
A federated approach to Android malware classification through Perm-
Maps

Gianni D’Angelo1 • Francesco Palmieri1 • Antonio Robustelli1

Received: 29 June 2021 / Revised: 13 October 2021 / Accepted: 24 November 2021 / Published online: 4 February 2022
� The Author(s) 2022

Abstract
In the last decades, mobile-based apps have been increasingly used in several application fields for many purposes

involving a high number of human activities. Unfortunately, in addition to this, the number of cyber-attacks related to

mobile platforms is increasing day-by-day. However, although advances in Artificial Intelligence science have allowed

addressing many aspects of the problem, malware classification tasks are still challenging. For this reason, the following

paper aims to propose new special features, called permission maps (Perm-Maps), which combine information related to

the Android permissions and their corresponding severity levels. Such features have proven to be very effective in

classifying different malware families through the usage of a convolutional neural network. Also, the advantages intro-

duced by the Perm-Maps have been enhanced by a training process based on a federated logic. Experimental results show

that the proposed approach achieves up to a 3% improvement in average accuracy with respect to J48 trees and Naive

Bayes classifier, and up to 16% compared to multi-layer perceptron classifier. Furthermore, the combined use of Perm-

Maps and federated logic allows dealing with unbalanced training datasets with low computational efforts.

Keywords Federated approach � Android classification � Perm-Maps � Deep neural network � Android permissions

1 Introduction

Since Android-based devices are used by thousands of end-

users every year, more and more malicious applications are

continuously developed by cyber-criminals in order to steal

sensitive information and conduct hostile activities.

According to McAfee Mobile Threat Report, in 2019,

cyber-criminals have increased the effectiveness of their

mobile attacks with the support of a wide variety of

methods and new approaches, such as backdoors and

cryptocurrencies, by making them hard to be identified and

removed [32]. In addition to this, as show in Fig. 1, G

DATA and McAfee experts have counted more than 4.18

million new malicious applications in 2019 [17], while

Kaspersky and TechCrunch have estimated that there will

be over 6 billion smartphone users worldwide by 2020

[22, 41].

Therefore, to face the following security trend and

support researchers in addressing the malware detection

tasks, several approaches based on machine learning (ML)

and deep learning (DL) have proved to be effective in

facing many aspects related to Android threats, especially

when they have been combined with static and dynamic

features directly extracted from mobile apps [16, 21, 31].

However, due to the continuous release of new Android

malware, the related classification tasks are still challeng-

ing. As a consequence, many state-of-the-art approaches

suffer from problems related to their dynamic re-training,

as well as the updating training datasets.

To address these issues, in this paper, we propose new

special features, called permission maps (Perm-Maps),

which combine information related to the Android per-

missions and their corresponding severity levels. Such

features are employed to classify different malware fami-

lies through the usage of a convolutional neural network

& Antonio Robustelli

arobustelli@unisa.it

Gianni D’Angelo

giadangelo@unisa.it

Francesco Palmieri

fpalmieri@unisa.it

1 Dipartimento Di Informatica, Università Degli Studi Di

Salerno, Salerno, Italy

123

Cluster Computing (2022) 25:2487–2500
https://doi.org/10.1007/s10586-021-03490-2(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-3423-3374
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-021-03490-2&domain=pdf
https://doi.org/10.1007/s10586-021-03490-2

(CNN). Also, the advantages introduced by the Perm-Maps

are being enhanced by a training process based on the

federated logic, where end-user devices extract static fea-

tures locally and send them to a centralized server devoted

to training the employed neural network.

Next, we explore the effectiveness of the proposed

Perm-Maps by comparing them with the most popular

state-of-the-art ML- and DL-based approaches. Finally, to

reduce the computational effort respectively required by

the Perm-Maps generation and CNN training processes, we

investigate a feature selection technique based on the most

frequent Android permissions.

The main contributions of this paper can be summarized

as follows:

1. Novel features, called Perm-Maps, are proposed to

combine the Android permissions and their corre-

sponding security levels into an image.

2. A federated architecture is presented to support the

training phase of the Perm-Maps.

3. A CNN is employed to classify several Android

malware families and then compared with the most

popular state-of-the-art approaches.

4. A feature selection technique based on the most

frequent Android permissions is investigated to reduce

the computational effort required by the Perm-Maps

generation and CNN training processes, respectively.

The rest of the paper is organized as follows. Section 2 will

present the related works about malware classification

methods for Android devices. Section 3 will report a

background overview on Android permissions. Section 4

will show the definition of Perm-Map, which is based on

the Android permissions and their corresponding severity

levels. Section 5 will present the employed federated

architecture. Section 6 will discuss the obtained results

related to the proposed CNN and the investigated feature

selection technique, respectively. Finally, Sect. 7 will show

the conclusions and future works.

2 Related works

Since Android malware applications are continuously

released every year by cyber-criminals, many detection

frameworks based on static and dynamic methodologies

have been proposed [16, 21, 31]. Static techniques can

acquire the behaviour of the analyzed applications by

performing several reverse engineering steps, and conse-

quently, by extracting useful signatures without executing

the application. For instance, Onwuzurike et al. [34] pre-

sented MaMaDROID, a new Android malware detection

solution that can check the sequences of API calls associ-

ated with the activity of a mobile application.

However, static approaches are often adversely affected

by the use of obfuscation techniques, and additionally, they

become ineffective against polymorphic malware which is

able to modify itself. This is the reason why any signature-

based detection techniques are ineffective, and conse-

quently, they are often substituted by dynamic approaches,

which are based on dynamic analysis techniques, and

hence, are able to analyze the behaviour of an application

at run time. In 2018, Sruthi et al. [40] proposed a malware

detection technique, in Windows OS environment, based

on API calls. Furthermore, several works have adopted ML

and DL techniques based on both static and dynamic fea-

tures [14, 33, 48].

In 2016, Kolosnjaji et al. [24] investigated a comparison

among different deep neural networks (DNNs) typologies.

Fig. 1 Total mobile malware

detections by quarter in 2018

and 2019 [32]

2488 Cluster Computing (2022) 25:2487–2500

123

In particular, they proposed a convolutional long short term

memory (Conv-LSTM) network able to achieve an 89.0%

in average accuracy, by considering 10 different Android

malware categories. Kumar et al. [25] proposed a com-

parison among the three famous ML-based methods to

detect Android malware by analyzing the visual represen-

tation of APK files formatted as Grayscale, RGB, CMYK,

and HSL images, without any code extraction and

decompiling operations. More precisely, they investigated

the proposed technique by using decision trees (DT),

Random Forest (RF), and k-nearest neighbor (k-NN),

respectively. The obtained results have shown that RF is

able to achieve a 91% accuracy by considering APK files

formatted as Grayscale images.

In 2017 Vinayakumar et al. [42] investigate different

LSTM neural networks to classify the APK files as either

benign or malicious. In particular, they proposed an LSTM

network able to achieve an 89.7% accuracy, by taking into

account Android permissions translated as numerical

information.

In 2018 Li et al. [27] proposed a comparison among

different DNNs configurations based on static information,

like permissions and Java code. More precisely, they

compared ten distinct neural network configurations by

achieving an average accuracy between 95 and 97% in the

Android malware classification task. Xie et al. [47] pro-

posed a tool called RepassDroid, which is able to classify

Android applications, as benign or malicious, based on

permission and Java methods. Additionally, they explored

a comparison among different ML-based approaches like

DT, RF, k-NN, Naive Bayes (NB), and support vector

machines. The achieved results have proven that RF is able

to achieve a 99.7% accuracy by taking into account 24,288

Android applications.

In 2019, Li et al. [26] proposed a novel and highly

reliable DNN classifier for Android malware detection

based on the extraction of several features from manifest

files and source code. In particular, they considered seven

different static features like app components, hardware

features, permissions, intent filters, restricted and suspi-

cious Java methods, and used permissions. Thus, they have

been used to train a DNN able to obtain a 99.25% average

accuracy. D’Angelo et al. [13] proposed a deep sparse

autoencoders (AEs) to classify Android-based malware and

goodware (GW) applications downloaded from several app

stores. More precisely, they proposed a new API methods

representation technique named API-images, and then, an

average accuracy of 95% has been achieved by employing

deep sparse AEs.

In 2020, Aonzo et al. [7] presented BAdDroIds, a mobile

application that leverages DL for detecting malware on

resource-constrained devices. In particular, the proposed

application has been compared with the most

notable Android malware detection frameworks by

achieving a 98% average accuracy.

Finally, in 2021, D’Angelo et al. [12] proposed a CNN

and a recurrent neural network (RNN), based on API-im-

ages, in order to classify different malware families. More

precisely, they used both neural networks on five malware

families on the Unisa malware dataset (UMD) by achieving

99% in average accuracy.

3 Background

In this section, some key concepts related to Android

permissions and federated environments are discussed in

order to understand and appreciate the novelties of the

proposed approach.

3.1 Permission’s overview

Android permissions can be categorized into three main

typologies: Install-time, Runtime, and Special [4]. Install-

time permissions grant an application limited access to

restricted data, and thus, they allow an application to per-

form restricted actions that minimally affect the system or

other apps. When a developer declares install-time per-

missions, the system automatically grants the required

permissions without notifying the end-user. There are two

types of Install-time permissions respectively called nor-

mal permissions and signature permissions:

– Normal permissions allow access to data and actions

that present minimal risk for the system or end-users

privacy. They can be used or identified through a

protection level’s value set to normal.

– Signature permissions since they are defined in another

Android application, the signature permissions are

granted only if the requesting and declarant applications

are signed through the same certificate. Also, they can

be used or identified through a protection level value set

to signed.

Runtime permissions, also known as dangerous permis-

sions, grant an application additional access to restricted

data by allowing it to perform actions that substantially

affect the system and other apps. When an Android

application requests runtime permissions, the system pre-

sents a prompt and waits that is granted or not by the end-

user. Runtime permissions can be used or identified

through a protection level value set to dangerous.

Finally, the special permissions can be only defined by

the original equipment manufacturers (OEMs) to provide

access control concerning several energy-intensive actions,

such as access to other applications. More precisely, they

are closely associated with an app operation (app op)

Cluster Computing (2022) 25:2487–2500 2489

123

related to access control, and they can be used or identified

through a protection level value set to appop.

4 Permission maps

Although most of the techniques used in literature include

both static and dynamic approaches, the static one is the

most desired because it can analyze applications without

running them. Accordingly, we propose new features,

called Perm-Maps, derived by the malware static analysis.

More precisely, A Perm-Map is a sparse matrix where

Android permissions, and their corresponding severity

levels, are related as fixed points and reported in an x–y

plane. As depicted in the following, the proposed Perm-

Maps are able to address three main issues: (i) Android

malicious developers could define custom permissions to

perform several hostile activities, like theft of sensitive

data or launch of cyber-attacks [1]; (ii) since default and

custom permissions are associated to different severity

levels, also called protection levels or flags, like: normal,

signature, dangerous, or their combinations, an application

could be characterized by many permissions and severity

levels [3, 5]. Therefore, a malicious developer could define

some low severity level permissions to perform several

actions without notifying the end-user; (iii) since Perm-

Maps represents static features only extracted from the

manifest file, they cannot be influenced by the most famous

obfuscator tools, like DexGuard [18], ProGuard [19], and

Obfuscapk [6].

4.1 Perm-Map creation workflow

The creation of a Perm-Map consists mainly in the fol-

lowing four steps:

1. Extraction of the Android permissions and their

corresponding protection level.

2. Assignment of an identifier (IDp) to any Android

permission.

3. Assignment of an identifier (IDs) to any severity level.

4. Creation of the Perm-Maps by using pairs of IDs (IDp;

IDs) as coordinates of fixed points in an x–y plane.

The first step is accomplished by using several tools or

libraries devoted to the malware static analysis. A typical

approach could envisage a dictionaries creation process of

the well-known Android permissions, and their protection

levels, by finding them from the official documentation [2].

Alternatively, the hpermissioni tag can be employed to

know the protection level of custom permissions. This

approach is adopted by several most famous reverse

engineering tools, like Androguard [15]. More precisely,

for each permission declared into the AndroidManifest file,

it is able to obtain the corresponding protection level by

checking if the considered permission is known; assign a

dangerous protection level otherwise.

Next, the second and third steps are accomplished by

creating two dictionaries to respectively translate each

Android permission and each corresponding severity level

into a unique ID number. Finally, for each analyzed

application, the fourth step is conducted by considering

each pair of ID numbers (IDp; IDs) as coordinates of a fixed

point, and consequently, storing the translated information

in a sparse matrix. For instance, let p1 and p2 two Android

permissions, and let s3 and s2 their security level, respec-

tively. We can consider two pair of coordinates C1 ¼
ðp1; s3Þ and C2 ¼ ðp2; s2Þ and draw two points in an x–y

plane, where axes x and y reports permissions and severity

levels, respectively. However, since security levels could

be different among them, it is possible to use different

colour scales (like RGB or Gray-scale) to remark these

differences. Figure 2 shows the complete workflow to

obtain a Perm-Map.

5 A federated architecture

Since millions of Android-based applications are released

every year, managing related data for model training pur-

poses is a process that requires significant efforts, mainly

associated to accessing, searching, and updating them. To

overcome these issues, we present a federated architecture

to support Android classification tasks through the pro-

posed Perm-Maps. Federated architectures are based on a

federated data production logic, which implies that the

participating devices send their own pre-processed per-

mission data to a centralized infrastructure devoted to

provide collection services and classification-model con-

struction and to share related information [23]. Due to its

great success, the federated logic has been investigated, in

the last decade, to face main issues related to the conver-

gence process among edge and cloud infrastructures, such

as data aggregation, data mobility, and services migration

[10, 30, 38]. Also, it has been involved in many other

famous application domains, such as cryptography solu-

tions to preserve data security [36], optimization frame-

works for the medical of things devices [37], and vehicular

networks optimization [43].

In detail, the proposed architecture aims to provide a

data aggregation workflow where federated devices are

used as decentralized permission data sources and prelim-

inary processing units. Additionally, a central server is

employed to collect data, and then construct, share and

update a classification model to be transferred as an update

to each federated device, and thus, to propose a managing

strategy for the involved permissions data. Therefore, the

2490 Cluster Computing (2022) 25:2487–2500

123

discussed architecture works through two steps respec-

tively named model creation process and model update

process, while its main contributions can be summarized as

follows:

1. A data aggregation’s workflow is presented to collect

data from federated devices.

2. A centralized dataset is employed to create a shared

DNN model based on Perm-Maps.

3. A data update workflow is discussed to manage

centralized data and re-adapt the shared model.

5.1 Model creation process

At beginning of the model creation process, each device

decompresses the APK file and sends the AndroidManifest

file to the central server. Thus, when data are completely

stored, it will perform the Perm-Maps creation process by

Fig. 2 Perm-Maps workflow

Cluster Computing (2022) 25:2487–2500 2491

123

following the workflow shown in Fig. 2. Basically, the

server will run the CNN’s training and testing phase and

send the classification model to each device. Finally, each

end-user will receive a notification concerning the classi-

fication result of the analyzed application. Figure 3 shows

the discussed process, while its main steps can be sum-

marized as follows:

1. End devices decompress the APK file.

2. They also send the manifest file to the central server.

3. The server runs the Perm-Maps creation process, when

data are completely available.

4. It then runs the CNN’s training and testing phase.

5. The server sends the classification model to each

device.

6. The end devices notify the end-users about the

classification result.

Note that, when an end device receives the first classi-

fication model information, it becomes able to autono-

mously create its Perm-Maps, and hence perform

classification, without affecting the central server.

5.2 Model update process

The following phase is responsible for collecting new data

when the end-user tries to install a new application. At a

high level, it differs from the previous process in three

main aspects:

1. If an application is unknown, it automatically stores the

related manifest file on the central server.

2. If an application is unknown, it considers the end-users

feedback to generate a classification label.

3. If a threshold value is reached, it trains and shares an

updated model by considering new data.

Therefore, when an end-user installs an application, the

device decompresses the APK, extracts the Perm-Map by

reading the AndroidManifest file, and uses the classifica-

tion model to make a classification. If the application is

known, the classification module will notify the end-user

by showing the achieved prediction. Otherwise, it will ask

if the installed application is known or trusted, and sub-

sequently, will send the manifest file and the user’s answer

to the central server. Thus, the employed server stores new

data and, when the dataset size will have reached a

threshold value, it will re-perform the Perm-Maps creation

process. Finally, the server will re-run the training and

testing phase and sends the updated model to each device.

Figure 4 shows the discussed process, while the main steps

can be summarized as follows:

1. End devices decompress the APK file.

2. They also extract the Perm-Map from the manifest file.

3. End devices also try to obtain a prediction and ask if

the analyzed application is known or trusted.

4. They send the manifest file and user’s answer to the

server.

5. The server stores new data.

6. It then re-runs the Perm-Maps creation process, when

the dataset size reaches a threshold value.

7. It also re-runs the CNN’s training and testing phase.

8. Finally it sends the updated model to each device.

6 Experimental results

The first goal of experiments, reported in this section, is

devoted to demonstrating the contribution of the proposed

approach concerning the classification of several Android

applications. Instead, the second one exploring the

Fig. 3 Model creation process

2492 Cluster Computing (2022) 25:2487–2500

123

effectiveness of a feature selection technique, based on the

most frequent permissions, to reduce the computational

effort required by the generation and training processes of

the Perm-Map and CNN, respectively.

6.1 UMD cleaning

In 2021 we developed a new Android malware dataset

(AMD) called Unisa malware dataset (UMD)1 [12] that

contains 25,275 mobile applications collected by analyzing

two famous datasets: AMD [28, 44] and Drebin [8, 39].

This first version of UMD consists of two main directories

called amd-cuckoo-family and drebin-cuckoo-family that

contain 66 and 143 Android malware families, respec-

tively. Additionally, it provides, for each analyzed appli-

cation, the report files obtained through CuckooDroid

Sandbox [11, 20]. Table 1 shows an overview of the first

release of UMD.

In this work, we use a cleaned version of UMD (UMD-

v2) obtained by applying the following modifications:

1. Consider the two main folders as a single one.

2. Merge the common families.

3. For each common family, remove the duplicates.

4. Remove each application which has got one or more

malformed files.

5. Remove each application which has got one or more

missing files.

The application of points (1) and (2) have reduced the

number of considered families from 209 to 185. Instead,

the application of points (3), (4) and (5) have reduced the

number of the analyzed applications from 25,275 to

24,285. Additionally, the application of the entire protocol

has reduced the dimensions (Dim.) from 117.63 to 112.45

GB. Table 2 reports a comparison between the two versions

of our datasets.

6.2 Proof of concept experimental setting

We built our proof of concept testing framework within a

virtualization scenario based on VirtualBox. For this work,

we considered 10 categories of Android applications. In

particular, the entire dataset used for training has been

composed by choosing nine malware families from UMD-

v2 and selecting GW applications from the following

online stores: ApkPure, GooglePlay, and PlayDrone.

Hence, to simulate the discussed Model Creation Process,

each application has been analyzed through the Android

device cross-platform mode of CuckooDroid [11, 20].

More precisely, in our proof of concept framework we used

two Android guest virtual machines, simulating end devi-

ces, to decompress each APK file and send the

AndroidManifest file to the server virtual machine. Thus,

we extracted Perm-Maps by using a dedicated Python

script executed on the server machine. We stored each

Perm-Map as a matrix 4� 298 in accordance with the

maximum number of distinct severity levels and Android

permissions observed, respectively. Figure 5 shows the

application’s distribution extracted by performing an

exploratory data analysis, EDA [35, 46], and it highlights

the unbalanced behaviour of the employed dataset.

Subsequently, we have split the following dataset in

order to run the experiments. To this purpose, the whole

dataset has been subdivided into two mutually exclusive

subsets called learning and testing dataset, respectively.

We used 70% of the entire dataset for learning and the

remaining 30% for testing. Then, the K-fold cross-valida-

tion algorithm, with k = 10 (as recommended in [9], has

been used to tune the hyper-parameters and provide an

unbiased evaluation of each employed CNN. Finally, each

CNN has been trained on each training set and evaluated on

the corresponding testing set. Table 3 reports the main

information about the involved dataset.

6.3 Proposed network and evaluation metrics

The employed CNN architecture has been developed as a

sequence of two Conv2D layers with kernel_size = (2, 2),

activation = relu, and no pooling. For the first one, we used

8 filters and strides = (2, 2), while for the second one we

Table 1 Overview on the first version of UMD

Analyzed APK Families Dimension (GB)

AMD 20,426 66 100.08

Drebin 4849 143 17.55

Total 25,275 209 117.63

Fig. 4 Model update process

1 http://antlab.di.unisa.it/malware/.

Cluster Computing (2022) 25:2487–2500 2493

123

http://antlab.di.unisa.it/malware/

used 2 filters and strides = (1, 1). Subsequently, we added a

flatten layer to convert the latent space, from the second

Conv2D layer, as a flattened sequence to fed a fully-con-

nected softmax neural network. Therefore, 2 dense layers

with 128 nodes, activation = relu, and dropout = 0.5, have

been connected. Finally, a dense layer with 10 nodes and

activation = softmax has been used as the output layer.

Figure 6 shows the architecture of the proposed network.

Additionally, the following architecture has been derived

by varying the following hyper-parameters:

– numConvLayers: the number of Conv2D layers con-

sidered (1, 2, 3);

– numDenseLayers: the number of dense layers consid-

ered (1, 2, 3, 4);

– filters: the number of filters considered for each

Conv2D layer (2, 4, 8, 16);

– neurons: the number of neurons considered for each

dense layer (10, 32, 64, 128, 256);

– activation: activation functions employed (relu,

softmax);

– strides: the stride length for each Conv2D layer (1, 2,

4);

– batch_size: considered batch_size values (16, 32, 64,

128);

– loss: loss functions used (Categorical_Crossentropy,

SparseCategoricalFocalLoss).

To evaluate the classification quality of the employed

neural network, the following metrics have been computed:

accuracy (Acc.), sensitivity (Sens.), specificity (Spec.),

precision (Prec.), area under the ROC curve (AUC), and

F-measure (F-Meas or F-score). More precisely, they have

been derived from a multi-class confusion matrix where,

for each category, TPs (true positives) are the applications

correctly classified, TNs (true negatives) are the applica-

tions correctly classified in another category, FPs (false

positives) are the applications incorrectly identified as a

considered category, while FNs (false negatives) are the

applications in another category incorrectly identified as a

considered category. Subsequently, in order to obtain a

global validation, the average values (Avg.) among all

metrics have been computed.

6.4 Achieved results

The proposed CNN has been trained and tested on an iMac

equipped with an Intel 6-Core i7 CPU @ 3.20 GHz, and 16

GB RAM. The employed neural network has been com-

piled with Adam optimizer and SparseCategori-

calFocalLoss function [29], which is a useful function to fit

neural networks in presence of unbalanced datasets. Then,

it has been trained with batch_size = 64, and 150 epochs by

using the 70/30 criteria and the K-fold cross-validation

algorithm with k = 10. We chose the following hyper-

parameters according to the achieved results from the

testing process. Tables 4 and 5 show results that have been

obtained from the testing phase by respectively using the

70/30 criteria and the K-fold cross-validation algorithm

with k = 10, while Table 6 shows the multi class confusion

matrix related to the 70/30 criteria.

Furthermore, to face the yearly growth of the malicious

applications and analyze the update process of the

Table 2 Comparison between the versions of UMD

Analyzed APK Families Dimension (GB)

UMD-v1 25,275 209 117.63

UMD-v2 24,285 185 112.45

Fig. 5 Data distribution for each category

Table 3 Summary of the involved dataset

Num. APK Training Testing

Adrd 78 56 22

Boqx 190 135 55

FakeDoc 130 99 31

Fusob 166 106 60

G.Master 117 82 35

GW 78 55 23

Iconosys 135 101 34

Kmin 147 104 43

Lotoor 261 183 78

Mseg 213 145 68

Total 1515 1066 449

2494 Cluster Computing (2022) 25:2487–2500

123

presented architecture, we have estimated the data growth

range within which to readjust the proposed CNN. More

precisely, we have reduced the whole dataset by 5%

through an iterative process. At each step, 5% of data have

been randomly removed, and thus, we have employed the

considered sub-dataset to train and test the proposed CNN

by following the 70/30 criteria. Table 7 summarizes the

classification metrics derived by the testing phase for each

considered sub-dataset.

The achieved results show that the proposed CNN

should be readjusted when the data dimensions growing

between 15 and 20%. In particular, the comparison

between the whole dataset (size 100%) and the dataset

reduced by 20% (size 80%) shows a worsening of all

classification metrics. For instance, the proposed CNN has

respectively obtained a worsening of 3% in average pre-

cision, 7% in average sensibility, and 6% in average

F-score.

In order to show the effectiveness of the use of the

proposed representation method, the achieved results have

been compared with the most notable ML-based approa-

ches implemented in the WEKA [45] framework. More

precisely, we used multi-layer perceptron (MLP), J48 trees

(J48), and NB, to derive the classification metrics by

considering a flattened version of the employed dataset that

has been used to train and test the proposed CNN. Table 8

summarizes the comparison between the proposed CNN

(Pr-CNN) and the employed ML-based methods.

Fig. 6 Architecture of the employed neural network

Table 4 Performance metrics related to 70/30 criteria

Acc. Spec. Prec. Sens. F-score AUC

Adrd 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Boqx 0.9912 0.9898 0.9322 1.0000 0.9649 0.9949

FakeDoc 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Fusob 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

G.Master 0.9978 0.9976 1.0000 0.9722 0.9859 0.9849

GW 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Iconosys 0.9978 1.0000 1.0000 0.9714 0.9855 0.9857

Kmin 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Lotoor 0.9867 0.9945 0.9750 0.9512 0.9630 0.9728

Mseg 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Avg. 0.9974 0.9982 0.9906 0.9895 0.9898 0.9937

Table 5 Performance metrics related to K-fold k = 10

Acc. Spec. Prec. Sens. F-score AUC

Fold 1 0.9960 0.9977 0.9830 0.9757 0.9789 0.9867

Fold 2 0.9956 0.9974 0.9839 0.9698 0.9762 0.9836

Fold 3 0.9965 0.9979 0.9871 0.9754 0.9809 0.9867

Fold 4 0.9965 0.9980 0.9859 0.9768 0.9810 0.9874

Fold 5 0.9965 0.9979 0.9869 0.9736 0.9798 0.9858

Fold 6 0.9960 0.9977 0.9838 0.9737 0.9783 0.9857

Fold 7 0.9952 0.9973 0.9739 0.9700 0.9717 0.9836

Fold 8 0.9947 0.9969 0.9797 0.9600 0.9688 0.9785

Fold 9 0.9956 0.9974 0.9849 0.9720 0.9780 0.9847

Fold 10 0.9960 0.9977 0.9835 0.9731 0.9775 0.9854

Avg. 0.9959 0.9976 0.9833 0.9719 0.9770 0.9847

Cluster Computing (2022) 25:2487–2500 2495

123

The following comparison shows that the MLP classifier

is not able to distinguish different application categories by

considering Android permissions and their severity levels,

while J48 trees and the NB classifier have achieved good

results. More precisely, the proposed CNN has obtained up

to a 3% improvement in average accuracy over J48 trees

and the NB classifier, and up to a 16% over MLP classifier.

Consequently, the proposed CNN can reduce the number of

FPs and FNs, and then, better minimize the classification

error respect to the most famous ML-based approaches.

Finally, we compared the proposed CNN with the ML

and DL based state-of-art solutions. We considered RF

results respectively achieved by A. Kumar et al. (Kum-RF)

[25] and N. Xie et al. (Xie-RF) [47], LSTM neural network

results achieved by R Vinayakumar et al. (Vi-LSTM) [42],

and DNN results obtained by C. Li et al. (Li-DNN) [26].

Table 9 summarizes the comparison between the Pr-CNN

and the state-of-art solutions.

First of all, the following comparison shows that the Vi-

LSTM and Kum-RF solutions have achieved discrete

results, and consequently, the proposed CNN has obtained

up to 10% and 8% in average accuracy over both solutions,

respectively. As reported in Sect. 2, Vi-LSTM evaluation

metrics have been obtained by only considering Android

permissions translated as numerical information, while

Kum-RF evaluation metrics have been achieved by con-

sidering Grayscale images directly generated from the

APK files, without performing any code extraction and

decompiling operations. Consequently, the selected static

features are not sufficient to achieve equivalent results as

those obtained by the proposed CNN. Second, Xie-RF and

Li-DNN have been achieved optimal results, and conse-

quently, the proposed CNN has obtained up to 2% in

average accuracy over Xie-RF, while their evaluation

metrics are similar to those achieved by Li-DNN. How-

ever, the proposed Perm-Map representation technique is

only based on Android permission and their severity levels,

while Xie-RF and Li-DNN are based on Android permis-

sions and Java methods. Consequently, Xie-RF and Li-

DNN become ineffective against obfuscation techniques.

Finally, Table 10 reports a final overview among proposed

CNN, ML-based methods of WEKA, and state-of-art

solutions.

Table 6 Multi-class confusion

matrix related to 70/30 criteria
Adrd Boqx FakeDoc Fusob G.Master GW Iconosys Kmin Lotoor Mseg

Adrd 22 0 0 0 0 0 0 0 0 0

Boqx 0 55 0 0 0 0 0 0 0 0

FakeDoc 0 0 31 0 0 0 0 0 0 0

Fusob 0 0 0 60 0 0 0 0 0 0

G.Master 0 0 0 0 35 0 0 0 1 0

GW 0 0 0 0 0 23 0 0 0 0

Iconosys 0 0 0 0 0 0 34 0 1 0

Kmin 0 0 0 0 0 0 0 43 0 0

Lotoor 0 4 0 0 0 0 0 0 78 0

Mseg 0 0 0 0 0 0 0 0 0 68

Table 7 Performance metrics related to dataset updating process

Size (%) Acc. Spec. Prec. Sens. F-score AUC

100 0.9974 0.9982 0.9906 0.9895 0.9898 0.9937

95 0.9977 0.9987 0.9853 0.9894 0.9872 0.9940

90 0.9949 0.9970 0.9786 0.9667 0.9711 0.9819

85 0.9914 0.9949 0.9666 0.9419 0.9529 0.9684

80 0.9889 0.9936 0.9623 0.9116 0.9246 0.9526

75 0.9667 0.9790 0.9188 0.7907 0.8132 0.8849

Table 8 Comparison between the proposed CNN and ML-based

methods

Acc. Spec. Prec. Sens. F-score AUC

Pr-CNN 0.9974 0.9982 0.9906 0.9895 0.9898 0.9937

J48 0.9670 0.9670 0.9670 0.9680 0.9670 0.9670

NB 0.9647 0.9650 0.9650 0.9670 0.9640 0.9660

MLP 0.8348 0.8350 0.8330 0.8350 0.8340 0.8350

Table 9 Comparison between the proposed CNN and state-of-art

solutions

Acc. Spec. Prec. Sens. F-score AUC

Pr-CNN 0.9974 0.9982 0.9906 0.9895 0.9898 0.9937

Li-DNN 0.9925 0.9945 0.9961 0.9904 0.9933 0.9925

Xie-RF 0.9770 0.9992 0.9775 0.9775 0.9775 0.9884

Kum-RF 0.9100 0.9200 0.9000 0.9300 0.9147 0.9250

Vi-LSTM 0.8970 0.6280 0.9100 0.9600 0.9147 0.7690

2496 Cluster Computing (2022) 25:2487–2500

123

6.5 Feature selection process

Since the number of employed permissions is 298, the final

goal is devoted to exploring a feature extraction technique,

based on the most frequent Android permissions, in order

to reduce the computational effort required by the gener-

ation and training processes of the Perm-Map and CNN,

respectively. To this purpose, we have analyzed the per-

missions frequencies distribution in order to find the min-

imum frequency number that was able to reduce the

number of employed permissions and preserve the number

of applications analyzed previously. We have performed

the following analysis by using a dedicated Python script.

More precisely, we have firstly created an ordered dic-

tionary to store each permission and its frequency. Then,

we have considered all Android permissions required at

least 50 times, and consequently, 57 Android permissions

have been considered for the generation process of each

Perm-Map. Figure 7 shows the first five most required

Android permissions.

Subsequently, according to the workflow shown in

Fig. 2, we employed the 57 Android permissions to

generate and store each Perm-Maps as a matrix 4� 64 in

accordance with the maximum number of distinct severity

levels and an over-bound number of Android permissions,

respectively. We have chosen the following over-bound to

simplify the operations that are performed by convolutional

layers. Thus, we have split the following new dataset in

order to run the experiments. To this purpose, the whole

dataset has been subdivided into two mutually exclusive

subsets assuming the role of learning and testing datasets,

respectively. We used 70% of the entire dataset for learn-

ing and the remaining 30% for testing. The employed

neural network has been compiled with Adam optimizer,

SparseCategoricalFocalLoss function, batch_size = 64, and

150 epochs. Furthermore, it presents the same architecture

of the neural network described in Fig. 6 except for the

input_shape = (4, 64, 1) and dense layers with dropout =

0.45. Finally, the computational effort for the text substi-

tution, Perm-Maps generation, and training processes have

been derived with and without considering the employed

features selection method, respectively. Table 11 reports

the computational effort required for each analyzed phase,

Table 12 shows results that have been obtained from the

testing phase by using the 70/30 criteria, while Table 13

summarizes the comparison between the proposed CNNs

that have been respectively called CNN-NoExtraction

(CNN-NE) and CNN-WithExtraction (CNN-WE).

The obtained results show that the employed feature

selection approach could reduce the computational effort

required by each analyzed process. More precisely,

Table 11 shows that text substitution and Perm-Maps

generation processes have been slightly improved,

respectively. Furthermore, it shows that the training pro-

cess has been improved by 3.5 s, while the total effort has

been improved by 3.6 s. Finally, the comparison reported in

Table 13 demonstrates that proposed CNNs have been

obtained equivalent evaluation metrics by testing phase,

and thus, how the employed features selections criteria

could also optimize the proposed representation approach.

Table 10 Overview among proposed CNN, ML-based methods of

WEKA, and state-of-art solutions

Acc. Spec. Prec. Sens. F-score AUC

Pr-CNN 0.9974 0.9982 0.9906 0.9895 0.9898 0.9937

Li-DNN 0.9925 0.9945 0.9961 0.9904 0.9933 0.9925

Xie-RF 0.9770 0.9992 0.9775 0.9775 0.9775 0.9884

J48 0.9670 0.9670 0.9670 0.9680 0.9670 0.9670

NB 0.9647 0.9650 0.9650 0.9670 0.9640 0.9660

Kum-RF 0.9100 0.9200 0.9000 0.9300 0.9147 0.9250

Vi-LSTM 0.8970 0.6280 0.9100 0.9600 0.9147 0.7690

MLP 0.8348 0.8350 0.8330 0.8350 0.8340 0.8350

Fig. 7 Most required Android permissions

Table 11 Required computational effort

No sel. (s) With sel. (s) Diff. (s)

Text sub. 0.255570 0.152351 0.103219

Perm-Maps gen. 0.058101 0.046116 0.011985

Training 11.589643 8.073685 3.515958

Total 11.903314 8.272152 3.631162

Cluster Computing (2022) 25:2487–2500 2497

123

7 Conclusions and future works

In this paper, novel features called Perm-Maps, based on

Android permissions and their corresponding severity

levels, have been presented. Next, a CNN has been used to

show the potentialities of the proposed approach. More

precisely, it has been enhanced by a training process based

on a federated logic, where end-users devices extract static

features locally and send them to a central server devoted

to training a neural network performing malware classifi-

cation. Then, the effectiveness of the presented methodol-

ogy has been validated by using statistic metrics and

comparing it to the most popular state-of-the-art ML-based

approaches, like NB, MLP and J48 DTs. The obtained

results show that the proposed CNN has achieved up to a

3% improvement in average accuracy over a J48 tree-based

and NB classifier, and up to 16% over a MLP classifier,

respectively. Finally, a feature selection technique, based

on the most frequent Android permissions, has been

explored to reduce the computational effort required by the

Perm-Maps generation and CNN training processes,

respectively. The achieved results show that the proposed

methodology has improved the training time by 3.6 s and

that they are also comparable with those obtained without

considering any features selection technique.

However, due to the high number of existing Android-

based applications, we would like to propose two possible

future works. First of all, we will investigate the proposed

features by considering an enormous quantity of decen-

tralized data and applying a fully federated learning

approach, involving end devices in model construction.

Finally, since the most popular ML and DL based methods

consider only features obtained at the end of malware

analysis, we will propose new solutions capable of reduc-

ing damages caused at run-time by processing streams of

dynamic features. For instance, several combinations

among LSTM layers, CNNs, and stacked AEs (SAEs)

could be explored and combined with the proposed

approach.

Funding The author(s) received no financial support for the research,

authorship, and/or publication of this article.

Data availability The used data is available on http://antlab.di.unisa.it/

malware/.

Declarations

Conflict of interest The authors declare that they have no conflict of

interest.

Ethical approval This article does not contain any studies with human

participants or animals performed by any of the authors.

Informed consent Informed consent was obtained from all individual

participants included in the study.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Android: define a custom app permission. https://developer.

android.com/guide/topics/permissions/defining. Accessed 2021

2. Android: Manifest.permission. https://developer.android.com/

reference/android/Manifest.permission. Accessed 2021

3. Android: $\langle {{\rm permission}}\rangle $. https://developer.

android.com/guide/topics/manifest/permission-element. Acces-

sed 2021

4. Android: permissions on Android. https://developer.android.com/

guide/topics/permissions/overview. Accessed 2021

5. Android: R.attr | protectionlevel. https://developer.android.com/

reference/android/R.attr. Accessed 2021

Table 12 Performance metrics derived by the 70/30 criteria and

features selection method

Acc. Spec. Prec. Sens. F-score AUC

Adrd 0.9978 1.0000 1.0000 0.9500 0.9744 0.9750

Boqx 0.9956 1.0000 1.0000 0.9688 0.9841 0.9844

FakeDoc 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Fusob 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

G.Master 0.9933 0.9976 0.9773 0.9556 0.9663 0.9766

GW 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Iconosys 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Kmin 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Lotoor 0.9911 0.9894 0.9524 1.0000 0.9756 0.9947

Mseg 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Avg. 0.9978 0.9987 0.9930 0.9874 0.9900 0.9931

Table 13 Comparison between the proposed CNNs

Acc. Spec. Prec. Sens. F-score AUC

CNN-NE 0.9974 0.9982 0.9906 0.9895 0.9898 0.9937

CNN-WE 0.9978 0.9987 0.9930 0.9874 0.9900 0.9931

2498 Cluster Computing (2022) 25:2487–2500

123

http://antlab.di.unisa.it/malware/
http://antlab.di.unisa.it/malware/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://developer.android.com/guide/topics/permissions/defining
https://developer.android.com/guide/topics/permissions/defining
https://developer.android.com/reference/android/Manifest.permission
https://developer.android.com/reference/android/Manifest.permission
https://developer.android.com/guide/topics/manifest/permission-element
https://developer.android.com/guide/topics/manifest/permission-element
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/reference/android/R.attr
https://developer.android.com/reference/android/R.attr

6. Aonzo, S., Georgiu, G.C., Verderame, L., Merlo, A.: Obfuscapk:

an open-source black-box obfuscation tool for Android apps.

SoftwareX 11, 100403 (2020). https://doi.org/10.1016/j.softx.

2020.100403

7. Aonzo, S., Merlo, A., Migliardi, M., Oneto, L., Palmieri, F.: Low-

resource footprint, data-driven malware detection on Android.

IEEE Trans. Sustain. Comput. 5(2), 213–222 (2020)

8. Arp, D., Spreitzenbarth, M., Hübner, M., Gascon, H., Rieck, K.:

Drebin: effective and explainable detection of Android malware

in your pocket (2014). https://doi.org/10.14722/ndss.2014.23247

9. Bhagwat, R., Abdolahnejad, M., Moocarme, M.: Applied Deep

Learning with Keras: Solve Complex Real-Life Problems with

the Simplicity of Keras. Packt Publishing, Birmingham (2019)

10. Carrez, F., Elsaleh, T., Gómez, D., Sánchez, L., Lanza, J., Grace,

P.: A reference architecture for federating IoT infrastructures

supporting semantic interoperability. In: 2017 European Confer-

ence on Networks and Communications (EuCNC), pp. 1–6

(2017). https://doi.org/10.1109/EuCNC.2017.7980765

11. CuckooDroid: CuckooDroid Book. https://cuckoo-droid.read

thedocs.io/en/latest/. Accessed 2020

12. D’Angelo, G., Palmieri, F., Robustelli, A., Castiglione, A.:

Effective classification of Android malware families through

dynamic features and neural networks. Connect. Sci. (2021).

https://doi.org/10.1080/09540091.2021.1889977

13. D’Angelo, G., Ficco, M., Palmieri, F.: Malware detection in

mobile environments based on autoencoders and API-images.

J. Parallel Distrib. Comput. 137, 26–33 (2020). https://doi.org/10.

1016/j.jpdc.2019.11.001

14. David, O., Netanyahu, N.S.: DeepSign: deep learning for auto-

matic malware signature generation and classification. In: Inter-

national Joint Conference on Neural Networks (IJCNN) pp. 1–8

(2015)

15. Desnos, A., Gueguen, G.: Androguard. https://github.com/andro

guard/androguard. Accessed 2020

16. Ficco, M.: Detecting IoT malware by Markov chain behavioral

models. pp. 229–234 (2019). https://doi.org/10.1109/IC2E.2019.

00037

17. G DATA: G DATA Mobile Malware Report 2019: New High for

Malicious Android Apps. https://www.gdatasoftware.com/news/

g-data-mobile-malware-report-2019-new-high-for-malicious-

android-apps. Accessed 2020

18. Guardsquare: DexGuard. Guardsquare. https://www.guardsquare.

com/dexguard. Accessed 2021

19. Guardsquare: ProGuard. Guardsquare. https://www.guardsquare.

com/proguard. Accessed 2021

20. Idanr: CuckooDroid—automated Android malware analysis.

https://github.com/idanr1986/cuckoo-droid. Accessed 2020

21. Karbab, E.B., Debbabi, M., Derhab, A., Mouheb, D.: MalDozer:

automatic framework for Android malware detection using deep

learning. Digit. Investig. 24, S48–S59 (2018). https://doi.org/10.

1016/j.diin.2018.01.007

22. Kaspersky: Android mobile security threats. https://www.kas

persky.com/resource-center/threats/mobile. Accessed 2020

23. Kelaidonis, D., Rouskas, A., Stavroulaki, V., Demestichas, P.,

Vlacheas, P.: A federated edge cloud-IoT architecture. In: 2016

European Conference on Networks and Communications

(EuCNC), pp. 230–234 (2016). https://doi.org/10.1109/EuCNC.

2016.7561038

24. Kolosnjaji, B., Zarras, A., Webster, G., Eckert, C.: Deep learning

for classification of malware system call sequences. In: Kang,

B.H., Bai, Q. (eds.) AI 2016: Advances in Artificial Intelligence,

pp. 137–149. Springer, Cham (2016)

25. Kumar, A., Sagar, K.P., Kuppusamy, K.S., Aghila, G.: Machine

learning based malware classification for Android applications

using multimodal image representations. In: 2016 10th

International Conference on Intelligent Systems and Control

(ISCO), pp. 1–6 (2016). https://doi.org/10.1109/ISCO.2016.

7726949

26. Li, C., Mills, K., Niu, D., Zhu, R., Zhang, H., Kinawi, H.:

Android malware detection based on factorization machine. IEEE

Access 7, 184008–184019 (2019). https://doi.org/10.1109/

ACCESS.2019.2958927

27. Li, D., Wang, Z., Xue, Y.: Fine-grained Android malware

detection based on deep learning. In: 2018 IEEE Conference on

Communications and Network Security (CNS), pp. 1–2 (2018).

https://doi.org/10.1109/CNS.2018.8433204

28. Li, Y., Jang, J., Hu, X., Ou, X.: Android malware clustering

through malicious payload mining. In: Lecture Notes in Com-

puter Science, pp. 192–214 (2017). http://arxiv.org/abs/

1707.04795

29. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss

for dense object detection. IEEE Trans. Pattern Anal. Mach.

Intell. 42(2), 318–327 (2018)

30. Loria, M.P., Toja, M., Carchiolo, V., Malgeri, M.: An efficient

real-time architecture for collecting IoT data. In: 2017 Federated

Conference on Computer Science and Information Systems

(FedCSIS), pp. 1157–1166 (2017). https://doi.org/10.15439/

2017F381

31. Martı́n Garcı́a, A., Rodriguez-Fernandez, V., Camacho, D.:

CANDYMAN: classifying Android malware families by mod-

elling dynamic traces with Markov chains. Eng. Appl. Artif.

Intell. (2018). https://doi.org/10.1016/j.engappai.2018.06.006

32. McAfee: McAfee mobile threat report. https://www.mcafee.com/

content/dam/consumer/en-us/docs/2020-Mobile-Threat-Report.

pdf. Accessed 2020

33. McLaughlin, N., Martinez del Rincon, J., Kang, B., Yerima, S.,

Miller, P., Sezer, S., Safaei, Y., Trickel, E., Zhao, Z., Doupé, A.,

Joon Ahn, G.: Deep Android malware detection. In: Proceedings

of the Seventh ACM on Conference on Data and Application

Security and Privacy, CODASPY ’17, pp. 301–308. Association

for Computing Machinery, New York (2017). https://doi.org/10.

1145/3029806.3029823

34. Onwuzurike, L., Mariconti, E., Andriotis, P., Cristofaro, E.D.,

Ross, G., Stringhini, G.: MaMaDroid: detecting Android malware

by building Markov chains of behavioral models (extended ver-

sion). ACM Trans. Priv. Secur. (2019). https://doi.org/10.1145/

3313391

35. Prabhu, T.N.: Exploratory data analysis in Python. https://

towardsdatascience.com/exploratory-data-analysis-in-python-

c9a77dfa39ce. Accessed 2020

36. Sadat, M.N., Al Aziz, M.M., Mohammed, N., Chen, F., Jiang, X.,

Wang, S.: SAFETY: Secure gwAs in Federated Environment

through a hYbrid Solution. IEEE/ACM Trans. Comput. Biol.

Bioinform. 16(1), 93–102 (2019). https://doi.org/10.1109/TCBB.

2018.2829760

37. Sanyal, S., Wu, D., Nour, B.: A federated filtering framework for

internet of medical things. In: ICC 2019—2019 IEEE Interna-

tional Conference on Communications (ICC), pp. 1–6 (2019).

https://doi.org/10.1109/ICC.2019.8761381

38. Shih, C., Chuang, C., Yeh, H.: Federating public and private

intelligent services for IoT applications. In: 2017 13th Interna-

tional Wireless Communications and Mobile Computing Con-

ference (IWCMC), pp. 558–563 (2017). https://doi.org/10.1109/

IWCMC.2017.7986346

39. Spreitzenbarth, M., Freiling, F., Echtler, F., Schreck, T., Hoff-

mann, J.: Mobile-sandbox: having a deeper look into Android

applications. In: Proceedings of the 28th Annual ACM Sympo-

sium on Applied Computing, SAC ’13, pp. 1808–1815. Associ-

ation for Computing Machinery, New York (2013). https://doi.

org/10.1145/2480362.2480701

Cluster Computing (2022) 25:2487–2500 2499

123

https://doi.org/10.1016/j.softx.2020.100403
https://doi.org/10.1016/j.softx.2020.100403
https://doi.org/10.14722/ndss.2014.23247
https://doi.org/10.1109/EuCNC.2017.7980765
https://cuckoo-droid.readthedocs.io/en/latest/
https://cuckoo-droid.readthedocs.io/en/latest/
https://doi.org/10.1080/09540091.2021.1889977
https://doi.org/10.1016/j.jpdc.2019.11.001
https://doi.org/10.1016/j.jpdc.2019.11.001
https://github.com/androguard/androguard
https://github.com/androguard/androguard
https://doi.org/10.1109/IC2E.2019.00037
https://doi.org/10.1109/IC2E.2019.00037
https://www.gdatasoftware.com/news/g-data-mobile-malware-report-2019-new-high-for-malicious-android-apps
https://www.gdatasoftware.com/news/g-data-mobile-malware-report-2019-new-high-for-malicious-android-apps
https://www.gdatasoftware.com/news/g-data-mobile-malware-report-2019-new-high-for-malicious-android-apps
https://www.guardsquare.com/dexguard
https://www.guardsquare.com/dexguard
https://www.guardsquare.com/proguard
https://www.guardsquare.com/proguard
https://github.com/idanr1986/cuckoo-droid
https://doi.org/10.1016/j.diin.2018.01.007
https://doi.org/10.1016/j.diin.2018.01.007
https://www.kaspersky.com/resource-center/threats/mobile
https://www.kaspersky.com/resource-center/threats/mobile
https://doi.org/10.1109/EuCNC.2016.7561038
https://doi.org/10.1109/EuCNC.2016.7561038
https://doi.org/10.1109/ISCO.2016.7726949
https://doi.org/10.1109/ISCO.2016.7726949
https://doi.org/10.1109/ACCESS.2019.2958927
https://doi.org/10.1109/ACCESS.2019.2958927
https://doi.org/10.1109/CNS.2018.8433204
https://doi.org/10.15439/2017F381
https://doi.org/10.15439/2017F381
https://doi.org/10.1016/j.engappai.2018.06.006
https://www.mcafee.com/content/dam/consumer/en-us/docs/2020-Mobile-Threat-Report.pdf
https://www.mcafee.com/content/dam/consumer/en-us/docs/2020-Mobile-Threat-Report.pdf
https://www.mcafee.com/content/dam/consumer/en-us/docs/2020-Mobile-Threat-Report.pdf
https://doi.org/10.1145/3029806.3029823
https://doi.org/10.1145/3029806.3029823
https://doi.org/10.1145/3313391
https://doi.org/10.1145/3313391
https://towardsdatascience.com/exploratory-data-analysis-in-python-c9a77dfa39ce
https://towardsdatascience.com/exploratory-data-analysis-in-python-c9a77dfa39ce
https://towardsdatascience.com/exploratory-data-analysis-in-python-c9a77dfa39ce
https://doi.org/10.1109/TCBB.2018.2829760
https://doi.org/10.1109/TCBB.2018.2829760
https://doi.org/10.1109/ICC.2019.8761381
https://doi.org/10.1109/IWCMC.2017.7986346
https://doi.org/10.1109/IWCMC.2017.7986346
https://doi.org/10.1145/2480362.2480701
https://doi.org/10.1145/2480362.2480701

40. Sruthi, V.M., Thanudas, B., Sreelal, S., Chakraborty, A., Manoj,

B.S.: ACTM: API call transition matrix-based malware detection

method. In: 2018 IEEE International Conference on Advanced

Networks and Telecommunications Systems (ANTS), pp. 1–6

(2018). https://doi.org/10.1109/ANTS.2018.8710081

41. TechCrunch: 6.1B smartphone users globally by 2020, overtaking

basic fixed phone subscriptions. https://techcrunch.com/2015/06/

02/6-1b-smartphone-users-globally-by-2020-overtaking-basic-

fixed-phone-subscriptions. Accessed 2020

42. Vinayakumar, R., Soman, K.P., Poornachandran, P.: Deep

Android malware detection and classification. In: 2017 Interna-

tional Conference on Advances in Computing, Communications

and Informatics (ICACCI), pp. 1677–1683 (2017). https://doi.org/

10.1109/ICACCI.2017.8126084

43. Wang, H., Li, X., Ji, H., Zhang, H.: Federated offloading

scheme to minimize latency in MEC-enabled vehicular networks.

In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6

(2018). https://doi.org/10.1109/GLOCOMW.2018.8644315

44. Wei, F., li, Y., Roy, S., Ou, X., Zhou, W.: Deep ground truth

analysis of current Android malware. pp. 252–276 (2017). https://

doi.org/10.1007/978-3-319-60876-1_12

45. WEKA: WEKA 3—data mining with open source machine

learning software in Java. https://www.cs.waikato.ac.nz/ml/weka/

. Accessed 2020

46. Weng, J.: Exploratory data analysis: a practical guide and tem-

plate for structured data. https://towardsdatascience.com/explora

tory-data-analysis-eda-a-practical-guide-and-template-for-struc

tured-data-abfbf3ee3bd9. Accessed 2020

47. Xie, N., Zeng, F., Qin, X., Zhang, Y., Zhou, M., Lv, C.:

RepassDroid: automatic detection of Android malware based on

essential permissions and semantic features of sensitive APIs. In:

2018 International Symposium on Theoretical Aspects of Soft-

ware Engineering (TASE), pp. 52–59 (2018). https://doi.org/10.

1109/TASE.2018.00015

48. Yang, S.: An image-inspired and CNN-based Android malware

detection approach. In: Proceedings of the 34th IEEE/ACM

International Conference on Automated Software Engineering,

ASE ’19, pp. 1259–1261. IEEE Press (2019). https://doi.org/10.

1109/ASE.2019.00155

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Gianni D’Angelo received the

M.S. Degree (cum laude) in

Computer Engineering, and the

Ph.D. Degree in Computer Sci-

ence, Applied Electromag-

netism and Telecommunications

from the University of Salerno,

Salerno, Italy, in 1998 and 2003,

respectively. Since 2012, he is

Contract Professor of ‘‘Ele-

ments of Computer Science’’ at

the Department of Law, Eco-

nomics, Management and

Quantitative Methods (DEMM)

of the University of Sannio,

Benevento, Italy. He also is Contract Professor of the following

courses at the University of Salerno, Italy: ‘‘Fundamentals of Com-

puter Science and Programming’’ at the Department of Industrial

Engineering, and ‘‘Computer Networks’’ at the Department of Com-

puter Science. He also serves in the same University as Research

Fellow at the Department of Computer Science. His research interests

concern with the development and implementation of soft computing

algorithms for high-performance machines—HPC, and parallel

computing for knowledge discovery in Big Data context. He gained

experience in the world of the pattern recognition, neural networks,

fuzzy logic, ANFIS systems, genetic and evolutionary algorithms, and

parallel programming applied in various scientific and industrial

fields. He authored many articles published in international journals,

books and conferences, and currently serves as a reviewer, editorial

board and guest editor for several international journals.

Francesco Palmieri is a Full

Professor at the University of

Salerno, Italy. He received from

the same university an Italian

M.S. ‘‘Laurea’’ Degree and a

Ph.D. in Computer Science. His

major research interests concern

high performance networking

protocols and architectures,

routing algorithms and network

security. Previously he has been

an Assistant Professor at the

Second University of Naples,

and the Director of the

Telecommunication and Net-

working Division of the Federico II University, in Naples, Italy. At

the start of his career, he also worked for several international com-

panies on networking-related projects. He has been closely involved

with the development of the Internet in Italy as a Senior Member of

the Technical-Scientific Advisory Committee and of the CSIRT of the

Italian NREN GARR. He has published a large number of papers

(more than 200) in leading technical journals, books and conferences

and currently serves as the editor-in-chief of an international journal

and is part of the editorial board or associate editor of several other

well reputed ones.

Antonio Robustelli Is a Ph.D.

Student at the University of

Salerno, Italy. He received from

the same university the M.S.

Degree (cum laude) in Com-

puter Science. His research

interests concern the application

of AI-based solution to face

security issues related to IoT

domains and ICT

infrastructures.

2500 Cluster Computing (2022) 25:2487–2500

123

https://doi.org/10.1109/ANTS.2018.8710081
https://techcrunch.com/2015/06/02/6-1b-smartphone-users-globally-by-2020-overtaking-basic-fixed-phone-subscriptions
https://techcrunch.com/2015/06/02/6-1b-smartphone-users-globally-by-2020-overtaking-basic-fixed-phone-subscriptions
https://techcrunch.com/2015/06/02/6-1b-smartphone-users-globally-by-2020-overtaking-basic-fixed-phone-subscriptions
https://doi.org/10.1109/ICACCI.2017.8126084
https://doi.org/10.1109/ICACCI.2017.8126084
https://doi.org/10.1109/GLOCOMW.2018.8644315
https://doi.org/10.1007/978-3-319-60876-1_12
https://doi.org/10.1007/978-3-319-60876-1_12
https://www.cs.waikato.ac.nz/ml/weka/
https://towardsdatascience.com/exploratory-data-analysis-eda-a-practical-guide-and-template-for-structured-data-abfbf3ee3bd9
https://towardsdatascience.com/exploratory-data-analysis-eda-a-practical-guide-and-template-for-structured-data-abfbf3ee3bd9
https://towardsdatascience.com/exploratory-data-analysis-eda-a-practical-guide-and-template-for-structured-data-abfbf3ee3bd9
https://doi.org/10.1109/TASE.2018.00015
https://doi.org/10.1109/TASE.2018.00015
https://doi.org/10.1109/ASE.2019.00155
https://doi.org/10.1109/ASE.2019.00155

	A federated approach to Android malware classification through Perm-Maps
	Abstract
	Introduction
	Related works
	Background
	Permission’s overview

	Permission maps
	Perm-Map creation workflow

	A federated architecture
	Model creation process
	Model update process

	Experimental results
	UMD cleaning
	Proof of concept experimental setting
	Proposed network and evaluation metrics
	Achieved results
	Feature selection process

	Conclusions and future works
	Open Access
	References

