
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=hsem20

Structural Equation Modeling: A Multidisciplinary Journal

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/hsem20

Flexible Extensions to Structural Equation Models
Using Computation Graphs

Erik–Jan van Kesteren & Daniel L. Oberski

To cite this article: Erik–Jan van Kesteren & Daniel L. Oberski (2022) Flexible Extensions
to Structural Equation Models Using Computation Graphs, Structural Equation Modeling: A
Multidisciplinary Journal, 29:2, 233-247, DOI: 10.1080/10705511.2021.1971527

To link to this article: https://doi.org/10.1080/10705511.2021.1971527

© 2021 The Author(s). Published with
license by Taylor & Francis Group, LLC.

View supplementary material

Published online: 20 Oct 2021. Submit your article to this journal

Article views: 1676 View related articles

View Crossmark data Citing articles: 2 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=hsem20
https://www.tandfonline.com/loi/hsem20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10705511.2021.1971527
https://doi.org/10.1080/10705511.2021.1971527
https://www.tandfonline.com/doi/suppl/10.1080/10705511.2021.1971527
https://www.tandfonline.com/doi/suppl/10.1080/10705511.2021.1971527
https://www.tandfonline.com/action/authorSubmission?journalCode=hsem20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=hsem20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10705511.2021.1971527
https://www.tandfonline.com/doi/mlt/10.1080/10705511.2021.1971527
http://crossmark.crossref.org/dialog/?doi=10.1080/10705511.2021.1971527&domain=pdf&date_stamp=2021-10-20
http://crossmark.crossref.org/dialog/?doi=10.1080/10705511.2021.1971527&domain=pdf&date_stamp=2021-10-20
https://www.tandfonline.com/doi/citedby/10.1080/10705511.2021.1971527#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/10705511.2021.1971527#tabModule

Flexible Extensions to Structural Equation Models Using Computation Graphs
Erik–Jan van Kesteren and Daniel L. Oberski

Utrecht University

ABSTRACT
Structural equation modeling (SEM) is being applied to ever more complex data types and questions,
often requiring extensions such as regularization or novel fitting functions. To extend SEM, researchers
currently need to completely reformulate SEM and its optimization algorithm – a challenging and time–
consuming task. In this paper, we introduce the computation graph for SEM, and show that this approach
can extend SEM without the need for bespoke software development. We show that both existing and
novel SEM improvements follow naturally. To demonstrate, we introduce three SEM extensions: least
absolute deviation estimation, Bayesian LASSO optimization, and sparse high–dimensional mediation
analysis. We provide an implementation of SEM in PyTorch – popular software in the machine learning
community – to accelerate development of structural equation models adequate for modern–day data
and research questions.

KEYWORDS
Structural equation
modeling; computation
graphs; deep learning;
optimization; regularization

Introduction

Structural equation modeling (SEM) is a popular tool in the social
and behavioral sciences, where it is being applied to ever more
complex data types. For example, SEM extensions now perform
variable selection in high–dimensional situations (Jacobucci et al.,
2018; Van Kesteren & Oberski, 2019), modeling of intensive long-
itudinal data (Asparouhov et al., 2018; Voelkle & Oud, 2013),and
analysis of intricate online survey experiments (Cernat & Oberski,
2019). In these situations, the SEM model often needs to be
reformulated and traditional optimization approaches need to be
extended to obtain parameter estimates—a challenging and time–
consuming task. For example, applying SEM to high–dimensional
data necessitates parameter penalization, and special model types
such as genomic SEM (Grotzinger et al., 2019) or network models
(Epskamp et al., 2017) can lead to alternative fitting functions.
Additionally, even before the extension of SEM to novel data
structures there have been several examples of the instability of
the latent variable approach—such as Heywood cases (Kolenikov
& Bollen, 2012) and convergence problems in multitrait–multi-
method (MTMM) models (Revilla & Saris, 2013), which may
benefit from regularization to obtain a stable result.

While the current growth of new types of structural equa-
tion models is exciting, developments in SEM are still far from
caught up with the state–of–the–art in modern data analysis. In
particular, the machine learning literature has exploded over
the past decades to develop methods that deal with the complex
nature of modern data, making great strides in difficult data
analysis problems, including computer vision, natural language
processing, and genomics (see Goodfellow et al., 2016, and the
references therein for an overview). Each of these data sources
holds great potential for research questions from the social,
behavioral, ecological, or biomedical sciences where SEM is

commonly used. However, traditional implementations of
SEM are difficult to integrate with the modern data solutions
pioneered in the field of machine learning.

In this paper, we propose allowing direct integration of SEM
and methods from the field of deep learning, by specifying SEM
as a computation graph. A computation graph is
a representation of the mathematical steps needed to compute
a loss function such as the likelihood. Because the graph allows
for automatic differentiation, this computation graph can then
not only be used to estimate the maximum likelihood estimates
of SEM, but it can also be adjusted to incorporate penalties on
specific parts of the SEM model, or to use a completely differ-
ent loss function. We demonstrate the utility of our approach
by straightforwardly implementing three potentially useful
extensions to SEM, of which two are novel:

(1) We implement Least Absolute Deviation (LAD) estima-
tion, which exhibits robustness to outliers in the resi-
dual covariance matrix (Siemsen & Bollen, 2007).

(2) To deal with high–dimensional indicators, we create
a novel Bayesian LASSO estimation procedure (Park
& Casella, 2008), and we apply it to an existing dataset
to obtain a sparse linear combination of audio record-
ing features related to Parkinson’s disease status at the
latent variable level.

(3) To analyze mediation models in which there are more
potential mediators than rows, we develop a variant of
sparse high–dimensional mediation analysis based on
unweighted least squares (ULS). Using this method, we
perform exploratory mediator selection in an epigenetic
dataset (Schaid & Sinnwell, 2020; Van Kesteren &
Oberski, 2019; Zhang et al., 2016).

CONTACT Erik–Jan van Kesteren e.vankesteren1@uu.nl Department of Methodology & Statistics, Utrecht University, Padualaan 14, 3584 CH Utrecht, The
Netherlands.

Supplemental data for this article can be accessed on the publisher’s website

https://doi.org/10.1080/10705511.2021.1971527

© 2021 The Author(s). Published with license by Taylor & Francis Group, LLC.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

STRUCTURAL EQUATION MODELING: A MULTIDISCIPLINARY JOURNAL
2022, VOL. 29, NO. 2, 233–247

http://orcid.org/0000-0003-1548-1663
http://orcid.org/0000-0001-7467-2297
https://doi.org/10.1080/10705511.2021.1971527
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/10705511.2021.1971527&domain=pdf&date_stamp=2021-10-27

These extensions are intended to demonstrate the power and
flexibility of the proposed approach. The main purpose of this
paper is to make this approach available to the SEM commu-
nity to facilitate rapid development of novel extensions to SEM
that will be useful in modern–day applications. To this end, we
also provide an open source software package, tensorsem
(https://doi.org/10.5281/zenodo.3957287).

This paper is structured as follows. First, SEM will be
framed as an optimization problem, and a brief overview will
be given of the current methods of SEM parameter estimation.
Then, we will introduce the concept of computation graphs, as
used in the field of deep learning. Subsequently, we will develop
the computation graph for SEM, after which we show how this
can be used to extend SEM to novel situations. Lastly, we
discuss the implications of this novel framework for SEM and
we provide directions for future research. The methods intro-
duced this paper are implemented in open–source software,
combining the popular R package lavaan (R Core Team, 2018;
Rosseel, 2012) and the PyTorch neural network software
(Paszke et al., 2019). All the examples associated with this
paper are reproducible using the code in the supplementary
material.

Background

SEM as an optimization problem

SEM in its basic form (Bollen, 1989) is a framework to model
the covariance matrix of a set of observed variables. Through
separation of structural and measurement models, it enables
a wide range of multivariate models with both observed and
latent variables. SEM generalizes many common data analysis
methods, such as linear regression, seemingly unrelated regres-
sion, errors–in–variables models, confirmatory and explora-
tory factor analysis (CFA/EFA), multiple indicators multiple
causes (MIMIC) models, instrumental variable models, ran-
dom effects models, and more.

Below, we reiterate how the parameter configuration of the
SEM framework creates a model–implied covariance matrix.
Then, we show how this matrix is the basis for fitting functions
representing the distance between the model–implied and the
observed covariance matrix. Next, we show how such fitting
functions are used to estimate the parameters of interest in the
maximum likelihood (ML) and generalized least squares (GLS)
frameworks.

The most commonly used formulations of SEM are the
LISREL notation (Jöreskog & Sörbom, 1993) used in software
packages such as lavaan (Rosseel, 2012) and the Reticular
Action Model (RAM) notation (McArdle & McDonald, 1984)
used in software such as OpenMX (Neale et al., 2016). In this
paper, we adopt a variant of the LISREL notation known as the
“all–y” version:

z ¼ Ληþ ε ðMeasurement modelÞ
η ¼ B0ηþ � ðStructural modelÞ (1)

where z represents a vector of centered observable variables of
length P, and η, ε, and � are random vectors such that ε is
uncorrelated with � (Neudecker & Satorra, 1991). The para-
meters of the model are encapsulated in four matrices: Λ

contains the factor loadings, Ψ contains the covariance matrix
of �, B0 contains the regression parameters of the structural
model, and Θ contains the covariance matrix of ε. From these
matrices, we construct the full parameter vector δ as follows:

δ ¼ ðvecΛÞT ; ðvechΘÞT ; ðvechΨÞT ; ðvecB0Þ
T

h iT
(2)

where the vec operator transforms a matrix into a vector by
stacking the columns, and the vech operator does the same but
eliminates the supradiagonal elements of the matrix. Specific
models impose specific restrictions on this parameter vector.
This leads to a subset of free parameters θ. δ is identified
through predefined restrictions: δ ¼ δðθÞ. The model–implied
covariance matrix

P
ðθÞ is a function of the free parameters,

defined as follows (Bock & Bargmann, 1966; Jöreskog, 1966):
X
ðθÞ ¼ ΛB� 1ΨB� TΛT þΘ (3)

where B ¼ I � B0 is assumed to be non–singular – that is, the
structural path model B0 is assumed to be identified.

In order to estimate θ, an objective (“fitting”) function needs
to be defined. All common SEM objectives are measures of the
distance between the model–implied covariance matrix

P
ðθÞ

and the observed covariance matrix S: the model fits better if
the model–implied covariance matrix more closely resembles
the observed covariance matrix. The maximum–likelihood
(ML) objective function FML is such a distance measure.
Under the assumption that the observed covariance matrix
follows a Wishart distribution or, equivalently, the observa-
tions follow a multivariate normal distribution, the maximum–
likelihood (ML) fitting function is the following (Bollen, 1989;
Jöreskog, 1967):

FMLðθÞ ¼ log
X
ðθÞ

�
�
�

�
�
�þ tr S

X� 1
ðθÞ

h i
(4)

Note that the ML fitting function is a special case of the
generalized least squares (GLS) fitting function (Browne,
1974) which is defined as the following quadratic form:

FGLSðθÞ ¼ ðs � σðθÞÞTWðs � σðθÞÞ (5)

Where s ¼ vechS, and δðθÞ ¼ vech
P
ðθÞ. Here, FGLS ¼ FML

when W¼ 2� 1DTð
P� 1
ðθÞ �

P� 1
ðθÞÞD (Neudecker &

Satorra, 1991), where D is the duplication matrix and �
indicates the Kronecker product. Other choices for W lead to
other estimators, such as unweighted least squares (ULS) or
diagonally weighted least squares (DWLS).

With this formulation, the gradient gðθÞ of FGLS with
respect to the parameters θ and the Hessian HðθÞ – the matrix
of second–order derivatives – were derived by Neudecker and
Satorra (1991). These two quantities are the basis for standard
errors, robust statistical tests for model fit (Satorra & Bentler,
1988), as well as fast and reliable Newton–type estimation
algorithms (Lee & Jennrich, 1979). One such algorithm is the
Newton–Raphson algorithm, where the parameter estimates at
iteration iþ 1 are defined as the following function of the
estimates at iteration i

234 VAN KESTEREN AND OBERSKI

https://doi.org/10.5281/zenodo.3957287

θðiþ1Þ ¼ θðiÞ � H� 1ðθðiÞÞ � gðθðiÞÞ (6)

Together, the objective function and the algorithm comprise an
estimator—a way to compute parameter estimates using the
data. Note that this estimator is developed specifically for GLS
estimation of SEM. With every extension to GLS, this work
needs to be redone: a bespoke new estimator (fitting function,
gradient, Hessian, and algorithm) needs to be derived and
implemented.

Optimization problems as computation graphs

In this paper, we suggest implementing the SEM optimization
problem as a computation graph, to leverage the advances of
the deep learning field for extending the SEM framework.
A computation graph is a graphical representation of the
operations required to compute a loss or objective value FðθÞ
from (a vector of) parameters θ (Abadi et al., 2016). The full
computation is split into a series of differentiable smaller com-
putational steps. Each of these steps is represented as a node,
with directed edges representing the flow of computation
toward the final result. Because the nodes are differentiable,
computing gradients of the final (or any intermediate) result
with respect to any of its inputs is automatic. Gradients are
obtained by applying the chain rule of calculus starting at the
node of interest and moving against the direction of the arrows
in the graph. Thus, computation graphs are not only
a convenient way of representing an objective function in
a computer, but they also immediately provide the derivatives
(and second derivatives), which are necessary to optimize
functions or estimate standard errors. For example, consider
the familiar ordinary least squares objective for linear
regression:

FLSðβÞ ¼
X

i
ðyi � xiβÞ2 ¼ ðy � XβÞTðy � XβÞ (7)

The computation graph of this objective function can be con-
structed as in Figure 1. This figure represents the objective by
“unnesting” the equation from the inside outward into separate

matrix operations: first, there is a matrix–vector multiplication
of the design matrix X with the parameter vector β. Then, the
resulting n� 1 vector by is subtracted elementwise from the
observed outcome y, and the result is squared, then summed to
output a single squared error loss value FLS. The nodes in
a computation graph may represent scalars, vectors, matrices,
or even three – and higher–dimensional arrays. Generally,
these nodes are referred to as tensors.

Each of the operations in the graph has a registered
derivative function. If it is known that the “square” opera-
tion f ðxÞ ¼ x2 is applied as in Figure 1, the derivative f 0ðxÞ is
2x and the second–order derivative f 00ðxÞ is 2. Thus, the
gradient of the squared error tensor with respect to the
residual tensor r is 2r.

Although automatic differentiation is an old idea (Wengert,
1964), its combination with state–of the art optimizers (see
Appendix A) in software such as Torch (Collobert et al., 2002;
Paszke et al., 2017) and TensorFlow (Abadi et al., 2016) have
paved the way for the current pace of deep learning research.
Before the development and implementation of the computation
graph, each neural network configuration (model) required spe-
cialized work on the part of the researchers who introduced it to
provide a novel estimator. Thanks to computation graphs,
researchers can design generic neural nets without needing to
invent a bespoke estimator. This development has greatly accel-
erated progress in this area. For SEM, we see a similar situation at
the moment: each development or extension of the model cur-
rently requires a new algorithm that is capable of estimating its
parameters. By applying computation graphs to SEM, we hope to
greatly accelerate the process of developing novel SEM models. In
the next section we combine the parameter configuration devel-
oped for SEM with the computation graphs and optimizers devel-
oped for deep learning to create a more flexible form of SEM.

Flexible extensions to SEM using computation graphs

In this section, we develop the computation graph and para-
meter configuration to perform default ML–based structural
equation modeling using PyTorch (Paszke et al., 2019). Then,

Figure 1. Least squares regression computation graph, mapping the regression coefficients (β) to the least squares objective function FLS. The gray parts contain
elements which do not change as the parameters are updated, in this case observed data.

STRUCTURAL EQUATION MODELING: A MULTIDISCIPLINARY JOURNAL 235

we outline how this computation graph can be edited to extend
SEM to novel situations, and how additional penalties can be
imposed on any parameter in the model. The last part of this
section discusses obtaining standard errors in the computation
graph approach to SEM. In the next section, we then show the
flexibility of the computation graph approach described here
by implementing and evaluating several useful extensions to
traditional SEM.

The SEM computation graph

The SEM computation graph for the LISREL all–y notation is
displayed in Figure 2. From left to right, a parameter vector δ is
first instantiated with constrained elements, such that the free
parameters represent θ. Then, this vector is split into the
separate vectors as in Equation (2). These vectors are then
reshaped into the four SEM all–y matrices, using duplication
indices for the symmetric matrices Ψ and Θ.

In the next part, these matrices are transformed to the
model–implied covariance matrix

P
ðθÞ by unwrapping

Equation (4) from the inside outward: B� 1 is constructed as
ðI � B0Þ

� 1, then Ψ is premultiplied by this tensor and post-
multiplied by its transpose. Then, the resulting tensor itself is
pre – and postmultiplied by Λ and ΛT , respectively. Lastly, Θ is
added to construct the implied covariance tensor.

The last part is the graphical representation of the ML fitting
function from Equation (4).

P
ðθÞ is inverted, then premulti-

plied by S, and the trace of this tensor is added to the log
determinant of the inverse of

P
ðθÞ. The resulting tensor,

a scalar value, is the FMLðθÞ objective function for SEM.
Each operation in Figure 2 contains information about its

gradient. PyTorch can therefore automatically compute gradi-
ents of the model parameters with respect to the fitting func-
tion in the SEM computation graph. The Hessian can also be
obtained automatically by applying the same principle to the
gradients. Note that these correspond to the observed score

and information matrix, rather than their expected versions
derived under the null hypothesis of model correctness.
PyTorch also provides state–of–the–art optimizers such as
Adam (Kingma & Ba, 2014) to optimize computation graphs
using these quantities (see Appendix A for more background
on these optimizers). The repository at https://doi.org/10.5281/
zenodo.3957286 contains a software package which imple-
ments this computation graph, along with example code to
estimate lavaan models using this package. Additionally,
Appendix B shows that using the software we developed, it is
possible to exactly replicate SEM analyses: in its basic imple-
mentation, the computation graph approach is equivalent to
traditional SEM estimation approaches. Note that for specific
models, additional optimization steps may be needed (see
Discussion section for more).

Editing the objective function

The computation graph approach allows alternative objective
functions to be implemented in SEM with relative ease. One
such objective was coined by Siemsen and Bollen (2007), who
introduce least absolute deviation (LAD) estimation. Their
motivation is the performance of the LAD estimator as
a robust estimation method in other fields. Note that while
Siemsen and Bollen find limited relevance for this SEM esti-
mator in terms of performance, we consider it to be an excel-
lent showcase of the flexibility of our approach. This objective
does not fit in the GLS approach of Browne (1974). The LAD
estimator implies the following objective:

FLADðθÞ ¼
X

i;j

X
ðθÞi;j � Si;j

�
�
�

�
�
� (8)

A computational advantage of this objective relative to the ML
fit function is that there is no need to invert

P
ðθÞ. The work of

Siemsen and Bollen (2007) focuses on developing a greedy
genetic evolution numerical estimation algorithm which

Figure 2. Full computation graph for all–y structural equation model, mapping the parameters (δ) to the maximum likelihood fit function FML. The gray parts contain
elements which do not change during model fitting, meaning either observed data or constrained parameters. (NB: The constrained elements in this graph are not
representative of a specific model).

236 VAN KESTEREN AND OBERSKI

https://doi.org/10.5281/zenodo.3957286
https://doi.org/10.5281/zenodo.3957286

performs a search over the parameter space. Using this opti-
mization algorithm, they show that the LAD estimator may
outperform the ML estimator in very specific situations.

Constructing the LAD estimator in the computation graph
framework means replacing the ML fitting operations with the
LAD operations. This is shown in Figure 3. Note that compared
to the ML objective, there are fewer operations, and the inver-
sion operation of the implied covariance matrix is removed. This
change is trivial to make given the SEM computation graph, and
we will show later in the Implementations section that such
alternative objective functions can be estimated using PyTorch.

Adding parameter penalization

Another modification of default SEM is the addition of penal-
ties to the parameters of structural equation models (Holmes
Finch & Miller, 2020; P. H. Huang et al., 2017; Jacobucci et al.,
2016). Such penalties regularize the model, which may prevent
overfitting and improve generalizability (Hastie et al., 2015).
There is a wide variety of parameter penalization procedures,
but the most common methods are ridge and LASSO. In
regression, the widely used elastic net (Zou & Hastie, 2005) is
a combination of the LASSO and ridge penalties. The objective
function for elastic net is the following:

FENðβÞ ¼ FLSðβÞ þ λ1 βk k1 þ λ2 βk k2
1 (9)

where βk k1 ¼
P

p jβpj, and λ1 and λ2 are hyperparameters
which determine the amount of LASSO and ridge shrinkage,
respectively. By setting λ1 to zero we obtain L2 (ridge) shrink-
age, and setting λ2 to zero yields the L1 (LASSO). Nonzero
values for both parameters combines the two approaches,
which has been shown to encourage a grouping effect in
regression, where strongly correlated predictors tend to be in
or out of the model together (Zou & Hastie, 2005).

Friedman et al. (2010) have developed an efficient algorithm
for estimating the elastic net for generalized linear models and
have implemented this in their package glmnet. For SEM,

(Jacobucci et al., 2016) have created a package for performing
penalization by adding the elastic net penalty to the ML fit
function. Their implementation uses the RAM notation
(McArdle & McDonald, 1984), and their suggestion is to pena-
lize either the A matrix (factor loadings and regression coeffi-
cients), or the S matrix (residual covariances).

In the field of deep learning, parameter penalization is one
of the key mechanisms by which massively overparameterized
neural networks are estimated (Goodfellow et al., 2016).
Regularization is therefore a core component of various soft-
ware libraries for deep learning, including PyTorch. The opti-
mizers implemented in these libraries, such as Adam (Kingma
& Ba, 2014), are tried and tested methods for estimation of
neural networks with penalized parameters, which is an active
field of research (e.g., Scardapane et al., 2017).

In the SEM computation graph, the LASSO penalty on the
regression parameters can be readily implemented by adding
a few nodes to the ML fit graph. This is displayed in Figure 4.
The absolute value of the elements of the B0 tensor are
summed, and the resulting scalar is multiplied by the tuning
parameter. The resulting value is then added to the maximum
likelihood fit tensor to construct the lasso objective FLASSOðθÞ.

Ridge penalties for the B0 matrix can be implemented in
similar fashion, but instead of an “absolute value” operation,
the first added node is a “square” operation. These penalties
can be added to any tensor in the computation graph, meaning
penalization of the factor loadings or the residual covariances,
or even a penalty on B is readily implemented. The elastic net
penalty specifically can be implemented by imposing both
a ridge and a lasso penalty on the tensor of interest.

Note that each additional penalty comes with its own para-
meter to be selected – a process called “hyperparameter tun-
ing.” Tuning of penalty parameters is traditionally done
through cross–validation; glmnet (Friedman et al., 2010) pro-
vides a function for automatically selecting the penalization
strength in regression models through this method. Another
method is through inspecting model fit criteria. For example,
Jacobucci et al. (2016) suggest selecting the penalty parameter

Figure 3. Full SEM computation graph for the least absolute deviation (LAD) objective. Compared to the ML fit function, the last part of the graph contains different
operations.

STRUCTURAL EQUATION MODELING: A MULTIDISCIPLINARY JOURNAL 237

through the BIC or the RMSEA, where the degrees of freedom
is determined by the amount of nonzero parameters, which
changes as a function of the penalization strength. Another
example is penalized network estimation, where Epskamp et al.
(2018) suggest hyperparameter tuning through an extended
version of the BIC. There is another option, used in both
deep learning as well as Bayesian statistics: a prior can be set
on the hyperparameters. In this way, the parameter itself is
learned along with the model: the “full Bayes” approach (van
Erp et al., 2019). In the deep learning literature, this is called
Bayesian optimization or gradient–based optimization of
hyperparameters (Bengio, 2000). In the Implementations sec-
tion, we show how the Bayesian LASSO approach (Park &
Casella, 2008) can be leveraged for sparse factor analysis in
SEM, a completely novel extension.

Standard errors and model tests

In SEM, standard errors can be calculated through the Fisher
information method, requiring only the Hessian of the log–
likelihood at the maximum and the assumption that the dis-
tribution on which this log–likelihood is based (usually
Normal–theory) is correct. Additionally, the distributional
assumption can be relaxed by using sandwich estimators, in
SEM known as Satorra–Bentler (robust) standard errors. These
need both the Hessian and the N � P outer product matrix Δ
– the case–wise first derivatives of the parameters w.r.t. the
implied covariances σðθÞ (Savalei, 2014). Sandwich estimators
also lead to robust test statistics which are not sensitive to
deviations from normality. In econometrics, many variations
of the sandwich estimator are available, depending on whether
the expected or observed information matrix is used
(Kolenikov & Bollen, 2012).

Computation graphs as outlined in this section are a general
approach for obtaining parameter estimates of structural equa-
tion models. Moreover, for the ML computation graph
(Figure 2) it is also possible to obtain accurate standard errors

because the observed information matrix – the inverse of the
Hessian of the log–likelihood – is available automatically
through the gradient computation in PyTorch. In addition,
through the same computation graph but with case–wise enter-
ing of the data, the outer product matrix Δ can also be made
available. Because these are the observed versions, computation
of empirical sandwich (Huber–White) standard errors is pos-
sible. Naturally, an established alternative to these procedures
is to bootstrap in order to obtain standard errors. Furthermore,
the log–likelihood itself is directly available, thus information
criteria such as AIC, BIC and SSABIC (Sclove, 1987), as well as
normal–theory and robust test statistics (Satorra & Bentler,
1988) can be computed more or less “as usual.”

In principle, therefore, standard errors and test statistics are
available when using the computation graph approach.
However, in practice the computation graph can be edited
arbitrarily by introducing penalties or a different objective
function. In this case, no general guarantees can be given
about the accuracy of the standard errors, the coverage prob-
ability of the confidence interval, or the asymptotic behavior of
model fit metrics derived from the obtained model. This is
inherent to the flexibility of the computation graph approach:
for existing methods in SEM, simulations have shown the
performance of the current standard error solutions (including
the bootstrap), but as extensions are introduced these results
do not necessarily hold. For some extensions, there will be no
adequate approximation to the standard error with accurate
frequentist properties. For example, there is a large body of
literature on standard error approximations for L1 penaliza-
tion (e.g., Fan & Li, 2001), but the problem of obtaining
penalized model standard errors is fundamentally unsolvable
due to the bias introduced by altering the objective function
away from the log–likelihood (Goeman et al., 2018, p. 18). Not
even the bootstrap can provide consistent standard error esti-
mates in these situations (Kyung et al., 2010). Hence, software
implementations of penalized regression (e.g., glmnet) con-
sciously omit standard errors.

Figure 4. B0 LASSO computation graph with a pre–defined λ tuning parameter.

238 VAN KESTEREN AND OBERSKI

In situations beyond ML, our advice is to pay attention to
the behavior of existing fit criteria and standard errors. Using
simulations for each new model and data case, the frequentist
properties of the empirical confidence interval can be assessed
and the type–I and type–2 errors of the (Satorra–Bentler) χ2

test can be found. Those values can then be used to adjust the
interpretation of the results in the analysis of the real data. If
existing standard error approaches fail altogether, a viable
solution may be to completely omit standard errors—just as
in the L1 regression approach.

Note that all of the above holds similarly for Bayesian
estimation, where the choice of prior influences the frequentist
properties of the posterior, such as the credible interval cover-
age probability. Just as it is possible with the computation
graph approach to create a nonconverging model with bad
asymptotic behavior, it is possible with Bayesian methods to
create such a problematic model through the choice of non-
sensical priors. Solutions in this case are also based on simula-
tion, e.g., prior predictive checking (Gabry et al., 2019) or
leave–one–out cross–validation (Vehtari et al., 2017).

In the next section, we show through a set of examples
motivated by existing literature how our implementation of
the SEM computation graph can be used to create extensions
such as the ones we have introduced in this section.

Implementations

In this section, we implement three completely novel estimation
procedures for SEM using our computation graph approach.
The first example demonstrates how non–standard extensions
to the fit function can be implemented with relative ease: we
show how the Least Absolute Deviation (LAD) estimator yields
similar parameters to the ML estimator in a factor analysis, even
when the covariance matrix is contaminated with wrong values.
Then, we perform a structural equation model with a sparse
factor, using full Bayesian LASSO regularization (Park & Casella,
2008) for the factor loadings. To our knowledge, the full
Bayesian optimization approach with hyperpriors has not pre-
viously been performed in the context of factor analysis with
a covariate. Then, we perform high–dimensional mediation
analysis with ULS optimization and LASSO regularization,

using sparsity to select relevant variables among a set of 110
potential mediators. This procedure is also novel, and through
our approach it can be implemented relatively simply.

All the computation graphs and estimation methods
described in this paper are reproducible through the code in
the supplementary material, as well as the R and python
packages available at https://doi.org/10.5281/zenodo.3957287.
Prior to implementing these examples, we have checked the
validity of our PyTorch implementation for default and regu-
larized SEM against several other packages. The results of this
are shown in Appendix B.

LAD estimation

Although LAD estimation was shown to be beneficial only in
very specific situations (Siemsen & Bollen, 2007), it is an
excellent showcase for the flexibility of the computation
graph approach. Because the software developed by Siemsen
and Bollen (2007) is not available, we instead compare the LAD
estimates to the ML estimates. The PyTorch LAD estimator is
a completely novel way of estimating SEM.

For this example, we generate data of sample size 1000 from
a one–factor model. For this data, we constrain the observed
covariance matrix to the covariance matrix implied by the popu-
lation model in Figure 5. Since LAD estimation should be robust
to outliers in the observed covariance matrix, which can happen
in the trivial case of mistranscribing a covariance matrix into
software, we also performed this on data with a “contaminated”
covariance matrix: COVðX1;X3Þ ¼ 2; COVðX2;X4Þ ¼ 0:35.

The results are shown in Table 1. The ML estimates in
lavaan and tensorsem again agree. With the uncontaminated
covariance matrix, the LAD estimates reach the same conclu-
sion as the ML estimates. Note that although unbiased, LAD is
relatively less efficient, but this effect is not visible with
a sample size of 1000 for this model. With contamination in
the covariance matrix, the LAD method shows no bias, whereas
the ML method does. Because the Hessian for the LAD objec-
tive is not invertible, the standard errors are not available using
the previously described ACOVðθÞ method. Siemsen and
Bollen (2007) solve this problem by bootstrapping, which is
possible but outside the scope of the current paper.

Figure 5. Factor analysis model used to generate data for comparing the least absolute deviation (LAD) estimator to the maximum likelihood (ML) estimator in
tensorsem. Residual variances of the indicators were all set to 1.

STRUCTURAL EQUATION MODELING: A MULTIDISCIPLINARY JOURNAL 239

https://doi.org/10.5281/zenodo.3957287

The results from this example show that the objective function
in PyTorch can be edited and that Adam still converges to a stable
solution with this adjusted objective. The parameter estimates
from LAD estimation approximate those obtained from ML
estimation in a one–factor model with 9 indicators and 1000
observations. In addition, we have observed that LAD estimation
is robust to contamination of the covariance matrix in the con-
trived example of this section. Note that SEM estimation can be
made robust against outliers in the raw data through using
a multivariate t likelihood (Asparouhov & Muthén, 2016; Lai &
Zhang, 2017; Yuan & Bentler, 1998), which is possible in the
computation graph approach but outside the scope of the current
paper.

Sparse factor SEM

Obtaining sparsity in factor analysis is a large and old field of
research, with methods including rotations of factor solutions
in principal component analysis (Kaiser, 1958) and modifica-
tion indices in CFA (Saris et al., 1987; Sörbom, 1989). Sparsity
is desirable in factor analysis due to the enhanced interpret-
ability of the obtained factors. Recently, penalization has been
applied to different factor analysis situations in order to obtain
sparse factor loadings and simple solutions (Choi et al., 2010;
Jin et al., 2018; Lu et al., 2016; Pan et al., 2017; Scharf & Nestler,
2019). In addition, traditional factor rotations have been com-
bined with SEM in a unified framework called exploratory SEM
(ESEM, Asparouhov & Muthén, 2009). Several implementa-
tions of factor loading regularization now exist in SEM (e.g.,
Guo et al., 2012; P. H. Huang et al., 2017; Jacobucci et al., 2016).

Following these recent developments, in this example we
impose sparse structure in a factor by imposing a penalty on
the relevant elements of the Λ matrix. We reuse the example of
Choi et al. (2010), who created a new lasso estimator for factor
analysis and tested their method on an open Parkinson dataset.
The example dataset is taken from the UCI Machine Learning
repository (Dua & Graff, 2017) and is based on 195 voice
recordings of people with and without Parkinson’s disease.
Certain biologically inspired features (Little et al., 2007) of
these audio recordings can be related to the disease status of
the participants. In this example, we seek to find a sparse linear
combination of these features which can be explained by the
disease status. Note that this feature–based representation is
similar in idea to Guo et al. (2012), who used Bayesian LASSO
to select among basis functions, creating non–linear spline
relations between latent variables and their indicators.

The model applied to the data is shown in Figure 6. After
standardization and log–transforming the skewed features (see
supplementary material for the full pre–processing pipeline),
ML estimates for this model were obtained using standard SEM

software (OpenMx; Neale et al., 2016, NB: lavaan’s optimiza-
tion reached a local minimum), as well as via our PyTorch
implementation. Then, a Bayesian LASSO penalty was added
to the model: the objective function was equal to the ML fit
function (Equation 4) plus a Laplace prior on the factor load-
ings with a Gammað1:78; 1Þ hyperprior on the scale of the
double exponential distribution (Park & Casella, 2008). The
resulting factor loadings and factor scores are shown in
Figure 7.

The figure shows that the factor scores exhibit very similar
class separation, despite the sparsity of the LASSO solution.
In other words, using fewer features, a similar amount of
information about the disease status is encoded in this factor.
In this example, variable selection is informed by the disease
status variable. The penalty parameter is learned automati-
cally, along with the remaining variables. Furthermore, in this
framework it is easy to extend the penalty to adaptive LASSO,
where the strength of penalization is determined on a per–
feature basis (Guo et al., 2012), or any of the myriad of
alternative penalty functions, some of which are known to
exhibit less bias in the nonzero parameters than the LASSO
(Van Erp et al., 2019).

Sparse high–dimensional mediation

In this last example, we implement high–dimensional media-
tion analysis. This procedure is becoming more relevant as
high–dimensional data becomes accessible due to reductions
of cost and increasing availability of complex measurement
devices. The motivating example for this high–dimensional
mediation procedure can be found in Houtepen et al. (2016)
and Van Kesteren and Oberski (2019): childhood trauma
scores of participants were measured using a standard ques-
tionnaire, and their reactivity to stress later in life was mea-
sured using their cortisol patterns after a stressor. Gene
methylation was measured for each participant and hypothe-
sized to mediate the relation between childhood trauma and
stress reactivity. The goal of this study was to identify locations
in the genome where methylation has an influence on the
relation between childhood trauma and stress reactivity, as
a potential target for future research.

Table 1. Parameter estimates comparing ML estimates to LAD estimates using
both uncontaminated (u, top) and contaminated (c, bottom) covariance matrices.
LAD is robust to the contamination of the covariance matrix.

X1 X2 X3 X4 X5 X6 X7 X8 X9

Uncontaminated (ML) 1.00 1.17 1.18 1.36 1.40 1.42 1.34 1.23 0.89
Contaminated (ML) 1.00 0.93 1.15 1.10 1.22 1.24 1.17 1.07 0.78
Uncontaminated (LAD) 1.00 1.17 1.18 1.36 1.40 1.42 1.34 1.23 0.89
Contaminated (LAD) 1.00 1.17 1.18 1.36 1.40 1.42 1.34 1.23 0.89

Figure 6. Model applied to the Parkinson’s data. Parkinson status is a binary
variable, X1 – X22 are biologically–inspired features of the audio recording,
normalized and standardized.

240 VAN KESTEREN AND OBERSKI

Crucially, ML estimation is not available with high–
dimensional data, where the parameters outnumber the
rows in the dataset, because the model–implied covariance
matrix is not invertible. However, other analysis methods
such as LAD estimation (Section 4.1) and ULS estimation
do not need to invert the model–implied covariance matrix
to obtain parameter estimates. In this section we use ULS
estimation with a LASSO penalty on the paths. In this way,
we perform variable selection among the mediators, while
taking into account potential residual correlations between
the mediators.

To test our approach, we have simulated a dataset fol-
lowing the same pattern as the motivating example. It
contains 110 potential mediators, of which only 10 are
true mediators with an indirect effect of .25. There are
only 40 rows, making the dataset high–dimensional (for
more details on data generation, see Van Kesteren &
Oberski, 2019). Using this data, two mediation models

were fit in PyTorch, one with only the ULS loss function,
and one with the ULS loss function plus the sum of the
absolute values of the indirect paths:

LðθÞ ¼ ðs � σðθÞÞTðs � σðθÞÞ þ
X

p2P
japj þ

X

p2P
jbpj

where s and σðθÞÞ are the half–vectorized observed and implied
covariance matrix elements, P is the total number of mediators,
ap is the regression path from the predictor to the pth mediator,
and bp is the regression path from the pth mediator to the
outcome. Note that for simplicity, we have not included
a multiplicative penalty hyperparameter, but this could be
included in future implementations.

The true indirect effects (apbp) and their estimates are shown in
Figure 8. The penalization procedure correctly sets most media-
tion paths to 0, thus excluding their respective mediators from
consideration. If we use this exclusion as a decision rule for

Figure 7. Factor loadings (left panel) and factor scores (right panel) in the Parkinson’s disease dataset. All but 6 features are set to 0 when estimating the model using
a Bayesian LASSO. Error bars are omitted for this method as the quadratic approximation is known to produce inconsistent confidence intervals in this case. The right
panel shows that the LASSO factor scores exhibit very similar properties when compared to the ML factor scores despite the sparsity.

Figure 8. True and estimated indirect effects in a high–dimensional mediation analysis. The estimation methods are Unweighted Least Squares (ULS) and penalized ULS
(LASSO). Regularized estimation correctly sets most parameters to 0 and shrinks the effect sizes overall.

STRUCTURAL EQUATION MODELING: A MULTIDISCIPLINARY JOURNAL 241

variable selection, we obtain one false negative (M.10) and three
false positives (M.32, M.52, and M.81), resulting in a respectable
positive predictive value (PPV) of 75%.

Applying the same approaches, ULS and penalized ULS esti-
mation, to 1000 preselected mediators from the real dataset
(N = 85) from the motivating example yields the result shown in
Figure 9. The top–5 most relevant locations are labeled using their
methylation site identifier. This type of penalization approach can
be valuable in discovering potential mediation targets for future
research, and although a similar procedures have been implemen-
ted using LASSO on the bp paths (Y. T. Huang & Pan, 2015),
LASSO on both ap and bp paths (Serang et al., 2017), or a group
LASSO penalty (Schaid & Sinnwell, 2020), it has never been
implemented using ULS estimation.

Together, the implementations have shown that estimation and
extension of SEM through computation graphs and the Adam
optimizer is viable. In a single unified optimization framework, we
have implemented several extensions, either suggested in previous
literature or completely novel. As previously mentioned, the exact
properties of the novel procedures introduced here should be
further analyzed in future work for different types of models.
This is not the goal of the present work, where these examples
have served as an illustration of the flexibility and viability of the
computation graph approach in principle.

Conclusion

Estimation of SEM becomes more challenging as latent variable
models become larger and more complex. Traditionally, SEM
optimizers have already suffered from nonconvergence and
inadmissible solutions (e.g., Chen et al., 2001; Revilla & Saris,
2013), and with the increasing complexity of available datasets
these problems are set to become more relevant. We argue that
current estimation methods do not fulfil the needs of research-
ers applying SEM to novel situations in the future.

In this paper, we have introduced a new way of constructing
objective functions for SEM by using computation graphs. When
combined with a modern optimizer such as Adam, available in the

software package PyTorch, this approach opens up new directions
for SEM estimation. The flexibility of the computation graph lies
in the ease with which the graph is edited, after which gradients are
computed automatically and optimization can be performed with-
out in–depth mathematical analysis. This holds even for non–
convex objectives and objectives which are not continuously dif-
ferentiable, such as the LASSO objective. We have shown that
previously proposed improvements to SEM, such as LAD estima-
tion (Siemsen & Bollen, 2007), follow naturally from this frame-
work, and that our implementation is able to optimize these,
yielding parameter estimates that behave according to expecta-
tions. In addition, we demonstrated the ease with which extensions
can be investigated by implementing a fully Bayesian LASSO and
performing high–dimensional variable selection with the ULS loss
and a LASSO penalty, both novel penalization methods for SEM.

While our approach is general and flexible, there might be
faster or more stable solutions for estimating certain specific
models. Software created for specific use–cases may use optimiza-
tion tricks that are suited to a single type of model, which cannot
possibly be incorporated in such a general procedure. For exam-
ple, the Latent Gold software has been built specifically for esti-
mating latent class models. It uses an EM algorithm to start the
estimation procedure, and then performs Newton–Raphson opti-
mization to move toward the final parameter estimates (Vermunt
& Magidson, 2013, sec. 7.4). Such specific procedures are not
available by default with our approach. To develop extensions,
we suggest first checking whether the computation graph
approach works well enough for the specific model of interest,
and only then editing the graph toward the desired end–result.

As the computation graph approach paves the way for a more
flexible SEM, researchers can use it to develop theoretical SEM
improvements. For example, future research can focus on how
penalties may be used to improve the performance and inter-
pretability of specific models (e.g., Jacobucci et al., 2018) or how
different objective functions may be used to bring SEM to novel
situations such as high–dimensional data (Grotzinger et al.,
2019; Van Kesteren, 2020). A potential extension to SEM is the
use of high–dimensional covariates to debias inferences in obser-
vational studies (Athey et al., 2018). The computation graph may

Figure 9. ULS and penalized ULS estimated absolute indirect effects in the Houtepen et al. (2016) dataset. Regularized estimation sets most parameters to 0 and shrinks
the effect sizes overall, but for some mediators the effect sizes increase with penalization due to correlations among mediators. The top–5 strongest effect sizes are
labeled, representing locations in the genome where mediation is strongest.

242 VAN KESTEREN AND OBERSKI

aid in importing such procedures to SEM. An interesting histor-
ical note is that Cudeck et al. (1993) have had similar reasons for
creating a general SEM optimization program, where the full
Hessian is numerically approximated for any covariance model
and the solution is computed using Gauss–Newton iterations.
The modern computational tools used here now make such
generic SEM programs feasible.

Another topic for future research is exploratory model specifica-
tion. For example, Brandmaier et al. (2013) and Brandmaier et al.
(2016) use decision trees to find relevant covariates in SEM, and
Marcoulides and Drezner (2001) use genetic algorithms to perform
model specification search. Penalties provide a natural way to auto-
matically set some parameters to 0, which is equivalent to specifying
constraints in the model. A compelling example of this is the work by
Pan et al. (2017), who used the Bayesian form of LASSO regulariza-
tion as an alternative to post–hoc model modification in CFA. Their
approach penalizes the residual covariance matrix of the indicators,
leading to a more sparse selection of residual covariance parameters
to be freed relative to the common modification index approach.

There is an opportunity for the SEM computation graph
approach to be further developed to expand its range of applications.
For example, through applying Adam as a stochastic gradient descent
(SGD) optimizer it may be extended to perform full information
maximum likelihood (FIML) estimation, batch–wise estimation, or
SEM estimation with millions of observations. This will potentially
enable SEM to be performed on completely novel types of data, such
as streaming data, images, or sounds. Another improvement which
may be imported from the deep learning literature is computation of
approximate Bayesian posterior credible intervals for any objective
function using stochastic gradient descent steps at the optimum
(Mandt et al., 2017). The deep learning optimization literature
moves fast, and through the connections we have established in this
paper the SEM literature could benefit from its pace.

Acknowledgments

We thank Rogier Kievit and Laura Boeschoten for their comments on
earlier versions of this manuscript and Maksim Rudnev for his helpful
questions regarding our software.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by The Netherlands Organization for Scientific
Research (NWO) under grant number [406.17.057].

ORCID

Erik–Jan van Kesteren http://orcid.org/0000-0003-1548-1663
Daniel L. Oberski http://orcid.org/0000-0001-7467-2297

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Irving, G., Isard, M., & Kudlur, M. (2016). Tensorflow:
A system for large–scale machine learning. 12th {USENIX} symposium on
operating systems design and implementation ({OSDI} 16) (pp. 265–283).

Asparouhov, T., Hamaker, E. L., & Muthén, B. (2018). Dynamic structural
equation models. Structural Equation Modeling, 25, 359–388. https://
doi.org/10.1080/10705511.2017.1406803

Asparouhov, T., & Muthén, B. (2009). Exploratory structural equation
modeling. Structural Equation Modeling, 16, 397–438. https://doi.org/
10.1080/10705510903008204

Asparouhov, T., & Muthén, B. (2016). Structural equation models and
mixture models with continuous nonnormal skewed distributions.
Structural Equation Modeling, 23, 1–19. https://doi.org/10.1080/
10705511.2014.947375

Athey, S., Imbens, G. W., & Wager, S. (2018). Approximate residual
balancing: Debiased inference of average treatment effects in high
dimensions. Journal of the Royal Statistical Society. Series B, Statistical
Methodology, 80, 597–623. https://doi.org/10.1111/rssb.12268

Bengio, Y. (2000). Gradient–based optimization of hyperparameters.
Neural Computation, 12, 1889–1900. https://doi.org/10.1162/
089976600300015187

Betancourt, M. (2017). A conceptual introduction to Hamiltonian monte
carlo. arXiv preprint arXiv:1701.02434.

Bock, R. D., & Bargmann, R. E. (1966). Analysis of covariance structures.
Psychometrika, 31, 507–534. https://doi.org/10.1007/BF02289521

Bollen, K. A. (1989). Structural equations with latent variables. John Wiley
& Sons.

Brandmaier, A. M., Prindle, J. J., McArdle, J. J., & Lindenberger, U. (2016).
Theory–guided exploration with structural equation model forests.
Psychological Methods, 21, 566–582. http://doi.apa.org/getdoi.cfm?
doi=10.1037/met0000090

Brandmaier, A. M., von Oertzen, T., McArdle, J. J., & Lindenberger, U.
(2013). Structural equation model trees. Psychological Methods, 18, 71.
https://doi.org/10.1037/a0030001

Browne, M. W. (1974). Generalized least squares estimators in the analysis
of covariance structures. South African Statistical Journal, 8, 1–24.
https://doi.org/10.1002/j.2333-8504.1973.tb00197.x

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B.,
Betancourt, M., Brubaker, M., Guo, J., Li, P., & Riddell, A. (2017).
Stan: A probabilistic programming language. Journal of Statistical
Software, 76, 1–32. https://doi.org/10.18637/jss.v076.i01

Cernat, A., & Oberski, D. L. (2019). Extending the within–persons experi-
mental design: The multitrait–multierror (MTME) approach. In
P. J. Lavrakas, M. W. Traugott, C. Kennedy, A. L. Holbrook, & E. de
Leeuw (Eds.), Experimental methods in survey research: Techniques that
combine random sampling with random assignment (pp. 481–500). John
Wiley & Sons.

Chen, F., Bollen, K. A., Paxton, P., Curran, P. J., & Kirby, J. B. (2001).
Improper solutions in structural equation models: Causes, conse-
quences, and strategies. Sociological Methods & Research, 29, 468–508.
https://doi.org/10.1177/0049124101029004003

Choi, J., Oehlert, G., & Zou, H. (2010). A penalized maximum likelihood
approach to sparse factor analysis. Statistics and Its Interface, 3,
429–436. https://doi.org/10.4310/SII.2010.v3.n4.a1

Collobert, R., Bengio, S., & Mariéthoz, J. (2002). Torch: A modular
machine learning software library (Tech. Rep.). Idiap.

Cudeck, R., Klebe, K. J., & Henly, S. J. (1993). A simple gauss–newton procedure
for covariance structure analysis with high–level computer languages.
Psychometrika, 58, 211–232. https://doi.org/10.1007/BF02294574

Dua, D., & Graff, C. (2017). {UCI} Machine Learning Repository.
University of California, Irvine, School of Information and Computer
Sciences. http://archive.ics.uci.edu/ml

Epskamp, S., Borsboom, D., & Fried, E. I. (2018). Estimating psychological
networks and their accuracy: A tutorial paper. Behavior Research
Methods, 50, 195–212. https://doi.org/10.3758/s13428-017-0862-1

Epskamp, S., Rhemtulla, M., & Borsboom, D. (2017). Generalized network
psychometrics: Combining network and latent variable models.
Psychometrika, 82, 904–927. https://doi.org/10.1007/s11336-017-9557-x

Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and
its oracle properties. Journal of the American Statistical Association, 96,
1348–1360. https://doi.org/10.1198/016214501753382273

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for
generalized linear models via coordinate descent. Journal of Statistical
Software, 33, 1. https://doi.org/10.18637/jss.v033.i01

STRUCTURAL EQUATION MODELING: A MULTIDISCIPLINARY JOURNAL 243

https://doi.org/10.1080/10705511.2017.1406803
https://doi.org/10.1080/10705511.2017.1406803
https://doi.org/10.1080/10705510903008204
https://doi.org/10.1080/10705510903008204
https://doi.org/10.1080/10705511.2014.947375
https://doi.org/10.1080/10705511.2014.947375
https://doi.org/10.1111/rssb.12268
https://doi.org/10.1162/089976600300015187
https://doi.org/10.1162/089976600300015187
https://doi.org/10.1007/BF02289521
http://doi.apa.org/getdoi.cfm?doi=10.1037/met0000090
http://doi.apa.org/getdoi.cfm?doi=10.1037/met0000090
https://doi.org/10.1037/a0030001
https://doi.org/10.1002/j.2333-8504.1973.tb00197.x
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1177/0049124101029004003
https://doi.org/10.4310/SII.2010.v3.n4.a1
https://doi.org/10.1007/BF02294574
http://archive.ics.uci.edu/ml
https://doi.org/10.3758/s13428-017-0862-1
https://doi.org/10.1007/s11336-017-9557-x
https://doi.org/10.1198/016214501753382273
https://doi.org/10.18637/jss.v033.i01

Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., & Gelman, A. (2019).
Visualization in Bayesian workflow. Journal of the Royal Statistical
Society: Series A (Statistics in Society), 182, 389–402. https://doi.org/
10.1111/rssa.12378

Goeman, J., Meijer, R., & Chaturvedi, N. (2018). L1 and l2 penalized
regression models. Vignette R Package Penalized.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT
Press. http://www.deeplearningbook.org

Grotzinger, A. D., Rhemtulla, M., de Vlaming, R., Ritchie, S. J.,
Mallard, T. T., Hill, W. D., Ip, H. F., Marioni, R. E., McIntosh, A. M.,
Deary, I. J., & Koellinger, P. D. (2019). Genomic structural equation
modelling provides insights into the multivariate genetic architecture
of complex traits. Nature Human Behaviour, 3, 513. https://doi.org/10.
1038/s41562-019-0566-x

Guo, R., Zhu, H., Chow, S. –. M., & Ibrahim, J. G. (2012). Bayesian lasso
for semiparametric structural equation models. Biometrics, 68,
567–577. https://doi.org/10.1111/j.1541-0420.2012.01751.x

Hastie, T., Tibshirani, R., & Wainwright, M. (2015). Statistical learning
with sparsity: The Lasso and generalizations. CRC Press. https://doi.org/
10.1201/b18401–1

Holmes Finch, W., & Miller, J. (2020). A comparison of regularized
maximum–likelihood, regularized 2–stage least squares, and maxi-
mum–likelihood estimation with misspecified models, small samples,
and weak factor structure. Multivariate Behavioral Research, 56, 1–19.
https://doi.org/10.1080/00273171.2020.1753005

Houtepen, L. C., Vinkers, C. H., Carrillo–Roa, T., Hiemstra, M., van
Lier, P. A., Meeus, W., Branje, S., Heim, C. M., Nemeroff, C. B.,
Mill, J., Schalkwyk, L. C., Creyghton, M. P., Kahn, R. S., Joëls, M.,
Binder, E. B., & Boks, M. P. M. (2016). Genome–wide DNA methyla-
tion levels and altered cortisol stress reactivity following childhood
trauma in humans. Nature Communications, 7, 10967. http://www.
pubmedcentral.nih.gov/articlerender.fcgi?artid=4802173{&}tool=
pmcentrez{&}rendertype=abstractdoi:10.1038/ncomms10967

Huang, P. H., Chen, H., & Weng, L. J. (2017). A penalized likelihood
method for structural equation modeling. Psychometrika, 82, 329–354.
https://doi.org/10.1007/s11336-017-9566-9

Huang, Y. T., & Pan, W. C. (2015, June). Hypothesis test of mediation
effect in causal mediation model with high–dimensional continuous
mediators. Biometrics, 72, 402–413. https://doi.org/10.1111/biom.
12421

Jacobucci, R., Brandmaier, A. M., & Kievit, R. A. (2018). Variable selection
in structural equation models with regularized MIMIC models.
PsyArXiv Preprint (pp. 1–40). https://doi.org/10.17605/OSF.IO/BXZJF

Jacobucci, R., Grimm, K. J., & McArdle, J. J. (2016). Regularized structural
equation modeling. Structural Equation Modeling, 23, 555–566. https://
doi.org/10.1080/10705511.2016.1154793.Regularized

Jin, S., Moustaki, I., & Yang–Wallentin, F. (2018). Approximated penalized
maximum likelihood for exploratory factor analysis: An orthogonal case.
Psychometrika, 83, 628–649. https://doi.org/10.1007/s11336-018-9623-z

Jöreskog, K. G. (1966). Testing a simple structure hypothesis in factor
analysis. Psychometrika, 31, 165–178. https://doi.org/10.1007/
BF02289505

Jöreskog, K. G. (1967). Some contributions to maximum likelihood factor
analysis. Psychometrika, 32, 443–482. https://doi.org/10.1007/
BF02289658

Jöreskog, K. G., & Sörbom, D. (1993). Lisrel 8: Structural equation modeling
with the simplis command language. Scientific Software International.

Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor
analysis. Psychometrika, 23, 187–200. https://doi.org/10.1007/
BF02289233

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.

Kolenikov, S., & Bollen, K. A. (2012). Testing negative error variances: Is
a heywood case a symptom of misspecification? Sociological Methods &
Research, 41, 124–167. https://doi.org/10.1177/0049124112442138

Kyung, M., Gill, J., Ghosh, M., Casella, G. (2010). Penalized regression,
standard errors, and Bayesian Lassos. Bayesian Analysis, 5, 369–411.
http://doi.org/10.1214/10-BA607

Lai, M. H., & Zhang, J. (2017). Evaluating fit indices for multivariate t–
based structural equation modeling with data contamination. Frontiers
in Psychology, 8, 1286. https://doi.org/10.3389/fpsyg.2017.01286

Lee, S. –. Y., & Jennrich, R. (1979). A study of algorithms for covariance
structure analysis with specific comparisons using factor analysis.
Psychometrika, 44, 99–113. https://doi.org/10.1007/BF02293789

Little, M. A., McSharry, P. E., Roberts, S. J., Costello, D. A., & Moroz, I. M.
(2007). Exploiting nonlinear recurrence and fractal scaling properties
for voice disorder detection. Biomedical Engineering Online, 6, 23.
https://doi.org/10.1186/1475-925X-6-23

Lu, Z. –. H., Chow, S. –. M., & Loken, E. (2016). Bayesian factor analysis as
a variable–selection problem: Alternative priors and consequences.
Multivariate Behavioral Research, 51, 519–539. https://doi.org/10.
1080/00273171.2016.1168279

Mandt, S., Hoffman, M. D., & Blei, D. M. (2017). Stochastic gradient
descent as approximate Bayesian inference. The Journal of Machine
Learning Research, 18, 4873–4907. http://jmlr.org/papers/v18/17-214.
html

Marcoulides, G. A., & Drezner, Z. (2001). Specification searches in struc-
tural equation modeling with a genetic algorithm. In G. A. Marcoulides
& Schumacker (Eds.) New developments and techniques in structural
equation modeling (pp. 247–268).

McArdle, J. J., & McDonald, R. P. (1984). Some algebraic properties of the
reticular action model for moment structures. British Journal of
Mathematical and Statistical Psychology, 37, 234–251. https://doi.org/
10.1111/j.2044-8317.1984.tb00802.x

Merkle, E. C., & Rosseel, Y. (2015). Blavaan: Bayesian structural equation
models via parameter expansion. arXiv preprint arXiv:1511.05604.

Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick, T. R.,
Kirkpatrick, R. M., Estabrook, R., Bates, T. C., Maes, H. H., &
Boker, S. M. (2016). OpenMx 2.0: Extended structural equation and
statistical modeling. Psychometrika, 81, 535–549. https://doi.org/10.
1007/s11336–014–9435–8

Neudecker, H., & Satorra, A. (1991). Linear structural relations: Gradient
and hessian of the fitting function. Statistics & Probability Letters, 11,
57–61. https://doi.org/10.1016/0167-7152(91)90178-T

Pan, J., Ip, E. H., & Dubé, L. (2017). An alternative to post hoc model
modification in confirmatory factor analysis: The Bayesian Lasso.
Psychological Methods, 22, 687. https://doi.org/10.1037/met0000112

Park, T., & Casella, G. (2008). The Bayesian Lasso. Journal of the American
Statistical Association, 103, 681–686. http://www.tandfonline.com/doi/
abs/10.1198/016214508000000337

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., . . .
Chintala, S. (2019). Pytorch: An imperative style, high–performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché–Buc, E. Fox, & R. Garnett, Eds., Advances in neural informa-
tion processing systems 32 (pp. 8024–8035). Curran Associates, Inc.
http://papers.neurips.cc/paper/9015–pytorch–an–imperative–style–
high–performance–deep–learning–library.pdf

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin Z.,
Desmaison A., Antiga L., & Lerer, A. (2017). Automatic differentiation
in pytorch. https://openreview.net/forum?id=BJJsrmfCZ

R Core Team. (2018). R: A language and environment for statistical
computing. R Foundation for Statistical Computing. https://www.r–
project.org/

Revilla, M., & Saris, W. E. (2013). The split–ballot multitrait–multi-
method approach: Implementation and problems. Structural
Equation Modeling, 20, 27–46. https://doi.org/10.1080/10705511.
2013.742379

Rosseel, Y. (2012). lavaan: An R package for structural equation modeling.
Journal of Statistical Software, 48, 1–36. https://doi.org/10.18637/jss.
v048.i02

Saris, W. E., Satorra, A., & Sörbom, D. (1987). The detection and correc-
tion of specification errors in structural equation models. Sociological
Methodology, 17, 105–129. https://doi.org/10.2307/271030

Satorra, A., & Bentler, P. (1988). Scaling corrections for statistics in covar-
iance structure analysis. UCLA: Department of Statistics. https://escho
larship.org/uc/item/8dv7p2hr

244 VAN KESTEREN AND OBERSKI

https://doi.org/10.1111/rssa.12378
https://doi.org/10.1111/rssa.12378
http://www.deeplearningbook.org
https://doi.org/10.1038/s41562-019-0566-x
https://doi.org/10.1038/s41562-019-0566-x
https://doi.org/10.1111/j.1541-0420.2012.01751.x
https://doi.org/10.1201/b18401%20131
https://doi.org/10.1201/b18401%20131
https://doi.org/10.1080/00273171.2020.1753005
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4802173{%26}tool=pmcentrez{%26}rendertype=abstractdoi:10.1038/ncomms10967
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4802173{%26}tool=pmcentrez{%26}rendertype=abstractdoi:10.1038/ncomms10967
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4802173{%26}tool=pmcentrez{%26}rendertype=abstractdoi:10.1038/ncomms10967
https://doi.org/10.1007/s11336-017-9566-9
https://doi.org/10.1111/biom.12421
https://doi.org/10.1111/biom.12421
https://doi.org/10.17605/OSF.IO/BXZJF
https://doi.org/10.1080/10705511.2016.1154793.Regularized
https://doi.org/10.1080/10705511.2016.1154793.Regularized
https://doi.org/10.1007/s11336-018-9623-z
https://doi.org/10.1007/BF02289505
https://doi.org/10.1007/BF02289505
https://doi.org/10.1007/BF02289658
https://doi.org/10.1007/BF02289658
https://doi.org/10.1007/BF02289233
https://doi.org/10.1007/BF02289233
https://doi.org/10.1177/0049124112442138
http://doi.org/10.1214/10-BA607
https://doi.org/10.3389/fpsyg.2017.01286
https://doi.org/10.1007/BF02293789
https://doi.org/10.1186/1475-925X-6-23
https://doi.org/10.1080/00273171.2016.1168279
https://doi.org/10.1080/00273171.2016.1168279
http://jmlr.org/papers/v18/17-214.html
http://jmlr.org/papers/v18/17-214.html
https://doi.org/10.1111/j.2044-8317.1984.tb00802.x
https://doi.org/10.1111/j.2044-8317.1984.tb00802.x
https://doi.org/10.1007/s11336%2013014%20139435%20138
https://doi.org/10.1007/s11336%2013014%20139435%20138
https://doi.org/10.1016/0167-7152(91)90178-T
https://doi.org/10.1037/met0000112
http://www.tandfonline.com/doi/abs/10.1198/016214508000000337
http://www.tandfonline.com/doi/abs/10.1198/016214508000000337
http://papers.neurips.cc/paper/9015%2013pytorch%2013an%2013imperative%2013style%2013high%2013performance%2013deep%2013learning%2013library.pdf
http://papers.neurips.cc/paper/9015%2013pytorch%2013an%2013imperative%2013style%2013high%2013performance%2013deep%2013learning%2013library.pdf
https://openreview.net/forum?id=BJJsrmfCZ
https://www.r%2013project.org/
https://www.r%2013project.org/
https://doi.org/10.1080/10705511.2013.742379
https://doi.org/10.1080/10705511.2013.742379
https://doi.org/10.18637/jss.v048.i02
https://doi.org/10.18637/jss.v048.i02
https://doi.org/10.2307/271030
https://escholarship.org/uc/item/8dv7p2hr
https://escholarship.org/uc/item/8dv7p2hr

Savalei, V. (2014). Understanding robust corrections in structural equa-
tion modeling. Structural Equation Modeling, 21, 149–160. https://doi.
org/10.1080/10705511.2013.824793

Scardapane, S., Comminiello, D., Hussain, A., & Uncini, A. (2017). Group
sparse regularization for deep neural networks. Neurocomputing, 241,
81–89. https://doi.org/10.1016/j.neucom.2017.02.029

Schaid, D. J., & Sinnwell, J. P. (2020). Penalized models for analysis of
multiple mediators. Genetic Epidemiology, 44, 408–424. https://doi.org/
10.1002/gepi.22296

Scharf, F., & Nestler, S. (2019). Should regularization replace simple
structure rotation in exploratory factor analysis?. Structural Equation
Modeling, 26, 1–15. https://doi.org/10.1080/10705511.2018.1558060

Sclove, S. L. (1987). Application of model–selection criteria to some
problems in multivariate analysis. Psychometrika, 52, 333–343.
https://doi.org/10.1007/BF02294360

Serang, S., Jacobucci, R., Brimhall, K. C., & Grimm, K. J. (2017).
Exploratory mediation analysis via regularization. Structural Equation
Modeling, 24, 733–744. https://doi.org/10.1080/10705511.2017.
1311775

Siemsen, E., & Bollen, K. A. (2007). Least absolute deviation estimation in
structural equation modeling. Sociological Methods & Research, 36,
227–265. https://doi.org/10.1177/0049124107301946

Sörbom, D. (1989). Model modification. Psychometrika, 54, 371–384.
https://doi.org/10.1007/BF02294623

Tieleman, T., & Hinton, G. (2012). Lecture 6.5–rmsprop: Divide the
gradient by a running average of its recent magnitude. COURSERA:
Neural Networks for Machine Learning, 4, 26–31.

van Erp, S., Oberski, D. L., & Mulder, J. (2019). Shrinkage priors for
Bayesian penalized regression. Journal of Mathematical Psychology,
89, 31–50. https://doi.org/10.1016/j.jmp.2018.12.004

Van Kesteren, E. –. J. (2020). Vankesteren/tensorsem: Tensorsem version 1.
Zenodo. https://doi.org/10.5281/zenodo.3957287

Van Kesteren, E. –. J., & Oberski, D. L. (2019). Exploratory mediation analysis
with many potential mediators. Structural Equation Modeling, 26, 1–14.
https://doi.org/10.1080/10705511.2019.1588124

Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model
evaluation using leave–one–out cross–validation and waic. Statistics
and Computing, 27, 1413–1432. https://doi.org/10.1007/s11222-016-
9696-4

Vermunt, J. K., & Magidson, J. (2013). Technical guide for latent gold 5.0:
Basic, advanced, and syntax. Statistical Innovations Inc.

Voelkle, M. C., & Oud, J. H. (2013). Continuous time modelling with
individually varying time intervals for oscillating and non–oscillating
processes. British Journal of Mathematical and Statistical Psychology,
66, 103–126. https://doi.org/10.1111/j.2044-8317.2012.02043.x

Wengert, R. E. (1964). A simple automatic derivative evaluation program.
Communications of the ACM, 7, 463–464. https://doi.org/10.1145/
355586.364791

Yuan, K. –. H., & Bentler, P. M. (1998). Structural equation modeling with
robust covariances. Sociological Methodology, 28, 363–396. https://doi.
org/10.1111/0081-1750.00052

Zhang, H., Zheng, Y., Zhang, Z., Gao, T., Joyce, B., Yoon, G.,
Zhang, W., Schwartz, J., Just, A., Colicino, E., Vokonas, P.,
Zhao, L., Lv, J., Baccarelli, A., Hou, L., & Liu, L. (2016).
Estimating and testing high–dimensional mediation effects in epi-
genetic studies. Bioinformatics, 32, 3150–3154. https://doi.org/10.
1093/bioinformatics/btw351

Zou, H., & Hastie, T. (2005). Regularization and variable selection via the
elastic–net. Journal of the Royal Statistical Society, 67, 301–320. https://
doi.org/10.1111/j.1467–9868.2005.00503.x

STRUCTURAL EQUATION MODELING: A MULTIDISCIPLINARY JOURNAL 245

https://doi.org/10.1080/10705511.2013.824793
https://doi.org/10.1080/10705511.2013.824793
https://doi.org/10.1016/j.neucom.2017.02.029
https://doi.org/10.1002/gepi.22296
https://doi.org/10.1002/gepi.22296
https://doi.org/10.1080/10705511.2018.1558060
https://doi.org/10.1007/BF02294360
https://doi.org/10.1080/10705511.2017.1311775
https://doi.org/10.1080/10705511.2017.1311775
https://doi.org/10.1177/0049124107301946
https://doi.org/10.1007/BF02294623
https://doi.org/10.1016/j.jmp.2018.12.004
https://doi.org/10.5281/zenodo.3957287
https://doi.org/10.1080/10705511.2019.1588124
https://doi.org/10.1007/s11222-016-9696-4
https://doi.org/10.1007/s11222-016-9696-4
https://doi.org/10.1111/j.2044-8317.2012.02043.x
https://doi.org/10.1145/355586.364791
https://doi.org/10.1145/355586.364791
https://doi.org/10.1111/0081-1750.00052
https://doi.org/10.1111/0081-1750.00052
https://doi.org/10.1093/bioinformatics/btw351
https://doi.org/10.1093/bioinformatics/btw351
https://doi.org/10.1111/j.1467%20139868.2005.00503.x
https://doi.org/10.1111/j.1467%20139868.2005.00503.x

Appendix A. Adaptive first–order optimizers

We suggest using adaptive first–order optimizers to extend SEM beyond
the existing estimation methods. Adaptive first–order optimizers are
a class of optimization algorithms designed to work even under noncon-
vexity and nonsmoothness. Some early algorithms such as RMSProp
(Tieleman & Hinton, 2012) were originally developed with deep learning
in mind, where nonconvexity, non–smoothness, and high–dimensional
parameter spaces are common. Therefore, we consider these methods
excellent candidates for estimating an expanding class of SEM models,
as they have historically done for neural networks. The idea of using first–
order optimizers for SEM is by no means new (Lee & Jennrich, 1979), but
the recent developments in this area have made it a feasible approach.

The simplest first–order optimizer is gradient descent, which uses the
gradient gðθÞ of the objective with respect to the parameters to guide the
direction that each parameter should move toward. The gradient is com-
bined with a step size s so that in each iteration i of gradient descent the
parameters are moved a small amount toward the direction of the negative
gradient evaluated at the current parameter values:

θðiþ1Þ ¼ θðiÞ � s � gðθðiÞÞ (10)

This algorithm has a similar structure to the Newton–Raphson method
shown in Equation (6). In that algorithm, the step size s in each iteration
is replaced by the inverse of the Hessian matrix. Gradient descent is thus
a simplified version of the methods currently in use for optimizing SEM.
Because it does not use the Hessian, it continues to function when the
objective is not smooth or not convex. Computationally, it is also more
tractable, foregoing the need to compute the full Hessian matrix. However, it
is necessary to determine the correct step size s. This is not a trivial problem:
with an improperly tuned step size, the algorithm may never converge.

One of the state–of–the art adaptive first–order optimizers is Adam
(Kingma & Ba, 2014). It introduces two improvements to the frame-
work of gradient descent (Figure A1). Firstly, it introduces

momentum, where the direction in each iteration is not only the
negative gradient of that iteration, but a moving average of the entire
history of gradients. Momentum allows Adam to move through local
minima in the search for a global minimum by smoothing the path it
takes in the parameter space. Secondly, Adam introduces a self–adjust-
ing step size for each parameter, which is adjusted based on the
variability of the gradients over time: if the variability of the gradient
of a parameter is smaller, Adam will take larger steps as it has more
certainty about the direction the parameter should move in (and vice
versa). This self–adjusting step size takes the place of computing and
inverting the Hessian matrix. By using both the first and second
moments of the history of the gradients, Adam is an adaptive optimi-
zer capable of reliably optimizing a wide variety of objectives.

A relevant parallel to the development of adaptive first–order optimi-
zers for deep learning is the recent advances in Bayesian SEM (Merkle &
Rosseel, 2015) and Bayesian posterior sampling in general. Here, too, the
objective function may be nonconvex, e.g., in hierarchical models and
with nonconjugate priors. Such objective functions may lead to inefficient
behavior for the Markov Chain Monte Carlo (MCMC) methods used to
approximate posterior expectations. For this problem, Hamiltonial Monte
Carlo (HMC) (Betancourt, 2017) has been developed, which introduces
momentum in the proposal of a sample, thereby more efficiently exploring
the posterior. This is the method implemented in Stan (Carpenter et al.,
2017), which works for situations with many parameters and
hyperparameters.

Adaptive first–order optimizers are one part of a pair of improvements
that have enabled rapid growth of the deep learning field. The other is the
development of computation graphs, an intuitive way of specifying the
objective such that gradients can be computed automatically. Automatic
gradient computation can enable a wide range of extensions to SEM
without having to analytically derive the gradient and Hessian for each
separate extension. In the next section, we explain the concept behind
computation graphs and how they can be combined with optimizers
such as Adam.

Figure A1. Three first–order algorithms finding the minimum of FðθÞ ¼ θ2
1 þ 5θ2

2 with starting value θ̂ ¼ ½� 0:9; � 0:9�. Gradient descent uses the gradient and a fixed
step size (s ¼ 0:01) to update its parameter estimates. Gradient descent with momentum instead uses an exponential moving average of the gradients (decay of 0.9)
with the same s. Finally, Adam adds a moving average of the squared gradient (decay of 0.999) to adjust the step size per parameter, leading to a straight line to the
minimum with an overshoot and return due to momentum. In this example, Adam converges fastest, and gradient descent is slowest.

246 VAN KESTEREN AND OBERSKI

Appendix B. PyTorch estimation validation

B.1 ML–SEM estimation
We first validated our PyTorch implementation of default SEM through

comparing the parameter estimates and their standard errors to two
example models from the lavaan package: the Holzinger–Swineford
model and the Political Democracy model. For more information about
these models, see Rosseel (2012). The reproducible code for these models
can be found in the supplementary material. The results are shown in
Figure B1.

From this validation, we conclude that computation graphs and Adam
optimization are together capable of estimating structural equation
models. In addition, as the solution obtained by PyTorch is the same

as with other packages, it is possible compute the value of the log–
likelihood objective function and its derivative fit measures such as χ2,
AIC, and BIC.

B.2 LASSO regularization
In this example, we show how LASSO penalization on the regression

parameters in tensorsem compares to regsem (Jacobucci et al., 2016) and
glmnet (Friedman et al., 2010). For this, we generate data with a sample size of
1000 from a regression model with a single outcome variable, 10 true
predictors, and 10 unrelated variables. The resulting parameter estimates for
the three different estimation methods are shown in Table B1. The table
shows that with the chosen penalty parameter (0.11 for regsem and PyTorch,
0.028 for glmnet due to a difference in scaling), the estimates are very close in
value. As expected, some parameters are shrunk to 0 for all three methods.

Figure B1. Comparison of parameter estimates and their 95% confidence interval for the Holzinger–Swineford and Political Democracy models. The plots show that
both methods arrive at the same solution.

Table B1. Regularization with glmnet, regsem, and PyTorch. Table indicates parameter estimates for a LASSO penalized regression model with 20 predictors. PyTorch is
compared to existing approaches and shown to provide similar parameter estimates. (dot indicates 0).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

glmnet . .07 .10 .07 .20 .23 .34 .13 .31 .17 –.03 .02 .05
regsem . .07 .10 .08 .20 .23 .34 .13 .31 .17 –.03 .02 .05
PyTorch . .07 .10 .07 .20 .23 .34 .13 .31 .17 –.03 .02 .05

STRUCTURAL EQUATION MODELING: A MULTIDISCIPLINARY JOURNAL 247

	Abstract
	Introduction
	Background
	SEM as an optimization problem
	Optimization problems as computation graphs

	Flexible extensions to SEM using computation graphs
	The SEM computation graph
	Editing the objective function
	Adding parameter penalization
	Standard errors and model tests

	Implementations
	LAD estimation
	Sparse factor SEM
	Sparse high–dimensional mediation

	Conclusion
	Acknowledgments
	Disclosure statement
	Funding
	ORCID
	References
	Appendix A. Adaptive first–order optimizers
	Appendix B. PyTorch estimation validation

