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A B S T R A C T   

Long term particulate matter (PM) exposure has been associated with an increased incidence of respiratory 
diseases. Here, an in vitro model was developed to study how long term diesel exhaust particle (DEP) exposure 
might predispose to the development of allergic reactions. Airway epithelial (16HBE) cells were exposed to low 
concentrations of diesel exhaust particle (DEP) for 4 days after which they were challenged with house dust mite 
(HDM) extract (24 h). Compared to acute exposure (24 h), 4 days DEP exposure to 16HBE cells further reduced 
the transepithelial electrical resistance (TEER) and increased CXCL-8 release. DEP pre-exposure aggravated 
HDM-induced loss of TEER, increased tracer flux across the barrier and reduced CLDN-3 expression in these 
16HBE cells. HDM-induced cytokine (IL-6, CCL-22, IL-10 and CXCL-8) release was significantly increased after 
DEP pre-exposure. In the current study an in vitro model with long term PM exposure was presented, which might 
be helpful for further understanding the interplay between long term PM exposure and allergic responses.   

1. Introduction 

According to the World Health Organization (WHO) estimation in 
2016, more than 339 million individuals were globally affected by 
asthma. The global prevalence of asthma in children and adults has 
increased rapidly during the last decades [2,5]. Long-term air pollution 
exposure is one of the leading causes for the development and aggra-
vation of many respiratory diseases, like allergic asthma [33,34] and 
chronic obstructive pulmonary disease (COPD) [19]. Chronic exposure 
to air pollutants leads to the development of inflammatory reactions to 
allergens and clinical manifestations of allergic diseases [13,79]. In line 
with human studies, several animal studies also demonstrate that 
exposure to diesel exhaust particles and co-exposure with an allergen 
result in inflammatory responses in the lung as observed by increased 
key characteristics of allergic sensitization and asthma 
[30,35,40,58,60,69]. Air pollution represents a variable and complex 
mixture of gases and particles, including ozone (O3), nitrogen dioxide 
(NO2), and particulate matter (PM) [31]. PM, especially particles with a 
diameter smaller than 2.5 μm (PM2.5), penetrate deeply into the 

respiratory system, reaching the small airways and alveoli, which results 
into blood-air barrier disruption [62,76]. 

The structural and functional alteration of airway epithelium is a key 
player in the pathogenesis of major lung diseases, including asthma 
[17,26]. An important driving force for airway remodeling is the exis-
tence of chronic inflammation as the result of continuous exposure to 
pollutants [24]. Since airway epithelial cells are the first and major site 
of deposition of PM in the lung, it is important to study how long term 
PM exposure might impact sensitization to potential allergens or the 
exacerbation and severity of allergic responses [15]. 

During the last decades, animal models have been used extensively to 
understand the etiology of lung diseases. However, Replacement, 
Refinement and Reduction alternatives to avoid or replace the use of 
experimental animals are high on the political agenda. To get a better 
understanding of the molecular pathogenesis of lung diseases, new and 
appropriate in vitro human airway models have to be developed [47]. 
Investigating the mechanistic effects of PM exposure on the develop-
ment of airway diseases, such as asthma and allergy, requires an airway 
epithelial cell culture model demonstrating as closely as possible the (in 
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vivo) characteristics of human airway epithelium (first line defense). 
Therefore, this study aimed to develop and implement an in vitro 

model of PM exposure using human bronchial airway epithelial cells 
mimicking more closely real-life long term exposure conditions (4 days) 
and studying the integrity of the epithelial barrier and cytokine release. 
To mimic an allergic respiratory challenge, long term PM-exposed 
bronchial epithelial cells were challenged with HDM, which is one of 
the most common respiratory allergens, and the effect on epithelial 
barrier function and the inflammatory response was measured. 

2. Methods 

2.1. Diesel exhaust particles (DEP) preparation and size examination 

Diesel clay loam was obtained from Sigma, USA. Stock suspension of 
10 mg/ml of particles was prepared in PBS. Subsequently, particles were 
vortexed for 3 min and sonicated at 50–60 Hz for 30 min to disperse the 
particles [14,72]. Particle distribution was measured using dynamic 
light scattering using the PSS AccuSizer 708 APS (Soliton, Germany) and 
showed 95% of the particles at a size below 2.5 µm (Fig S1). 

2.2. Cell culture 

The SV40-transformed and immortalized human bronchial airway 
epithelial cell line 16HBE14o- (16HBE) was kindly provided by the 
University Medical Center Utrecht (Utrecht, The Netherlands). Cells 
were maintained and passaged in Minimum Essential Medium Eagle 
(MEM) supplemented with 10% (v/v) inactivated fetal calf serum (FCS) 
(Gibco) and penicillin (100 U/ml) and streptomycin (100 µg/ml) (Bio-
cambrex) at 37 ◦C in a humidified atmosphere at 5% CO2. Sub-confluent 
cells were passaged using 0.05% trypsin (Gibco, Thermo Fisher Scien-
tific, Wilmington, DE, USA) and 0.54 mM ethylene diamine tetra acetic 
acid (EDTA). 

2.3. Cell viability assay 

Cytotoxicity induced by DEP exposure at 24 h, 48 h, 72 h and 96 h 
was measured using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylte-
trazolium bromide (MTT) assay. In short, cells were seeded in a 48-well 
plate and were exposed to DEP. At the end of each timepoint, MTT (5 
mg/ml) was added to the wells and incubated for 3 h. Thereafter, me-
dium containing MTT was removed and cells were lysed in 200 μl 
DMSO. Optical density at 595 nm was measured using the ELISA reader 
GloMax (Promega, USA). 

2.4. 16HBE cell monolayer on transwell insert 

All in vitro experiments were performed with 16HBE cells grown on 
0.3 cm2 high-pore density transwell membrane inserts with 0.4 µm pores 
(Falcon, BD Biosciences, Franklin Lakes, NJ, USA) placed in a 24-well 
plate. Cells were seeded at a density of 0.4*105 cells per insert and 
incubated for 11–14 days to achieve a confluent monolayer with a mean 
transepithelial electrical resistance (TEER) exceeding 350 Ω.cm2. 
Confluent 16HBE cell monolayers were apically exposed to different 
DEP concentrations (12.5, 25, 50, 100, 200, 400 and 800 µg/ml) for 
24–96 h with and without a subsequent challenge with HDM (50 µg/ml) 
Greer Laboratories, Lenoir, USA) or vehicle (PBS) for 24 h. The HDM 
concentration used in the current study is in the same range as described 
in previous in vitro studies [50]. In addition, the concentration range of 
DEP is in agreement with other in vitro studies where airway epithelial 
cells were exposed to DEP particles in the range of 2.5–2500 µg/ml 
[51,71]. Prior to these experiments concentration–response curves of 
HDM were obtained and TEER, paracellular tracer flux and CXCL-8 were 
measured (Fig S2). 

2.5. Trans epithelial electrical resistance (TEER) 

To evaluate the integrity of the epithelial barrier, TEER values of the 
confluent 16HBE cell monolayer were measured using a Millicell-ERS 
volt-ohm meter system (Millipore, Temecula, CA, USA) at 24, 48, 72, 
96 and 120 h after DEP exposure (Fig. 1). 

2.6. Paracellular tracer flux assay 

Paracellular permeability across the 16HBE cell monolayer was 
determined by measuring the lucifer yellow (LY, molecular mass of 
0.457 kDa, Sigma chemical Co., St Luis, MO, USA) flux from the apical 
compartment to the basolateral compartment. At the end of the exper-
iment, the membrane-impermeable molecule, LY (20 µg/ml), was added 
to the apical compartment of the transwell inserts for 4 h and the par-
acellular flux was determined by measuring fluorescence intensity of 
medium collected from the basolateral compartment (transferred to a 96 
well plate) with the fluorometer at excitation and emission wavelengths 
of 410 nm and 520 nm (Fluoroskan Ascent FL; Thermo Labsystems, 
Waltham, MA, USA). 

2.7. Western blot analysis 

The 16HBE cells were rinsed with ice-cold PBS and lysed using 50 µl 
RIPA lysis buffer (Thermo Scientific, Rockford, IL, USA) containing 
protease inhibitor (Roche Applied Science, Penzberg, Germany). Total 
protein concentration was measured using a BCA protein assay kit 
(Thermo Scientific, Rockford, IL, USA). An equal amount of protein was 
separated by electrophoresis (Criterion™ Gel, 4–20% Tris-HCl, Bio-Rad 
Laboratories, Hercules, CA, USA) and transferred onto Trans-Blot Turbo 
Midi PVDF Transfer Packs (Bio-Rad Laboratories, Hercules, CA, USA). 
Membranes were blocked using PBS supplemented with 0.05% Tween- 
20 (PBST) and 5% milk proteins (Protifar, Nutricia, The Netherlands). 
Thereafter, membranes were incubated with the primary antibodies for 
zonula occludens-1 (ZO-1), claudin 3 (CLDN-3) (402200 and 341700, 
Invitrogen, Carlsbad, CA, USA) overnight at 4◦C, followed by incubation 
with Goat Anti-Rabbit Immunoglobulins/HRP secondary antibody 
(Dako, Agilent, USA). Blots were washed and developed with ECL re-
agents mix (Amersham Biosciences, Roosendaal, The Netherlands) and 
the digital images were obtained using ChemiDoc™ XRS+ System (Bio- 
Rad Laboratories, Hercules, CA, USA). The intensity of the bands was 
quantified with Image Lab software (version 5.2, 2014, Bio-Rad Labo-
ratories, Hercules, CA, USA) and normalized to anti-human β-actin (Cell 
Signaling, Danvers, MA, USA). 

2.8. Immunofluorescence staining 

To localize ZO-1 protein expression, an immunofluorescence staining 
was conducted. The 16HBE cells were washed with ice-cold PBS, fixed in 
10% formalin and permeabilized with PBS containing 0.1% (v/v) Triton 
X-100 for 5 min. Following 3 times washing with PBS, cells were incu-
bated with 5% serum in PBS containing 1% (w/v) bovine serum albumin 
(BSA) for 1 h at room temperature. Subsequently, cells were incubated 
with primary antibody against ZO-1 (402200, Invitrogen, Carlsbad, CA, 
USA) for 2 h at room temperature. Thereafter, cells were washed and 
incubated with Alexa Fluor 488-conjugated anti-rabbit IgG (Invitrogen, 
Carlsbad, CA, USA at 1:50 in PBS with 1% BSA) for 1 h at room tem-
perature. After washing, nuclear counterstaining was conducted using 
Hoechst (1:3000, Invitrogen) and inserts were washed and mounted 
with ProLong Gold anti-fade reagent (Invitrogen). Immunofluorescence 
images were taken with Microscope Leica TCS SP8 X. 

2.9. Cytokine and chemokine measurement 

CXCL-8 and IL-6 concentrations were measured in the 16HBE culture 
supernatants collected from the apical compartment of the transwell 
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inserts after exposure to different DEP concentrations using human 
CXCL-8 DuoSet ELISA kit (R&D Systems Europe, Abingdon, UK) and IL-6 
ELISA kit (Invitrogen, San Diego, CA, USA). Moreover, the IL-6, CCL-22, 
IL-10, CXCL-8, GM-CSF and CCL-20 release into the apical compartment 
by 16HBE cells after DEP, HDM and combined exposures was deter-
mined by IL-6 ELISA kit (Invitrogen, San Diego, CA, USA), CCL-22 ELISA 
kit (R&D Systems Europe, Abingdon, UK), IL-10 ELISA kit (R&D Systems 
Europe, Abingdon, UK), CXCL-8 DuoSet ELISA kit (R&D Systems 
Europe, Abingdon, UK) GM-CSF ELISA kit (R&D Systems Europe, 
Abingdon, UK) and CCL-20 ELISA kit (R&D Systems Europe, Abingdon, 
UK) according to the manufacturer’s guidelines. The detection limits of 
the assay were as follows: IL-6, 3.1 pg/ml; CCL-22, 7.81 pg/ml; IL-10, 
31.2 pg/ml; CXCL-8, 31.2 pg/ml; GM-CSF, 15.6 pg/ml and CCL-20, 
15.6 pg/ml. 

2.10. Statistical analysis 

All experiments were performed in triplicates (three independent 
biological experiments), and each replicate included three technical 
replicates (3 wells/plate). Data analysis was performed using GraphPad 
Prism (version 7.04, 2017, GraphPad, La Jolla, CA, USA). Experimental 
results are expressed as mean ± SEM and differences between experi-
mental groups were assessed by using One-way or Two-way analysis of 
variance (ANOVA) followed by Bonferroni’s post-hoc testing for multi-
ple comparisons. For all statistical analysis, P-values lower than 0.05 
were considered statistically significant. 

3. Results 

3.1. Long term DEP exposure disrupts bronchial epithelial barrier integrity 

To mimic long term exposure in vitro (Fig. 1), 16HBE cells were 
allowed to reach confluence and TEER values of at least 350 Ω.cm2. On 
day 0 the supernatant was collected, the cells were washed and received 
fresh medium containing increasing concentrations of DEP. After day 1 

(24 h), medium was collected, the cells were washed and received fresh 
medium with increasing concentrations of DEP. This procedure was 
repeated on day 2 (48 h) and 3 (72 h) (See Fig. 1). On day 4 (96 h), 
medium was collected, the cells were washed and lysed/fixed for further 
analysis. TEER values were measured before each change of culture 
medium. At the end of the experiment, cells were either fixed or lysed to 
determine the effect DEP exposure on tight-junction protein expression. 
16HBE cell were exposed to increasing concentrations of DEP and cell 
viability was assessed over a period of 4 days (Fig. 2a). 

DEP concentrations below 200 µg/ml did not show a reduction in cell 
viability in contrast to DEP concentrations of 200–800 µg/ml which 
showed a reduction in cell viability already after 48 h. The impact of 
DEP exposure on barrier integrity was assessed in a similar way and 
indicated that for all concentrations of DEP, TEER values showed a 
concentration-dependent decrease over time (Fig. 2B). To visualize the 
consequence of loss of barrier integrity, cells were apically exposed to 
the membrane impermeable lucifer yellow (LY, 0.457kDA) and the LY 
flux to the basolateral compartments was assessed (Fig. 2c). Although 
loss of TEER was observed at DEP concentrations of 12.5 and 25 µg/ml, 
no significant LY flux to the basal compartment was observed. However, 
DEP concentrations ≥ 50 significantly increased LY flux. 

Reductions of 16HBE TEER values and the corresponding increased 
flux of LY are indicators for a loss of barrier function. To evaluate the 
effect on tight junction proteins, the expression and localization of the 
tight junction protein zonula occludens-1 (ZO-1) was measured. ZO-1 
protein expression did not significantly change after 96 h exposure to 
different concentrations of DEP (Fig. 2D). However, the immunofluo-
rescence ZO-1 staining showed a clear concentration-dependent loss of 
ZO-1-stained epithelial borders, indicative of ZO-1 redistribution and 
loss of tight junction formation (Fig. 2E). 

3.2. Long term DEP exposure induces cytokine production by 16HBE cells 

To evaluate the effect of long term DEP exposure on the inflamma-
tory response16HBE cells were seeded on transwells and exposed for 4 

Fig. 1. Time schedule of in vitro DEP exposure model. 16HBE cells were exposed for 96 h to DEP. At each time point (24 h, 48 h, 74 h and 96 h) TEER was measured, 
medium was refreshed and cells were exposed to fresh DEP/medium. After 96 h exposure to DEP, cells were exposed for an additional 24 h to HDM (50 µg/ml) 
or medium. 
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Fig. 2. Long term DEP exposure disrupts bronchial epithelial barrier integrity. Cell viability (MTT) (A) and TEER values (B) were measured. The LY translocation, 
ZO-1 protein analysis (D) and IF staining (E) were investigated at 96 h (C). Data are presented as means ± SEM (N = 3), *P < 0.05, significantly different versus 
control (C). Three independent experiments (each performed in triplicate). 
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days according to the scheme presented in Fig. 1. IL-6 and CXCL-8 
release were measured in the apical compartment of transwell inserts 
at 24 h and 96 h. As shown in Fig. 3A, 24 h exposure to increasing 
concentrations of DEP (100–400 µg/ml) significantly increased IL-6 
release. 96 h exposure to increasing concentrations of DEP (except 
12.5 µg/ml) induced a significant increase in IL-6 release (Fig. 3B). At 
24 h exposure, 200 and 400 µg/ml DEP induced a significant CXCL-8 
release (Fig. 3C). At 96 h exposure, increasing concentrations of DEP 
(50–400 µg/ml) induced a more pronounced increase in CXCL-8 
compared to 24 h DEP exposure (Fig. 3D). Moreover, 16HBE cells 
exhibited increased basal production of CXCL-8 and IL-6 after 96 h 
culture compared to 24 h (Fig S3). 

3.3. Effect DEP pre-exposure aggravates HDM-induced loss of barrier 
integrity 

Next, the long term DEP exposure model (4 days DEP exposure) was 
used to study the effect of 16HBE exposure to an extract of HDM, a well- 
known aeroallergen for causing allergic airway diseases. 16HBE cells 
were exposed according to the above described method for 96 h, after 
which the cells were washed and challenged for a subsequent 24 h to 
HDM. Only those concentrations of DEP were tested that did not induce 
cell cytotoxicity. Exposure to HDM itself significantly reduced TEER 
values compared to control cells (Fig. 4A). Pre-exposure to DEP (12.5 
and 25 µg/ml) aggravated the HDM-induced loss of TEER compared to 

HDM or DEP alone. This additional effect was not observed at higher 
DEP concentrations. 

Exposure of 16HBE cells to HDM also induced an increased flux of LY 
to the basolateral compartment (Fig. 4B). Pre-exposure to DEP at 12.5 
and 25 µg/ml additionally increased HDM-induced LY flux, but this was 
only significant for 12.5 µg/ml DEP. Higher concentrations of DEP did 
not show this additive effect. To investigate whether the loss of barrier 
integrity was related to changes in tight junction protein expression, ZO- 
1 and CLDN-3 protein expression was measured in these 16HBE cells. 
ZO-1 expression was not changed following DEP exposure, however, 
HDM exposure tended to increase the ZO-protein expression (Fig. 4C). 
DEP pre-exposure seemed to further increase the HDM-induced ZO-1 
expression, however, this did not reach significance. Moreover, there 
was no difference observed between ZO-1 expression levels related to 
different DEP concentrations. While HDM seemed to increase ZO-1 
expression, CLDN-3 expression tended to reduce after HDM incuba-
tion. Exposure to DEP did not show a significant difference in CLDN-3 
expression compared to control. However, pre-incubation with DEP 
(12.5, 25 and 50 µg/ml) in combination with HDM exposure signifi-
cantly reduced CLDN-3 expression compared to DEP alone. 

3.4. DEP pre-exposure aggravates HDM-induced cytokine release by 
bronchial epithelial cells 

To investigate the effects of DEP pre-exposure on HDM-induced 

Fig. 3. Long term DEP exposure induces cytokine production by 16HBE cells. IL-6 and CXCL-8 secretion into the apical compartment was measured at 24 h (A,C) and 
96 h (B,D). Results are presented as mean ± SEM (N = 3), *P < 0.05; significantly different versus control. Three independent experiments (each performed 
in triplicate). 
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cytokine and chemokine release, IL-6, CCL-22, IL-10, CXCL-8, GM-CSF 
and CCL-20 concentrations in the apical compartment (Fig. 5 A-F) 
were analyzed. HDM exposure for 24 h alone increased all measured 
cytokines and chemokines, however, this effect was only significant for 
IL-10 and CCL-22. Pre-exposure to increasing concentrations of DEP 
(12.5–50 µg/ml) followed by HDM challenge significantly increased the 
IL-6 and CCL-22 release. Pre-exposure to DEP at 12.5, 25 and 50 µg/ml 
additionally increased HDM-induced IL-10 release, but this was only 
significant for 12.5 µg/ml DEP compared to only HDM-challenged cells. 
Pre-exposure to increasing concentrations of DEP (except 12.5 µg/ml) 
with a subsequent challenge to HDM, significantly increased CXCL-8 
release compared to HDM and DEP. Although, DEP pre-exposure 
increased the GM-CSF release, the subsequent challenge with HDM did 
not lead to additional GM-CSF release. Moreover, pre-treatment of the 
cells with increasing concentrations of DEP or HDM exposure for 24 
tended to increase CCL-20 levels. However, CCL-20 levels were signifi-
cantly increased when both were combined. Furthermore, the actual 

concentrations of aforementioned cytokines released by 16HBE cells are 
depicted in supplementary Fig. 4 (Fig S4). 

4. Discussion 

Indoor and outdoor air pollution exposure have been linked with 
asthma and asthma symptoms for a long time. For instance, a recent 
epidemiological study demonstrated an association between exposure to 
PM2.5 and bronchial and asthmatic symptoms [29]. Although murine 
models have been used extensively to investigate the effect of PM on 
airways, the mechanism(s) by which PM exposure enhances the bron-
chial epithelial cell responses to inhaled allergens remains largely un-
known. An in vitro model might be helpful for further understanding of 
the interplay between chronic PM exposure and allergens. 

The current study showed that short term exposure (24 h) to 
200–800 ug/ml DEP particles leads to airway barrier disruption as 
observed by a significant decrease in TEER values and increase in LY 

Fig. 4. DEP pre-exposure aggravates HDM-induced loss of barrier integrity. TEER (A), LY translocation (B), relative ZO-1 (C) and CLDN-3 protein expression (D) 
based on Western Blot analysis (optical density normalized with β-Actin). Data are presented as mean ± SEM (N = 3), *P < 0.05; significantly different versus 
control, #P < 0.05; versus HDM (50 µg/ml), $P < 0.05; versus DEP (12.5 µg/ml), P < 0.05; versus DEP (25 µg/ml), ¥P < 0.05; versus DEP (50 µg/ml). Three 
independent experiments (each performed in triplicate). 
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Fig. 5. DEP pre-exposure aggravates HDM-induced cytokine release by bronchial epithelial cells. IL-6(A), CCL-22(B), IL-10(C), CXCL-8(D), GM-CSF(E) and CCL-20(F) 
were measured. Data are presented as mean ± SEM (N = 3). *P < 0.05; significantly different versus control, #P < 0.05; versus HDM (50 µg/ml), $P < 0.05; versus 
DEP (12.5 µg/ml), P < 0.05; versus DEP (25 µg/ml), ¥P < 0.05; versus DEP (50 µg/ml), ȻP < 0.05 versus DEP (100 µg/ml). Three independent experiments (each 
performed in triplicate). 
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translocation. It has been reported that exposure of 16HBE cells to 25 
and 50 ug/ml DEP (for 8.5 h) leads to reduced TEER values along with 
reduced tight junction (tricellulin) expression [64], while mice exposed 
to DEP for a short time (2 h per day for 5 days) also exhibited lung 
barrier disruption as observed by reduced tricellulin expression [64]. 
Moreover, an in vitro study of Liu et al. further demonstrated that short 
term exposure to high concentrations of PM results in reduced TEER 
values. Exposure to 200 ug/ml PM for 24 h significantly decreased TEER 
values in a human bronchial epithelial cell line (BEAS-2B) [43]. 
Although in the current study we did not detect any changes in TEER 
values and LY translocation after exposure to lower DEP concentrations 
(12.5 and 25 µg/ml) for 24 h, we found that long term exposure (96 h) of 
human bronchial epithelial cells to a low DEP concentration (12.5 ug/ml 
DEP) suffices to induce a loss of airway barrier integrity and enhance the 
inflammatory response. Although the lowest concentrations of DEP 
(12.5 and 25 ug/ml) resulted in significant reduction in TEER values, no 
significant increase in LY translocation was detected. Both parameters, 
the measurement of electrical resistance across a cellular monolayer, 
known as TEER, and paracellular translocation of LY, are regarded as a 
sensitive and reliable method for assessing the integrity and perme-
ability of the epithelial barrier function [65]. However, it has been 
described that TEER measurement is more sensitive as it captures the 
ionic transfer and can be altered by very small changes in the cell 
monolayer [65], while LY translocation reflects the paracellular water 
flow and pore size of tight junction proteins [80]. In addition, TEER and 
cell viability seem to be closely inversely correlated, and data would 
suggest that cellular viability is compromised before paracellular 
transport is affected [38]. Based on the added toxin, Caco-2 TEER values 
seem to be inversely correlated with permeability of small molecules 
such as mannitol. However, for larger molecules such as LY there seems 
to be no clear correlation with TEER changes. In general, it could be 
argued that TEER drops always precede LY transport, and, depending on 
the toxin, TEER drops might be observed without changes in LY 
permeability [38]. In our experiments 16HBE cells were used and it 
remains to be determined if the same principles apply here. Neverthe-
less, it could be argued that low-concentration DEP exposure to 16HBE 
cells is enough to cause significant drops in TEER which would allow for 
the permeability of smaller molecules while larger molecules, the size of 
LY, could still be retained. 

To further investigate the effect of DEP on barrier function, we 
performed western blot analysis of ZO-1, an important tight junction 
protein. Apical localization of tight junctions has been shown as a main 
contributor to maintain the airway epithelial resistance and limiting the 
paracellular permeability. This assembly is made up of intercellular 
proteins, including claudins, and are attached to the cytoskeleton by the 
scaffolding protein ZO-1 [25]. Therefore, changes in the localization of 
ZO-1, could lead to a reduced epithelial resistance and increased para-
cellular permeability. A direct association between decreased TEER and 
delocalized ZO-1 has been shown in nasal epithelial cells exposed to 
Staphylococcus aureus [10]. In the current study, the immunofluores-
cence staining for ZO-1 protein demonstrated an altered localization, 
while we did not find significant changes in ZO-1 protein expression 
after 96 h DEP exposure. Several studies did show that DEP exposure 
results in junctional dysfunction by reducing junction proteins in pri-
mary rat alveolar epithelial cells [9], human RPMI 2650 cells [20] and 
human nasal epithelium cells [36]. 

Although the exact mechanism responsible for the altered barrier 
function after DEP exposure is not known, increased immune responses 
and corresponding cytokine release, such as enhanced IL-6 and CXCL-8 
(pro-inflammatory cytokine) release measured in our study, might play 
a role. We observed an almost similar pattern for IL-6 and CXCL-8 
release after exposure to 12.5–400 ug/ml DEP for 24 h and 96 h. 
However, it seems that exposure to 800 ug/ml DEP leads to higher IL-6 
responses compared to CXCL-8. Moreover, we observed that the DEP- 
associated increase in IL-6 is lower than the DEP-associated increase 
in CXCL-8 after 96 h. However, we have to take into account that DEP 

concentrations exceeding 200 µg/ml become toxic to the cells which 
might influence IL-6 and CXCL-8 release and activity differently 
[21,63,73]. At the moment, there is no clear explanation why DEP 
exposure causes a difference between IL-6 and CXCL-8 release over time 
and more research is needed to unravel the underlying mechanism. 
Regardless and in agreement with our observations, Steerenberg et al, 
also showed differential effects between IL-6 and CXCL-8 production by 
human bronchial epithelial (BEAS-2B) cells after DEP exposure for 24 
and 48 h [67]. 

It is becoming increasingly clear that cytokines, in addition to their 
known pro-inflammatory function, have a significant physiological and 
pathological impact on the tight junction barrier [1]. Indeed, exposure 
of the intestinal epithelial cell line (Caco-2) to IL-6 induced a significant 
reduction in TEER values [70], while IL-6 treatment caused increased 
permeability in 16HBE cells observed as an increase in transepithelial 
leakage of C-D-mannitol [8]. In a study of Desai et. al, the IL-6-induced 
increase in permeability in endothelial cells was associated with a 
redistribution of ZO-1 [18]. Furthermore, mice treated with an anti-IL-6 
antibody maintained ZO-1 and occludin localization followed by 
ethanol exposure [78]. In addition to IL-6, CXCL-8 has also been shown 
to affect epithelial barrier function. Endothelial cells stimulated with 
CXCL-8 for 2, 4, 6 and 8 h resulted in barrier dysfunction as observed by 
reduced TEER values [77]. 

To investigate the effect of air pollution exposure on increased risk of 
allergic asthma development, we further developed our in vitro model to 
investigate the hypothesis that long term exposure to DEP can aggravate 
the immune responses against an allergen which consequently leads to 
allergic sensitization or exacerbation. We found that HDM treatment of 
long-term pre-exposed 16HBE cells to 12.5 ug/ml DEP leads to higher IL- 
6, CCL-22, IL-10 and CXCL-8 release compared to either HDM or DEP 
exposure alone suggesting exposure to DEP could enhance the risk of the 
allergic immune reactions. Elevated allergic immune responses after air 
pollution exposure have also been demonstrated by human and animal 
studies [3,11,48,51]. For instance, a prospective cohort study revealed a 
positive association of traffic-related air pollution exposure during 
middle age and increased risk of allergen sensitization, asthma, and 
lower levels of lung function [6]. Moreover, Carlsten et al, showed that 
2 h exposure to DEP followed by an allergen challenge (birch, Pacific 
grasses and HDM) lead to higher airway eosinophilia, and IL-5 levels in 
the human lung [11]. Pre-exposure of BALB/c mice to fine PM combined 
with ovalbumin (OVA) followed by an additional OVA challenge for 
three times induced a significant increase in plasma IgE and pulmonary 
IL-25 and TNF-α release [12]. Moreover, several animal studies have 
shown that exposure to DEP followed by HDM treatment leads to higher 
Th2 immune responses as the main contributor to allergic asthma 
development [7,32,69]. For example, mice co-exposed to PM and HDM 
exhibited a significant increase in Th2-immune responses as observed by 
enhanced pulmonary IL-4, IL-5, IL-6 and IL-13 release [13]. Although 
studies have shown the critical role of IL-4, IL-5, IL-13 and TSLP in 
driving the allergic responses, we were not able to detect the release of 
these cytokines by 16HBE cells. Overall, It can be hypothesized that the 
aggravated cytokine release following HDM challenge in DEP-pre- 
exposed cells could be an important factor to explain the increased in-
cidences of asthma and allergies as a consequence of rising air pollution 
levels [61]. 

Several studies have revealed the crucial role of exacerbated cyto-
kine release in allergic asthma development. CXCL-8 has been shown to 
play an important role in facilitating airway remodeling and hyper-
responsiveness, which leads to the development of asthma [42,52]. 
There is a correlation between IL-6 and asthma in humans, suggesting a 
primary role for IL-6 in lung function abnormalities in asthma [59]. IL- 
10 exerts immunomodulatory and proinflammatory effects in the lung 
[39] and primary human bronchial epithelial cells have the capacity to 
produce IL-10 [4,75], which is in agreement with the observed results in 
our study by using 16HBE cells. Although IL-10 is important in the 
reduction or prevention of the allergic immune responses, it has also 
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been shown that IL-10 is involved in promoting the development of 
airway hyperresponsiveness during allergic responses [46]. In the pre-
sent study, a HDM challenge after DEP pre-exposure resulted in a sig-
nificant increase in CCL-22 release compared to HDM-exposed airway 
epithelial cells. CCL-22 plays a functional role in diverse immunological 
diseases, including allergic reactions and autoimmunity with elevated 
CCL-22 levels detected during allergic responses [54]. CCL-22 over-
production is a leading factor in allergen-driven Th2 cell accumulation 
in asthmatic airways [74]. Human peripheral blood analysis of 144 adult 
asthma cases and 199 controls revealed that asthmatic patients exhibit 
elevated CCL-22 levels compared to the control group [49]. In addition, 
it was demonstrated that DEP pre-exposure of 16HBE cells followed by a 
HDM challenge leads to an additional increase in CCL-20 release. Airway 
epithelial cells are a major source of CCL-20 secretion [57] and there is a 
higher CCL-20 release observed in asthmatic patients [53]. Moreover, 
Hastie et al., demonstrated that severe asthma patients release higher 
CCL-20 levels in sputum than no severe asthma patients [23]. 

Accumulating evidence indicates that airway allergic diseases are 
not only caused by a dysregulated immune response, but also via a 
disrupted airway epithelial barrier, which facilitates allergen sensitiza-
tion and inflammation [22,28]. In the current study, we demonstrated 
that that 24 h exposure of HDM significantly increases the permeability 
of the 16HBE cell monolayer. This is in line with previous in vitro studies 
where exposure of airway epithelial cells (16HBE14o and primary nasal 
epithelial cells) to HDM increases the permeability and reduces TEER 
values [27,56,55,66]. Moreover, we found that HDM treatment of cells 
pre-exposed to 12.5 ug/ml DEP significantly reduces the TEER values 
and increases the LY translocation compared to HDM only or 12.5 ug/ml 
DEP-exposed groups. Changes in TEER values and permeability points to 
alterations in airway epithelial tight junction expression. To best of our 
knowledge, there is no in vitro study available indicating the effect on 
tight junction expression after HDM treatment in DEP pre-exposed cells. 
We showed that HDM, but not DEP exposure, tends to reduce CLDN-3 
protein expression. In cells pre-exposed to DEP and challenged with 
HDM, CLDN-3 expression was concentration-dependently reduced, 
while ZO-1 expression was not significantly affected. The difference in 
CLDN-3 expression between high and low DEP concentrations might be 
explained by the IL-10 release from 16HBE cells. We reported that 
exposure to 12.5, 25 and 50 ug/ml DEP followed by additional HDM 
treatment significantly increased IL-10 production, while no significant 
increase in IL-10 production was observed for 100 ug/ml DEP with an 
additional HDM treatment. IL-10 could have a protective effect on 
airway barrier function as IL-10 plays crucial role in maintaining barrier 
homeostasis [41,44,45]. In vitro treatment of IL-10 significantly restored 
the IFN-y-induced decrease in TEER values in intestinal epithelial cells 
[37]. This effect was confirmed in mice treated with exogenous IL-10 
showing a restored intestinal epithelial barrier function after a crystal-
loid treatment [68]. In addition to IL-10, in the present study, the 
additional HDM trigger after DEP exposure significantly increased the 
CXCL-8 production by 16HBE cells compared to HDM- and DEP-exposed 
cells. Yu et. Al (2013) demonstrated that CXCL-8 modulates the endo-
thelial cell permeability by reduced protein expression of tight junctions 
protein, such as claudin-5 [77]. 

Although the exact underlying mechanism how DEP pre-exposure 
leads to increased sensitivity of airway epithelial cells to a specific 
allergen challenge is not yet entirely understood, stimulated immune 
responses and altered cytokine release in combination with increased 
epithelial paracellular permeability and disruption of airway barrier 
function might play an important role [1,16]. 

5. Conclusion 

In conclusion, this study showed that long term exposure (4 days) to 
DEP particles leads to a reduction in TEER values and an increase in 
cellular permeability, already at low concentrations. Higher concen-
trations of PM were previously reported in literature to induce similar 

effects, however, effects were observed in an acute setting with con-
centrations that might not physiologically relevant. The tested concen-
trations used in this study are probably more physiologically relevant 
and indicate that long term exposure could be more devastating to lung 
health compared to acute high concentrations. Additionally, these novel 
data support a mechanism whereby low long term DEP exposure would 
stimulate the immune response against specific aeroantigens and 
possibly modulate airway allergic sensitization and (asthma) exacerba-
tion. However, future studies using primary human bronchial epithelial 
cells cultured in an air–liquid interface setup are necessary to further 
validate our observations as complex morphological and functional 
characteristics of the in vivo human airways may not be adequately 
captured by using 16HBE cells in a submerged culture system. 
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[12] A.R. Castañeda, K.J. Bein, S. Smiley-Jewell, K.E. Pinkerton, Fine particulate matter 
(PM(2.5)) enhances allergic sensitization in BALB/c mice, J. Toxicol. Environ. 
Health. A 80 (4) (2017) 197–207, https://doi.org/10.1080/ 
15287394.2016.1222920. 
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I.G. Kavouras, J. Pekkanen, K. Hämeri, G.P. Kos, J.J. de Hartog, G. Hoek, 
K. Katsouyanni, Particulate matter air pollution and respiratory symptoms in 

individuals having either asthma or chronic obstructive pulmonary disease: a 
European multicentre panel study, Environ. Health 11 (2012) 75, https://doi.org/ 
10.1186/1476-069X-11-75. 

[34] F.J. Kelly, J.C. Fussell, Air pollution and airway disease. Clin. Exp. allergy, J. Br. 
Soc. Allergy Clin. Immunol. 41 (2011) 1059–1071, https://doi.org/10.1111/ 
j.1365-2222.2011.03776.x. 

[35] J. Kim, S. Natarajan, L.J. Vaickus, J.C. Bouchard, D. Beal, W.W. Cruikshank, D. 
G. Remick, Diesel exhaust particulates exacerbate asthma-like inflammation by 
increasing CXC chemokines, Am. J. Pathol. 179 (6) (2011) 2730–2739, https://doi. 
org/10.1016/j.ajpath.2011.08.008. 

[36] N. Kim, D.H. Han, M.-W. Suh, J.H. Lee, S.-H. Oh, M.K. Park, Effect of 
lipopolysaccharide on diesel exhaust particle-induced junctional dysfunction in 
primary human nasal epithelial cells, Environ. Pollut. 248 (2019) 736–742, 
https://doi.org/10.1016/j.envpol.2019.02.082. 

[37] D.J. Kominsky, E.L. Campbell, S.F. Ehrentraut, K.E. Wilson, C.J. Kelly, L.E. Glover, 
C.B. Collins, A.J. Bayless, B. Saeedi, E. Dobrinskikh, B.E. Bowers, C.F. MacManus, 
W. Müller, S.P. Colgan, D. Bruder, IFN-γ-mediated induction of an apical IL-10 
receptor on polarized intestinal epithelia, J. Immunol. 192 (3) (2014) 1267–1276, 
https://doi.org/10.4049/jimmunol.1301757. 

[38] R. Konsoula, F.A. Barile, Correlation of in vitro cytotoxicity with paracellular 
permeability in Caco-2 cells, Toxicol. In Vitro 19 (5) (2005) 675–684, https://doi. 
org/10.1016/j.tiv.2005.03.006. 

[39] F.N. Lauw, D. Pajkrt, C.E. Hack, M. Kurimoto, S.J.H. van Deventer, T. van der Poll, 
Proinflammatory Effects of IL-10 During Human Endotoxemia, J Immunol 165 (5) 
(2000) 2783–2789. 

[40] N. Li, J.R. Harkema, R.P. Lewandowski, M. Wang, L.A. Bramble, G.R. Gookin, 
Z. Ning, M.T. Kleinman, C. Sioutas, A.E. Nel, Ambient ultrafine particles provide a 
strong adjuvant effect in the secondary immune response: implication for traffic- 
related asthma flares, Am. J. Physiol. Lung Cell. Mol. Physiol. 299 (3) (2010) 
L374–L383, https://doi.org/10.1152/ajplung.00115.2010. 

[41] R. Lin, F. Chen, S. Wen, T. Teng, Y. Pan, H. Huang, Interleukin-10 attenuates 
impairment of the blood-brain barrier in a severe acute pancreatitis rat model, 
J. Inflamm. 15 (2018) 4, https://doi.org/10.1186/s12950-018-0180-0. 

[42] C. Liu, X. Zhang, Y. Xiang, X. Qu, H. Liu, C. Liu, M. Tan, J. Jiang, X. Qin, Role of 
epithelial chemokines in the pathogenesis of airway inflammation in asthma 
(Review), Mol Med Rep 17 (2018) 6935–6941, https://doi.org/10.3892/ 
mmr.2018.8739. 

[43] J. Liu, X. Chen, M. Dou, H. He, M. Ju, S. Ji, J. Zhou, C. Chen, D. Zhang, C. Miao, 
Y. Song, Particulate matter disrupts airway epithelial barrier via oxidative stress to 
promote Pseudomonas aeruginosa infection, J. Thorac. Dis. 11 (2019) 2617–2627, 
https://doi.org/10.21037/jtd.2019.05.77. 
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