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Abstract: Physiological perfusion asymmetries in the lower limb are known, although poorly under-
stood, as are asymmetries reported in plantar pressure and stance. This preliminary study aims to
explore potential relationships between perfusion and pressure variables in humans. A convenience
sample of eight healthy individuals (25.25 ± 5.37 years old) of both sexes, was selected. Chosen
variables were perfusion, plantar pressure, and stance. Perfusion was measured in both feet by laser
Doppler flowmetry (LDF) and polarized light spectroscopy (PSp), and plantar pressure and stance
obtained by a pressure plate. These were measured in baseline (Phase I) in a repeated squatting
(Phase II), and in recovery (Phase III). A 95% confidence interval was adopted. Intraindividual signif-
icant perfusion asymmetries between both feet were detected by LDF in Phase I. These disappeared
in Phase II and returned in Phase III. PSp did not detect any asymmetries. Plantar pressure was also
asymmetric and differently distributed along both feet with no statistical significance except in the
hindfoot. Significant correlations were found between BMI and mean Plantar Pressure in Phase I and
Phase III, and an inverse correlation between LDF perfusion and Plantar Pressure in Phase I. These
results seem to suggest an interesting direction for exploration and study of these asymmetries in the
absence of disease.

Keywords: lower limb asymmetries; foot perfusion; plantar pressure; CoP; stance; laser doppler
flowmetry; CRBC

1. Introduction

Peripheral arterial disease and arterial blood pressure differences in the arm and leg
were identified and described in the mid-nineteenth century [1,2] but only with modern
imaging technology has our attention been drawn to lower limb circulatory asymmetries in
the absence of disease [3–5]. Physiological perfusion asymmetries may be defined as differ-
ences in baseline perfusion between paired limbs. The significance of these asymmetries re-
mains unknown. Sex-related interindividual baseline differences have been reported [6–11]
while age and BMI seem the be critical determinants, as recently published [11,12].

Muscular asymmetries, that is, “the inability to produce a force of contraction that is equal
in both lower extremities” [13], gained particular relevance in sports physiology related to
strength and training conditioning [14,15]. Lower limb blood flow seems to be directly
related to muscle mass [2], which means that perfusion stress might favour vascular and
muscle-perfusion impairment [1–3,16]. A significant inverse relationship between force
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asymmetry and muscular performance was reported [17,18], and interlimb asymmetries
have been suggested to involve higher non-contact injury risk likely accentuated by the
sporting activity [19,20]. Nevertheless, the distal activation of both limbs, no matter the
asymmetries, seems to demand equivalent perfusion levels even for common activities
such as bipedal walking [21,22].

Plantar pressure of the foot is regarded as an important determinant of gait, and
although every individual presents a normal range of plantar pressure, the pressure is
asymmetric between paired feet [23,24]. Foot pathologies are known as major causes of
plantar pressure modifications that accentuate those asymmetries. The upright stance
relates to plantar pressure, and plantar sensory inputs influence control of stance, gait, and
foot perfusion [23–25]. Plantar pressure is primarily related to the structure of the foot,
meaning that its centre might be used as a reference for transversal (medial-lateral) and
longitudinal (posterior-anterior) displacements [24–26], and through these to access the
course of biomechanical variables with hemodynamics during movement.

Our group’s research has been focused in understanding these physiological perfusion
asymmetries in the lower limb, including distal microcirculatory adaptive mechanisms
prior and after movement [8,12,27–29]. In the present paper, we explore these themes
further by studying potential relationships among perfusion and plantar pressure variables
in the feet of a healthy group of young participants.

2. Materials and Methods
2.1. Participants

This exploratory study involved a convenience sample of eight young, healthy par-
ticipants (25.2 ± 5.4 years old) of both sexes recruited from the university’s student body.
Selection took place after informed consent and involved specific predefined inclusion/non-
inclusion criteria used for this type of study [26–28]. Participants were normotensive, with
normal body mass index (BMI) reporting a normal vascular condition as confirmed by the
ankle-brachial index (ABI), a good clinical indicator of vascular health [30]. Furthermore,
all participants were non-smokers, self-referring regular physical activity, and free of any
regular consumption of dietary supplements or medications. Energy drinks (including
coffee) and alcoholic beverages were not allowed in the 24 h preceding the experiments.
The general characteristics of the participants panel are summarised in Table 1.

Table 1. Participants’ characterisation (baseline). When applicable, results are presented as medians
and Q1–Q3 (25th empirical quartile–75th empirical quartile) (* p < 0.05).

MEN WOMEN p-Value

N (%) 4 (50) 4 (50) _
Smokers (%) 0 (100) 0 (100) _
Age, years (Q1–Q3) 28.8(20–32) 21.8(21–22) 0.098
Body mass, kg (Q1–Q3) 74.5 (68.0–85.0) 61.5 (58.0–68.0) 0.201
Height, m (Q1–Q3) 1.8 (1.7–1.8) 1.6 (1.6–1.7) <0.001 *
BMI, kg/m2 (Q1–Q3) 23.9 (22.9–24.9) 22.8 (22.1–24.9) 0.546
SYSTP, mmHg (Q1–Q3) 122.0 (113.7–129.0) 120.9 (111.7–135.3) 0.670
DIASP, mmHg (Q1–Q3) 82.4 (74.7–88.0) 78.1 (75.0–78.7) 0.424
ABI (Q1–Q3) 1.0 (1.0–1.1) 1.0 (1.0–1.1) 0.062
PR, bpm (Q1–Q3) 68.8 (61.5–77.3) 65.5 (59.0–69.5) 0.088
SpO2 (%), bpm (Q1–Q3) 98.5 (98–99) 98.3 (98–99) 0.951

BMI, Body Mass Index; SYSTP, Systolic pressure; DIASP, Diastolic Pressure; ABI, ankle-brachial index; PR, Pulse
Rate; bpm, beats per minute; SpO2 oxygen saturation.

2.2. Experimental

All procedures complied with the principles of good clinical practice adopted for
human research in accordance with the Declaration of Helsinki and subsequent amend-
ments [31]. The study was previously approved by the institutional ethics committee
(EC.ECTS/P03.20).
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Participants were allowed to adapt for 15–20 min to the laboratory conditions (temper-
ature of 21 ± 1 ◦C, relative humidity of 40 to 60%) before experiments. The applied protocol
involved a sequence of three phases with the uninterrupted measurement of perfusion and
plantar pressure variables in both feet as follows:

- Phase I, baseline register for 5 min in the orthostatic position;
- Phase II, register during continuous bipodal squatting for 2 min (25 to 30 complete

movements per minute);
- Phase III, recovery register for 5 min in the standing position.

The continuous assessment of blood perfusion on both feet is a procedure that we
demonstrated to reduce variability [10,27,32]. Laser Doppler flowmetry (LDF, Perimed
PF5010, Stockholm, Sweden) sensors were applied to the dorsum of the foot between the
3rd and 4th toes. The LDF signal was recorded at a frequency of 32 Hz and data quantified
in terms of blood perfusion (BP) expressed in arbitrary units (BPUs). We also assessed the
perfusion of the dorsal region of each foot by a non-contact polarized light spectroscopy
(PSp) system, the Tissue Viability Imager TiVi 700 (WheelsBridge AB, Stockholm, Sweden)
registering means from each period. Here, blood perfusion (the TiVi index) corresponds
to the concentration of red blood cells (CRBC, expressed in arbitrary units) in a selected
region of interest (ROI) in all images from each phase.

Systolic (sAP) and diastolic (dAP) arterial pressures were recorded in the arm using a
portable digital device (Tensoval Comfort, Hartman, Germany) 2 min before the protocol,
at minute 3 of Phases I and III, and 2 min after the experimental protocol was completed.
Peripheral oxygen saturation (SpO2) and heart rate (bpm) were assessed by a pulse oximeter
(NoninOnyx® model 9500, Plymouth, MA, USA).

The plantar pressure data were obtained at 100 Hz with a FootScan® RsScan International®

Balance pressure plate (Olen, Belgium). For image analysis and to obtain the maximum
plantar pressure values (in N), we divided the foot into three regions—hindfoot, mid-
foot, and forefoot (Figure 1)—according to previously established functional criteria and
according to the length and width of the plantar surface of each individual [23].
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Figure 1. Illustrative pedobarographic image of one participant depicting distribution areas of plantar
pressure while standing in the upright position (see text).

In addition to plantar pressure distribution, we also analysed:

- the displacement oscillation of the centre of pressure (CoP) defining the total length of
the path marked by the CoP, expressed in mm;

- the average velocity of the CoP, referring to the average speed at which the CoP moves.
This parameter indicates the speed of changes in the CoP location, which reflects the
speed of postural reactions on standing, expressed in mm/s.

- the area of the ellipse (AoE) representing the size of the area marked by the CoP. The
area of the ellipse includes 95% of the CoP measurement points, and this parameter
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allows us to evaluate the size of the area of CoP movement (bipodal) on the support
surface expressed in mm2.

For all of these variables, higher scores indicate greater sway and stance instability.

2.3. Statistical Analysis

Statistical analysis was performed with Prism (GraphPad Software Inc., Version 9.2.0,
San Diego, CA, USA) and jamovi softwares (Version 2.2, Sydney, Australia).

After verifying the normal distribution of the sample data with the Shapiro-Wilk
test, parametric (repeated measures ANOVA, with the Post hoc Tukey test for pairwise
comparisons) or non-parametric (Wilcoxon signed rank and Friedman test with Paired
comparisons correction) tests were used for comparative analysis. Since data was continu-
ous, the analysis of correlation between variables was performed using the Pearson’s test.
A 95% confidence interval was adopted

3. Results

Perfusion and hemodynamic changes registered in both feet during the experimental
protocol are summarized in Table 2.

Table 2. Cardiovascular dynamics changes registered in the studied experimental conditions. Perfu-
sion (mean + sd) obtained by LDF and PSp instruments was measured and compared in both feet at
baseline (Phase I), challenge (Phase II) and recovery (Phase III) (p). Other hemodynamic variables
(cardiac frequency and blood arterial pressure) are compared with baseline (p
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LDF detected significant differences between the right and left foot in all participants
in Phase I, showing significantly higher values in the left foot (p = 0.007). PSp could not
detect any statistically significant differences between feet, although consistently showing
higher values for the right foot than the left (Table 2). Bipodal squatting, the challenge
movement in Phase II, increased perfusion in both feet, particularly apparent with LDF
compared with PSp records (Tables 2 and 3). Both technologies suggested that (baseline)
perfusion asymmetries disappear in Phase II, and LDF detected their reappearance in Phase
III (p = 0.015) (Table 2). Perfusion comparisons with PSp in Phase III have shown that
perfusion was closer to the baseline values of Phase I during the measured time. The same
was not observed with LDF, as only the left foot returned to baseline values while the right
foot maintained higher perfusion values (Table 3).

Calculating the right-left perfusion ratio between both feet, a common indicator of the
lower limb perfusion asymmetry [6–10], we see no statistically significant differences in
Phase I or Phase III perfusions as detected by LDF or PSp in the studied conditions (Figure 2).

Plantar pressure in the standing position was asymmetric (Figure 3). Plantar pressures
differed between feet and were not equally distributed in the foot (considering the different
areas of pressure as illustrated in Figure 1). Our results indicated that these differences were
not statistically significant in the forefoot and in the midfoot, and that the squat increased
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plantar pressure in both these two regions (Figure 3). In the hindfoot, differences between
left and right feet were always present and statistically significant in each phase of the
experimental protocol. Not surprisingly, squat reduced the registered pressure in Phase 2
(Figure 3). Concerning the pressure related variables of CoP velocity and displacement and
AoE, we noted that squat evoked a significant change (p = 0.0021) in all variables (Figure 4).

Table 3. Statistical differences between experimental phases in each limb as measured with LDF and
PSp systems.
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right foot Phase I
6.0 ± 1.3

right foot Phase II
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right foot Phase I
6.0 ± 1.3

right foot Phase III
7.7 ± 2.1 <0.001 *

left foot Phase I
6.7 ± 1.4

left foot Phase II
13.9 ± 4.8 <0.001 *

left foot Phase I
6.7 ± 1.4

left foot Phase III
6.9 ± 1.3 0.207

PSp ¥

right foot Phase I
217.2 ± 14.8

right foot Phase II
227.2 ± 12.0 0.080

right foot Phase I
217.2 ± 14.8

right foot Phase III
217.1 ± 13.7 1.000

left foot Phase I
206.0 ± 18.0

left foot Phase II
222.9 ± 14.8 0.016 *

left foot Phase I
206.0 ± 18.0

left foot Phase III
200.0 ± 11.0 0.613
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Figure 2. Perfusion ratios (right/left feet) as an indicator of the individual asymmetry measured with
LDF and PSp (TiVi) instruments at Phase I and Phase III (see text). Comparisons between phases are
also shown (ns—non-significant).
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Further analysis of correlations among variables suggests important relationships in 
Phases I and III, while it is not possible to identify statistically significant correlations in 
Phase II. As seen in Figures 6 and 7, mean perfusion measured by LDF in Phase I is in-
versely correlated with the centre of pressure (CoP) velocity (p = 0.025) and CoP displace-
ment (p = 0.024), while the body mass index (BMI) and mean plantar pressure are 

Figure 3. Plantar pressure (PP) asymmetries measured in three areas of both feet during the different
phases of the experimental protocol. Comparison between feet in each foot area depicts a significance
difference in plantar pressure asymmetry at the hindfoot in all the phases of the protocol (* p < 0.05;
ns—non-significant). Note the differing Y-axis values in the far right panel (hindfoot).
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The Pearson’s correlation analysis of these asymmetries detected between both feet for
LDF perfusion and plantar pressure (Figure 5) could not detect any significant differences
in any phase except a tendency that is evoked by the squat (discussed ahead).
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Pressure (right/left feet) ratio (see text).

Further analysis of correlations among variables suggests important relationships in
Phases I and III, while it is not possible to identify statistically significant correlations in
Phase II. As seen in Figures 6 and 7, mean perfusion measured by LDF in Phase I is inversely
correlated with the centre of pressure (CoP) velocity (p = 0.025) and CoP displacement
(p = 0.024), while the body mass index (BMI) and mean plantar pressure are positively
correlated (p = 0.022). In Phase III, no significant correlations are observed between plantar
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pressure variables and stance and perfusion. However, the correlation of BMI with mean
pressure remains significant (p = 0.014).
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4. Discussion

Pathological blood perfusion differences in lower limbs are known [33–35]. This
unevenness has also been described in the absence of disease and has been related to age,
sex and BMI [6,11,12,29]. Thus, the interlimb asymmetries here detected were expected.
The apparently contradictory results of a left foot perfusion “dominance” as measured
by LDF and right foot perfusion “dominance” as measured by PSp (Table 2) are, in fact,
complementary. The two technologies used in our study share a common optical basis, but
the interaction of the respective laser lights with the skin employs very specific and differing
mechanisms. LDF uses a red light with a 780 nm wavelength, providing a signal assumed
to be linearly related to the velocity and concentration of moving erythrocytes [32,36–38].
The perfusion estimations provided by LDF are based in a small vascular volume, likely at
a depth of around 1 mm, since contact with the skin allows the light to penetrate deeper
and to access larger vessels and higher volumes of blood [38,39]. In turn, the PSp is
a non-contact system using a white light with a wavelength of 633 nm and measures
in a sub-epidermal area at an estimated depth of 0.5 mm, where light is scattered and
absorbed primarily by the haemoglobin molecule in the red blood cells [37,40]. It is clear
that PSp reads more superficial areas with smaller vessels and blood volumes. Therefore,
considering the peculiar organisation of skin circulation involving a superficial plexus
at the dermis and a deeper structure with larger vessels crossing the adipose tissue and
beyond, these measurements are in agreement. Higher blood volumes are present in deeper,
larger vessels, while the most superficial vessels are smaller, containing necessarily lower
blood volume. Both systems detected perfusion increases in both feet in Phase II (Table 3),
along with the disappearance of the Phase I asymmetries. These asymmetries reappear
in Phase III as perfusion decreaases. This last finding indicates a rapid recovery capacity,
keeping in mind that all participants are healthy and active (Figure 1). The significant
increase in blood pressure and heart rate in Phase II are clearly associated with the squatting
activity (Table 2).

Movement and exercise are known to influence lower limb vascular perfusion and
pooling, and muscle recruitment [41]. Stance modifies heart rate, mean arterial pressure,
and blood accumulation in the foot, and stance alterations were recently associated with
lower limb discomfort [42]. Vascular diseases such as peripheral vascular disease (PVD)
and type 2 diabetes mellitus (T2D) are known to determine perfusion asymmetries in the
lower limb and modify muscular biomechanics and movement (gait) [43]. This might be
accentuated in older adults in the presence of common comorbidities since ageing per se
seems not to significantly modify gait function [44]. Nevertheless, PVD and T2D patients
are known to be prone to unfavorable ankle and knee joint modifications, likely due to
compensatory changes in gait [43,44]. Gait adaptation is also a common consequence
of an increase of plantar pressure asymmetries—where wide asymmetries reflect an un-
equal loading and mechanics of the paired feet—especially in the presence of vascular
impairment [23,25,26,43,45].

Under this view, we decided to explore potential relations between stance, blood
perfusion, and plantar pressure to better understand these lower limb asymmetries and
their implications. Although not equally distributed along the foot, plantar pressure
differences were present in all individuals at Phase I (Figure 3). Higher plantar pressure
was registered in the hindfoot and here the left foot showed statistically significant higher
values when compared with the right foot, such as perfusion measured by LDF. The squat
in Phase II reduced plantar pressure displaced to the other regions but accentuated these
statistically significant differences in Phases II and III (Figure 3). Forefoot and midfoot
pressures were lower, and their differences were not statistically significant in any of the
phases, but the squat of Phase II increased the plantar pressure in these regions (Figure 3).

Regarding the stance variables related to plantar pressure, we notice that the Phase 2
squat significantly increased all variables (Figure 4). The Pearson’s correlation analysis did
not show any relevant correlation between plantar pressure and LDF perfusion (data not
shown) in both feet. We repeated this correlation analysis with right/left foot ratios as a
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practical method to assess bi-lateral asymmetries (6–10) for both variables (Figure 5). Here
we found an interesting tendency—in Phase I, an inverse relationship between perfusion
and plantar pressure asymmetries was present, suggesting that higher pressure in one foot
favours perfusion in the opposite foot. However, in Phases II and III, the correlation was
reversed, more evident in Phase II (R = 0.55), as in Phase III the tendency seemed to recover
the Phase I relationship (Figure 5).

We further analysed potential correlations within these variables (Pearson’s corre-
lation test). As shown in Figures 6 and 7, a significant directly proportional correlation
between BMI and mean Plantar Pressure scores was detected in Phase I and in Phase III,
and a significant inverse correlation between LDF blood perfusion and CoP velocity and
displacement found in Phase I.

The exploratory nature of these results should draw our attention to some obvious
limitations, including (i) the reduced number of participants restraining any extrapolations
and the identification of other potential determinants; (ii) the exclusive use of healthy par-
ticipants, excluding specific groups of typical patients (e.g., those with vascular, muscular,
osteoarticular impairments) and (iii) the lack of movement kinetics and muscular strength
variables necessary to better understand other asymmetry-related relationships. We will
address these limitations in future studies, including the evaluation of “non-healthy” in-
dividuals, to better recognise its potential clinical utility. Nevertheless, this exploratory
approach seems to justify our view on the interest of studying potential relationships among
blood perfusion, biomechanics, and postural indicators as plantar pressure variables, to
better understand the significance of intraindividual functional asymmetries between the
lower limbs in the absence of disease.
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