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Abstract: AE detection and analysis usually requires a specific, costly platform due to its particular
burst nature and high-frequency content. This experimental study investigates the relationship
between low-demand acoustic emission parameters (AE) and the occurrence of stick–slip (SS) at the
Hertzian linear contact. Hence, the correlation of basic AE characteristics (amplitude, energy, and
evolution in time) with stick–slip characteristics (static and kinetic friction coefficients, amplitude,
energy, and evolution in time) is pursued. Tribological tests were conducted on cylinder–plane
specimens under dry friction conditions with different loads at different low driving speeds and
Hertzian contact pressures at a constant stiffness. The AE, normal, and friction forces were recorded
simultaneously on the experimental stand. At the cylinder–plane interface, the jumps specific to the
stick–slip phenomenon (friction coefficient—COF) were followed after a few milliseconds by AE
jump peaks. The results of the experiments show that the amplitude and energy generated by AE
were sensitive to the occurrence of the stick–slip phenomenon, while the AE and COF energies in
the stick and slip phases had the same law of variation based on the driving velocities. The results
show that the amplitude and energy of the sampled low-frequency AE signals were enough to detect
the friction in SS and demonstrate the potential of AE as a tool for detecting and monitoring the
tribological behaviour of SS at the linear Hertzian contact.

Keywords: stick–slip; acoustic emission; linear Hertzian contact; friction coefficient

1. Introduction

The stick–slip phenomenon is characterised as a jerky motion at low and very low
driving speeds in a frictional couple. During sliding, this phenomenon occurs if two types
of conditions are met—necessary and sufficient. The necessary conditions are given by a
decrease in the friction kinetic coefficient with an increase in the driving speed and the
dependence of the friction static coefficient on the sticking time. At the same time, the value
of the static friction coefficient between two contact surfaces must be greater than the value
of the kinetic friction coefficient. A quantitative relationship provides sufficient conditions
among the driving speed (order of magnitude from microns/s to mm/s), the moving body
mass, and the finite stiffness system in the sliding direction. [1–3].

The theory established by Hertz for the normal non-conforming contact with friction
between two bodies with elliptical profiles represents a landmark in linear elasticity [4].
Although the theory of Hertz refers only to elastic contact under normal force or normal
force with adhesion, the knowledge of the pressure distribution, the deformations at the
connection between two bodies, and the mechanical properties of the materials allow for an
extension to a compound analysis with tangential and friction forces generated by sliding
or rolling. [5]. Contact friction between solid bodies under sliding conditions gives rise
to various waveforms and oscillations within the contact, resulting in sound radiation,
including acoustic emission [6].
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Acoustic emission refers to transitory mechanical waves in the high-frequency range
that are produced by elastic stress energy released in a solid material under mechani-
cal stress. The propagation of elastic waves and oscillations due to the appearance of
microcracks, deformations, and fibre breakage in solid bodies are manifested by acous-
tic emission [7] and can be detected by AE-devoted transducers placed on or near the
monitored interface [8].

Initially, in the tribology field, AE has been proposed to monitor the operating condi-
tion of bearings [9], cutting tools [10], surface finishing processes [11], sanding [12], and
rotary machines [13]. The AE could assess the behaviour of machining tools during opera-
tion [14,15]. The AE measurement method is appropriate for discovering initial structural
changes in materials. For example, for complex systems, such as the piston–ring–cylinder
system of diesel engines, the sources of acoustic emissions are signalled when the engine
speed, load, and lubrication conditions change [16]. The active monitoring and diagnosis
of various machine components, such as bearings, gears, pumps, and motors, are assessed
by AE evaluation over time [17,18]. In addition, the generation of AE at different pressures
and sliding speeds has been evaluated by basic methods for rough/finish turning [19,20],
detection of the breakdown of a machine tool device [21,22], or in the case of disc brake
friction couple components [23].

Regarding the acoustic emission related to the stick–slip phenomena, experimental
research has shown the occurrence of AE during the sliding and rubbing of flat surfaces
of various materials, such as rock [24], granite [25], and composite materials [26]. Studies
on the stick–slip phenomenon in O-ring sealing samples [27] and the contact between a
mild steel sample and hardened steel clamps [28] have shown the importance of AE utility
in tribology.

The origin of acoustic emission is the internal modifications in the materials due to
an external stimulus. These modifications are usually composed of discrete events so that
the emission of elastic waves is in the form of bursts or pulses of distinctive characteristics.
Therefore, the analysis of signals captured in the AE test is usually performed considering
this discrete nature, using a rather complex range of parameters related to the wave pulses,
such as the number of counts, the rise and disappearance time, or frequency content-related
variables [29–33]. This analytical strategy, combined with the frequency content, typically in
the ultrasound range (>20 kHz), leads to the need for specific equipment, both hardware and
software, to carry out these very specific tests. However, some less demanding parameters,
such as the power of the square signal integrated over the signal period (AErms), have
been successfully used to quantify pseudo-continuous emissions [34,35], even in wear and
friction phenomena [36–38].

The present work aimed to use parameters of the AE signal with low hardware and
software demand, i.e., those that can be calculated from a signal captured by a multipurpose
data acquisition system for mechanical tests, to detect the occurrence of the stick–slip
phenomenon at the Hertzian linear contact in dry friction conditions.

In addition, the analysis of the correlation between the stick–slip amplitude and the
amplitude of the acoustic emission provides a new quantitative identification of tribological
states in different conditions of contact pressures and very low driving speeds. The energy
generated by AE and the energy consumed by friction for stick and slip phases were
determined and analysed based on the Pearson correlation coefficient, while the correlation
of these energies as a function of the driving and sliding speeds were obtained from the
logarithmic fitting. With this, the AE accompanies the friction process and becomes, for
Hertzian linear contact, a non-destructive tool for detecting and monitoring the stick–
slip phenomenon.

2. Experimental Model—Geometry and Material of Specimens

The flat specimen was made of unhardened and unalloyed steel, type R260 (EN
13674-1:2018) with a Brinell hardness of 285 HBW, and the cylinder specimen was made
of surface-treated steel, type ER7 (EN 13262:2021) with a Brinell hardness of 265 HBW.
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These wear-resistant materials are used for the rails and wheels in railway systems. The
surface quality of the specimens was initially evaluated by measuring the roughness with
a Gaussian filter of 0.8 mm in the longitudinal (L) and transverse (T) directions with
Surtronic 25 equipment. Thus, the average roughness values of the cylinder specimen were
0.734 µm (L) and 2.15 µm (T), and for the flat specimen, 1.13 µm (L) and 1.17 µm (T). The
sizes of the cylinder and flat samples are shown in Figure 1. The fixing drawbar of the
cylindrical specimen was incorporated into the tribometer loading device. Applying a
known tangential force on its free end caused bending of the drawbar–cylinder system,
which could be measured, and thus, the sample stiffness was obtained (straight slope—
30.427 N/mm). This stiffness influences the amplitude of the stick–slip phenomenon;
hence, the greater the stiffness, the more the stick–slip phenomenon will decrease until it
disappears. Although the effect of the frictional force on deformation is essential, frictional
force does not depend on stiffness.
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The cylindrical sample moved vertically until it arrived at the flat specimen under
predetermined conditions. In this position, it was loaded at a normal force (Fn = 20, 40,
60 N). The flat test piece moved linearly on a horizontal plane with a driving speed, thus
achieving the frictional force. This device simulated linear contact with tangential and
normal forces at very low sliding speeds, specific to contact with forced rolling. The device
allowed for the experimental detection of one of the effects of rolling motion micro slips,
namely the dynamics of sliding friction at low speeds and contact pressures with elliptical
Hertz type distribution. This distribution led to a flat surface of the elastically deformed
bodies, whilst the friction force between the specimens depended on the evolution of the
friction coefficients with the driving speed (v) and sliding speed (vslip).

The experimental setup presented in this paper was carried out in CERT UMT-2
Tribometer, which is used to test the stick–slip phenomenon of different materials. Figure 2
shows the test system with the upper and lower specimens connected to the tribometer.
The tribometer was adapted to the specific slip conditions for Hertzian linear contact to
perform these experimental tests. Thus, the clamping systems of the lower flat sample and
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the cylindrical sample with the bending stiffness calibrated to detect the SS phenomenon
were designed and made for these experimental tests. The tribometer was equipped with a
two-dimensional force sensor DFH-20 that was used to measure the control of a normal
loading force and friction force between the upper and lower test pieces. The damping
system, located between the force sensor and the upper sample support, was used to
maintain a constant load force during the tests. In order to maintain the normal force as
constantly as possible at the contact of the samples, the tribometer was equipped with
a device with a spring and shock absorber that allowed for the continuous adjustment
of the normal force depending on the “response” of the material of the flat sample. The
upper specimen was plugged into the monitoring system, while the lower specimen was
connected to the L20HE linear motion unit.
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The adhesion at the molecular level and the elastic–plastic deformations at the rough-
ness level are both responsible for friction, which in turn is responsible for tangential
force [39–41]. A CETR AE-5 AE sensor with a frequency range between 0.2 MHz and
5 MHz, integrated with the UMT-2 tribometer, was intended to measure the acoustic emis-
sion signals during the friction test. It was mounted on the side of the cylinder specimen.
The AE signal, along with those related to force and position, was acquired by the CETR
UMT control unit at a 200 kHz sampling rate. The AE signal was amplified with a gain of
60 dB, and its RMS value was calculated every 0.5 s.

The primary purpose of the experimental tests presented was to determine the evolu-
tion of the static and kinetic friction coefficients of the stick–slip phenomenon accompanied
by the appearance of the acoustic emission at the Hertzian linear contact. The beginning of
friction is a fundamental and essential issue in understanding the principle of tribology, an
effect observed for different sliding speeds, three contact forces, and three contact pressures.
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3. Methodology

One goal of this study was to demonstrate that the basic parameters of the AE are
suitable and sufficient to detect the SS phenomenon and, thus, the adapted configuration
of the Tribometer UMT-2 prepared for this type of experiment led to a simplified but
sufficient analysis of the AE signals, avoiding the requirements of standard AE equipment.
Moreover, the fundamental objective of the experimental tests carried out was to analyse
the correlations of the AE and COF parameters, depending on the low and very low driving
speeds, because the initiation of the relative motion between two bodies under friction is a
fundamental and essential problem in understanding the friction principle in tribology.

The tribometer was equipped with tensometric transducers for normal and tangential
stresses and AE and driving speed transducers. Due to the calibration of the bending
stiffness on the vertical drawbar that was mounted on the cylindrical specimen (the bending
deformation occurred depending on the force applied perpendicularly to the drawbar), the
tangential force was determined as a frictional force. The driving speed was determined
by adjusting the time and distance. The synchronization of the friction force measurement
with the AE measurement was automatic. Based on the friction force, the normal force
and AE were measured directly by the transducers and could be determined indirectly
by calculating the average of each COF (static, kinetic, amplitude), sliding speed, energy
consumed by friction, and several AE parameters (counts, amplitude, energy).

Before starting the tests, at the lowest normal load and driving speed, five assays were
performed in order to “adapt” the surfaces to each other, and then the tests were run from
the highest to the lowest driving speed with progressively increasing normal force. In order
to analyse the phenomenon of stick–slip, 12 tests were performed. For these, four driving
speeds (0.2, 0.1, 0.05, and 0.01 mm/s), four time periods (50, 100, 200, and 1000 s), and
three normal load forces (20, 40, and 60 N) were set [42], resulting in three Hertzian contact
pressures (48.20, 68.16, and 83.48 MPa), determined by calculation. Each test result was
obtained from an average of three identical attempts performed under the same conditions
(the normal loads and driving speeds applied), and the coefficient of statistical variation
was determined as the ratio between the mean square deviation and the arithmetic mean.
The highest value of the statistical coefficient of variation for all tests (three forces and four
speeds) was 0.08. The stick–slip periods used in the investigation were chosen from the
stabilised zone of the movement, taken into account after two or three jumps from the
initiation of the movement.

The stick and slip periods were analysed, and for each jump sequence between static
and kinetic friction, the static friction coefficients µs, the kinetic friction coefficients µk, and
the amplitude of the stick–slip phenomenon µv were determined, where µv = (µs − µk)/2.
The maximum static friction coefficient is the peak of the phenomenon, and the kinetic one
is the minimum. These coefficients are approximately constant at the same load and speed
(the COF is considered a deterministic phenomenon).

For each normal force and speed, the peaks of the static friction coefficients were
counted (the static friction coefficient number is equal to the kinetic friction coefficient
number), resulting in a frequency of stick–slip jumps relative to the period time.

In this work, the count of AE refers to all AE peaks above the threshold value (set to
0.02 V). Only the signals that exceeded the voltage threshold are identified as AE signals.
For each stick and slip phase sequence in a test, each AE count was obtained over time, and
finally, the average peak results were obtained for each test.

The AE amplitude, directly connected to the AE energy, denotes the highest measured
voltage in a waveform. The energy induced in the system by friction (WCOFst and WCOFsl)
during the stick–slip period is the integral defined by the friction force (Ff = Fn COF)
and the length of the friction path (Lf = v · t). In the stick phase, there is no movement
between the specimens, but the static friction force deforms elastically, and the system
accumulates energy.

The energy generated by the acoustic emission (WAEst and WAEsl) during the stick–slip
period is defined as the integral (area) of the square voltage (VAE) emitted over time.
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The instantaneous speed in the slip phase is defined as the derivative of the distance
covered by the cylindrical specimen during the slip time. This distance was determined by
the lower test piece moving at a fixed translation speed (driving). The average slip speed
was obtained from reporting the distance covered by the upper specimen in the slip phase
(determined by the jump between the static friction force characteristic of the tip and the
minimum kinetic friction force and the known system rigidity) during the slip phase. This
time was determined from the recording of the phenomenon.

Error bars are graphical representations of data variability that are used on graphs to
show the error or uncertainty in a given measurement; however, error bars frequently reflect
one standard error, a standard deviation of uncertainty, or a certain confidence interval (e.g.,
a 95% interval). The Pearson correlation coefficient was used to determine the correlations
between the COF and AE amplitudes, as well as the energies between them, whose values
higher than 0.75 indicate a high correlation between these parameters. The results of the
p test show the percentages of the confidence levels of the results obtained [43–45].

4. Results and Discussion

The friction coefficient evolution accompanied by AE is presented as an example
of the results obtained for the driving speed of 0.01 mm/s at normal forces of 20–60 N.
(Figure 3a–c) and the friction coefficient evolution for the force of 60 N at the four driving
speeds (Figure 3d). In all cases, the presence of the stick–slip phenomenon was confirmed by
COF variation. In general terms, the stick–slip jumps coincided with the sudden increases
in AE, although for a 20 N load, this coincidence was not always present.

As a general trend, a high normal load and slow driving speed tended to create a
stick–slip phenomenon of low frequency and high amplitude, as shown in Table 1, where
each value represents an average of all stick–slip events at a specific normal force and
driving speed (the same holds for all figures). The driving speed, sliding speed, and
normal load are the major factors that play a significant role in the variation of friction
coefficients [46–48]. The driving speed and normal load are directly measured from tests,
and the sliding speed is easily calculated from the time and displacement of each phase.
The sliding speed is related to the stick–slip frequency and amplitude; therefore, a higher
normal load and slower driving speed tended to increase the sliding speed due to the
stick–slip phenomena of low frequency and high amplitude (Figure 4).
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Table 1. Values of the friction coefficients.

Sliding Speed (mm/s) Fn = 20 N Fn = 40 N Fn = 60 N

µs1 * µk1 ** µv1 *** µs2 * µk2 ** µv2 *** µs3 * µk3 ** µv3 ***
0.2 0.304 0.224 0.040 0.386 0.180 0.103 0.417 0.162 0.128
0.1 0.383 0.239 0.072 0.418 0.186 0.116 0.429 0.168 0.140

0.05 0.461 0.246 0.108 0.47 0.189 0.141 0.485 0.175 0.155
0.01 0.525 0.282 0.122 0.557 0.262 0.148 0.582 0.250 0.166

* Static friction coefficients. ** Kinetic friction coefficients. *** Amplitude of the stick–slip phenomenon.
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Figure 5 shows the static and kinetic friction coefficients and the stick–slip ampli-
tude for different driving speeds. As expected, the static and kinetic friction coefficients
decreased as the driving speed increased to a specific stiffness. Both friction coefficients
increased with the soldering time due to the phenomenon of “saturation” of the real contact
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area, so the higher the driving speed, the shorter the soldering time and the lower the
static and kinetic coefficients [49,50]. The increase in driving speed also reduced the contact
surface and, accordingly, the friction coefficient tended to decrease, giving, as a result, a
stick–slip movement of lower amplitude (measured by the difference between the static
and kinetic COFs), as can be seen in Figure 5c, and higher frequency, as shown in Figure 5d.
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of the number of the stick–slip jumps (d).

Further increases in the driving speed would lead to the possible cancellation of
the stick–slip phenomenon. The effect of the normal load is the increase in the static
coefficient of the friction force because the contact pressure and real contact area also
increase. In addition, according to the known molecular–mechanical [51,52] friction theory
for conventional dry contact, the kinetic friction coefficient decreases with a decreasing
normal force. This divergence in the static and kinetic friction behaviour regarding the
normal load leads to a stick–slip movement of a lower frequency and higher amplitude.

In addition, Figure 5b shows the dependence between the kinetic friction coefficients
on the driving speed, which decrease with increases in the driving speed of the surface,
approximated by the logarithmic curves of the form y = a + (b ln (x)) as has been previously
found by Helstot and Caroli [53,54].

The Pearson correlation coefficients were calculated between the amplitude of the
SS (µv) as an independent variable and the normal force (Fn) and driving speed (v) as
dependent variables. The obtained results can be found in Table 2.
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Table 2. Correlation between SS amplitude and normal force, respectively, and driving speed.

Coefficients µv/Fn
v = 0.2 mm/s

µv/Fn
v = 0.1 mm/s

µv/Fn
v = 0.05 mm/s

µv/Fn
v = 0.01 mm/s

Pearson
correlation 0.969 * 0.986 ** 0.976 ** 0.995 **

Coefficients µv/v
Fn = 20 N

µv/v
Fn = 40 N

µv/v
Fn = 60 N

Pearson
correlation −0.986 ** −0.962 * −0.976 **

* Correlation is significant at the p = 0.05 level (95% level of confidence). ** Correlation is significant at the p = 0.01
level (98% level of confidence).

Regarding the acoustic emission, as a general trend, there was the continuous activity
of low AE in the stick phase; however, there was a burst emission of high amplitude in the
sliding phase, and both were dependent on the normal load.

It is easy to see that the AE peaks appeared only at the jumps from the stick to the slip
(the transition from static friction to kinetic friction), although they took place with a delay
of a few milliseconds compared to the COF. This delay of the AE could be explained by the
finite propagation speed of the AE elastic waves compared to the moment of the initiation
of the slip phase (Figure 6).
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In the following, some characteristics of the AE, such as the AE amplitude, AE
burst/continuous counts, and AE energy, are analysed in comparison to the characteristics
of the stick–slip movement with the aim of investigating if they can be helpful for a com-
prehensive view of the identification of the stick–slip phenomenon by AE. The counts of
AE in the stick and slip phases are presented in Figure 7.
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In both the stick and slip phases, the counts of AE increased with the driving speed and
decreases in the normal load. In fact, the higher the frequency of the stick–slip movement,
the higher the AE counts. The reason for this result is due to the higher number of stick–slip
movements for a single test and because the AE takes place basically at the beginning
of the slip movement, as shown in Figure 8. For each slip phase sequence in a test, each
AE count was calculated over the slip time, and finally, mediated for each test. Likewise,
for the stick phase, the AE counts were determined for each sequence over the stick time,
and finally, an average was determined for each test. Therefore, a low frequency, higher
amplitude slip-stick movement gives a relatively low count of AE with the burst aspect,
mainly occurring at the beginning of the slip movement. However, the fact that some of
the bursts are missing due to the low sampling frequency used in this work must be taken
into account in consideration of the results related to the counts.
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The amplitudes of the AE signal were plotted against driving speed for different loads
(Figure 9). In general terms, the AE amplitudes for both the stick and slip phenomena seem
to be rather related to the kind of stick–slip movement: the increase in the normal force
and the decrease in driving speed led to an increase in the stick–slip movement amplitude,
with a consequent rise in the amplitude of the AE bursts. In addition, the amplitude in the
stick phase was significantly lower than the amplitude in the sliding phase (Figure 9a, b),
as was expected, since the AE caused during the stick phase was only prompted by the
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contact surface deformation, while for the slip phase, other phenomena, such as a part of
the plastic deformation occurred. In the process of transmitting normal forces between
the two bodies and in the presence of relative motion, the “third body” was formed with
properties specific to the material couple. Thus, the structure of the material changed, the
existing microcracks joined, and new cracks appeared, especially during the appearance
of plastic deformations (Figure 9). It was also observed that the AE amplitude follows a
logarithmic curve, similar to the friction coefficients, depending on the movement speed.
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The Pearson correlation coefficients were calculated between the amplitude of the
acoustic emission, AAEsl and AAEst from the slip and stick phases, respectively, as an
independent variable and the amplitude of the stick–slip phenomenon(µv) as a dependent
variable. The obtained results can be found in Table 3.

Table 3. Correlations between the AE and stick–slip amplitudes.

Coefficients AAEsl/µv AAEst/µv

Fn = 20 N

Pearson correlation 0.980 ** 0.997 **

Fn = 40 N

Pearson correlation 0.930 * 0.96 *

Fn = 60 N

Pearson correlation 0.961 ** 0.970 **
* Correlation is significant at the p = 0.05 level (95% level of confidence). ** Correlation is significant at the
p = 0.01 level (98% level of confidence).

The Pearson coefficients fall within the 95% confidence interval (p < 0.05), and it can be
seen that there was a very high correlation between the AE amplitude and the amplitude
of the stick–slip phenomena. Considering the high value of the correlation coefficients,
we can conclude that the appearance of the stick–slip phenomenon can be identified by
determining the amplitude of the acoustic emission.

Knowing that the amplitude of AE is correlated to the amplitude of the stick–slip
movement, and the number of counts seems to be rather independent of the amplitude
of the movement, it seems that the energy consumed by friction (WCOF) and the AE
(WAE) energy could also be related. The energy consumed by friction (WCOF) and the AE
(WAE) energy were calculated for the three forces, 20, 40, and 60 N, and for each phase
of soldering and sliding (Figure 10). In general terms, the higher the amplitude of the
stick–slip movement, the higher the energy consumed by friction (WCOF) due to increases
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in the friction force and sliding distance, and the higher energy generated by AE, due to
the intensity of the deformation mechanisms in the contact zone.
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Figure 10. Variation in energies with different driving speeds (mm/s): (a) energy consumed by
friction in slip phase, WCOFsl (J), (b) energy consumed by friction in stick phase, WCOFst (J), (c) energy
generated by AE in slip phase, WAEsl (V2s), (d) energy generated by AE in stick phase, WAEst (V2s).

Therefore, the energies seem to be related to each other and also to the amplitude of
the stick–slip movement. The Pearson correlation coefficients were calculated between
the energy generated by the acoustic emission, WAEsl (slip), WAEst (stick) and the energy
consumed by friction, WCOFsl (slip) WCOFst (stick), between the SS amplitude (µv) and these
energies as well as between the AEsl and SS amplitudes and the sliding speed (vslip) (Table 4).
Therefore, the energies appear to be related between themselves and also associated with
the amplitude of the stick–slip motion. There was always a good correlation between both
energies, with slightly reduced results in the stick phase when the 20 N force was applied.
There was not always a burst of AE for the slide phase at this low normal force, so the
correlation was not as good as for a greater normal load. In addition, at low normal forces,
the deformations at the contact level were small; therefore, reduced tangential force effects
caused a reduced AE signal.
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Table 4. Correlations between the AE and COF energies, stick–slip amplitudes and sliding speed in
the stick and slip phases.

Coefficients WAEsl/WCOFsl WAEst/WCOFst AAEsl/vslip µv/vslip µv /WCOFsl µv/WCOFst µv/WAEsl µv/WAEst

Fn = 20 N

Pearson
correlation 0.990 ** 0.900 * 0.91 * 0.960 ** 0.91 * 0.964 ** 0.939 ** 0.770 *

Fn = 40 N

Pearson
correlation 0.991 ** 0.934 ** 0.963 ** 0.937 ** 0.921 * 0.91 * 0.945 ** 0.72 *

Fn = 60 N

Pearson
correlation 0.989 ** 0.932 ** 0.999 ** 0.970 ** 0.935 * 0.966 ** 0.976 ** 0.755 *

* Correlation is significant at the p = 0.05 level (95% level of confidence). ** Correlation is significant at the p = 0.01
level (98% level of confidence).

Considering the high value of the correlation coefficients, it seems that the magnitude
of the stick–slip phenomenon can be estimated by calculating the energies generated by
the acoustic emission, both in the stick phase and the slip phase. The Pearson correlations
between the stick–slip amplitude and the COF and AE energies in the stick and slip phases
show a close correlation between them (Table 4). The amplitude of stick–slip movement
correlates well with the AE energy for the slip phase and not so well (as expected) with
the AE energy for the stick phase, but the energy seems not to be as good an indicator of
the stick–slip movement amplitude as it is the amplitude of AE. In the stick phase, it is
possible that the local elastic deformations were the majority compared to the plastic ones,
and as such, the AE energy was reduced. The system (drawbar and cylindrical specimen)
was deformed exclusively elastically. The real contact area also contained roughnesses that
deformed plastically. There was also a strong positive correlation between the AE and SS
amplitudes with the sliding speed for all applied forces (Table 4).

In order to ascertain the origin of the AE, the WAE and WCOF in the slip phase were
plotted against the sliding speed in Figure 11. The sliding speed is a direct indicator of
the amplitude of the stick–slip movement, and, as expected, the friction energy tended to
increase with the sliding speed, and it was dependent on the normal force. In addition, the
AE energy tended to grow with the sliding speed as well, but it shows some dependence
on the normal force, suggesting that other complex phenomena took place at the contact
point zone, such as a reduction in tangential stresses and an increase in the contact area.
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5. Conclusions

The acoustic emission signals generated during the relative motion between the
cylinder–plane specimens were captured by a multipurpose acquisition system and pro-
cessed using basic parameters based on the RMS signal in order to determine if the stick–slip
appearance and their sensitivity to the onset of movement can be detected and predicted by
the acquisition and analysis of the AE using hardware and software with low demand. The
tests were conducted under various situations involving normal loads, driving, and sliding
velocities. Although the tests were not exhaustive, they verified the feasibility of using non-
complex AE parameters as a non-destructive method of detecting the stick–slip phenomenon.

In all tests performed, the presence of the stick–slip phenomenon was confirmed
by the COF variation and the coincidence with the bursts of AE for all contact pressures
and driving and sliding speeds. The variables that significantly affected the changes
in friction coefficients were the driving speed, sliding speed, and normal load. Higher
normal loads and slower displacement speeds increased the slip velocity because of the
low-frequency, high-amplitude stick–slip phenomena that occurred mostly at the start of
the slide movement.

AE is related to this type of motion. In terms of acoustic emission, the stick phase had
low AE activity, while the sliding phase exhibited bursts of high amplitude activity that
were reliant on the normal load. Jumps from static to kinetic friction (COF) were followed
at short time intervals (milliseconds) by acoustic emission (AE) jumps.

The presence of the stick–slip phenomenon can be detected by measuring the ampli-
tude and energies of the acoustic emission revealed by a high positive Pearson correlation
between them. The energy consumed by friction (WCOF) increased with the amplitude of
the stick–slip motion, and the energy generated by AE increased also.

The amplitude and energies generated by the acoustic emission are relevant and
confirm the direct dependence on the stick–slip phenomena for the non-lubricated Hertzian
linear contact, while the count of AE bursts is not applicable to identifying the magnitude
of the stick–slip movement, probably due to the same amount of real bursts missing caused
by the relatively low sampling frequency used in this work.

Hence, the acoustic emission detected by analysing the parameters that can be used
from a signal captured from a multifunctional platform becomes an essential indicator for
detecting and monitoring the stick–slip phenomenon.
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