation in PyTorch. In addition, 
through the same computation graph but with case–wise enter
ing of the data, the outer product matrix Δ can also be made 
available. Because these are the observed versions, computation 
of empirical sandwich (Huber–White) standard errors is pos
sible. Naturally, an established alternative to these procedures 
is to bootstrap in order to obtain standard errors. Furthermore, 
the log–likelihood itself is directly available, thus information 
criteria such as AIC, BIC and SSABIC (Sclove, 1987), as well as 
normal–theory and robust test statistics (Satorra & Bentler, 
1988) can be computed more or less “as usual.”

In principle, therefore, standard errors and test statistics are 
available when using the computation graph approach. 
However, in practice the computation graph can be edited 
arbitrarily by introducing penalties or a different objective 
function. In this case, no general guarantees can be given 
about the accuracy of the standard errors, the coverage prob
ability of the confidence interval, or the asymptotic behavior of 
model fit metrics derived from the obtained model. This is 
inherent to the flexibility of the computation graph approach: 
for existing methods in SEM, simulations have shown the 
performance of the current standard error solutions (including 
the bootstrap), but as extensions are introduced these results 
do not necessarily hold. For some extensions, there will be no 
adequate approximation to the standard error with accurate 
frequentist properties. For example, there is a large body of 
literature on standard error approximations for L1 penaliza
tion (e.g., Fan & Li, 2001), but the problem of obtaining 
penalized model standard errors is fundamentally unsolvable 
due to the bias introduced by altering the objective function 
away from the log–likelihood (Goeman et al., 2018, p. 18). Not 
even the bootstrap can provide consistent standard error esti
mates in these situations (Kyung et al., 2010). Hence, software 
implementations of penalized regression (e.g., glmnet) con
sciously omit standard errors.

Figure 4. B0 LASSO computation graph with a pre–defined λ tuning parameter.
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In situations beyond ML, our advice is to pay attention to 
the behavior of existing fit criteria and standard errors. Using 
simulations for each new model and data case, the frequentist 
properties of the empirical confidence interval can be assessed 
and the type–I and type–2 errors of the (Satorra–Bentler) χ2 

test can be found. Those values can then be used to adjust the 
interpretation of the results in the analysis of the real data. If 
existing standard error approaches fail altogether, a viable 
solution may be to completely omit standard errors—just as 
in the L1 regression approach.

Note that all of the above holds similarly for Bayesian 
estimation, where the choice of prior influences the frequentist 
properties of the posterior, such as the credible interval cover
age probability. Just as it is possible with the computation 
graph approach to create a nonconverging model with bad 
asymptotic behavior, it is possible with Bayesian methods to 
create such a problematic model through the choice of non
sensical priors. Solutions in this case are also based on simula
tion, e.g., prior predictive checking (Gabry et al., 2019) or 
leave–one–out cross–validation (Vehtari et al., 2017).

In the next section, we show through a set of examples 
motivated by existing literature how our implementation of 
the SEM computation graph can be used to create extensions 
such as the ones we have introduced in this section.

Implementations

In this section, we implement three completely novel estimation 
procedures for SEM using our computation graph approach. 
The first example demonstrates how non–standard extensions 
to the fit function can be implemented with relative ease: we 
show how the Least Absolute Deviation (LAD) estimator yields 
similar parameters to the ML estimator in a factor analysis, even 
when the covariance matrix is contaminated with wrong values. 
Then, we perform a structural equation model with a sparse 
factor, using full Bayesian LASSO regularization (Park & Casella, 
2008) for the factor loadings. To our knowledge, the full 
Bayesian optimization approach with hyperpriors has not pre
viously been performed in the context of factor analysis with 
a covariate. Then, we perform high–dimensional mediation 
analysis with ULS optimization and LASSO regularization, 

using sparsity to select relevant variables among a set of 110 
potential mediators. This procedure is also novel, and through 
our approach it can be implemented relatively simply.

All the computation graphs and estimation methods 
described in this paper are reproducible through the code in 
the supplementary material, as well as the R and python 
packages available at https://doi.org/10.5281/zenodo.3957287. 
Prior to implementing these examples, we have checked the 
validity of our PyTorch implementation for default and regu
larized SEM against several other packages. The results of this 
are shown in Appendix B.

LAD estimation

Although LAD estimation was shown to be beneficial only in 
very specific situations (Siemsen & Bollen, 2007), it is an 
excellent showcase for the flexibility of the computation 
graph approach. Because the software developed by Siemsen 
and Bollen (2007) is not available, we instead compare the LAD 
estimates to the ML estimates. The PyTorch LAD estimator is 
a completely novel way of estimating SEM.

For this example, we generate data of sample size 1000 from 
a one–factor model. For this data, we constrain the observed 
covariance matrix to the covariance matrix implied by the popu
lation model in Figure 5. Since LAD estimation should be robust 
to outliers in the observed covariance matrix, which can happen 
in the trivial case of mistranscribing a covariance matrix into 
software, we also performed this on data with a “contaminated” 
covariance matrix: COVðX1;X3Þ ¼ 2; COVðX2;X4Þ ¼ 0:35.

The results are shown in Table 1. The ML estimates in 
lavaan and tensorsem again agree. With the uncontaminated 
covariance matrix, the LAD estimates reach the same conclu
sion as the ML estimates. Note that although unbiased, LAD is 
relatively less efficient, but this effect is not visible with 
a sample size of 1000 for this model. With contamination in 
the covariance matrix, the LAD method shows no bias, whereas 
the ML method does. Because the Hessian for the LAD objec
tive is not invertible, the standard errors are not available using 
the previously described ACOVðθÞ method. Siemsen and 
Bollen (2007) solve this problem by bootstrapping, which is 
possible but outside the scope of the current paper.

Figure 5. Factor analysis model used to generate data for comparing the least absolute deviation (LAD) estimator to the maximum likelihood (ML) estimator in 
tensorsem. Residual variances of the indicators were all set to 1.
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The results from this example show that the objective function 
in PyTorch can be edited and that Adam still converges to a stable 
solution with this adjusted objective. The parameter estimates 
from LAD estimation approximate those obtained from ML 
estimation in a one–factor model with 9 indicators and 1000 
observations. In addition, we have observed that LAD estimation 
is robust to contamination of the covariance matrix in the con
trived example of this section. Note that SEM estimation can be 
made robust against outliers in the raw data through using 
a multivariate t likelihood (Asparouhov & Muthén, 2016; Lai & 
Zhang, 2017; Yuan & Bentler, 1998), which is possible in the 
computation graph approach but outside the scope of the current 
paper.

Sparse factor SEM

Obtaining sparsity in factor analysis is a large and old field of 
research, with methods including rotations of factor solutions 
in principal component analysis (Kaiser, 1958) and modifica
tion indices in CFA (Saris et al., 1987; Sörbom, 1989). Sparsity 
is desirable in factor analysis due to the enhanced interpret
ability of the obtained factors. Recently, penalization has been 
applied to different factor analysis situations in order to obtain 
sparse factor loadings and simple solutions (Choi et al., 2010; 
Jin et al., 2018; Lu et al., 2016; Pan et al., 2017; Scharf & Nestler, 
2019). In addition, traditional factor rotations have been com
bined with SEM in a unified framework called exploratory SEM 
(ESEM, Asparouhov & Muthén, 2009). Several implementa
tions of factor loading regularization now exist in SEM (e.g., 
Guo et al., 2012; P. H. Huang et al., 2017; Jacobucci et al., 2016).

Following these recent developments, in this example we 
impose sparse structure in a factor by imposing a penalty on 
the relevant elements of the Λ matrix. We reuse the example of 
Choi et al. (2010), who created a new lasso estimator for factor 
analysis and tested their method on an open Parkinson dataset. 
The example dataset is taken from the UCI Machine Learning 
repository (Dua & Graff, 2017) and is based on 195 voice 
recordings of people with and without Parkinson’s disease. 
Certain biologically inspired features (Little et al., 2007) of 
these audio recordings can be related to the disease status of 
the participants. In this example, we seek to find a sparse linear 
combination of these features which can be explained by the 
disease status. Note that this feature–based representation is 
similar in idea to Guo et al. (2012), who used Bayesian LASSO 
to select among basis functions, creating non–linear spline 
relations between latent variables and their indicators.

The model applied to the data is shown in Figure 6. After 
standardization and log–transforming the skewed features (see 
supplementary material for the full pre–processing pipeline), 
ML estimates for this model were obtained using standard SEM 

software (OpenMx; Neale et al., 2016, NB: lavaan’s optimiza
tion reached a local minimum), as well as via our PyTorch 
implementation. Then, a Bayesian LASSO penalty was added 
to the model: the objective function was equal to the ML fit 
function (Equation 4) plus a Laplace prior on the factor load
ings with a Gammað1:78; 1Þ hyperprior on the scale of the 
double exponential distribution (Park & Casella, 2008). The 
resulting factor loadings and factor scores are shown in 
Figure 7.

The figure shows that the factor scores exhibit very similar 
class separation, despite the sparsity of the LASSO solution. 
In other words, using fewer features, a similar amount of 
information about the disease status is encoded in this factor. 
In this example, variable selection is informed by the disease 
status variable. The penalty parameter is learned automati
cally, along with the remaining variables. Furthermore, in this 
framework it is easy to extend the penalty to adaptive LASSO, 
where the strength of penalization is determined on a per– 
feature basis (Guo et al., 2012), or any of the myriad of 
alternative penalty functions, some of which are known to 
exhibit less bias in the nonzero parameters than the LASSO 
(Van Erp et al., 2019).

Sparse high–dimensional mediation

In this last example, we implement high–dimensional media
tion analysis. This procedure is becoming more relevant as 
high–dimensional data becomes accessible due to reductions 
of cost and increasing availability of complex measurement 
devices. The motivating example for this high–dimensional 
mediation procedure can be found in Houtepen et al. (2016) 
and Van Kesteren and Oberski (2019): childhood trauma 
scores of participants were measured using a standard ques
tionnaire, and their reactivity to stress later in life was mea
sured using their cortisol patterns after a stressor. Gene 
methylation was measured for each participant and hypothe
sized to mediate the relation between childhood trauma and 
stress reactivity. The goal of this study was to identify locations 
in the genome where methylation has an influence on the 
relation between childhood trauma and stress reactivity, as 
a potential target for future research.

Table 1. Parameter estimates comparing ML estimates to LAD estimates using 
both uncontaminated (u, top) and contaminated (c, bottom) covariance matrices. 
LAD is robust to the contamination of the covariance matrix.

X1 X2 X3 X4 X5 X6 X7 X8 X9

Uncontaminated (ML) 1.00 1.17 1.18 1.36 1.40 1.42 1.34 1.23 0.89
Contaminated (ML) 1.00 0.93 1.15 1.10 1.22 1.24 1.17 1.07 0.78
Uncontaminated (LAD) 1.00 1.17 1.18 1.36 1.40 1.42 1.34 1.23 0.89
Contaminated (LAD) 1.00 1.17 1.18 1.36 1.40 1.42 1.34 1.23 0.89

Figure 6. Model applied to the Parkinson’s data. Parkinson status is a binary 
variable, X1 – X22 are biologically–inspired features of the audio recording, 
normalized and standardized.
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Crucially, ML estimation is not available with high– 
dimensional data, where the parameters outnumber the 
rows in the dataset, because the model–implied covariance 
matrix is not invertible. However, other analysis methods 
such as LAD estimation (Section 4.1) and ULS estimation 
do not need to invert the model–implied covariance matrix 
to obtain parameter estimates. In this section we use ULS 
estimation with a LASSO penalty on the paths. In this way, 
we perform variable selection among the mediators, while 
taking into account potential residual correlations between 
the mediators.

To test our approach, we have simulated a dataset fol
lowing the same pattern as the motivating example. It 
contains 110 potential mediators, of which only 10 are 
true mediators with an indirect effect of .25. There are 
only 40 rows, making the dataset high–dimensional (for 
more details on data generation, see Van Kesteren & 
Oberski, 2019). Using this data, two mediation models 

were fit in PyTorch, one with only the ULS loss function, 
and one with the ULS loss function plus the sum of the 
absolute values of the indirect paths: 

LðθÞ ¼ ðs � σðθÞÞTðs � σðθÞÞ þ
X

p2P
japj þ

X

p2P
jbpj

where s and σðθÞÞ are the half–vectorized observed and implied 
covariance matrix elements, P is the total number of mediators, 
ap is the regression path from the predictor to the pth mediator, 
and bp is the regression path from the pth mediator to the 
outcome. Note that for simplicity, we have not included 
a multiplicative penalty hyperparameter, but this could be 
included in future implementations.

The true indirect effects (apbp) and their estimates are shown in 
Figure 8. The penalization procedure correctly sets most media
tion paths to 0, thus excluding their respective mediators from 
consideration. If we use this exclusion as a decision rule for 

Figure 7. Factor loadings (left panel) and factor scores (right panel) in the Parkinson’s disease dataset. All but 6 features are set to 0 when estimating the model using 
a Bayesian LASSO. Error bars are omitted for this method as the quadratic approximation is known to produce inconsistent confidence intervals in this case. The right 
panel shows that the LASSO factor scores exhibit very similar properties when compared to the ML factor scores despite the sparsity.

Figure 8. True and estimated indirect effects in a high–dimensional mediation analysis. The estimation methods are Unweighted Least Squares (ULS) and penalized ULS 
(LASSO). Regularized estimation correctly sets most parameters to 0 and shrinks the effect sizes overall.
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variable selection, we obtain one false negative (M.10) and three 
false positives (M.32, M.52, and M.81), resulting in a respectable 
positive predictive value (PPV) of 75%.

Applying the same approaches, ULS and penalized ULS esti
mation, to 1000 preselected mediators from the real dataset 
(N = 85) from the motivating example yields the result shown in 
Figure 9. The top–5 most relevant locations are labeled using their 
methylation site identifier. This type of penalization approach can 
be valuable in discovering potential mediation targets for future 
research, and although a similar procedures have been implemen
ted using LASSO on the bp paths (Y. T. Huang & Pan, 2015), 
LASSO on both ap and bp paths (Serang et al., 2017), or a group 
LASSO penalty (Schaid & Sinnwell, 2020), it has never been 
implemented using ULS estimation.

Together, the implementations have shown that estimation and 
extension of SEM through computation graphs and the Adam 
optimizer is viable. In a single unified optimization framework, we 
have implemented several extensions, either suggested in previous 
literature or completely novel. As previously mentioned, the exact 
properties of the novel procedures introduced here should be 
further analyzed in future work for different types of models. 
This is not the goal of the present work, where these examples 
have served as an illustration of the flexibility and viability of the 
computation graph approach in principle.

Conclusion

Estimation of SEM becomes more challenging as latent variable 
models become larger and more complex. Traditionally, SEM 
optimizers have already suffered from nonconvergence and 
inadmissible solutions (e.g., Chen et al., 2001; Revilla & Saris, 
2013), and with the increasing complexity of available datasets 
these problems are set to become more relevant. We argue that 
current estimation methods do not fulfil the needs of research
ers applying SEM to novel situations in the future.

In this paper, we have introduced a new way of constructing 
objective functions for SEM by using computation graphs. When 
combined with a modern optimizer such as Adam, available in the 

software package PyTorch, this approach opens up new directions 
for SEM estimation. The flexibility of the computation graph lies 
in the ease with which the graph is edited, after which gradients are 
computed automatically and optimization can be performed with
out in–depth mathematical analysis. This holds even for non– 
convex objectives and objectives which are not continuously dif
ferentiable, such as the LASSO objective. We have shown that 
previously proposed improvements to SEM, such as LAD estima
tion (Siemsen & Bollen, 2007), follow naturally from this frame
work, and that our implementation is able to optimize these, 
yielding parameter estimates that behave according to expecta
tions. In addition, we demonstrated the ease with which extensions 
can be investigated by implementing a fully Bayesian LASSO and 
performing high–dimensional variable selection with the ULS loss 
and a LASSO penalty, both novel penalization methods for SEM.

While our approach is general and flexible, there might be 
faster or more stable solutions for estimating certain specific 
models. Software created for specific use–cases may use optimiza
tion tricks that are suited to a single type of model, which cannot 
possibly be incorporated in such a general procedure. For exam
ple, the Latent Gold software has been built specifically for esti
mating latent class models. It uses an EM algorithm to start the 
estimation procedure, and then performs Newton–Raphson opti
mization to move toward the final parameter estimates (Vermunt 
& Magidson, 2013, sec. 7.4). Such specific procedures are not 
available by default with our approach. To develop extensions, 
we suggest first checking whether the computation graph 
approach works well enough for the specific model of interest, 
and only then editing the graph toward the desired end–result.

As the computation graph approach paves the way for a more 
flexible SEM, researchers can use it to develop theoretical SEM 
improvements. For example, future research can focus on how 
penalties may be used to improve the performance and inter
pretability of specific models (e.g., Jacobucci et al., 2018) or how 
different objective functions may be used to bring SEM to novel 
situations such as high–dimensional data (Grotzinger et al., 
2019; Van Kesteren, 2020). A potential extension to SEM is the 
use of high–dimensional covariates to debias inferences in obser
vational studies (Athey et al., 2018). The computation graph may 

Figure 9. ULS and penalized ULS estimated absolute indirect effects in the Houtepen et al. (2016) dataset. Regularized estimation sets most parameters to 0 and shrinks 
the effect sizes overall, but for some mediators the effect sizes increase with penalization due to correlations among mediators. The top–5 strongest effect sizes are 
labeled, representing locations in the genome where mediation is strongest.
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aid in importing such procedures to SEM. An interesting histor
ical note is that Cudeck et al. (1993) have had similar reasons for 
creating a general SEM optimization program, where the full 
Hessian is numerically approximated for any covariance model 
and the solution is computed using Gauss–Newton iterations. 
The modern computational tools used here now make such 
generic SEM programs feasible.

Another topic for future research is exploratory model specifica
tion. For example, Brandmaier et al. (2013) and Brandmaier et al. 
(2016) use decision trees to find relevant covariates in SEM, and 
Marcoulides and Drezner (2001) use genetic algorithms to perform 
model specification search. Penalties provide a natural way to auto
matically set some parameters to 0, which is equivalent to specifying 
constraints in the model. A compelling example of this is the work by 
Pan et al. (2017), who used the Bayesian form of LASSO regulariza
tion as an alternative to post–hoc model modification in CFA. Their 
approach penalizes the residual covariance matrix of the indicators, 
leading to a more sparse selection of residual covariance parameters 
to be freed relative to the common modification index approach.

There is an opportunity for the SEM computation graph 
approach to be further developed to expand its range of applications. 
For example, through applying Adam as a stochastic gradient descent 
(SGD) optimizer it may be extended to perform full information 
maximum likelihood (FIML) estimation, batch–wise estimation, or 
SEM estimation with millions of observations. This will potentially 
enable SEM to be performed on completely novel types of data, such 
as streaming data, images, or sounds. Another improvement which 
may be imported from the deep learning literature is computation of 
approximate Bayesian posterior credible intervals for any objective 
function using stochastic gradient descent steps at the optimum 
(Mandt et al., 2017). The deep learning optimization literature 
moves fast, and through the connections we have established in this 
paper the SEM literature could benefit from its pace.
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Appendix A. Adaptive first–order optimizers

We suggest using adaptive first–order optimizers to extend SEM beyond 
the existing estimation methods. Adaptive first–order optimizers are 
a class of optimization algorithms designed to work even under noncon
vexity and nonsmoothness. Some early algorithms such as RMSProp 
(Tieleman & Hinton, 2012) were originally developed with deep learning 
in mind, where nonconvexity, non–smoothness, and high–dimensional 
parameter spaces are common. Therefore, we consider these methods 
excellent candidates for estimating an expanding class of SEM models, 
as they have historically done for neural networks. The idea of using first– 
order optimizers for SEM is by no means new (Lee & Jennrich, 1979), but 
the recent developments in this area have made it a feasible approach.

The simplest first–order optimizer is gradient descent, which uses the 
gradient gðθÞ of the objective with respect to the parameters to guide the 
direction that each parameter should move toward. The gradient is com
bined with a step size s so that in each iteration i of gradient descent the 
parameters are moved a small amount toward the direction of the negative 
gradient evaluated at the current parameter values: 

θðiþ1Þ ¼ θðiÞ � s � gðθðiÞÞ (10) 

This algorithm has a similar structure to the Newton–Raphson method 
shown in Equation (6). In that algorithm, the step size s in each iteration 
is replaced by the inverse of the Hessian matrix. Gradient descent is thus 
a simplified version of the methods currently in use for optimizing SEM. 
Because it does not use the Hessian, it continues to function when the 
objective is not smooth or not convex. Computationally, it is also more 
tractable, foregoing the need to compute the full Hessian matrix. However, it 
is necessary to determine the correct step size s. This is not a trivial problem: 
with an improperly tuned step size, the algorithm may never converge.

One of the state–of–the art adaptive first–order optimizers is Adam 
(Kingma & Ba, 2014). It introduces two improvements to the frame
work of gradient descent (Figure A1). Firstly, it introduces 

momentum, where the direction in each iteration is not only the 
negative gradient of that iteration, but a moving average of the entire 
history of gradients. Momentum allows Adam to move through local 
minima in the search for a global minimum by smoothing the path it 
takes in the parameter space. Secondly, Adam introduces a self–adjust
ing step size for each parameter, which is adjusted based on the 
variability of the gradients over time: if the variability of the gradient 
of a parameter is smaller, Adam will take larger steps as it has more 
certainty about the direction the parameter should move in (and vice 
versa). This self–adjusting step size takes the place of computing and 
inverting the Hessian matrix. By using both the first and second 
moments of the history of the gradients, Adam is an adaptive optimi
zer capable of reliably optimizing a wide variety of objectives.

A relevant parallel to the development of adaptive first–order optimi
zers for deep learning is the recent advances in Bayesian SEM (Merkle & 
Rosseel, 2015) and Bayesian posterior sampling in general. Here, too, the 
objective function may be nonconvex, e.g., in hierarchical models and 
with nonconjugate priors. Such objective functions may lead to inefficient 
behavior for the Markov Chain Monte Carlo (MCMC) methods used to 
approximate posterior expectations. For this problem, Hamiltonial Monte 
Carlo (HMC) (Betancourt, 2017) has been developed, which introduces 
momentum in the proposal of a sample, thereby more efficiently exploring 
the posterior. This is the method implemented in Stan (Carpenter et al., 
2017), which works for situations with many parameters and 
hyperparameters.

Adaptive first–order optimizers are one part of a pair of improvements 
that have enabled rapid growth of the deep learning field. The other is the 
development of computation graphs, an intuitive way of specifying the 
objective such that gradients can be computed automatically. Automatic 
gradient computation can enable a wide range of extensions to SEM 
without having to analytically derive the gradient and Hessian for each 
separate extension. In the next section, we explain the concept behind 
computation graphs and how they can be combined with optimizers 
such as Adam.

Figure A1. Three first–order algorithms finding the minimum of FðθÞ ¼ θ2
1 þ 5θ2

2 with starting value θ̂ ¼ ½� 0:9; � 0:9�. Gradient descent uses the gradient and a fixed 
step size (s ¼ 0:01) to update its parameter estimates. Gradient descent with momentum instead uses an exponential moving average of the gradients (decay of 0.9) 
with the same s. Finally, Adam adds a moving average of the squared gradient (decay of 0.999) to adjust the step size per parameter, leading to a straight line to the 
minimum with an overshoot and return due to momentum. In this example, Adam converges fastest, and gradient descent is slowest.
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Appendix B. PyTorch estimation validation

B.1 ML–SEM estimation
We first validated our PyTorch implementation of default SEM through 

comparing the parameter estimates and their standard errors to two 
example models from the lavaan package: the Holzinger–Swineford 
model and the Political Democracy model. For more information about 
these models, see Rosseel (2012). The reproducible code for these models 
can be found in the supplementary material. The results are shown in 
Figure B1.

From this validation, we conclude that computation graphs and Adam 
optimization are together capable of estimating structural equation 
models. In addition, as the solution obtained by PyTorch is the same 

as with other packages, it is possible compute the value of the log– 
likelihood objective function and its derivative fit measures such as χ2, 
AIC, and BIC.

B.2 LASSO regularization
In this example, we show how LASSO penalization on the regression 

parameters in tensorsem compares to regsem (Jacobucci et al., 2016) and 
glmnet (Friedman et al., 2010). For this, we generate data with a sample size of 
1000 from a regression model with a single outcome variable, 10 true 
predictors, and 10 unrelated variables. The resulting parameter estimates for 
the three different estimation methods are shown in Table B1. The table 
shows that with the chosen penalty parameter (0.11 for regsem and PyTorch, 
0.028 for glmnet due to a difference in scaling), the estimates are very close in 
value. As expected, some parameters are shrunk to 0 for all three methods.

Figure B1. Comparison of parameter estimates and their 95% confidence interval for the Holzinger–Swineford and Political Democracy models. The plots show that 
both methods arrive at the same solution.

Table B1. Regularization with glmnet, regsem, and PyTorch. Table indicates parameter estimates for a LASSO penalized regression model with 20 predictors. PyTorch is 
compared to existing approaches and shown to provide similar parameter estimates. (dot indicates 0).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

glmnet . .07 .10 .07 .20 .23 .34 .13 .31 .17 –.03 .02 .05 . . . . . . .
regsem . .07 .10 .08 .20 .23 .34 .13 .31 .17 –.03 .02 .05 . . . . . . .
PyTorch . .07 .10 .07 .20 .23 .34 .13 .31 .17 –.03 .02 .05 . . . . . . .
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