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In the present paper, we explore an idea of Harvey Friedman to obtain a coordinate-
free presentation of consistency. For some range of theories, Friedman’s idea delivers 
actual consistency statements (modulo provable equivalence). For a wider range, it 
delivers consistency-like statements.
We say that a sentence C is an interpreter of a finitely axiomatised A over U iff it 
is the weakest statement C over U , with respect to U-provability, such that U + C
interprets A. A theory U is Friedman-reflexive iff every finitely axiomatised A has 
an interpreter over U . Friedman shows that Peano Arithmetic, PA, is Friedman-
reflexive.
We study the question which theories are Friedman-reflexive. We show that a very 
weak theory, Peano Corto, is Friedman-reflexive. We do not get the usual consistency 
statements here, but bounded, cut-free, or Herbrand consistency statements. We 
illustrate that Peano Corto as a base theory has additional desirable properties.
We prove a characterisation theorem for the Friedman-reflexivity of sequential 
theories. We provide an example of a Friedman-reflexive sequential theory that 
substantially differs from the paradigm cases of Peano Arithmetic and Peano Corto.
Interpreters over a Friedman-reflexive U can be used to define a provability-like 
notion for any finitely axiomatised A that interprets U . We explore what modal 
logics this idea gives rise to. We call such logics interpreter logics. We show that, 
generally, these logics satisfy the Löb Conditions, aka K4. We provide conditions for 
when interpreter logics extend S4, K45, and Löb’s Logic. We show that, if either U or 
A is sequential, then the condition for extending Löb’s Logic is fulfilled. Moreover, if 
our base theory U is sequential and if, in addition, its interpreters can be effectively 
found, we prove Solovay’s Theorem. This holds even if the provability-like operator 
is not necessarily representable by a predicate of Gödel numbers.
At the end of the paper, we briefly discuss how successful the coordinate-free 
approach is.
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1. Introduction

We study analogues of consistency statements that are characterised in a ‘coordinate-free’ way in the sense 
that their characterisation does not depend on arithmetisation. There are two reasons why such analogues 
are interesting. First, if we consider standard applications of the Second Incompleteness Theorem, aka G2, 
we would like to eliminate arithmetisation as a hidden parameter in the statement. The arithmetisation-free 
version is closer to an ‘honest’ mathematical theorem. Of course, the idea is that, for a reasonable range 
of standard applications, the analogues coincide, modulo provable equivalence, with ordinary consistency 
statements.

Secondly, on a more adventurous note, the analogues are able to live also in contexts where no (full) 
arithmetisation is possible. In other words, by considering coordinate-free versions, we can take consistency 
statements out of their comfort zone.2 We think this is interesting in itself, but, in addition, the wider view 
allows us to look at the standard cases from a more general vantage point.

We develop a strategy proposed by Harvey Friedman. See [5]. The basic idea is that a consistency 
statement for a finitely axiomatised A over a base theory B is the weakest statement C such that B + C

interprets A. We will call such weakest statements: interpreters. We explain interpreters in more detail in 
Subsection 2.2.

We study Friedman’s idea in a general setting. The comfort zone for his idea is the class of sequential 
theories. In this familiar context, interpreters are bounded (or cut-free or Herbrand) consistency statements 
that appear in varying interpretations of the natural numbers in the base theory. We show that essentially 
number-system-hopping interpreters may really occur.

Given a Friedman-reflexive base theory B and an interpretation K of B in a finitely axiomatised theory 
A, we can define the interpreter logic of A (w.r.t. K). This is an analogue of the provability logic of A. We 
will have a first look at what principles of interpreter logic we may obtain. We show that, generally, we 
have at least K4, i.e., the Löb Conditions. However, this need not yield Löb’s Logic, GL, since we do not 
necessarily have a Fixed Point Lemma.3 We provide general conditions for obtaining S4, K45, and GL. In 
case either B or A is sequential, the sufficient condition for obtaining Löb’s Logic turns out to be fulfilled. 
Our Friedman-style version of the Second Incompleteness Theorem can be viewed as a direct consequence 
of this last insight, but also follows directly from the sufficient condition. See Corollary 8.15. In case B is 
sequential and the association of an interpreter to A is effective for the given Friedman-reflexive base U , 
we show that the proof of Solovay’s Completeness Theorem can be given with few modifications. This is 
possible even if we do not have a definition of the provability-like modality corresponding to interpreters as 
a predicate of B.

We discuss the ins and outs of what is achieved and what is not achieved in the present paper in Section 9.

Remark 1.1. Caveat emptor. What we do not try to do in this paper is solve the philosophical problem 
of when a sentence expresses a consistency statement. The dialectic rather has this form. Show me your 
favourite arithmetisation of a consistency statement and I will characterise it, modulo provable equivalence, 
in a coordinate-free manner. Thus, a mathematically acceptable notion is provided, even if, in the motivation 
phase, arithmetisation with all its arbitrary choices may still play a role. ❍

1.1. On reading this paper

Appendix A gives basic definitions and basic facts and some references to further literature.

2 A different example of a study of a G2-analogue that works in a wider context can be found in [11].
3 We may lack the resources to formulate and prove a Gödel Fixed Point Lemma and, even if we have those, the provability-like 

notion need not be representable by a definable predicate.
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We point out, at places, how our work links to elementary ideas from category theory (universal arrows 
and the like). The reader who wishes can skip this without losing the main thread of the paper.

Our main application to sequential theories demands some familiarity with sequentiality. See, e.g., [8] and 
[25]. However, the main development of Friedman-reflexivity and interpreter logics only asks for understand-
ing predicate logic and translations/interpretations. The reader could elect to read the results concerning 
sequentiality, but ignore the proofs, and still get a good feeling for the main line of argument.

2. The main ideas of the paper

We explain in more detail two central ideas of the paper.

2.1. On the very idea of a base theory

To set the stage for our Friedman-style treatment of the Second Incompleteness Theorem, G2, and of a 
variant of provability logic, we discuss the base theory/main theory distinction.

A formulation of the no-interpretation version of G2 looks like this:

U �� (B + Con(U)),

in other words, U does not interpret the base theory B plus its own consistency.4 Here Con(U) is the 
consistency statement, where we allow various further specifications of what it could be. Also, for a concrete 
formulation, there may be further conditions on U .

A first reason to set things up in this format is simply the nice general form of the statement. E.g., we have 
Pudlák-style G2: U does not interpret Q + α �, or, using our preferred notation, U �� (Q + α �).5 Here 

α � is a specific form of the consistency statement for U , where we formalised consistency in arithmetic 
in a sufficiently good way and where α is a Σ0

1-formula representing the axiom set of U .6 The statement 
is general since there is no conditionalisation to ‘theories that are sufficiently strong’ and the like. Also, 
it is strong since Q is very weak, so the contribution of the base to the non-interpretability is minimal. 
We note that Pudlák’s proof of this version of G2 does contain Gödel’s original argument but extends it 
with new ideas like Solovay’s method of shortening cuts. So, perhaps, we can also say that the Pudlák-style 
formulation counts as a strengthening of G2.

A second reason is more proof-oriented. Consider, for example, G2 for ZF. We can easily formalise G2 in ZF
using the set-theoretical resources for coding sequences and the like. In fact, this is easier than formalisation 
in PA with only zero, successor, plus and times in the signature. On the other hand, ZF has a standard 
interpretation of PA in the finite von Neumann ordinals. We can simply import the arithmetisation of syntax 
as usually done in PA in ZF via the von Neumann interpretation. The advantage of doing it like this is that 
we see that Gödel’s proof works uniformly across theories as soon as we have an interpretation of a suitable 
base. In this context, the best version is U �� (S1

2 + α �). Here S1
2 is Buss’s weak arithmetical theory for the 

study of p-time computability.7 Without any additional effort, as compared to, e.g., PA, Gödel’s reasoning 
can be repeated in S1

2. In fact, S1
2 is better, since it prevents all kinds of silly and inefficient choices for 

doing the arithmetisation. Moreover, Pudlák’s argument for his strengthened version can be framed as first 

4 A first form of the no-interpretation version is due to Feferman. See [4]. Feferman’s form was stated for extensions of PA and 
for the case that main theory and base theory coincide.
5 Pavel Pudlák contributed the main ingredient of the result in the present formulation. See [10].
6 The various modal-style notations we use are explained in Appendix A or at the place where they are introduced as new 

concepts in the paper. Briefly: we use for provability and for consistency. There are related notations and , and that 
represent provability-like and consistency-like notions based on interpretation power. We use � and � for cut-free provability and 
cut-free consistency. If K is an interpretation, we will write K

α B rather than ( α B)K , and, similarly, for the other modal notions.
7 See [2] or [8] for the basic development of S1

2.
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showing that Q + α � is mutually interpretable with S1
2 + α �, or: (Q + α �) �� (S1

2 + α �), and, then, 
concluding the Q-version from the S1

2-version. We think that the S1
2-version should be viewed as G2 proper, 

since it is proved simply by Gödel’s original reasoning.
A third reason is mathematico-philosophical. The usual versions of G2 depend on certain design choices. 

Can we choose the base theory in such a way that either design choices become so natural that they are, as 
it were, intrinsically given, or, in such a way that they are fully eliminated?

• The first idea is explored by Volker Halbach and Graham Leigh in a forthcoming book, [7]. Let us 
point out how natural this idea is. Arithmetisation can be viewed as the development of a chain of 
interpretations ending in an appropriate syntax theory. Why not take this syntax theory as base? 
However, many syntax theories are possible. Which is the right one? Also, how do we get a syntax 
theory that really determines which choices to make, e.g., to represent a proof?

• The second idea is explored in this paper. We develop an idea of Harvey Friedman to eliminate design 
choices entirely in our base theory. Friedman’s idea does not always deliver the usual consistency state-
ments but also other things that are analogues of consistency statements. We elaborate on the idea in 
Subsection 2.2.
In Subsection 6.2, we will explain how the idea of main/base works out when we consider provability-like 
logics based on the consistency analogues that we developed.

Finally, there is a fourth reason. There has been philosophical discussion on the question: when does a 
predicate logical sentence really express a consistency statement? One line of argument could be that we 
choose as base theory a meaningful theory and that it is the semantics of the base theory that carries the 
main burden of meaning giving. See also [29] for some further discussion.

2.2. Interpretation power

What makes a sentence an analogue of a consistency statement? We zoom in on an answer proposed by 
Harvey Friedman, in [5], to wit, that the hallmark of consistency statements is the kind interpretation power
typical for consistency statements in virtue of the Interpretation Existence Lemma (see [31] for a detailed 
exposition of this lemma). The lemma says, roughly, that we can interpret a theory V in a suitable base 
theory plus a consistency statement for V .

In case B extends S1
2 and α numerates the axioms of V over B, we have the following formulation of 

Interpretation Existence: (B + α �) � V . We will say that any B-sentence B such that (B + B) � V is a 
pro-interpreter of V (over B). So, Interpretation Existence tells us that α � is a pro-interpreter. A study 
of pro-interpreters was undertaken in [23].

A disadvantage of the idea of pro-interpreters is that they are not uniquely determined over the base 
theory. To make them unique, we have to impose an extra demand. The obvious one is that we consider the 
weakest pro-interpreter with respect to B-provability. Let us call such a weakest pro-interpreter simply an 
interpreter.

In this paper, we will restrict ourselves to the case of consistency analogues for finitely axiomatised
theories A. Needless to say that this assumption simplifies a lot. We see that an interpreter of A over B is 
a B-sentence C such that (B +C) �A and, for all B-sentences B, we have, if (B +B) �A, then B +B � C. 
Alternatively, we can say that C is an interpreter of A over B iff, for all B-sentences B, we have (B +B) �A

iff B + B � C.
Unfortunately, over the base theory S1

2, this idea will not work. Consider any consistent A such that 
S1

2 �� A. E.g., A could be Elementary Arithmetic EA. Suppose we had an interpreter C of A. We have 
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(S1
2 + I

A �) � A, for any definable S1
2-cut I.8 So, for all I, we find S1

2 + I
A � � C. In other words, 

for all I, we find S1
2 + ¬ C � I

A ⊥. Since S1
2 �� A, we have S1

2 � C and, hence, S1
2 + ¬ C is consistent. By 

Theorem A.2 of the Appendix, we find that A ⊥ is true, and, thus, that A is inconsistent, which contradicts 
our assumption.9 Thus, Friedman’s idea forces us towards other bases.

We call a theory that does have the desirable property that each finitely axiomatised A has an interpreter 
over the theory Friedman-reflexive.10 Friedman’s example of such a theory is Peano Arithmetic PA. He 
shows that, indeed, PA is Friedman-reflexive. See Section 4 for an exposition of Friedman’s argument. A 
disadvantage of the choice of PA is that it is very strong. Our proposal for the ideal Friedman-reflexive 
theory is Peano Corto or PA↓↓. We will show, in Subsection 7.3, that PA↓↓ has some good further properties 
as a base.

3. Basics

In this section we give the basic definitions and state and prove some basic facts.

3.1. Definitions

The variables T, U, V, . . . range over theories of finite signature. These theories, generally, need not be 
RE. We allow inconsistent theories as values.

The variables A, B, . . . range ambiguously over sentences of predicate logic and over finitely axioma-
tised theories. We confuse the finitely axiomatised theory A with a single sentence A which is (the finite 
conjunction of) its axiom(s).

There is a subtle point here. Let U be any theory and let τ be an interpretation from the A-language to 
the U -language. Let EA be the finite conjunction of the identity axioms for the signature of A.11 We assume 
that ∃x x = x is among these axioms. Then, U + (EA ∧A)τ interprets A with an interpretation based on τ . 
The reason that we need EA for this is that, in first order logic, identity is treated as a logical constant but 
that in the definition of translation this is ignored and identity may be translated to some U -formula. The 
inclusion of ∃x x = x in the identity axioms is needed since we, somewhat unnaturally, assume non-empty 
domains.

We say that C is an interpreter of A over U iff, for all B in the language of U , we have: (U +B) �A iff 
U + B � C.

A theory U is Friedman-reflexive iff all finitely axiomatised A have an interpreter C over U .
Suppose U is Friedman-reflexive. We will use (·) for a function that selects, for each A, an interpreter 

C of A over U . So, is only uniquely determined modulo U -provability. We write A B for (A ∧B). If we 
want to make the dependence on U explicit, we write (U), (U),A, etcetera. However, we prefer to treat 
the dependence on U as contextually given as much as possible. We write for ¬ ¬ and A for ¬ A ¬.

It is easy to see that A and A � are equivalent over U . We will use the second in contexts where we 
are interested in extensions of A.

The theory U is effectively Friedman-reflexive iff we can choose to be recursive. Note the existential 
quantifier here: there may very well be both recursive and non-recursive choices of . In fact, we will see a 
salient example of that possibility.

8 Our cuts are downward closed w.r.t. < and are closed under zero, successor, addition, multiplication and ω1, i.e., the function 
x �→ 2(log(x))2

, where log is the (entier of) the base 2 logarithm.
9 A stronger version of this insight is given in Theorem 8.9.

10 The ratio behind the second name will become clear in the paper.
11 Here it is essential that we consider the signature of A qua theory. Not all symbols of this signature need to actually occur in 
the conjunction of the axioms of A.
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3.2. The categorical viewpoint

We can view what is going on here in category theoretic terms as follows. Let BU be the partial order 
category of all finite extensions of the base theory U (in the same language) with order ⊆, i.e. extension in 
the same language. Let D be the partial pre-order category of theories ordered by interpretability �.12 Let 
projU be the projection functor from BU into D. Then, C is an interpreter of A iff A � (U +C) is a universal 
arrow from A to projU .

Remark 3.1. We note that if we restrict D to a subcategory that contains both the finitely axiomatised 
theories and the finite extensions of U , but that preserves the arrows between the objects, then universality 
is preserved in both directions.

So, e.g., in case U is RE, we can restrict D to the category of RE theories with the same effect. ❍

We can view Friedman-reflexivity as follows. Let Dfin be the partial pre-order category of finitely ax-
iomatised theories ordered by interpretability. Let emb be the embedding functor from Dfin to D. Friedman-
reflexivity tells us that, for each A, there is a universal arrow from emb(A) to projU .

3.3. Semi normal form

Interpreters have a kind of non-unique normal forms. Let ν be any translation of the A language in 
the U -language. We note that (EA ∧ A)ν is always a pro-interpreter of A over U , but not necessarily an 
interpreter.

Theorem 3.2. Suppose C is an interpreter of A over U . Then, there is a translation τ of the A-language in 
the U -language, such that U � C ↔ (EA ∧A)τ .

We note that τ need not be unique.

Proof. Suppose C is an interpreter of A over U . We have (U +C) �A. Let τ be the translation underlying 
a witnessing interpretation. Then U + C � (EA ∧A)τ .

On the other hand, (U+(EA∧A)τ ) �A. So, by the defining property of interpreters, U+(EA∧A)τ � C. ❑

3.4. Some basic facts

We show that interpreters are unique.

Theorem 3.3. Suppose both C and C ′ are interpreters of A over U . Then, we have U � C ↔ C ′.

Proof. Since (U +C) � C, it follows that (U +C) �A, and, hence (U +C ′) � C. The converse direction is 
similar. ❑

Remark 3.4. The above uniqueness argument is a special case of the usual argument for uniqueness of 
universal arrows. ❍

We show that has a functorial property with respect to a Friedman-reflexive theory.

Theorem 3.5. Let U be Friedman-reflexive and suppose A � B. Then, we have U � A → B.

12 In the light of our specific application, we can replace � by �loc.
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Proof. Let U be Friedman-reflexive. Suppose A � B. Then, (U + A) � A � B. So, U � A → B. ❑

Remark 3.6. Theorem 3.5 is a special case of an elementary category theoretic insight. Suppose we have 
categories A, B, C and functors F : A → C, G : B → C. Suppose further that, for every a in A there is 
a universal arrow from F (a) to G. Then, there is a functor H : A → B, such that our promised universal 
arrows are a natural transformation from F to G ◦H. ❍

Here is a fact that does not follow from the general categorical ideas but is specific to our setting.

Theorem 3.7. Let U be Friedman-reflexive. Then commutes, modulo U -provable equivalence, with finite 
disjunctions of sentences in the same signature, including the empty one. In other words, U � ¬ ⊥ and, 
if A and B have the same signature, then U � (A ∨B) ↔ ( A ∨ B).

Proof. We have (U + ⊥) � ⊥. So, U � ¬ ⊥.
We have A � (A ∨ B) and, hence, A � (A ∨ B). It follows, by Theorem 3.5, that U � A → (A ∨ B). 

Similarly, U � B → (A ∨B). Ergo, U � ( A ∨ B) → (A ∨B).
We have (U + (A ∨B)) �(A ∨B). Let τ be the underlying translation of some witnessing interpretation. 

We have:

U + (A ∨B) � (EA ∧ (A ∨B))τ

� (EA ∧A)τ ∨ (EA ∧B)τ

� A ∨ B

The last step uses that the pro-interpreter (EA ∧A)τ implies the interpreter A and, similarly, for B. ❑

We define W := U � V as follows. The signature of W is the disjoint union of the signatures of U and V
plus two unary domain predicates 0 and 1. We have the axioms of U relativised to 0, the axioms of V
relativised to 1 plus axioms that say that the i form a partition of the domain.

The following fact again follows from the categorical framework alone in combination with the fact that 
� is a supremum operator in Dfin.

Theorem 3.8. Suppose U is Friedman-reflexive and A and B are finitely axiomatised. Then, we have 
U � (A � B) ↔ ( A ∧ B).

Proof.
U + D � (A � B) ⇔ (U + D) � (A � B)

⇔ (U + D) � A and (U + D) � B

⇔ U + D � A and U + D � B

⇔ U + D � A ∧ B ❑

We will meet � again in Corollary C.5.

3.5. Alternative characterisation

We have an alternative characterisation of Friedman-reflexivity that gives us a full adjunction. We write 
U ⊆ V for V is an extension of U in the same language.
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Theorem 3.9. A theory U is Friedman-reflexive iff (†) for every theory W , there is a theory C(W ) ⊇ U , 
such that, for all V ⊇ U , we have V �loc W iff V ⊇ C(W ).

Proof. Suppose U is Friedman-reflexive. We prove (†). Consider any W . We define the theory
C(W ) := U + { A | W � A}. Let V ⊇ U . We have:

V �loc W ⇔ ∀A (W � A ⇒ V � A)

⇔ ∀A (W � A ⇒ ∃D (V � D and (U + D) � A))

⇔ ∀A (W � A ⇒ ∃D (V � D and U + D � A))

⇔ ∀A (W � A ⇒ V � A)

⇔ V ⊇ C(W )

Suppose (†). Consider any finitely axiomatised A. We have C(A) �A. It follows that for some C, we have 
C(A) � C and C � A. Since (U + C) � A, we have (U + C) ⊇ C(A). Thus, C axiomatises C(A) over U . It 
follows that:

(U + B) � A ⇔ (U + B) �loc A

⇔ (U + B) ⊇ C(A)

⇔ (U + B) � C

So, we can take A := C. ❑

We translate our alternative characterisation in categorical terms. Let B+
U be the category of all extensions of 

U in the same language with as arrows ⊆. Let Dloc be the category of all theories with the local interpretabil-
ity relation as arrows. Let proj+U be the projection functor of B+

U into Dloc. Then U is Friedman-reflexive iff 
proj+U has a left adjoint C.

3.6. Polyglotticity

A theory U is polyglot or polyglottic if, for every consistent finitely axiomatised A, there is a pro-interpreter 
B of A such that U + B is consistent.

We remind the reader that T locally tolerates V if, for every finite sub-theory A of V , there is a translation 
τ such that T is consistent with (EA ∧A)τ .

Theorem 3.10. U is polyglot iff U locally tolerates the theory Q plus the true Π0
1-sentences.

Proof. Suppose U is polyglot. Let A be a finite sub-theory of Q plus the true Π0
1-sentences. Then, for some 

B, we have U +B is consistent and (U +B) �A. Let τ be the translation on which the interpretation of A
in U + B is based. Then, U is consistent with (EA + A)τ .

Conversely, suppose U locally tolerates the theory Q plus the true Π0
1-sentences. Consider any finitely 

axiomatised consistent theory D. Then, D � is true. So, for some τ , we have U + (EQ ∧ Q ∧ D �)τ is 
consistent. By the Interpretation Existence Lemma, we find that (U+(EQ∧Q ∧ D �)τ ) �(Q + D �) �D. ❑

Since Q interprets S1
2 on a cut, we have the same result with S1

2 substituted for Q.
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3.7. A computational insight

We end this section with two computational results about effectively Friedman-reflexive theories.

Theorem 3.11. If U is consistent and effectively Friedman-reflexive, then U is essentially undecidable.

Proof. Suppose U is consistent and effectively Friedman reflexive. Suppose U had a consistent and decidable 
extension V . By Theorem 5.1, the theory V is effectively Friedman reflexive with recursive .

Let [S] be a theory of a witness of the Σ0
1-sentence S. See [30] for details. If S is true, then [S] has a finite 

model and, thus, any theory interprets [S]. It follows that V � [S]. On the other hand, if [S] is false, then 
it extends R and, thus, since V is decidable, V �� [S]. Ergo, V � [S]. It follows that, using the decidability 
of V , we can solve the halting problem. Quod non. ❑

We remind the reader that T tolerates U iff, for some translation τ , the theory T +Eτ
U +Uτ is consistent. 

In other words, T tolerates U , if some consistent extension of T interprets U . We define:

• A theory U is strongly essentially undecidable iff every theory T that tolerates U is undecidable.

If a finitely axiomatised theory is essentially undecidable it is easily seen that it is also strongly essentially 
undecidable. The same does not have to hold for RE theories. See, e.g., [13] for examples. Cobham showed 
that the Tarski-Mostowski-Robinson theory R is strongly essentially undecidable. See [16] or [30]. We have:

Theorem 3.12. Suppose U is consistent, RE, and effectively Friedman-reflexive. Then, U is strongly essen-
tially undecidable.

Proof. Let U be consistent, RE, and effectively Friedman-reflexive. Suppose T is decidable and suppose 
V := T + Eτ

U + Uτ is consistent. In case S is true, we have V � τ [S]. Now suppose [S] is false. In case 
V + τ [S] were consistent, it would follow that T tolerates [S], contradicting the fact that [S] is finitely 
axiomatised and essentially undecidable. So, V � ¬ τ [S]. Since V is RE, this gives us a procedure to decide 
the halting problem. ❑

Open Question 3.13. Is there a theory U that is consistent, effectively Friedman-reflexive and not strongly 
essentially undecidable? ❍

4. The paradigm case of Peano arithmetic

Peano Arithmetic is a paradigmatic theory that is Friedman-reflexive. This is the theory for which 
Harvey’s original observation was made. Our Theorem 4.1 is Theorem 2.7 of [5].

Theorem 4.1 (Friedman). The sentence A � is an interpreter of A over PA. So, PA is effectively Friedman-
reflexive.

Proof. Suppose (PA + B) � A. Then, for some finite sub-theory D of PA, we have (D + B) � A. It follows
that PA � ((D+B) �A) and, so, PA � D B → A �. By the essential reflexiveness of PA, we may conclude 
PA + B � A �.

For the other direction, suppose PA + B � A �. Then, by the Interpretation Existence Lemma (see 
[31]), we find (PA + B) � A. ❑
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We note that we have characterised the consistency statement A � among arithmetical sentences mod-
ulo PA-provable equivalence. We will later discuss how to improve this to EA-provable equivalence—see 
Theorem 7.4.

5. Closure properties

In this section, we study various closure properties of Friedman reflexive theories.

Theorem 5.1. Suppose U ⊆ V , where V is in the same language as U , and U is (effectively) Friedman-
reflexive. Then, V is (effectively) Friedman-reflexive with the same interpreters. In other words, can be 
chosen the same for U and V .

Proof. Suppose U ⊆ V and U is Friedman-reflexive. We have:

(V + B) � A ⇔ for some D, we have V � D and (U + (D ∧B)) � A

⇔ for some D, we have V � D and (U + (D ∧B)) � A

⇔ (V + B) � A

Since is preserved, we, ipso facto, preserve effectivity. ❑

The next theorem illustrates that polyglotticity is definitely not preserved to consistent extensions.

Theorem 5.2. Suppose U is Friedman-reflexive. Suppose A is consistent and U �� A. Then, U + ¬ A is 
consistent and not polyglot.

Proof. We assume the conditions of the theorem. Since U �� A, we have U � A and, so, U + ¬ A is 
consistent.

By Theorem 5.1, we may choose for U + ¬ A the same as for U , but, A is inconsistent with 
U + ¬ A. ❑

An example of our theorem is the fact that no consistent extension in the same language of PA+ ACA0 ⊥
interprets ACA0. We note that we can always find an A such that U �� A, if U is RE and consistent. In 
contrast, EA plus all true Π0

1-sentences is consistent and Friedman-reflexive, but this theory does interpret 
every consistent A. Thus, it is polyglottic and so is every extension.

Our next closure property is categorical in nature. Let E := INT+
3 be the category of theories in finite 

signature and interpretations, where two interpretations K, K ′ : T → W are the same iff, for all T -sentences 
A, we have W � AK ↔ AK′ . We note that we do not demand that the theories are RE. In a sense, E in 
combination with its sub-category of all theories with as arrows theory-extensions-in-the-same-language is 
the natural home for the study of Friedman-reflexivity.13

We remind the reader that, in a category, a morphism a 
f−→ b is a retraction or split epimorphism iff 

there is a b 
g−→ a, such that f ◦ g = idb. Here g is called section, co-retraction, or split monomorphism.

Theorem 5.3. Suppose V is an E-retract of U and suppose U is (effectively) Friedman-reflexive. Then, V is
(effectively) Friedman-reflexive.

13 For the case of finitely axiomatised theories, the interaction between interpretation and extension was studied in [33].
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Proof. Let K : V → U and M : U → V witness the retraction. So, M ◦K is the same, in the sense of E, as 
IdV . We have:

(V + B) � A ⇒ (U + BK) � A

⇒ U + BK � A

⇒ V + BKM � M A

⇒ V + B � M A

⇒ (V + B) � (U + A)

⇒ (V + B) � A

It follows that M A is the desired interpreter of A over V . Clearly, composition of with (·)M preserves 
effectiveness. ❑

Theorem 5.4. Suppose U +D and U +¬ D are both (effectively) Friedman-reflexive. Then, U is also (effec-
tively) Friedman-reflexive.

Proof. Consider any A and let C and C ′ be the interpreters of A over U + D, resp. U + ¬D. Let C〈D〉C ′

be (D ∧ C) ∨ (¬ D ∧ C ′). We have:

(U + B) � A ⇔ (U + D + B) � A and (U + ¬D + B) � A

⇔ (U + D + B) � C and (U + ¬D + B) � C ′

⇔ (U + D + B) � C〈D〉C ′ and (U + ¬D + B) � C〈D〉C ′

⇔ (U + B) � C〈D〉C ′ ❑

In the next theorem, we verify a general insight for universal arrows in our specific case.
Given theories U and V , we define W := U � V as follows. The signature of W is the disjoint union of 

the signatures of U and V plus a new 0-ary predicate symbol P . The axioms of W are P → A, for axioms 
A of U and ¬P → B for axioms B of V . We have:

Theorem 5.5. Suppose U and V are (effectively) Friedman-reflexive. Then, U �V is (effectively) Friedman-
reflexive.

Proof. Let W := U � V . We have:

(W + B) � A ⇔ (U + B[P := �]) � A and (V + B[P := ⊥]) � A

⇔ U + B[P := �] � (U) A and V + B[P := ⊥] � (V ) A

⇔ W + B � ( (U) A)〈P 〉( (V ) A)

So, we can take (W ) A := ( (U) A)〈P 〉( (V ) A). ❑

6. Interpreter logics

Can something like a modal logic be based on interpreters as an analog of provability logic? Since we only 
consider interpreters for finitely axiomatised theories, this should be a modal logic interpreted in a finitely 
axiomatised theory. We first give the definitions and then some motivating remarks.
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6.1. Definitions

An FM-frame is a pair 〈A,U〉, where A is finitely axiomatised, U is Friedman-reflexive and A �U .14 An 
interpretation K : A � U , where 〈A,U〉 is an FM-frame, is an FM-interpretation. We consider U and A as 
part of the data for K. The interpretation on the frame in our context is the analogue of the Kripke model 
on the Kripke frame in ordinary modal logic.

Consider an FM-interpretation K : U � A. We define K,B C := K
(U),B C. Our default case is where A

is identical to B. In this case we write K C. Also, in many cases, we treat K as contextually given and 
simply write . As usual, we set := ¬ ¬.

We consider the usual modal language with possibility operator and with necessity defined by ¬ ¬. 
Let σ be a function from the propositional atoms to the A-language. We define ϕ(σ,K) as follows.

• p(σ,K) := σ(p).
• (·)(σ,K) commutes with the truth-functional connectives.
• ( ψ)(σ,K) := K,A ψ(σ,K).

We will call the logic of K,A over A: Λfr
K . So,

• Λfr
K = {ϕ | for all σ, we have A � ϕ(σ,K)}.

We also define the logic of a frame 〈A,U〉.

• Λfr
A,U = {ϕ | for all M : A � U and σ, we have A � ϕ(σ,M)}.

In other words, Λfr
A,U =

⋂
M :A�U Λfr

M .

We consider one further notion in Appendix D.

6.2. Motivating remarks

Let us first think about ordinary provability logic. What is the provability logic of a given theory V ? 
The arithmetisation of provability is provided by some base-theory B. Let us say this is α B, where α is a 
suitable presentation of the axioms of V in B. The base theory is ‘in’ V via an interpretation K : V � B. 
So, V -provability gets the form K

α B in V , where we write K
α B for ( α B)K .

If we switch to interpreter logic, the idea is precisely the same: the necessity operator gets the form K
A B, 

for main theory A. We note that here we have K : A � B, on the one hand, and that, on the other hand, 
the A B are defined using interpretations of (A ∧B) in finite extensions of B. So, both an interpretation 
of B in A and interpretations of extensions of A in extensions of B play a role.

In the case of ordinary provability logic and in the case of interpreter logic, we can quantify out the 
interpretations of the base theory B in the main theory V , resp. A. This leads to the frame provability/in-
terpreter logic. A frame is the pair 〈A,U〉 with A �U . So, we abstract away from the specific interpretation. 
The ordinary provability logic of a frame was studied in [28]. In the present paper, we will consider the 
interpreter logic of a frame.

14 ‘FM’ stands for ‘Feferman and Montague’ who initiated the idea of looking at the combination of G2 and interpretability.
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6.3. The Löb Conditions

We will show that every Λfr
K satisfies the Löb Conditions, in other words, it is a normal modal logic 

extending K4.
We will first verify a set of conditions that are equivalent to the Löb Conditions and then prove the 

equivalence.

Lemma 6.1. Let K : U � A be an FM-interpretation. We write := K,A. We have:

a. A � B → C implies A � B → C and A � B → C.
b. A � ¬ ⊥ and A � �.
c. A � (B ∨ C) ↔ ( B ∨ C) and A � (B ∧ C) ↔ ( B ∧ C)
d. A � B → B and A � B → B.

Proof. Ad (a). Suppose A � B → C. Then,

(U + A B) � (A ∧B) � (A ∧ C).

So, U + A B � A C, and, thus, A � B → C.
We note that ¬ ¬B is ¬¬ ¬¬B. So, by the first conjunct of (a), we have U � B ↔ ¬ ¬B. As a 

consequence, we may switch between -versions of principles and their dual -formulations in a confident 
way. Thus, we omit the verification of the second conjuncts of (a-d).

Principles (b) and (c) are immediate from Theorem 3.7.
Ad (d). We have

(U + A B) � (A + B) � (U + A B) � (A ∧B).

So, U + A B � A B. It follows that A � B → B. ❑

Theorem 6.2. Let K : U � A be an FM-interpretation. Then, Λfr
K is a normal modal logic extending K4, in 

other words, Λfr
K satisfies the Löb Conditions.

Proof. It is sufficient to show that (a-d) of Lemma 6.1 imply the Löb Conditions. Clearly, L1, also known 
as Necessitation, follows from (a,b).

We verify L2. We have A � (B ∧ (B → C)) → C. Ergo, by (a), we find A � (B ∧ (B → C)) → C. 
Applying the second conjunct of (c), we obtain A � ( B ∧ (B → C)) → C.

Finally, L3 is identical to (d). ❑

We note that, conversely, the Löb Conditions imply (a-d) of Lemma 6.1.
We will see that it is possible to get as extensions Löb’s Logic GL and the logics K45 and S4.

6.4. Löb’s Logic

In what circumstances do we have interpreter logics that extend Löb’s Logic GL? We provide a basic 
result concerning that question.

We say that theories U and V are reconcilable iff there are consistent finite extensions-in-the-same-
language U ′ ⊇ U and V ′ ⊇ V , such that U ′ �� V ′. The theories U and V are irreconcilable iff they are not 
reconcilable.
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The simplest case of irreconcilability is when one of U , V is inconsistent. The second simplest case is 
when one of U , V is RE and essentially undecidable and the other is decidable and complete. Theorem 8.13
will tell us that, if one of A, U of an FR-frame 〈A,U〉 is sequential, then A and U are irreconcilable.

Before we turn to the proof of Löb’s Theorem, let us briefly look at a trivial theorem that is close in 
spirit to the Second Incompleteness Theorem.

Theorem 6.3. Suppose U and A are irreconcilable, U is Friedman-reflexive, and A is finitely axiomatised 
and consistent. Then A �� (U + A �).

Proof. We assume the conditions of the theorem. Suppose A � (U + A �). Then, A �� (U + A �). This 
contradicts irreconcilability. ❑

Why is the above theorem not a version of the Second Incompleteness Theorem? It does not seem 
reasonable to say that it is, since none of Gödel’s hard work (nor any new thing replacing it) occurs in 
the trivial proof. My proposal is to demand from a version of the Second Incompleteness Theorem in this 
style that it also supply a concrete range of irreconcilable U ’s and A’s. Such a range will be provided by 
Theorem 8.13. Then, Corollary 8.15 will be our version of the Second Incompleteness Theorem.

The next theorem directly connects irreconcilability to Löb’s Principle.

Theorem 6.4. Consider an FM-frame 〈A,U〉. Then, A and U are irreconcilable iff Λfr
A,U extends Löb’s Logic.

Proof. Let 〈A,U〉 be an FM-frame.
We prove the left-to-right direction. Suppose A and U are irreconcilable. Consider any K such that 

K : A � U . It is sufficient to show that Λfr
K extends Löb’s Logic. It is well-known that, over K4, Löb’s 

Principle and Löb’s Rule are equivalent.15 So, it suffices to prove closure of Λfr
K under Löb’s Rule. Suppose 

A � B → K,A B. Then,

(A + B) � (U + A B) � (A + B).

So, (A + B) �� (U + A B) and, thus, by irreconcilability, A + B is inconsistent, i.e., A � ¬ B.
We prove the right-to left direction. Suppose A and U are reconcilable. Suppose (A + B) �� (U + C), 

where A + B is consistent.
Suppose that K0 : A �U and K1 : (A +B) � (U +C). We define K := K1〈B〉K0, i.e., the interpretation 

that is K1 if B and K0 otherwise. Clearly, K : A � U and K ′ : (A + B) � (U + C), where K ′ has the same 
underlying translation as K. Since (U + C) � (A + B), we have U + C � A B and, so, A + B � K,A B. 
We also have A � ¬ B. So, A is not closed under Löb’s Rule. We have:

A � K,A(B → K,A B) → K,A ¬B,

by the fact that Löb’s Rule follows from Löb’s Principle. So, we do not have Löb’s Principle in Λfr
K .16 ❑

Remark 6.5. We note that Theorem 6.4 is a correspondence result for Löb’s Principle. Here the FM-frame 
〈A,U〉, is the analogue of a Kripke frame. The interpretation K : A � U in combination with a mapping σ
from the propositional atoms to the sentences of the language of A is the analogue of a model on the frame. 

❍

15 See [15, Chapter 1, Section 1, Exercise 5(iii), p75]. Smoryński attributes the result to Macintyre and Simmons. Alternatively, 
see [1, Chapter 3, p59].
16 We note that the detour over Löb’s Principle is necessary here. Closure of A under a rule implies closure of the associated logic 
under the same rule, but not vice versa. So, we need a principle to provide a counter-instance.
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When we have Löb’s Principle, we also have an analogue of Feferman’s Theorem of the interpretability 
of inconsistency.

Theorem 6.6. Suppose 〈A,U〉 is an FM-frame and A and U are irreconcilable. We have:

a. Suppose K : A � U . Then A � (A + K,A ⊥).
b. Suppose M : B � U and A � B. Then A � (B + M,A ⊥).

Proof. Ad (a). We have:

(A + K,A �) � (A + K,A K,A ⊥)

� (A + K,A ⊥)

Trivially, (A + ¬ K,A �) � (A + K,A ⊥). By a disjunctive interpretation, we find A � (A + K,A ⊥).
Ad (b). Suppose P : A � B. By (a), we have:

A � (A + M◦P,A ⊥) � (B + M,A ⊥). ❑

6.5. S4

An FM-interpretation K : A � U is companionable iff, for every B of the A-language, there is a C of 
the U -language such that (A + B) �� (U + C), where the interpretation of U + C in A + B has the same 
underlying translation as K.

We can define companionship in terms of the category E enriched by designated arrows for finite exten-
sions as indicated in the diagram below.

U + C A + B

U + C A + B

U A

M

K′

K

⊆ ⊆

Here we require no commutation for M .

Theorem 6.7. Consider an FM-interpretation K : A � U . Then, K is companionable iff Λfr
K extends S4.

Proof. Suppose K is companionable. Consider any B and suppose K ′ : (A + B) � (U + C), where K ′ is 
based on the same translation as K and that (U + C) � (A + B). It follows that U + C � A B. Hence, 
A + B � K,A B.

Conversely, suppose Λfr
K contains the reflection principle, aka M. We have that A + B � K,A B, so, 

there is an interpretation K ′ based on the same translation as K, such that K ′ : (A + B) � (U + A B). 
Conversely, (U + A B) � (A + B). ❑

Remark 6.8. We note that the characterisation provided by Theorem 6.7 is rather different in nature from 
the one given of Löb’s Principle in Theorem 6.4. First, in Theorem 6.7, we consider a property of interpre-
tations rather than a property of frames as in Theorem 6.4. Secondly, we use more notions to formulate 
companionship than for irreconcilability. In Appendix D, we prove a result for the reflection principle that 
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is more in the spirit of Theorem 6.7. However, to do that we need to consider local interpreter logics of an 
FM-frame rather than the unique (global) interpreter logic of the frame. ❍

Example 6.9. Let A be e.g. the theory of the ordering of the natural numbers. The theory A is finitely 
axiomatisable. Theorem B.1 will tell us that A is Friedman-reflexive. The identical interpretation IdA of A
in itself is clearly companionable. So, Λfr

IdA
extends S4.

In fact, we can show that the modality trivialises for this example. Consider any B in the A-language. 
The sentence IdA,A B is either provable or refutable in A. If it is refutable, we have A � IdA,A B → B. 
Suppose it is provable. So, A � IdA,A B. It follows that A � (A + B). So, A + B is consistent, and, hence, 
B is provable in A. Thus, A � IdA,A B → B. So, in both cases, we have A � IdA,A B → B. ❍

Open Question 6.10. Can we find a more inspiring example of a theory with logic S4 than Example 6.9? Is 
it perhaps possible to find an FM-interpretation with interpreter logic precisely S4? ❍

Corollary 6.11. Suppose the FM-interpretation U K−→ A is a retraction in E. Then, K is companionable 
and, hence, Λfr

K extends S4.

Proof. Suppose U K−→ A is an FM-interpretation which is a retraction in E. Let M be the corresponding 
section, i.e., K ◦M = IdA. Consider any B in the A-language. We have: (U + BM ) � (A + B). Moreover, 
writing ≡ for having the same theorems, we have:

(U + BM ) K′
−→ (A + BMK)

≡ (A + B)

Here K ′ : (A + B) � (U + BM ) has the same underlying translation as K. ❑

In Appendix C, we will treat a notion of sameness between interpretations that leads to a notion of 
sameness of interpreter logics.

7. Essentially Sententially Reflexive Theories

In this section we study essential sentential reflexiveness. A theory U is essentially sententially reflexive
if, for some N , we have N : U � S1

2 and, for all U -sentences A and for all n, U � N
n A → A. Here A ranges 

over U -sentences and n means provability in predicate logic using proofs which only involve formulas with 
depth of quantifier alternations ≤ n. As a default, we assume in our notation that n exceeds ρ(A), the 
depth of quantifier alternations of A. The definition of n,A B is similar, where now we consider provability 
from A and not just from predicate logic. (See e.g. [32] for details about the notion of depth of quantifier 
alternations.)

We will write �AB for ρ(A→B),A B and �AB for ρ(A∧B),A B.

7.1. A basic fact

We have the following theorems. The second result provides a coordinate-free characterisation of Essen-
tially Sententially Reflexive Theories in the sequential case.

Theorem 7.1. Suppose U is essentially sententially reflexive. Then, there is an N : U � S1
2, such that, for 

all Σ0
1-sentences S and for all M : U � S1

2, we have U � SN → SM .
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Proof. Suppose that U is essentially sententially reflexive with witness N0 : U � S1
2. We start with the 

observation that, for all U -sentences A and for all m ≥ ρ(A), we have U � N0
m A → A. This follows 

immediately by replacing A by (A ∧ B), where B is a tautology with ρ(B) = m. Let N be a logarithmic 
cut of N0. Consider any M : U � S1

2. We have, for a sufficiently large m and for some U -theorem D, 
that U � SN → N0

m,D SM (see Theorem A.1). Here we can take D := (ES1
2
∧

∧
S1

2). It follows that 
U � SN → SM . ❑

Theorem 7.2. Suppose U is sequential. Then the following conditions are equivalent.

a. U is essentially sententially reflexive.
b. There is an N : U � S1

2, such that for all Σ0
1-sentences S and all M : U � S1

2, we have U � SN → SM .
c. Consider any N∗ : U � S1

2. There is an N∗-cut I, such that, for all Σ0
1-sentences S and all N∗-cuts J , 

we have U � SI → SJ .

Proof. Suppose U is sequential.
Theorem 7.1 tells us that (a) implies (b). We prove the other direction. Suppose N witnesses (b). Consider 

any U -sentence A. Since U is sequential, there is an N -cut I, such that U � �IA → A. Since we have 
U � �NA → �IA, we find U � �NA → A. So N witnesses the essential sentential reflexivity of U .

We prove the implication from (b) to (c). Let N witness (b). Consider any N∗ : U � S1
2. By a result of 

Pudlák, there is an N -cut I and an N∗-cut I∗, such that I and I∗ are U -definably, U -provably isomorphic. 
We take I∗ as our witness for (c). Reason in U . Let J be any N∗-cut. Suppose SI∗ . Then, SI , and, hence 
SN . It follows that SJ .

We prove the implication from (c) to (b). We take as witness for (a), the N∗-cut I promised by (c). 
Consider any M : U � S1

2. Let J and J∗ be U -definably, U -provably isomorphic cuts of M and I. Reason in 
U . Suppose SI . Then, SJ∗ . So, SJ , and, hence, SM . ❑

7.2. Essential sentential reflexiveness implies Friedman-reflexiveness

We have the following theorem.

Theorem 7.3. Suppose U is essentially sententially reflexive with witnessing interpretation N . Then, A :=
�N

A� witnesses that U is effectively Friedman-reflexive.

The argument is, of course, just Harvey Friedman’s argument for the case of PA.

Proof. Suppose N witnesses the sentential essential reflexiveness of U .
Suppose (U + B) � A. Then, for some finite sub-theory D of U , we have that (D + B) � A. It follows

that U � ((D+B) �A)N and, so, U � N
m,D B → �N

A�, for sufficiently large m. By the sentential essential 
reflexiveness of U , it follows that U + B � �N

A�.
For the opposite direction, suppose U + B � �N

A�. Then, by the Interpretation Existence Lemma, we 
find (U + B) � A. ❑

7.3. Peano Corto

In this subsection, we discuss the sententially essentially reflexive theory PA↓↓. We introduce two other 
examples of sententially essentially reflexive theories, however, since we mainly want to illustrate the idea 
of a weak sententially essentially reflexive theory, it seemed good to zoom in om PA↓↓.

In our paper [26], we used PA− as starting point. Here, we use S1
2 as starting point since it fits the set-up 

of the present paper better.
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We introduce PA↓↓, its little brother PA↓↓↓, and its big brother PA↓.

• Peanissimo or PA↓↓↓ is the theory

S1
2 + {(S → SI) | S is an ∃Σb

1-sentence and I is an S1
2-cut}.

This theory is identical to S1
2 + {�A → A | A is an arithmetical sentence}.

• Peano Corto or PA↓↓ is the theory

S1
2 + {(S → SI) | S is a Σ0

1-sentence and I is an S1
2-cut}.

Here Σ0
1 means a block of existential quantifiers followed by a Δ0-formula. In fact, Peano Corto is 

Peanissimo plus the scheme

S → ∃x ∃z (2x = z ∧ S0(x)),

where S = ∃x S0(x).
• Peano Basso or PA↓ is the theory

S1
2 + {(S → SI) | S is a Σ0

1,∞-sentence and I is an S1
2-cut}.

Here Σ0
1,∞ is the class of formulas given by a block of existential quantifiers and bounded universal 

quantifiers, where both sorts may occur in an alternating way, followed by a Δ0-formula. In [26], it is 
shown that Peano Basso is Peano Corto plus Σ0

1-collection.

In [26], it is shown that Peano Corto and Peano Basso are essentially sententially reflexive w.r.t. the 
identical cut. A similar argument shows the same for Peanissimo.

Consider arithmetical theories V and W . We confuse the translation and the interpretation based on 
relativisation of quantifiers to a W -cut I with I. We say that V is cut-interpretable in W or W �cut V , if W
interprets V using a translation based on a W -cut. Similarly, we say that V is locally cut-interpretable in 
W or W �cut,loc V , if W locally interprets V using only interpretations based on W -cuts. See [26] for more 
information.

All three theories Peanissimo, Peano Corto and Peano Basso are locally cut-interpretable in S1
2, i.o.w., 

S1
2�cut,locPA↓↓↓ and S1

2�cut,locPA↓↓ and S1
2�cut,locPA↓. Also, all three theories are mutually cut-interpretable.

We remind the reader that each theory is recursively axiomatisable, since we can replace the cuts I in 
our formulation by E〈cutx(E)〉(x = x), where E ranges over all formulas with at most the free variable x. 
Here cutx(E) is the S1

2-sentence that expresses ‘{x | E(x)} is a cut’ and F 〈G〉H is ((G → F ) ∧ (¬ G → H)).
Since, the identical cut is the designated cut, we can, by Theorem 7.3, take A := �A� in each of our 

theories.

Theorem 7.4. Suppose P is a Π0
1 interpreter of A over Peano Corto. Then, EA � P ↔ �A�.

Proof. Suppose P is a Π0
1 interpreter of A over PA↓↓. Then, by uniqueness, we have PA↓↓ � P ↔ �A�. So, 

for some S1
2-cut J , we have S1

2 � (P ↔ �A�)J . Hence, by a meta-theorem of Paris and Wilkie, we have 
EA � P ↔ �A�. Application of the meta-theorem uses that (P ↔ �A�) is equivalent to a Π0

2-sentence. See 
[34] and [18]. ❑

So, we have characterised �A� as a Π0
1-sentence up to EA-provable equivalence in a coordinate-free way. 

This improves the result of [22], where this was only done for finitely axiomatised sequential theories.
We have a version of the Friedman characterisation over Peano Corto.
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Theorem 7.5. Suppose A is sequential. Then,

A � B iff PA↓↓ � �A� → �B�.

Proof. The left-to-right direction is just Theorem 3.5 in combination with the fact that we can take A :=
�A� over Peano Corto.

From right to left: suppose PA↓↓ � �A� → �B�. Then, S1
2 � (�A� → �B�)I , for some cut I. So, since 

S1
2 � �A� → �I

A�, we find S1
2 � �A� → �I

B�. We have:

A � (S1
2 + �A�) � (S1

2 + �B�) � B.

The first step uses the sequentiality of A. ❑

Remark 7.6. The original Friedman characterisation had EA in place of Peano Corto. A result due to Paris 
and Wilkie (see [34] and [18]) shows that we have, for Π0

1-sentences P and Q:

PA↓↓ � P → Q ⇔ EA � P → Q.

So, the connection between the two results is obvious. However, the internal version of the characterisation 
in EA needs cut-free EA-provability and ordinary PA↓↓-provability. ❍

Remark 7.7. The theory Seq(V ) is specified as follows. We add a unary predicate D and a binary predicate ∈
to the signature of V , we relativise V to D and we add the (unrelativised) axioms for Adjunctive Set Theory
AS plus an axiom that states that every element of D is an empty set. We can show that Seq supports a 
functor from D to Dseq and from Dfin to Dfin,seq. See Appendix A for details. It is easily seen that we have 
Seq(A) �� (S1

2 + �A�).
We see that we can split the functor H of Remark 3.6 in two stages. First, we have a projection π of Dfin

to Dfin,seq. This can be either A �→ Seq(A) or A �→ (S1
2 +�A�). Then, we have a (lax) embedding of Dfin,seq

into BPA↓↓ . ❍

Suppose K : A � PA↓↓. Since, we can apply the Gödel Fixed Point Theorem in the usual way because 
can be represented by a predicate, we have Löb’s Logic. This also follows from Corollary 8.16 in combination 
with the fact that PA↓↓ is sequential. That theorem, however, has a more involved proof.

If K is Σ0
1-sound, Λfr

K is precisely Löb’s Logic. In the case of PA↓↓ we can verify Solovay’s Theorem simply 
using Solovay’s proof. The reason is that PA↓↓ proves that ∃x, y (22x = y ∧ S0(x)) from ∃x S0(x), where S0
is Δ0 or Δ0(ω1). This delivers Σ0

1-completeness. This argument is not present for PA↓↓↓. However, we still 
have Solovay’s Theorem for PA↓↓↓ as a special case of Theorem 8.19.

We can see that Peano Corto has some definite advantages over S1
2 in the role of base theory. We have 

a coordinate-free representation of the interpreter variant of provability. Moreover, we have the insights 
contained in Theorems 7.4 and 7.5 and the good properties of the interpreter logics over Peano Corto. 
However, there is a down-side too.

I. Peano Corto is not finitely axiomatisable.
II. Peano Corto is not interpretable in S1

2. If it were, it would be mutually interpretable with S1
2 and this 

contradicts Theorem 8.13. In fact, no sequential Friedman-reflexive theory is interpretable in S1
2 by the 

same argument. As a consequence, there are no interpreter logics for S1
2 with Peano Corto as base (or, 

with any sequential Friedman-reflexive theory as base).
III. Even if Peano Corto is interpretable in some reasonably weak concrete A, like EA, it is not always 

clear that we can find an interpretation that does not involve arithmetisation. We discuss this kind of 
problem in Section 9.
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8. Friedman-reflexivity meets sequentiality

We already met some specific sequential Friedman-reflexive theories that are essentially sententially 
reflexive. In this section, we look at sequential theories that are Friedman-reflexive in general. Moreover, we 
look at interpreter logics for sequential A, also in cases where the base is not itself sequential.

8.1. Characterisation

In this subsection, we provide characterisations both of the interpreters provided by sequential Friedman-
reflexive bases and of such bases themselves.

We show that A always has the form of a restricted consistency statement of A on some cut.

Theorem 8.1. Suppose U is sequential and Friedman-reflexive. Let N : S1
2 �U . Then, for some N -cut I, we 

have U � A ↔ �I
A�.

In case U is RE and effectively Friedman-reflexive, we can find I effectively from A.

Proof. We have (U + A) � A. Let K be a witnessing interpretation. It follows, for some N -cut I, that 
(U + A) � �I

A�. We can see that by choosing I so short that we can verify reflection-inside-K for proofs 
involving only formulas of ρ-complexity ≤ m := ρ(A) + ρ(K) w.r.t. a truth-predicate for formulas of ρ-
complexity ≤ m. This truth-predicate works on an appropriate N -cut I∗. We choose I smaller than I∗. So, 
we have U + A � �I

A�.
Conversely, since, (U + �I

A�) � A, it follows that U + �I
A� � A.

Trivially, I can be effectively found when A is given and U is RE. ❑

We provide a characterisation of Friedman-reflexivity in the sequential case.

Theorem 8.2. Suppose U is sequential.

A. The following are equivalent.

a. U is Friedman-reflexive.
b. For all Σ0

1-sentences S, there is an N : U �S1
2, such that, for all M : U �S1

2, we have U � SN → SM .
c. Consider any N∗ : S1

2 � U . Then, for all Σ0
1-sentences S, there is an N∗-cut I such that for all 

N∗-cuts J , we have U � SI → SJ .

B. The following are equivalent.

a. U is effectively Friedman-reflexive.
b. There is a recursive function F such that, for all Σ0

1-sentences S, we have F (S) = N : U � S1
2 and, 

for all M : U � S1
2, we have U � SN → SM .

c. Consider any N∗ : S1
2 �U . There is a recursive function G such that, for all Σ0

1-sentences S, we have 
G(S) = I, where I is an N∗-cut such that for all N∗-cuts J , we have U � SI → SJ .

Proof. We will just prove the equivalence between (Aa) and (Ac). The equivalence between (Ab) and (Ac) is 
immediate using the fact that any two interpretations of S1

2 in U have U -definably, U -verifiably isomorphic 
cuts. The proof of (B) is by inspection of the proof of (A).

Suppose that U is Friedman-reflexive and N∗ : U � S1
2. Consider any Σ0

1-sentence S. We note that 
A := S1

2 +¬ S is finitely axiomatised. Let I0 be the N -cut such that �I0
S1
2
¬S is U -provably equivalent to A. 

We find U � �J
1¬S → �I0

1¬S, for all N -cuts J . Thus, U � �I0
1S → �J

1S, for all N -cuts J .
S2 S2 S2 S2
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Let I be an N -cut so that U � SI → �I0
S1
2
S: see Theorem A.1. Consider any N -cut J . By sequentiality, we 

can find a J-cut J0 so that U � �J0
S1
2
S → SJ . This uses again a soundness proof involving a truth-predicate. 

Putting everything together we find:

U � SI → �I0
S1
2
S

→ �J0
S1
2
S

→ SJ

Conversely, suppose U satisfies (c). Let I be the N∗-cut guaranteed by (c) for S := �A⊥. Suppose 
(U +B) �A. Then, for some N -cut J , we have U +B � �J

A� and hence U +B � �I
A�. The other direction 

is immediate by Interpretation Existence. ❑

Remark 8.3. We note that a complete and consistent sequential theory will automatically have property (c) 
of Theorem 8.2. It should, by Theorems B.1 and 8.2. ❍

Remark 8.4. Our result is rather robust for the precise notion of Σ0
1 used. The result works both for smaller 

classes and for larger ones.
It works for Σb

1 and even for Diophantine sentences consisting of a block of existential quantifiers followed 
by an equation t = u.

In the other direction, the result also applies when we admit ω1-terms in our definition of Σ0
1. Finally, it 

works when we define our Σ0
1-analogue X as follows:

• X ::= � | ⊥ | t = u | ¬Y | (X ∧X) | (X ∨X) | (Y → X) | ∀x < t X | ∃x X
• Y ::= � | ⊥ | t = u | ¬X | (Y ∧ Y ) | (Y ∨ Y ) | (X → Y ) | ∃x < t Y | ∀x Y ❍

We give a slightly modified version of our characterisation.

Theorem 8.5. Suppose U is sequential and let N : U � S1
2. Then, U is Friedman-reflexive iff (†) for all Σ0

1-
sentences S, there is a U -sentence A, such that, for all U -sentences B, we have U+{SI | I is an N -cut} � B

iff U + A � B.

Proof. Suppose U is Friedman-reflexive. Let I∗ be the cut guaranteed for S by Theorem 8.2(c). Then, it is 
easy to see that SI∗ can be chosen as our A to satisfy (†).

Conversely, suppose (†). It is clear that U + A proves all SI . On the other hand, taking B := A, we 
see that some finite conjunction of the SI will imply A over U . We now take J the intersection of all cuts 
occurring in this finite conjunction. We find that U � A ↔ SJ . We take J as witness for satisfaction of the 
characterisation of Theorem 8.2(c). ❑

We give a final version of our characterisation that is both useful and enlightening. We need the notion 
of intersection of all cuts. Consider any sequential model M. We define IM as follows. First, we choose 
an internal model N of S1

2 and then we take IM to be the intersection of all M-definable N -cuts. Using 
elementary facts about sequentiality, one can easily show that IM is independent of the choice of N in the 
sense that all versions are isomorphic by M-definable isomorphism. Moreover, this isomorphism is unique 
when restricted to IM. See also [32, Section 5.1].

Consider a sequential theory U and let N : S1
2 � U . We extend the language of U with a new unary 

predicate I that is interpreted in each U -model M as IM. Here we think of IM as given by N := NM. Let 
U e be the set of all sentences in the extended language true in all M, IM, where M is an U -model. Let IU
be the set of arithmetical sentences A such that U e � AI.
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An important insight is that IU contains EA + BΣ1. See [32, Section 5.1].

Theorem 8.6. Suppose U is sequential and let N : U � S1
2. Then, U is Friedman-reflexive iff, for all Σ0

1-
sentences S, there is a U -sentence B, such that we have U e � SI ↔ B. Moreover, B can always be taken 
to be of the form SI for some N -cut I.

U is effectively Friedman-reflexive iff we can find B (or, if you wish, I) effectively.

Proof. Suppose U is sequential. If U is Friedman-reflexive, then, the SI provided by Theorem 8.1 gives us 
the B we are looking for.

Suppose U e � SI ↔ B. Then, U + {SI | I is an N -cut} � B and, conversely, U + B � SI , for all N -cuts 
I. By Theorem 8.5, it follows that U is Friedman-reflexive. Clearly, if we can find the B effectively, then U
is effectively Friedman-reflexive. ❑

So if we view the SI as a second-order or as an infinitary statement, then Friedman-reflexiveness means 
a reduction of a certain second-order or infinitary statement to a first-order finitary statement.

8.2. An example: the theory DA

We provide an example of an effectively Friedman reflexive theory that is not essentially sententially 
reflexive. We call the theory of our example DA (Descending Arithmetic). Giving it a name does make it 
seem like a definite thing. So, it is good to point out that the theory does depend on two arbitrarily chosen 
enumerations.

Let S0, S1, . . . effectively enumerate the Σ0
1-sentences and let I0, I1, . . . be an effective enumeration of 

S1
2-cuts such that S1

2 � In+1 ⊆ In and such that, for each S1
2-cut J , we can find a k such that S1

2 � Ik ⊆ J . 
Briefly said, (Ik)k∈ω is effective, descending, and co-initial with all cuts.

We note that, because, in sequential theories, we have truth-predicates for formulas with ρ-complexity 
below a given number, we can take In to be the intersection of all definable cuts with ρ-complexity ≤ n.

Let DA be S1
2 +{SIi

i → SJ
i | i ∈ ω and J is a definable cut}. Clearly, DA is effectively Friedman-reflexive. 

We note that DA is a sub-theory of PA↓↓ and, thus, locally cut-interpretable in S1
2.

Let us say that a theory V is restrictedly Friedman-reflexive iff there is an n and a mapping A �→ A, 
where ρ( A) ≤ n, for all A. It is easy to see that in case V is a sequential restrictedly Friedman-reflexive the-
ory, then, for any N : V �S1

2, there is a formula C(x) such that, for all A, we have V � A ↔ C(�A�), where 
the Gödel numbers are chosen w.r.t. N . Another immediate insight is that, if V is essentially sententially 
reflexive, then V is restrictedly Friedman-reflexive.

Theorem 8.7. The theory DA is not restrictedly Friedman-reflexive and, hence, not essentially sententially 
reflexive.

Proof. Suppose DA were restrictedly Friedman-reflexive with bound k0. Let C be such that we have 
DA � A ↔ C(�A�) and let k0 := ρ(C) + 1. Let ρ(S1

2) = k1. Suppose Ip is the first logarithmic cut in 
the sequence. And let k2 be the maximum of the ρ-complexities of the Si for i < p. Finally, let k3 be the 
complexity of a standard Σ0

1-truth predicate true. Let k be the maximum of k0, k1, k2, k3. We pick n so 
large that In is Σ0

1-sound for every consistent extension of S1
2 with complexity ≤ k. The existence of such a 

cut is guaranteed by Theorem A.2. We may assume that n > p. Let

A := S1
2 + {¬Si | i < p and Si is false} + {¬ true(Sj) | p ≤ j < n and Sj is false}

and let B := S1
2 + A �. We note that ρ(A) ≤ k.
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We claim that A + ¬ C(�B�) is consistent. Suppose it were not. Then, we would have A � C(�B�). It 
follows that DA +A � B, and, hence, (DA +A) �B. Since, A locally cut-interprets PA↓↓ +A and, hence, 
DA + A, we find that A � B. Quod non, by the usual no-interpretation version of G2.

By the special property of In, it follows that

V := A + ¬C(�B�) + {¬SIn
i | i ≥ n and Si is false}

is consistent. By Theorem A.1, we have S1
2 � ¬ true(S) → ¬ SIp , for any Σ0

1-sentence S. It follows that V
extends DA. Hence, V is Friedman-reflexive with as selection function and V � ¬ B. Since V proves 
every true Π0

1-sentence, including B �, on In, we find V � B and, hence V � B. A contradiction. ❑

Open Question 8.8.

i. Is DA reflexive? If, against expectation, it turns out to be reflexive, can we modify the construction to 
find a non-reflexive, Friedman-reflexive, sequential theory?

ii. Is there a finitely axiomatised A and K : A � DA, such that, for no D(x) in the A-language, we have, 
for all B in the A-language, A � D(�B�) ↔ K,A B ? Here the numerals are the K-numerals.

iii. Is there an RE sequential theory that is Friedman-reflexive but not effectively so?
iv. Suppose U is sequential and restrictedly (effectively) Friedman-reflexive. Does it follow that U is essen-

tially sententially reflexive?

We note that our proof of Theorem 8.7 uses special features of DA. So, the proof does not generalise, in an 
obvious way, to a proof of a positive answer to (iv). ❍

8.3. Constraints

In this subsection, we prove two results that constrain the form of consistent, sequential, Friedman-
reflexive theories.

Theorem 8.9. Suppose U is consistent, Friedman-reflexive, sequential and RE. Then, any axiomatisation of 
U must have axioms of ρ-complexity > n, for any n.

Proof. Suppose that U is consistent, Friedman-reflexive, sequential and RE and that U has a restricted 
axiomatisation. We fix N : U � S1

2. Let A be any consistent finitely axiomatised theory such that U �� A. 
We find that U � A. So, U + ¬ A is consistent.

We have, for all N -cuts I, that (U + I
A �) �A. So, U + I

A � � A. It follows that U +¬ A � I
A ⊥. 

So, by Theorem A.2, we find that A ⊥ is true and, thus, that A is inconsistent. Quod non. ❑

Example 8.10. Neither PRA, nor IΣn, nor ACA0 is Friedman-reflexive. However, EA plus all true Π0
1-sentences 

has a restricted axiomatisation and is consistent and Friedman-reflexive. So, the condition that U is RE in 
Theorem 8.9 is really needed.17 ❍

Remark 8.11. We note that we could, alternatively, have framed the proof of Theorem 8.9 as follows. 
Theorem A.2 tells us that each consistent finite extension of U tolerates S1

2 plus all true Π1-sentences and, 
hence, is polyglottic. On the other hand, clearly, there is an A such that U �� A and, so, U + ¬ A is 
consistent. By Theorem 5.2, this last theory is not polyglottic. A contradiction. ❍

17 I thank Leszek Kolodziejscyk for pointing out this example.
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Example 8.12. Since, Peano Corto is both reflexive and mutually locally interpretable with S1
2, we find that 

PA↓↓ �� �(S1
2). Also, �(S1

2) is restricted and, hence, not Friedman-reflexive. Ergo, Friedman-reflexivity is 
not preserved by mutual interpretability. ❍

We proceed with a central result of this paper.

Theorem 8.13. Suppose A is finitely axiomatised and U is Friedman-reflexive. Suppose further that one of 
A, U is sequential. Then, A and U are irreconcilable.

Proof. Suppose A is finitely axiomatised and U is Friedman-reflexive. Since, both finite axiomatisability and 
Friedman-reflexiveness are closed under finite extensions, it is sufficient to show that A and U , if consistent, 
are not mutually interpretable. Suppose A and U are consistent.

We first consider the case, where A is sequential. Suppose K : U � A and M : A � U . Consider any 
finitely axiomatised B such that B is consistent and A �� B. For example, we could take B := (S1

2 + A �).
We have (a) A + ¬ M B is consistent, since otherwise

A � (A + M B) � (U + B) � B.

Quod non. We have:

(U + MK B) � (A + M B) � (U + B) � B.

So, U + MK B � B. Ergo, A + MKM B � M B, and hence, A + ¬ M B � ¬ MKM B. It follows 
that (b) (M ◦K)′ : (A +¬ M B) � (A +¬ M B), where (M ◦K)′ is the interpretation based on the same 
translation as M ◦K.

Suppose N : A � S1
2. Let I be any N -cut in A. We have

(U + IK
B �) � (A + I

B �) � (S1
2 + B �) � B.

So U + IK
B � � B. It follows that U + ¬ B � IK

B ⊥, and, hence, we have A + ¬ M B � IKM
B ⊥.

We have shown: (c) for all N -cuts I, we have A + ¬ M B � IKM
B ⊥. Combining (a), (b), and (c), we 

find, by Theorem A.4, that B ⊥ is true and, thus, that B is inconsistent. Quod non.
We now turn to the case that U is sequential. Suppose A �� U . Then, we can find a finitely axiomatised 

sequential U0 ⊆ U , such that A �� U0 and, hence U0 �� U , contradicting the first case. ❑

An alternative argument, for the case that U is sequential, is to note that Seq(A) �� U , where Seq is the 
functor that adds sequentiality to A.

Remark 8.14. We note Theorem 8.13 implies that there is no Friedman-reflexive and sequential U such that 
S1

2 � U . The reason is that any sequential theory interprets S1
2. Of course, S1

2 does interpret the theory of 
the ordering of the natural numbers. However, that only gives the trivial interpreter logic that proves ⊥. 
So, one might wonder whether there is a more interesting base for S1

2. We will discuss some hopeful signs 
that there is in Section 9. ❍

If we combine Theorems 6.3 with 8.13, we get what I would count as a version of the Second Incomplete-
ness Theorem.

Corollary 8.15. Suppose that A is finitely axiomatised and consistent and that U is Friedman-reflexive. 
Suppose further that one of A, U is sequential. Then, A �� (U + A).
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8.4. Interpreter logic

In this subsection, we will be concerned with interpreter logics over sequential Friedman-reflexive bases. 
These interpreter logics satisfy Löb’s Logic. We will show that, if the base is, in addition, effectively
Friedman-reflexive, then the proof of Solovay’s Theorem works with minor adaptations.

8.4.1. Soundness
Combining Theorems 6.4 and 8.13, we find:

Theorem 8.16. Let 〈A,U〉 be an FM-frame. Suppose that one of A, U is sequential. Then, Λfr
〈A,U〉 extends

GL.

Since we have Löb’s Logic when either A or U is sequential, we also have explicit solutions for modal 
equations where the fixed point variable is guarded. E.g., A � � ↔ ¬ �. The Gödel Fixed Point 
Lemma plays a role in our proof of this fact via the proof of Theorem 8.13, but it is still not a direct
application.

Can we prove Löb’s Principle more directly? Remember that we do not even know whether our provability-
like operator can be represented in A by a formula. E.g., S1

2 and the theory of the ordering of the natural 
numbers would provide an example. Surprisingly, we can employ the usual argument in case U is effectively
Friedman-reflexive. We give the argument below. Even if we, thus, prove a result that is weaker than 
what we already know, we think the alternative proof is of independent interest. E.g., it could have other 
generalisations. We first prove a Fixed Point Lemma.

Theorem 8.17. Suppose U is sequential and effectively Friedman-reflexive. Let N : U � S1
2. We define I

w.r.t. N . Suppose A(x) is a boolean combination of Σ0
1-formulas with just x free. Then, there is a B in the 

U -language, such that U e � B ↔ AI(�B�).

Proof. Suppose U is sequential and effectively Friedman-reflexive. Let N and I be as in the statement of 
the Theorem.

By effectivity, we can find a recursive F that sends any Σ0
1-sentences S to SI , where SI is equivalent over 

U e to SI. We can lift this function to Boolean combinations of Σ0
1-sentences. Let’s say the result is G.

Suppose A(x) is a boolean combination of Σ0
1-formulas with just x free. We write A(G(x)) for the result 

of replacing each Σ0
1-component Sx of the Boolean combination by ∃y, z, u (G0xyz ∧ S0yu), where Gxyz

is a Δ0
1-formula such that ∃z Gxyz represents the graph of G and S0yu is a Δ0-formula such that Sx is 

(equivalent to) ∃u S0xu.
We can find a C such that EA � C ↔ A(G(�C�)), by the Gödel Fixed Point Lemma. We note that the 

Fixed Point Lemma yields a sentence of the form A(G(t)), where t is a substitution term. Since, this term 
is not really in the language, we have to eliminate it. We do this in the same way as we did for the function 
G, so that C is again a boolean combination of Σ0

1-sentences. Let B := G(C). Then,

U e � (C ↔ A(G(�C�)))I

� CI ↔ (A(G(�C�)))I

� B ↔ (A(�B�))I ❑

Theorem 8.18 (Alternative Proof for Löb’s Principle in the effective Case). Suppose U is sequential and 
effectively Friedman-reflexive. Let K : A � U be an FM-interpretation. Then, Λfr

K proves Löb’s Principle.

Proof. Suppose U is sequential and effectively Friedman-reflexive. Let K : A �U be an FM-interpretation. 
Consider any B in the A-language. By Theorem 8.17, we can find a D such that U e � D ↔ �I

A(DK → B). 
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Thus, U � D ↔ A(DK → B). Setting E := DK , we find A � E ↔ A(E → B). So, we have one variant of 
the Löb Fixed Point in A. Since we have K4, Löb’s Principle follows. ❑

8.4.2. Solovay’s Theorem
We can prove Solovay’s Theorem in case the base theory U is both sequential and effectively Friedman-

reflexive. We first formulate the theorem.
Let α range over 0, 1, . . . , ∞. We define 0 ⊥ := ⊥, k+1 ⊥ := k ⊥, and ∞ ⊥ := � and, similarly, for 

. Suppose K : A � U is an FM-interpretation. Let d(K) be the smallest α such that A � α
K,A ⊥.

Theorem 8.19 (Solovay’s Theorem for sequential effectively Friedman-reflexive bases). Suppose that K : A � U is an 
FM-interpretation and that U is effectively Friedman-reflexive and sequential. Then, Λfr

K = GL + d(K) ⊥.

We will prove Solovay’s Theorem by verifying the conditions for it given in [3]. See also [28].
The idea of de Jongh, Jumelet and Montagna is that Solovay’s embedding result can be verified in an 

extension of the modal logic R− enriched with certain fixed points. We introduce the logic R− of Guaspari 
and Solovay. See [6]. The language of R− is given by:

• α ::= p0 | p1 | . . .
• ϕ ::= α | ⊥ | � | ¬ ϕ | ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ → ϕ) | ( ϕ < ϕ) | ( ϕ ≤ ϕ)

The logic R− is axiomatised by the axioms and rules of GL (for the extended language) plus the following 
axioms.

R−1. � ( ϕ ≤ ψ) → ϕ

R−2. � (( ϕ ≤ ψ) ∧ ( ψ ≤ χ)) → ( ϕ ≤ χ)
R−3. � ( ϕ < ψ) ↔ (( ϕ ≤ ψ) ∧ ¬ ( ψ ≤ ϕ))
R−4. � ϕ → (( ϕ ≤ ψ) ∨ ( ψ ≤ ϕ))
R−5. � ( ϕ ≤ ψ) → ( ϕ ≤ ψ)
R−6. � ( ϕ < ψ) → ( ϕ < ψ)

We will usually omit the brackets around ( ϕ < ψ) taking < to bind stronger than all other connectives. 
Similarly, for ≤.

Now consider a finite Kripke model K of GL with nodes 0, . . . , n − 1. Here 0 is the bottom node. Let ≺
be its accessibility relation. We want to ‘embed’ this model in our modal logic. To realise this purpose, we 
add constants �i, for i < n, to the language of R− and we extend the schemes to the extended language. We 
demand that the constants satisfy the following equations. We write j ‖ i for j is incompatible with i w.r.t. 
≺.

fp1. � �i ↔ ( ¬ �i ∧
∧

j�i �j ∧
∧

j‖i
∨

k�i, k‖j ¬ �k < ¬ �j).
fp2. For i �= j, we have � ¬ �i ≤ ¬ �j → ¬ �i < ¬ �j .

We proceed to introduce our intended interpretation of ≤ and <. We remind the reader of the witness 
comparison notation. We define, for any C = ∃x C0(x) and D = ∃y D0(y):

• C ≤ D := ∃x (C0(x) ∧ ∀y < x ¬D0(y)),
• C < D := ∃x (C0(x) ∧ ∀y ≤ x ¬D0(y)),
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Suppose K : A � U is an FM-interpretation, where U is sequential. As usual we work with a fixed 
N : U � S1

2.

• We define A B < A C by (�AB < �AC)I , where I is a cut such that

U e � (�AB < �AC)I ↔ (�AB < �AC)I.

• We define K,A B < K,A C by ( A B < A C)K .
• We define A B ≤ A C and K,A B ≤ K,A C similarly.

We extend the notion of translation of the modal language to the richer vocabulary in the obvious way.

Theorem 8.20. Suppose K : A � U is an FM-interpretation, where U is sequential. Let N : U � S1
2. Then, 

we have R− for all K, A-translations of the modal language.

Proof. Ad R−1. We have EA � �AB ≤ �AC → �AB. It follows that

DAe � (�AB ≤ �AC → �AB)I.

Hence, U � A B ≤ A C → A B. We may conclude that

A � K,A B ≤ K,A C → K,A B.

The proofs of R−2, R−3, and R−4 are similar.
We treat R−5. Let I be a cut such that

U e � (�AB < �AC)I ↔ (�AB < �AC)I.

We have: EA � �AB ≤ �AC → �A(�AB ≤ �AC)IK . So,

U e � (�AB ≤ �AC → �A(�AB ≤ �AC)IK)I.

And, thus,

U � A B ≤ A C → A( K,A B ≤ K,A C).

We may conclude that A � K,A B ≤ K,A C → K,A ( K,A B ≤ K,A C).
The proof of R−6 is similar to that of R−5. ❑

To provide the �i we need an extension of Theorem 8.17.

Theorem 8.21. Suppose U is sequential and effectively Friedman-reflexive. Let N : U � S1
2. We define I

w.r.t. N . Suppose we have formulas Ai(x0, . . . , xk−1), for i < k, where each Ai is a boolean combination of 
Σ0

1-formulas with just x0, . . . , xk−1 free. Then, for i < k, there are Bi in the U -language, such that

U e � Bi ↔ AI
i (�B0�, . . . , �Bk−1�),

for each i < k.
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The proof of the Theorem is similar to the proof of Theorem 8.17 using the Multiple Fixed Point Lemma 
as it is available in EA.

In the proof of Theorem 8.22, we need the assumptions that we work with a single conclusion system 
and that the fixed point construction is a usual construction.

Theorem 8.22. Suppose K : A � U is an FM-interpretation, where U is sequential. Suppose U is effectively 
Friedman-reflexive. Let N : U �S1

2. Let K be a Kripke model for GL with nodes 0, . . . , n −1 and accessibility 
relation ≺, where 0 is the bottom node. Then, we can find sentences Li, for i < n, such that:

a. A � Li ↔ ( K,A ¬ Li ∧
∧

j�i K,A Lj ∧
∧

j‖i
∨

k�i, k‖j K,A ¬ Lk < ¬ Lj).
b. For i �= j, we have A � K,A ¬ Li ≤ K,A ¬ Lj → K,A ¬ Li < K,A ¬ Lj.

Proof. Using Theorem 8.21, we can find sentences λi such that:

U e � λi ↔ (i = i ∧ �A¬λK
i ∧

∧

j�i

�Aλ
K
j ∧

∧

j‖i

∨

k�i, k‖j
�A¬λK

k < �A¬λK
j )I.

Hence,

U � λi ↔ ( A ¬λK
i ∧

∧

j�i

A λK
j ∧

∧

j‖i

∨

k�i, k‖j
A ¬λK

k < A ¬λK
j ).

Taking Li := λK
i , we find (a).

Claim (b) follows from the fact that, for i �= j:

EA � �A¬Li ≤ �A¬Lj → �A¬Li < �A¬Lj .

We note that this last fact uses that our proof system is single conclusion and that the Li are pairwise 
distinct. This last insight follows from the fact that the λi are pairwise distinct. This is because the first 
conjunct of Λi has the form (i = i)I , for some N -cut I. ❑

Solovay’s Theorem now follows from the results of [3]. We have the following corollary.

Corollary 8.23. Suppose K : A � U is a faithful FM-interpretation and A is consistent and U is effectively 
Friedman-reflexive, sequential, and polyglottic. Then, Λfr

K = GL.

Proof. We assume the conditions of the corollary. Clearly A + 0
K,A � is consistent. Suppose A + n

K,A �
is consistent. So, by polyglotticity, U + A

n
K,A � is consistent. But, then, by faithfulness, A + n+1

K,A � is 
consistent. It follows that d(K) = ∞. ❑

Corollary 8.24. Suppose 〈A,U〉 is an FM-frame, A is consistent and sequential, and U is RE, effectively 
Friedman-reflexive, sequential, and polyglottic. Then, Λfr

A,U = GL.

Proof. By a result of Friedman, if there is an interpretation of an RE theory U in a finitely axiomatised A, 
then there is also a faithful one. See [14] or [20]. ❑

9. Concluding remarks

In this section, we look briefly backward at what is and what is not achieved and we look forward at a 
possible next step in the program.
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9.1. Coordinate-free?

Did we succeed in giving a treatment of the Second Incompleteness Theorem and of provability logic that 
is indeed coordinate-free?

The results of our general framework as, for example, provided in Sections 3, 6 and B.1 clearly do not 
involve arithmetisation, neither in their statement nor in their proof (with the exception of the proof of 
Theorem 3.10). In the remaining sections we have general results that do not depend on arithmetisation in 
their statement but that do ask for a proof involving arithmetisation.

Sometimes the concrete statement of an application does involve arithmetisation. This is not unlike the 
situation for the Cartesian product in Category Theory. The general treatment of the product is clearly 
implementation-free, but if we want to apply it, e.g., to the hereditarily finite sets, we have to define the 
category from the sets and, for this, we need to code pairing . . .

A first point of discussion is that the usual finite axiomatisations of many salient finitely axiomatisable 
theories employ a truth predicate. Examples are S1

2, EA, and IΣ1.18 So, statements involving these theories 
would not be coordinate-free to begin with. Now, of course, we could also axiomatise these with the first 
so-and-so-many instances of their coordinate-free schematic axiomatisations. That would be a bit unnatural 
perhaps, but it would be at least a coordinate-free specification. Maybe a better way of looking at the 
matter is as follows. All finite axiomatisations of a theory are provably equivalent. Since, our framework 
works modulo provable equivalence, we are not dependent on a specific finite axiomatisation. Moreover, the 
class of all finite axiomatisations is uniquely determined by the infinite axiomatisation, which in the cases 
above, is coordinate-free.

Here are some further examples as food for thought.

• Peano Corto is interpretable in S1
2 + S1

2
�. However, neither S1

2 + S1
2
� itself nor the Henkin interpre-

tation that we employ is coordinate-free.
• Peano Corto is interpretable in EA, since EA interprets S1

2 + S1
2
� on a super-logarithmic cut. Here EA

is coordinate-free (ignoring the worry articulated above) but the only interpretation that we know of is 
not.

• By Vaught’s Theorem (see [17,24]), there is a finite axiom scheme that axiomatises Peano Corto. We 
replace the schematic variables in the scheme by class variables and take the universal closure. Also we 
add Predicative Comprehension. This results in a finitely axiomatised theory, say W , that conservatively 
extends Peano Corto in an extended language. One can show that W is mutually interpretable with
EA. The interpretation of EA in W can be taken to be coordinate-free: we have EA on the intersection 
of all cuts that are classes. The interpretation of Peano Corto in W is also coordinate-free, however the 
specification of W is not, since the Vaught construction uses truth-predicates.

We note that, if we only know arithmetisation-involving interpretations, but both theories are coordinate-
free, then the frame properties are unproblematic. For example, our version of G2 for EA and Peano Corto 
is EA �� (PA↓↓ + EA), which is perfectly fine, and, similarly, for the fact that the frame-logic of 〈EA,PA↓↓〉
is GL.

Remark 9.1. We consider the following theory IIA (Initial Isomorphism Arithmetic). We start with S1
2. We 

expand the language with second-order variables and we expand the theory with predicative comprehension 
obtaining PC(S1

2). Now we expand the language with a new unary predicate J and a binary predicate F. We 
add an axiom ∀I (cut(I) → J ⊆ I) and an axiom stating that F is an isomorphism between ID and J.

18 Similarly, the finite axiomatisation of predicative comprehension over a pair theory does involve various implementation details. 
See [21, Appendix A].
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By Theorem 5.9 of [26], it follows that IIA and Peano Basso have the same arithmetical consequences. 
So, the pair IIA and Peano Basso form a nice coordinate free pair.19

Since PC(S1
2) is mutually interpretable with S1

2 + S1
2
� and S1

2 + S1
2
� is mutually interpretable with

EA, we find that IIA interprets EA. ❍

Open Question 9.2.

i. Can we find a more canonical axiom scheme for Peano Corto in a coordinate-free way? We note that 
the cuts are already schematic. The whole problem is in replacing the schematic variable that ranges 
over Σ0

1-sentences by an unrestricted one that ranges over arbitrary formulas.
ii. Is there a coordinate-free specification of an interpretation of Peano Corto in EA or in some IΣn?
iii. Do we have EA � IIA? ❍

9.2. New insights

Finding coordinate-free representations is a worthy aim, but it should not stand alone. We also want new 
insights. The present paper does indeed produce some new insights.

For example, the usual form of G2, for the case of EA, is (a) EA �� (S1
2 + EA �). However, we do have 

EA�(S1
2+�EA�). Our version of G2 with base PA↓↓ is (b) EA �� (PA↓↓+ EA �) = (PA↓↓+�EA�). We see that 

in (a) the base theory is weaker and the consistency statement stronger. In (b) it is the other way around. 
Both (a) and (b) follow from a version of G2 due to Pudlák: (c) EA �� �(EA) := (S1

2 + { n,EA � | n ∈ ω}). 
We suspect that the version of (b) with PA↓↓ replaced by DA does not directly follow from (c). However, 
this depends on a negative answer to Question 8.8(i).

The most convincing example of a new phenomenon is Solovay’s Theorem for interpreter logics over a 
sequential, effectively Friedman-reflexive base.

9.3. Perspectives

We think the obvious next step in the project should be the study of Friedman-reflexivity for pair theories. 
There is hope for progress, since Fedor Pakhomov suggested a very natural construction of an effectively 
Friedman-reflexive pair theory. This theory is interpretable in S1

2.
Of course, the present paper also left a list of open questions. We collected them in Appendix E.
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Appendix A. Notations, notions and imported results

Theories will be theories in predicate logic of finite signature. We allow theories with sets of axioms 
of arbitrary complexity. The variables T, U, V, . . . will range over theories. The variables A, B, C, . . . will 
ambiguously range over sentences and finitely axiomatised theories.

Interpretations will be multi-dimensional piece-wise interpretations. If we assume that a theory proves 
that there are at least two objects the piece-wiseness can be eliminated. A property—typical for piece-wise 

19 We could even take PA− as starting point rather than S1
2, so removing all doubts regarding coordinate freedom. In fact we need 

only add closure under ω1 to the PA−-based version of IIA to obtain precisely IIA. Moreover, we could add ω1 using a new symbol 
and adding appropriate recursion axioms, thus even avoiding sequence coding and the like.
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interpretations—we use in the paper is that predicate logic can interpret the theory of any finite model. 
The reader is referred to our paper [32] for a quick introduction to the details. The idea of a piece-wise 
interpretation is explained in [30] and in [27].

We will use depth-of-quantifier-alternations as our measure ρ of complexity of formulas. The notion is 
worked out in detail in [32].

Here are our main notions and notations.

• U ⊆ V means that the theory V considered as a set of theorems extends the theory U considered as a 
set of theorems, where V has the same language as U .

• We write α B for the formalised statement that B is provable from the theory with axiom-set repre-
sented by α. In case A is a finitely axiomatised theory, we write A B for α0 B, where α0 =

∨
i<n x =

�Ai�, where A0, . . . , An−1 are the axioms of A. We write for ¬ ¬.
We use K

α B for ( α B)K , where the superscript K means relativisation to interpretation K. Note that 
here α is interpreted inside K.

• We write n,A B for the formalised statement that B is provable from A using only statements of ρ-
complexity ≤ n, where ρ measures the depth of quantifier alternations. We will usually implicitly assume 
that n ≥ ρ(A).

• We write �AB for ρ(A→B),A B and �AB for ¬ �A¬ B.
• We write K : U�V or K : V �U for K is an interpretation of V in U . We write U�V for ∃KK : U�V , 

etcetera, We write U �� V for U and V are mutually interpretable. In other words, U �� V iff U � V

and U � V .20 In the context of a category of interpretations, we will use V K−→ U , for K : V � U .
• E := INT+

3 is the category of theories and interpretations, where two interpretations K, K ′ : V → U are 
the same iff, for all V -sentences A, we have U � AK ↔ AK′ .

• EV U is the interpretation based on the identical translation that witnesses V ⊆ U .
• U and V are sententially congruent or elementarily congruent iff they are isomorphic in E.
• A theory U is restricted if, for some m all its axioms are of ρ-complexity ≤ m.
• Let an interpretation N : S1

2 � U be given. A definable N -cut in U is given by a formula I such that U
proves that I is a subclass of N and is closed under 0N , SN , +N , × and ω1N and downwards closed w.r.t. 
≤N . The formula defining I need not be of the form JN . If I is definable inside N , the cut is N -internal. 
In case N is a multi-dimensional interpretation, the cut I is also multi-dimensional. Similarly, if N is 
piecewise, then I need not be given by a single formula but by a number of pieces. Since, we need our 
notion mostly in the context of sequential theories these fine points can be safely ignored.

We turn to the statement of some central results that we import from outside in this paper. Let true
be a standard Σ0

1-truth predicate. The following theorem is a direct consequence of the estimate of the 
transformation of witnesses, when we move from S to true(S), for Σ0

1-sentences S. See [8, V.5(b)] for details. 
We can give a similar estimate for the case of provability.

Theorem A.1. Let J be a logarithmic cut in S1
2. Then,

a. S1
2 � SJ → true(�S�).

b. S1
2 � SJ → m,S1

2
S, for sufficiently large m.

(The number m will be max(ρ(S1
2), ρ(S)) plus some constant for the overhead.)

20 We used to employ ≡ for mutual interpretability. However, in the writings of Lev Beklemishev and his school, ≡ is used for 
extensional sameness of theories.
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The following theorem is a watered-down and inessentially modified version of Theorem 6.2. of [32]. This 
theorem is an extension of earlier results independently obtained by Harvey Friedman (see [14]) and Jan 
Krajíček (see [9]). See also [19,20].

Theorem A.2. Suppose U is a consistent restricted sequential RE theory with bound m. Let K be a witness 
of sequentiality for U . Let N : S1

2 �U . Then, from the data m, K, and N , we can effectively find an N -cut 
I such that, for all Σ0

1-sentences S, if U � SI , then S is true.

The following theorem is Theorem 4.15 of [20]

Theorem A.3. Suppose A is a consistent, finitely axiomatised sequential theory. Suppose A �� U . Then, there 
is an N : S1

2 � U , such that N is Σ0
1-sound. In other words, U tolerates S1

2 plus all true Π0
1-sentences.

In our paper, we use the following immediate consequence of Theorem A.3.

Theorem A.4. Suppose A is consistent, finitely axiomatised and sequential. Suppose further that K : A � A

and N : A � S1
2. Then there is an N -cut I such that K ◦ I is Σ0

1-sound.

Proof. Let U be axiomatised by the B such that A � BK . Clearly, A �� U . Let N ′ be the interpretation 
promised by Theorem A.3. Take I the common cut of N and N ′. ❑

Remark A.5. It is easy to see that Theorem A.4 immediately implies Theorem A.3. In fact, the natural 
order is to prove Theorem A.4 first. ❍

Finally, we sketch some of the details of the treatment of the functor Seq. We remind the reader that the 
mapping Seq is defined as follows. We start with a theory V . We extend the signature of V with a unary 
predicate D and a binary predicate ∈. The axioms of Seq(V ) are the axioms of V relativised to D plus the 
unrelativised axioms of Adjunctive Set Theory AS plus the axiom that says that all elements of D are empty 
sets. (For an introduction to Adjunctive Set Theory, further references, and some history, see [25].) Let ηV
be the interpretation of V in Seq(V ) given by relativisation to D.

Theorem A.6. Suppose V K−→ W . Then there is an interpretation Seq(K) such that Seq(V ) Seq(K)−→ Seq(W ).

Proof. Suppose V K−→ W . Consider the interpretation K ′ := θV ◦K of V in Seq(W ). We note that K may be 
piece-wise and multidimensional (with possibly different dimensions for the pieces). Since in Seq(W ) we have 
the full machinery of sequences available, we can rebuild K ′ to a one-dimensional, one-piece interpretation 
K∗ that is Seq(W )-provably definably isomorphic to K ′. We extend K∗ to the interpretation M := Seq(K)
as follows.

• M has two pieces s and o both of dimension 1.
• δoM is δK∗ and δsM is the complement of D.
• Identity between elements of different pieces is always ⊥. We have: x =oo

M y iff x and y are in δoM and 
x =K∗ y, and x =ss

M y iff x and y are in δsM and x = y.
• Do

M is δoM and Ds
M is empty.

• Let P be an n-ary predicate of the V -language. Then P o,...,o
M (�x ) tells us that each xi is in δoM and that 

PK∗(�x ). If any variable in P (�x ) is assigned a non-o piece, then PM (�x ) is false.
• We have:

◦ x ∈oo
M y and x ∈so

M y are false.
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◦ x ∈os
M y iff x ∈ δoM , y ∈ δsM , and there is an x′ with x =K∗ x′ and “〈0, x′〉 ∈ y”. Here the scare quotes 

are there to remind us that we do not have extensionality. So we really mean here: there is an empty 
set z and there is a pair of the form 〈z, x′〉 such that . . .

◦ x ∈ss
M y iff x ∈ δsM , y ∈ δsM , and “〈1, x〉 ∈ y”.

It is easy to verify that the interpretation sketched here indeed is an interpretation of Seq(V ) in Seq(W ). ❑

It would be nice if we could prove that Seq lifts to a functor in E. However, we do not quite see how that 
can work for the ∈-part.

Open Question A.7. Does Seq or, some appropriate variant of it, lift to a functor on E? ❍

Theorem A.8. Suppose V is sequential. Then, Seq(V ) �� V .

Proof. We have V
ηV−→ Seq(V ). Let ∈	 be a V -formula that witnesses that V is sequential. Our interpretation 

M of Seq(V ) in V looks as follows. We duplicate the domain by having two pieces s and o with domain 
x = x. We let D correspond to the elements in the o-piece and have the predicates of V on the o-piece. We 
take x ∈os

M y iff x and y are in the correct domains and “〈0, x〉 ∈	 y”. Similarly, x ∈ss
M y iff x and y are in 

the correct domains and “〈1, x〉 ∈	 y”. We set ∈M to ⊥ in the other cases. ❑

Appendix B. Two special classes of theories

In this appendix we have a brief look at Friedman-reflexive theories that are complete and at Friedman-
reflexive theories that are finitely axiomatised.

B.1. Complete theories

We discuss the case of complete theories.

Theorem B.1. Suppose U is a complete theory. Then, U is Friedman-reflexive.

Proof. Suppose U is complete. So, modulo U -provable equivalence, we only have propositions � and ⊥. So, 
A has as pro-interpreters, modulo provable equivalence, either just ⊥ or both ⊥ and �. In the first case, 
the desired interpreter is ⊥, in the second it is �. ❑

Example B.2. Presburger Arithmetic is complete and decidable. So, it is Friedman-reflexive but not effec-
tively so.

True arithmetic Th(N) extends PA and is, hence, effectively Friedman-reflexive. Thus, we have an example 
of a complete theory that is effectively Friedman-reflexive. We note that the that takes � and ⊥ as values 
cannot be recursive, providing an example of a salient non-recursive choice of . ❍

We consider the interpreter logic for a complete base. We note that if 〈U,A〉 is an FM-frame and U is 
complete, then U must be decidable and, hence any choice for must be non-computable.

We show that the interpreter logics for complete bases extend K45.

Theorem B.3. Suppose K : A � U is an FM-interpretation and U is complete. Then, we have 
A � K,A B → K,A K,A B.



34 A. Visser / Annals of Pure and Applied Logic 173 (2022) 103160
Proof. Suppose K : A � U is an FM-interpretation and U is complete. Consider any A-sentence B. If 
A + K,A B is inconsistent, we are done. If not, it follows that U+ A B is consistent. Hence, by completeness, 
U � A B. So, A � K,A B and, hence, A � K,A K,A B. We may conclude that in both cases, we have 
A � K,A B → K,A K,A B. ❑

We note that, if U �� A, then U � A and, so, U � ¬ A. It follows that A � K,A ⊥. So, the interpreter 
logic for A trivialises. Suppose, on the other hand, that U � A. Then, A � K,A �. We note that, in this 
case, U is mutually interpretable with a finite sub-theory.

We suspect that most non-finitely axiomatisable complete and decidable theories in the literature have 
the property that they are not interpretable in a finite sub-theory. This has been verified for Presburger 
Arithmetic. See [12]. (So, the interpreter frame logic of Presburger Arithmetic trivialises.)

There are, of course, also examples of consistent, finitely axiomatised, complete and decidable theories 
like the theory of dense linear orderings without end-points and the theory of the ordering of the natural 
numbers.

Open Question B.4. Is there an example of an FM-interpretation K : A � U , where U is complete, with an 
interesting interpreter logic? ❍

B.2. Finitely axiomatised theories

If the Friedman-reflexive base is finitely axiomatised, we can view the embedding functor as an embedding 
of the finite extensions of the base A in the finitely axiomatised theories. So, we can view the Friedman-
reflexivity of the base as the existence of an adjoint of this functor.

There are plenty of consistent complete finitely axiomatised theories, so we do not lack examples of the 
phenomenon of a consistent finitely axiomatised Friedman-reflexive theory. However, these examples cannot 
be effectively Friedman-reflexive, since they, clearly, cannot be essentially undecidable.

Open Question B.5. Is there a consistent finitely axiomatised theory that is effectively Friedman-reflexive? 
❍

In the case of a finitely axiomatised base, there is, of course, the salient interpreter logic of A over A via 
the identical interpretation. This logic satisfies S4, since IdA is clearly companiable.

Appendix C. A notion of sameness of interpretations

The notion of sameness of theories that is relevant in the present paper is sentential congruence or E-
isomorphism (see Appendix A, for the definition of E). In the case of interpreter logics, the relevant notion 

of sameness of interpretations is as follows. Suppose V0
K0−→ W0, V1

K1−→ W1.

• K0 ≈ K1 iff, there are V0
M−→ V1, V1

M̆−→ V0, W0
P−→ W1, W1

P̆−→ W0, such that M, M̆ and P, P̆ are 
pairs of inverses in E and K1 ◦M = P ◦K0 in E.

V0 W0

V1 W1

K0

M,M̆ P,P̆

K1

We note that ≈ is simply isomorphism in the arrow category Arr(E).
We have the following theorem.



A. Visser / Annals of Pure and Applied Logic 173 (2022) 103160 35
Theorem C.1. Suppose U0 is Friedman-reflexive and A0, A1 are finitely axiomatised. Suppose further that 
U0

K0−→ A0, U1
K1−→ A1 and K0 ≈ K1. Then U1 is Friedman-reflexive and Λfr

K0
= Λfr

K1
.

The theorem is one of these somewhat annoying examples where the truth is immediately clear but it still 
requires some work to really prove it.

To prove the theorem, we need a few lemmas. We assume the conditions of the theorem. Since, K0 ≈ K1, 
we can find M, M̆, P, P̆ such that the following diagram commutes.

U0 A0

U1 A1

K0

M,M̆ P,P̆

K1

Here M and P correspond to the down-direction of the isomorphism and M̆ and P̆ go up.
The fact that U1 is Friedman reflexive is immediate from Theorem 5.3.

Lemma C.2. A0 � K0,A0 B ↔ P̆
K1,A1

BP and A1 � K1,A1 D ↔ P
K0,A0

DP̆ .

Proof. By symmetry, we only have to prove the first conjunct of the lemma. We first prove:

(†) U0 � (U0),A0 B ↔ M̆
(U1),A1

BP .

We have:

U0 + M̆
(U1),A1

BP � U1 + (U1),A1 B
P

� (A1 + BP )

� (A0 + B)

It follows that

(‡) U0 + M̆
(U1),A1

BP � (U0),A0 B.

By symmetry, we find U1 + M
(U0),A0

DQ � (U1),A1 D. Substituting BP for D gives U1 + M
U0,A0

BPQ �
(U1),A1 B

P . By Theorem 3.5, we may replace provable equivalents under (U0), so: U1 + M
(U0),A0

B �
(U1),A1 B

P . It follows that

U0 + MM̆
(U0),A0

B � M̆
(U1).A1

BP

and, hence,

($) U0 + (U0),A0 B � M̆
(U1),A1

BP .

Combining (‡) and ($), we find (†). In its turn (†) gives us:

A0 � K0,A0 B ↔ K0
(U0),A0

B

↔ M̆K0
(U1),A1

BP

↔ K1P̆
(U1),A1

BP

↔ P̆
K ,A BP ❑
1 1
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Suppose τi is a function from the propositional atoms to the Ai-language. To simplify notations a bit we 
will confuse, e.g., P and the mapping D �→ DP .

Lemma C.3. We have:

A0 � ϕ(τ0,K0) ↔ ϕ(P◦τ0,K1)P̆ and A1 � ϕ(τ1,K1) ↔ ϕ(P̆◦τ1,K0)P .

Proof. We prove the first conjunct. Our proof is by induction on ϕ. In the atomic case we have:

A0 � p(τ0,K0) ↔ τ0(p)

↔ (τ0(p))PP̆

↔ p(P◦τ0,K1)P̆

The cases of the truth-functional connectives are simple. Finally, for the case of , we employ Lemma C.2.

A0 � ( ψ)(τ0,K0) ↔ K0,A0 ψ
(τ0,K0)

↔ K0,A0 ψ
(P◦τ0,K1)P̆

↔ ( K1,A1 ψ
(P◦τ0,K1)P̆P )P̆

↔ ( K1,A1 ψ
(P◦τ0,K1))P̆

↔ ( ψ)(P◦τ0,K1)P̆ ❑

Finally, we prove the theorem.

Proof of Theorem C.1. We have:

A1 � ϕ(P◦τ,K1) ⇒ A0 � ϕ(P◦τ,K1)P̆

⇒ A0 � ϕ(τ,K0)

It follows that, if Λfr
K1

� ϕ, then Λfr
K0

� ϕ. By symmetry, we also have the other direction. ❑

We have a second preservation theorem.

Theorem C.4. Let F be an endofunctor of D. Here we suppose that F is specified on concrete theories and 
interpretations. We assume that:

• F preserves finite axiomatisability.
• For each theory V , there is a faithful interpretation V

ηV−→ F (V ).
• Suppose Γ is a set of sentences in the V -language. Then, F (V + Γ) = F (V ) + ΓηV .21

We note that we can drop the ‘faithful’ in Condition (B), if we demand that F preserves consistency.
Let U be Friedman-reflexive and suppose F (V ) MV−→ V , for all extensions V of U in the same language. 

Here there is no further constraint on the MV . Let A be finitely axiomatised and suppose U K−→ A.
We have: Λfr

ηA◦K ⊆ Λfr
K .

21 This condition does not look very ‘categorical’, since it goes into the hardware. In Appendix C, we discuss a more categorical 
formulation.
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Proof. For some P , we have (A + B) P−→ (U + A B). Let M ′ := MU+ A B . We have:

(F (A) + BηA) = F (A + B) F (U + A B) (U + A B)F (P ) M ′

So, (a) U � A B → F (A) B
ηA .

For some Q, we have Q : (F (A) + BηA) Q−→ (U + F (A) B
ηA). So, we have:

(A + B) F (A + B) = (F (A) + BηA) (U + F (A) B
ηA)ηA+B Q

So, (b) U � F (A) B
ηA → A B. Combining (a) and (b), we find:

U � F (A) B
ηA ↔ A B.

We may conclude that:

(†) F (A) � ηA◦K,F (A) B
ηA ↔ ηA

K,A B.

Let σ be any function from propositional variables to sentences of the A-language. To lighten our notational 
burdens a bit, we will confuse ηA and the mapping: D �→ DηA . By induction, we prove that F (A) �
ϕ(ηA◦σ,ηA◦K) ↔ (ϕ(σ,K))ηA . We treat the case of . Let ϕ := ψ. Using (†), we find:

F (A) � ϕ(ηA◦σ,ηA◦K) ↔ ηA◦K,F (A) ψ
(ηA◦σ,ηA◦K)

↔ ηA◦K,F (A)(ψ(σ,K))ηA

↔ ηA

K,A ψ(σ,K)

↔ (ϕ(σ,K))ηA

From the fact that ηA is faithful, we now have:

(‡) F (U) � ϕ(ηA◦σ,ηA◦K) ⇔ F (U) � (ϕ(σ,K))ηA

⇔ U � ϕ(σ,K)

Our theorem is immediate from (‡). ❑

Let inV0,V1
i be the obvious interpretation of Vi in V0 � V1.

Corollary C.5. Suppose K : A � U is an FM-interpretation. Then, we have Λfr
inA,B

0 ◦K ⊆ Λfr
K .

Here is a direct application of Theorem C.4. We consider the functor Seq of Remark 7.7. Let jV be the 
interpretation based on relativisation to D.

Theorem C.6. Suppose U is sequential and Friedman-reflexive and K : A � U . Then, Λfr
jA◦K ⊆ Λfr

K .

Proof. We apply Theorem C.4 with jA in the role of ηA. ❑

Here are two simple observations.

Theorem C.7. Suppose U is Friedman-reflexive and K : U � A. Let B be a sentence in the A-language. 
Then, A � K,A(B ∧ C) ↔ K,A+B C.
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Suppose K : A � U . Let Th(K) := {B | A � BK}.

Theorem C.8. Suppose U is Friedman-reflexive and K : U � A. Let K∗ : Th(K) � A be the interpretation 
based on τK the translation given with K. Then, Λfr

K = Λfr
K∗ .

We leave the proofs to the reader.

Open Question C.9. Suppose K, M : U � A are FM-interpretations and Th(K) = Th(M). Do we have 
Λfr
K = Λfr

M , or is there a counter-example? ❍

Remark C.10. The conditions for Theorem C.4 look somewhat ad hoc. Especially, Condition (C) goes into 
the hardware in an unelegant way. The following (more specific) conditions look a little bit better. However, 
they have the disadvantage that they do not (yet) apply to our main application: we did not supply a version 
of Seq that is an endofunctor of E.

We work in category E enriched with designated embedding arrows V EV W−→ W between theories of the 
same signature that are based on the identity translation. We demand that F is a functor on the enriched 
category that preserves (modulo sameness) the embedding arrows. Let ⊥ ⊥ be the theory in the language of 
identity axiomatised by ⊥.

Our new conditions are as follows.

A	. F preserves finite axiomatisability.
B	. If ⊥ ⊥ −→ F (V ), then ⊥ ⊥ −→ V .
C	. For each V , there is an interpretation V

ηV−→ F (V ) such that:

Z

W F (W )

V F (V )

ηW

P

⊆

⊆

ηV

⊆
⊆

If V ⊆ W , then, EF (V )F (W ) ◦ ηV = ηW ◦ EVW . Moreover, whenever EF (V )Z ◦ ηV = P ◦ EVW , then 
F (W ) ⊆ Z and P = EF (W )Z ◦ ηW .

It is easy to see that the new conditions imply the old ones. ❍

Appendix D. Local logics for a frame

There are other notions that can be considered than just the logic associated with an FM-frame or 
an FM-interpretation. Let 〈A,U〉 be an FM-frame. Let X range over finite sets of assignments from the 
propositional variables to A-sentences and let K range over interpretations K : A � U . We define:

• Λ	
A,U := {ϕ | ∀X ∃K ∀σ ∈ X A � ϕ(σ,K)}.

• Λ is a local logic for 〈A,U〉 if Λ is a subset of Λ	
A,U that contains K4 and is closed under modus ponens, 

necessitation, and substitution.

We have the following obvious facts.

Theorem D.1. Λfr
A,U ⊆ Λ	

A,U .
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Thus, the class of local logics is non-empty.

Theorem D.2. Consider an FM-frame 〈A,U〉. Then, Λ	
A,U is closed under substitution and necessitation. 

Moreover, if ϕ is in Λ	
A,U and ψ is in Λfr

A,U , then (ϕ ∧ ψ) is in Λ	
A,U .

Theorem D.3. Consider an FM-frame 〈A,U〉. A local logic for 〈A,U〉 is a logic. Moreover, for every ϕ ∈
Λ	
A,U , there is a minimal local logic Λ such that ϕ ∈ Λ.

Theorem D.4. Consider an FM-frame 〈A,U〉. Let Λ be a local logic for 〈A,U〉. Then, the logic generated by 
Λ and Λfr

A,U is a local logic for 〈A,U〉.

We proceed with a characterisation of reflection. Consider theories V and W . We say that �� has the 
forward property for V, W iff, for all B in the V -language, there is a C in the W -language, such that 
(V + B) �� (W + C).

Theorem D.5. Consider an FM-frame 〈A,U〉. Then, �� has the forward property for A, U iff S4 is a local 
logic for 〈A,U〉.

Proof. Suppose �� has the forward property for A, U . Consider any sentences B0, . . . , Bn−1 in the language 
of A. Let B	

0 , . . . , B	
k−1 enumerate all conjunctions of the form 

∧
i<n ±Bi, where ±Bi is either Bi or ¬Bi.

Consider any B	
j . We have, for some C	

j that (A +B	
j ) �� (U+C	

j ). It follows that U � C	
j → A B	

j . Ergo, 
(A +B	

j ) � (U + A B	
j ). Let Kj be the witnessing interpretation. It follows that A +B	

j � Kj ,A B	
j . If Bi

is unnegated in B	
j , then A � Kj ,A B	

j → Kj ,A Bi. If Bi is negated in B	
j , then A +B	

j � Bi → Kj ,A Bi. 
So, A + B	

j �
∧

i<n(Bi → Kj ,A Bi)
Now let K := K0〈B	

0〉(K1〈B	
1〉 . . . ). Because the B	

j are mutually exclusive, we find that, for each j < k, 
we have A + B	

j �
∧

i<n(Bi → K,A Bi) and, thus A �
∧

i<n(Bi → K,A Bi). From this, it is immediate 
that p → p is in Λ	

A,U . Moreover, S4 is the logic generated by p → p over K4.

In the other direction, suppose S4 is a local logic for 〈A,U〉. Consider any B in the A-language. For some 
K : A � U , we have A + B � K,A B. So, (A + B) � (U + A B). Moreover, (U + A B) � (A + B). ❑

Open Question D.6. The second part of the proof of Theorem D.5 only uses a singleton set X. We wonder 
whether that means that our approach may be simplified. ❍

We note that it follows that the logic generated by S4 and Λ	
A,U is a local logic for 〈A,U〉.

Appendix E. List of questions

Here are all questions asked in the paper.

Q1. Is there a theory U that is consistent, effectively Friedman-reflexive and not strongly essentially reflex-
ive? This is Question 3.13.

Q2. Can we find a more inspiring example of a theory with logic S4 than Example 6.9? Is it, perhaps, 
possible to find an FM-interpretation with interpreter logic precisely S4? This is Question 6.10.

Q3. Is DA reflexive? If, against expectation, it turns out to be reflexive, can we modify the construction to 
find a non-reflexive, Friedman-reflexive, sequential theory? This is Question 8.8(i).

Q4. Is there a finitely axiomatised A and K : A � DA, such that, for no D(x) in the A language, we have, 
for all B in the A-language, A � D(�B�) ↔ K,A B ? Here the numerals are the K-numerals. This is 
Question 8.8(ii).
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Q
Q

Q

Q

Q

Q5. Is there an RE sequential theory that is Friedman-reflexive but not effectively so? This is Ques-
tion 8.8(iii).

Q6. Suppose U is sequential and restrictedly (effectively) Friedman-reflexive. Does it follow that U is es-
sentially sententially reflexive? This is Question 8.8(iv).

Q7. Can we find a more canonical axiom scheme for Peano Corto in a coordinate-free way? We note that 
the cuts are already schematic. The whole problem is in replacing the schematic variable that ranges 
over Σ0

1-sentences by an unrestricted one that ranges over arbitrary formulas. This is Question 9.2(i).
Q8. Is there a coordinate-free specification of an interpretation of Peano Corto in EA or in some IΣn? This 

is Question 9.2(ii).
Q9. Do we have EA � IIA? This is Question 9.2(iii).
10. Does Seq or, some appropriate variant of it, lift to a functor on E? This is Question A.7.
11. Is there an example of an FM-interpretation K : A � U , where U is complete, with an interesting 

interpreter logic? This is Question B.4.
12. Is there a consistent finitely axiomatised theory that is effectively Friedman-reflexive? This is Ques-

tion B.5.
13. Suppose K, M : U �A are FM-interpretations and Th(K) = Th(M). Do we have Λfr

K = Λfr
M , or is there 

a counter-example? This is Question C.9.
14. The second part of the proof of Theorem D.5 only uses a singleton set X. We wonder whether that 

means that our approach may be simplified. This is Question D.6.
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