
1 
 

Dynamic Management Zones for Irrigation Scheduling 1 

Mireia Fontanet 1,2,3, Elia Scudiero 4,5, Todd H. Skaggs5, Daniel Fernàndez-Garcia 2,3, Francesc 2 

Ferrer 1, Gema Rodrigo 1, Joaquim Bellvert 6 3 

1 LabFerrer, Cervera, 25200, Spain 4 

2 Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya 5 

(UPC), Barcelona, 08034, Spain  6 

3 Associated Unit: Hydrogeology Group (UPC-CSIC)  7 

4 Department of Environmental Sciences, University of California Riverside, 900 University 8 

Ave., Riverside, CA 92521, USA  9 

5 USDA-ARS, United States Salinity Laboratory, 450 West Big Springs Rd., Riverside, CA 10 

92507, USA 11 

6 Efficient Use of Water in Agriculture Program, Institute of Agri-Food, Research and 12 

Technology (IRTA), Fruitcentre, Parc Científic i Tecnològic de Gardeny, 25008, Lleida, Spain  13 

 14 

 15 

Highlights 16 

 We used Sentinel 2 NDVI time-series to delineate dynamic management zones (MZ) 17 

 Changes in MZ patterns were consistent with soil moisture spatiotemporal variability 18 

 Data variance fragmentation was used for daily evaluation of the dynamic MZ designs 19 

 Soil moisture data and model forecasts can be used to schedule MZ irrigation 20 
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Abstract  22 

Irrigation scheduling decision-support tools can improve water use efficiency by matching 23 

irrigation recommendations to prevailing soil and crop conditions within a season. Yet, little 24 

research is available on how to support real-time precision irrigation that varies within-season in 25 

both time and space. We investigate the integration of remotely sensed vegetation index time-26 

series, soil moisture sensor measurements, and root zone simulation forecasts for in-season 27 

delineation of dynamic management zones (MZ) and variable rate irrigation scheduling. In a 5.8-28 

ha maize field in northeastern Spain, unsupervised classification of 2018 Sentinel 2 vegetation 29 

sensing time-series delineated dynamic MZs. The number and spatial extent of MZs changed 30 

through the growing season. A network of inexpensive soil moisture sensors was used to interpret 31 

spatiotemporal changes of Sentinel 2 data. Water content was a significant contributor to changes 32 

in crop vigor across MZs through the growing season. Real-time cluster validity function analysis 33 

provided in-season evaluation of the MZ design. For example, the total within-MZ daily soil 34 

moisture relative variance decreased from 85% (early vegetative stages) to below 25% (late 35 

reproductive stages). Finally, using the Hydrus-1D model, a workflow for in-season optimization 36 

of irrigation scheduling and water delivery management was tested. Data simulations indicated 37 

that crop transpiration could be optimized while reducing water applications between 11 and 38 

28.5% across the dynamic MZs. The proposed integration of spatiotemporal crop and soil moisture 39 

data can be used to support management decisions to effectively control outputs of crop × 40 

environment × management interactions. 41 

 42 

Keywords: Remote sensing; Spatial variability; Temporal variability; Precision agriculture; Soil 43 

moisture; Hydrus-1D  44 
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1. INTRODUCTION 45 

Irrigated agriculture is essential to global food production, especially because of projected 46 

population growth (Döll, 2002). Irrigation water is commonly applied uniformly over an entire 47 

field. Yet, field soil water content is typically non-uniform because of spatial variability in soil 48 

hydraulic properties (Hawley, 1983), topography (Burt and Butcher, 1985), and vegetation growth 49 

(Le Roux et al., 1995). When field spatial variability is significant (Baveye and Laba, 2014; Thorp, 50 

2019), modified water management that accounts for variability may improve the cost-51 

effectiveness of irrigation (Liang et al., 2016; Martini et al., 2017) by increasing for instance water 52 

use efficiency and crop yields and decreasing nutrient leaching.  53 

Precision agriculture seeks to optimize farming operations via site-specific management plans 54 

that vary the application of nutrients and water across a field based on variations in soil and crop 55 

conditions (Zhang et al., 2002). Management is prescribed over contiguous areas that have 56 

homogeneous soil properties and crop conditions. These areas are called management zones (MZ). 57 

Different clustering methods, including k-mean, ISODATA, and Gaussian Mixture, are available 58 

for delineating MZs based on different data sources (Schepers et al., 2004; Martinez-Casasnovas 59 

et al., 2012; Galambošová et al., 2014). Commonly, yield maps, topography, remote sensing data, 60 

and soil apparent electrical conductivity are used to delineate MZs (Liu et al., 2018; Scudiero et 61 

al., 2018; Ohana-levi et al., 2019). Remote sensing crop-canopy data is frequently used in 62 

agriculture because it is noninvasive and data can be downloaded without any cost (Fontanet et 63 

al., 2018). 64 

Several researchers have defined MZs in specific fields with the goal of increasing crop yield 65 

and decreasing water use. Inman et al. (2008) and Schenatto et al. (2015) delineated MZs with 66 

NDVI data and different crop indices. Liu et al. (2018) delineated MZs based on yield and band 67 
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vegetation indices maps. Scudiero et al. (2013) argued that spatial information on soil properties 68 

known to affect plant growth should guide MZ delineation. They modeled maize yield spatial 69 

variability as a function of salinity, texture, carbon content and bulk density, using geospatial 70 

apparent soil electrical conductivity and bare soil reflectance measurements as proxies for these 71 

soil properties. A similar study was presented by Reyes et al. (2019), in which MZs were defined 72 

with NDVI data and complemented with soil properties. Georgi et al. (2018) developed an 73 

algorithm to delineate MZs automatically based on remote sensing data. However, one of the 74 

disadvantages of this algorithm is that it does not work properly on fields with strong time-75 

dependent spatial patterns. All the studies cited above consider MZs to be static and assume no 76 

dynamic pattern during the growing season. In fields where crop spatial patterns change over time, 77 

some researchers have advocated for MZ delineation to also be dynamic (Evans et al., 2013; 78 

Haghverdi et al., 2015; Cohen et al., 2016; Scudiero et al., 2018). 79 

Water content sensors constitute a vital tool for real-time monitoring of water content dynamics 80 

in the field. Although sensors monitor water content at a single point, spatial and temporal 81 

variations of soil water content and their interactions with crops can be analyzed if several sensors 82 

are installed across the field (Biswas and Si, 2011; Biswas, 2014; Yang et al., 2016; Huang et al., 83 

2019). These measurements can provide information about the source of variability between 84 

different MZs and aid in their delineation.  85 

In this study, we integrate crop spatial and temporal information from high-resolution remote 86 

sensing, soil water sensor data, and numerical model simulations to investigate irrigation 87 

scheduling for dynamic management zones. Specifically, we: i.) characterize the spatial and 88 

temporal dynamics of crop-soil-water relations, ii.) delineate and evaluate temporally dynamic 89 
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management zones for variable rate irrigation, and iii.) provide a workflow for in-season 90 

optimization of irrigation scheduling and water delivery management. 91 

  92 
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2. MATERIALS AND METHODS 93 

2.1 Study Site 94 

The research site was a 5.8-ha maize (Zea mays L.) field located in Raïmat, about 170 km west 95 

of Barcelona, Spain (Fig.1). The study region has a semi-arid climate.  Summer temperatures 96 

average 24 ºC, with several days above 40 ºC. Summer is the dry season, with rainfall of 45 mm. 97 

Land use at the study site has changed over the years (Fig. A.1 of Appendix A). Originally, the 98 

site was a forest where no tillage occurred. Approximately 30 years ago, the land was converted 99 

to a vineyard. The topography of the field was modified, with soil being added or removed in 100 

various sections, such that the site can now be regarded as having an anthropogenic soil. In 2017, 101 

one year before this study, grapevines were removed and maize was grown at the site.  102 

 103 

2.2 Sowing and Irrigation 104 

The field was sectioned into four plots that were each sowed with a different maize variety 105 

(Fig.1). The varieties were, from west to east: p0937 (DuPont Pioneer, Johnston, IA), d6980 106 

(DEKALB Genetics Corporation, Dekalb, IL), p1524 (DuPont Pioneer), and d6780 (DEKALB). 107 

All plots were sown on May 3, 2018, with a sowing density of 90000 seedsꞏha-1. Data from the 108 

seed companies indicated that the varieties planted on the west and east edges of the field (p0937 109 

and d6780, respectively) grow slightly faster than those planted down the center (d6980 and 110 

p1524), although all varieties were anticipated to reach full maturity 125-165 days after sowing. 111 

Plants started to emerge on May 12, 2018. The site was harvested on September 22, 2018. 112 

The field was irrigated with a Solid Set sprinkler system (Nelson Irrigation Corporation, Walla 113 

Walla, WA) having 15 x 15 m spacing. Water was delivered over 18 irrigation zones at a rate of 114 

6.5 Lꞏm-2ꞏh-1. Total applied water during the season was 679 mm. Irrigation was applied uniformly 115 
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over the field with scheduling and depths determined using a crop coefficient approach (FAO56). 116 

For most of the site, irrigation ended 115 days after sowing. But, in two 0.3-ha sections located at 117 

the north-east end of the site, irrigation was halted 74 days after sowing due to soil waterlogging. 118 

 119 

2.3 Soil, Environment, and Crop Measurements 120 

Field data were collected between May and September 2018. Soil moisture, soil and crop 121 

parameters, environmental variables, and remote sensing NDVI data were measured. In May 2018, 122 

33 capacitive EC-5 soil moisture sensors (METER Group, Pullman, WA, USA) with an accuracy 123 

of ± 0.03 cm3ꞏcm−3 (Campbell and Devices, 1986) were installed at 11 locations named P1, P2, 124 

…, and P11 (Fig.1). The sensors were installed at 15, 35, and 50 cm depths. Water content data 125 

were registered every 30 minutes using an EM5b data logger (METER Group).  126 

At each station, three disturbed soil samples were collected at 0-5, 5-35, and 30-60 cm depth 127 

for organic matter (OM) and soil texture analyses. The Walkley-Black method was used to 128 

measure OM (Nelson and Sommers, 1996), whereas soil particle size distribution was measured 129 

according to the gravimetric method (Gee and Bauder, 1986). Particles were categorized into the 130 

following size classes: clay (soil particle diameter, D < 0.002 mm), fine silt (0.002 < D < 0.02 131 

mm), coarse silt (0.02 < D < 0.05 mm) and sand (0.05 < D < 2 mm). Undisturbed soil cores were 132 

also collected at the same locations and depths for measuring soil hydraulic properties. The soil 133 

water retention curve (SWRC) and unsaturated hydraulic conductivity curve (HCC) were 134 

determined using a combination of three laboratory devices: Hyprop, WP4c, and KSat (METER 135 

Group). The van Genuchten model (van Genuchten, 1980) was fit to the measured curves using 136 

the RETC software (van Genuchten MTh, Leij FJ, 1991) to estimate saturated water content (𝜃 ), 137 

residual water content (𝜃 ), saturated hydraulic conductivity (𝐾 ), and the shape parameters 𝛼 and 138 



8 
 

𝑛. Principal component analysis (PCA) (Abdi and Williams, 2013; Martini et al., 2017) was used 139 

to investigate the relationships between soil texture, OM, bulk density, and hydraulic parameters. 140 

The PCA calculations were done with Statistica 12 (StatSoft Inc. Tulsa, OK, USA). 141 

A weather station consisting of an ECRN-100 rain gauge (METER Group), a cup anemometer 142 

(Davis Instruments, Hayward, CA, USA), and PYR pyranometer and VP-4 relative humidity and 143 

temperature sensors (METER Group) was installed 150 m from the north-east corner of the field. 144 

The measured temperature, wind speed, relative humidity, and solar radiation were used to 145 

calculate daily reference evapotranspiration (𝐸𝑇 ) using the Penman-Monteith equation as 146 

specified in FAO Irrigation and Drainage Paper No. 56 (Allen et al, 1998; hereafter “FAO56”). 147 

The estimated 𝐸𝑇  was converted into daily water requirements or potential evapotranspiration 148 

(𝐸𝑇 ) using the maize crop coefficient (𝑘 ) from FAO56. Maximum and minimum daily 149 

temperature measurements were used to calculate growing degree days (GDD) according to 150 

FAO56 and to determinate reference maize growing stages (Ritchie et al., 1997).  151 

Remote sensing data from Sentinel 2 were used to determine normalized difference vegetation 152 

index (𝑁𝐷𝑉𝐼) (Rouse et al., 1974),  153 

where 𝑁𝐼𝑅 and 𝑅𝑒𝑑 are measured reflectance values in the near-infrared and visible red regions, 154 

respectively. 𝑁𝐷𝑉𝐼 was used to evaluate spatial variability in the field. Remote sensing data were 155 

downloaded with 10-m spatial resolution every 5 days unless there was cloud coverage. The first 156 

and last images downloaded were the 15th and 135th day after sowing. Remote sensing data were 157 

processed with the Sentinel application platform (SNAP) software (Zuhlke et al., 2015). 158 

 159 

2.4 Management Zones Delineation 160 

𝑁𝐷𝑉𝐼
𝑁𝐼𝑅 𝑅𝑒𝑑
𝑁𝐼𝑅 𝑅𝑒𝑑

 (1) 
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Sentinel 2 NDVI was used to characterize the spatial variability of crop vigor through the 161 

season. A k-means (also known as “fuzzy c-means”) unsupervised clustering algorithm (Odeh et 162 

al., 2010) was used to classify the NDVI data into temporally dynamic MZs. The Grouping 163 

Analysis tool in ArcMap 10.4.1 (ESRI, Rdlands, CA) was used for the MZ delineation. Anytime 164 

a new Sentinel 2 NDVI scene was available at the site, a new MZ scheme was delineated. Designs 165 

having 2 to 6 MZs were considered. The Calinski–Harabasz criterion (𝐶𝐻𝐶) (Harabasz et al., 166 

1974), Eq. (2), was used to evaluate the clusters and MZ delineations and select the optimum 167 

number of MZs. The CHC, also known as a pseudo F-statistic, measures the ratio of between-MZ 168 

differences and within-MZ similarity. It is formulated as: 169 

where 𝑁 is the number of pixels, 𝑀𝑍𝑛 is the number of considered zones, 𝐵𝑀𝑍𝑆𝑆 is the between-170 

zones sum of squares, and 𝑊𝑀𝑍𝑆𝑆 is the within-zone sum of squares. Large 𝐶𝐻𝐶 values indicate 171 

high within-MZ homogeneity and between-MZ heterogeneity.  172 

The 𝑁𝐷𝑉𝐼 averages and maximum and minimum values within each MZ were calculated for 173 

further comparison between different MZs. MZs were not defined for the beginning of the season 174 

(0-20 day after sowing) because plants had not yet germinated or were not big enough to influence 175 

𝑁𝐷𝑉𝐼, and for the end of the season (beyond 130 days after sowing) because in that period the 176 

crop is in a late phenological stage and not irrigated. Differences in soil properties across MZs 177 

over time were assessed using a Kruskal-Wallis (Kruskal and Wallis, 1952) rank test (i.e., a non-178 

parametric analysis of variance), calculated with Statistica 12. 179 

Additionally, we considered an alternative static delineation scheme, subdividing the site into 180 

four contiguous fields corresponding to the planted maize varieties. The 𝐶𝐻𝐶 was calculated for 181 

CHC
𝐵𝑀𝑍𝑆𝑆 𝑀𝑍𝑛 1⁄

𝑊𝑀𝑍𝑆𝑆 𝑁 𝑀𝑍𝑛⁄
 (2) 
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each available 𝑁𝐷𝑉𝐼 scene to compare the variety-based MZ approach to the dynamic 𝑁𝐷𝑉𝐼-182 

based MZ delineation. 183 

 184 

2.5 Management Zone Available Water 185 

Soil-water status for the MZs was modeled as plant available water (𝐴𝑊) (Liang et al., 2016; 186 

Vellidis et al., 2016; Zurweller et al., 2019):  187 

where 𝐴𝑊 𝑡  is the profile average available water at monitoring station 𝑗 and time 𝑡, 𝑚 188 

indexes the measurement depths, ∆𝑧  (cm) is the depth increment associated with the moisture 189 

sensor at depth 𝑚, 𝑍 ∑∆𝑧  (cm) is the total soil profile depth,   𝜃 ,  (cm3ꞏcm-3) is soil water 190 

content, 𝜃wp
,  (cm3ꞏcm-3) is the wilting point (water content at -1500 kPa), and 𝜃fc

,  (cm3ꞏcm-3) is 191 

field capacity (determined using the method of Twarakavi et al., (2009)). The 𝐴𝑊 for a MZ was 192 

defined to be the average 𝐴𝑊 for all monitoring stations located within the MZ. Note that the MZ 193 

design changed over the growing season, so the MZ membership of some stations also changed. 194 

In addition to the 𝐶𝐻𝐶 calculation on the 𝑁𝐷𝑉𝐼 data, the spatiotemporal variability of 𝐴𝑊 was 195 

also used for in-season evaluation of the dynamic MZ-design. Following Fraisse et al., (2001), we 196 

calculated the daily weighted within-MZ 𝐴𝑊 variance (4),  197 

where 𝑆  is the daily weighted 𝐴𝑊 variance within management zone i; j indexes the 198 

monitoring stations within management zone i; k indexes the measurement times during the current 199 

day; 𝑁  is the number of stations in management zone i; 𝑁 11  is the total number of stations 200 

𝐴𝑊 𝑡
1
𝑍T

𝜃 , 𝑡 𝜃wp
,

𝜃fc
, 𝜃wp

, ∆𝑧  (3) 

𝑆
𝑁 𝑁

𝑁 𝑁
1

𝑁 𝑁
𝐴𝑊 𝑡 𝐴𝑊

,

 (4) 
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in the field; 𝑁 48  is the number of measurements per day (every 30 min), 𝐴𝑊 is defined by 201 

(3), and 𝐴𝑊  is the average profile AW across monitoring stations in management zone i and 202 

measurement times in the current day. The total within-zone variance is equal to the sum of the 203 

weighted within-zone variances,  𝑆 ∑ 𝑆 . By comparing 𝑆 with the total daily field-wide 204 

𝐴𝑊 variance, it is possible to determine how much was gained in terms of AW uniformity by 205 

dividing the field into MZs (Fraisse et al., 2001).  206 

 207 

3. RESULTS  208 

3.1 Soil Properties 209 

Texture, OM contents and bulk density (𝜌 ) values measured at each station are reported in 210 

Table 1. The soil texture classes (USDA system) of samples taken from the 11 stations were clay 211 

loam (42.4 % of samples), loam (42.4%), and silty clay loam (15.2%). Stations on the east side 212 

(P1, P6, P7, P11) of the field had, on average, lower sand and higher silt and clay contents than 213 

those on the west. Average OM contents ranged between 0.57 and 1.96 %, which is typical for 214 

agricultural soils in the region (Romanyà and Rovira, 2011). Fitted and measured parameters for 215 

the soil hydraulic properties measured at each station are reported in Table 2. Consistent with the 216 

spatial trend in soil texture noted previously, the SWRCs measured on the east side of the study 217 

site (stations P1, P6, P7, P11) had lower fitted n values than in the rest of the site. On the wet end 218 

of a retention curve, a lower n value corresponds to a more gradual transition in water content as 219 

pressure head changes. Figure A.2 of Appendix A compares SWRCs observed at stations on the 220 

west (P9) and east (P11) sides of the field.  221 

The principal component analysis (PCA) indicated that 8 principal components were needed 222 

to explain 95% of the variability in the soil dataset. The first three components, PC1 (30.9%), PC2 223 
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(18.6%), and PC3 (15.9%), explained around two thirds of the variance in the soil dataset. 224 

Particularly, PC1 indicated that clay content clustered (was positively correlated) with θwp, θfc, and 225 

α. The PC1 also indicated that clay content was negatively correlated with sand content, θr, and n. 226 

Further detail about PC1, PC2, and PC3 are reported in Fig. A.3 of Appendix A. 227 

 228 

3.2 Remote Sensing and Dynamic Management Zones Delineation 229 

The site average, minimum, and maximum 𝑁𝐷𝑉𝐼 values for each available Sentinel 2 scene 230 

are reported in Fig. 2a. The changes in average 𝑁𝐷𝑉𝐼 generally corresponded to the evolution of 231 

𝐸𝑇  at the site, consistent with reports for maize grown in Mediterranean climates in other studies 232 

(Toureiro et al., 2017; Segovia-Cardozo et al., 2019). Figure 2b shows that cumulative input water 233 

(irrigation and precipitation) (618 mm) exceeded by 10.2% the site-wide cumulative 𝐸𝑇  (561 234 

mm). At the bottom of Fig. 3, reference growing stages for maize at the site are shown (Ritchie et 235 

al., 1997). Varieties at the site took 120 to 130 days to reach maturity. Thus, we considered the 236 

reference growing stages to be representative for all maize varieties grown at the site. 𝑁𝐷𝑉𝐼 and 237 

𝐸𝑇   were low during the early vegetative stages, had maximum values during the late vegetative 238 

stage (VT) through the beginning of the reproductive stages (R1-R6), then decreased after R6. The 239 

temporal changes of 𝑁𝐷𝑉𝐼 at the site are comparable to those observed in other studies on maize 240 

(Viña et al., 2004). In the early vegetative stages (V0 to V5), the 𝑁𝐷𝑉𝐼 range of each Sentinel 2 241 

scene was narrow. In later vegetative stages and early reproductive stages, the 𝑁𝐷𝑉𝐼 ranges were 242 

much larger, indicating considerable variability in crop status (greenness, health) at the site.  243 

Figure 3a shows the spatiotemporal changes of 𝑁𝐷𝑉𝐼 at the sites. Areas with high and low 244 

𝑁𝐷𝑉𝐼 were observed at the site throughout the growing season. However, the 𝑁𝐷𝑉𝐼 spatial 245 

patterns changed over time, suggesting that homogeneous or static site-specific management may 246 
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be inadequate to address crop needs over time at this site. Figure 3b shows the dynamic MZ 247 

delineation obtained with unsupervised clustering of the 𝑁𝐷𝑉𝐼 data. Through the growing season, 248 

the number of MZs, as well as their spatial distribution, changed. At the beginning of the season, 249 

until 50 days after sowing, the 𝐶𝐻𝐶 indicated that three MZs were optimal for identifying 250 

homogeneous zones at the site. The MZ1 covered the north-west side of the site and had the highest 251 

𝑁𝐷𝑉𝐼 values; the MZ2 had intermediate 𝑁𝐷𝑉𝐼 and spanned across the south of the site until the 252 

45th day after sowing and after that over the south-west only. The MZ3 had lower 𝑁𝐷𝑉𝐼 values 253 

and was initially the north-eastern side of the site, then covered the entire western side of the field 254 

at 45 days after sowing. From the 50th day after sowing, the 𝐶𝐻𝐶 indicated that four clusters were 255 

best at identifying areas with homogeneous 𝑁𝐷𝑉𝐼. MZ1 and MZ2 remained relatively similar to 256 

their early season delineations. The MZ4 identified an area of moderately low 𝑁𝐷𝑉𝐼 at the south-257 

eastern portion of the site, whereas MZ3, on the north-eastern side of the site, was characterized 258 

by the lowest 𝑁𝐷𝑉𝐼 values. The spatial patterns of the four MZs changed only slightly over time, 259 

until the 130th day after sowing, when the size of MZ3 increased remarkably while MZ4 decreased. 260 

The unsupervised 𝑁𝐷𝑉𝐼 clustering was compared to dividing the site into four blocks, one for each 261 

maize variety. Figure 3c shows the 𝐶𝐻𝐶 values for 𝑁𝐷𝑉𝐼 clustering into dynamic MZ and into 262 

varietal-based blocks through the growing season. The dynamic MZ-design strategy had larger 263 

𝐶𝐻𝐶 values for the entire growing season than the variety-block strategy, indicating that the 264 

dynamic MZs identified by unsupervised clustering had more homogeneous 𝑁𝐷𝑉𝐼 than the 265 

varietal blocks.  266 

Figure 3a shows contrasting 𝑁𝐷𝑉𝐼 values between the eastern and western side of the field, 267 

especially visible along the boundary between the d6980 and p1524 varieties. The boundary 268 

between the d6980 and p1524 varieties seemed to be a big factor in the determination of the 269 
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boundary between eastern (MZ1 and MZ2) and western (MZ3 and MZ4) zones from 55 to 120 270 

days after sowing (Fig. 3b). Figure A.1.f of Appendix A shows the p1524 and d6780 varieties 271 

doing relatively poorly in July 2018. So, in addition to different soil hydraulic properties on the 272 

east side of the field, crop genetics (e.g., pest resistance, germination rate between the varieties) 273 

and uneven management (e.g., mechanical sowing, fertilization, soil tillage) could have been 274 

contributing factors to the poor performance of the p1524 and d6780 varieties. Changes in MZ 275 

delineation over time led to some changes in MZ membership for certain soil-water monitoring 276 

stations (Table 3). These changes occurred frequently in the early vegetative stages (until 54 days 277 

after sowing). No MZ membership change occurred in the late vegetative and reproductive stages. 278 

The MZs were characterized by contrasting soil properties throughout the season. The MZ had 279 

significantly (p<0.05) different PC1 scores throughout the season according to the Kruskal Wallis 280 

test: MZ1 and MZ2 were characterized by low PC1 scores, whereas MZ3 and MZ4 were 281 

characterized by the highest PC1 scores (Fig. A.3 of Appendix A). 282 

 283 

3.3 NDVI and Applied Water 284 

Changes in 𝑁𝐷𝑉𝐼 and 𝐴𝑊 across MZs are depicted in Fig. 4a (MZ1), 4b (MZ2), 4c (MZ3), 285 

and 4d (MZ4). Through the growing season, 𝑁𝐷𝑉𝐼 in MZ1 and MZ2 was higher than in MZ3 and 286 

MZ4. Furthermore, 𝑁𝐷𝑉𝐼 was slightly higher in MZ1 than in MZ2. Average 𝐴𝑊 in MZ1 was 287 

close to 1 (i.e., water content was near θfc) throughout the entire growing season. Average 𝐴𝑊 in 288 

MZ2 was greater than 1 at the beginning of the season (until 45 days after sowing) and then very 289 

close to 1 through the end of the growing season. Portions of MZ3 and MZ4 had lower 𝑁𝐷𝑉𝐼 290 

values than MZ1 and MZ2. In these areas, irrigation was likely excessive. 𝐴𝑊 was considerably 291 

higher than 1 for the entire vegetative growth of maize and during the early reproductive stages. 292 
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Once irrigation was halted in the northeastern corner of the site (i.e., approximately over the area 293 

comprised by MZ3) at 74 day after sowing, the 𝐴𝑊 in MZ3 gradually decreased until the end of 294 

the season, while 𝑁𝐷𝑉𝐼 in MZ3 remained stable. Halting irrigation in the northeastern corner of 295 

the site had little-to-no effect on the spatial extent of MZ3 and the other MZs, as shown in Fig. 3c. 296 

The analysis of the daily total within-MZ 𝐴𝑊 variance (𝑆 ) provided further support for the use 297 

of 𝑁𝐷𝑉𝐼 to identify areas with similar 𝐴𝑊 conditions at the site. In Fig. 4e, the calculated total 298 

MZ variance is normalized by the daily whole-site 𝐴𝑊 variance.  Especially beyond 45 days after 299 

sowing (the beginning of the VT growth stage), the normalized within-MZ variance is much less 300 

than 1, showing that a large part of the total 𝐴𝑊 variance was explained by splitting the site into 301 

dynamic MZs delineated based on an analysis of 𝑁𝐷𝑉𝐼. Fraisse et al. (2001) used yield within-302 

zone variance to evaluate soil-derived MZs at the end of the season. Our results suggest that daily 303 

𝐴𝑊 𝑆 could also be used for in-season evaluation of management zone designs.  304 

 305 

4. DISCUSSION 306 

4.1 NDVI and irrigation scheduling simulations 307 

The 𝐴𝑊 and 𝑁𝐷𝑉𝐼 time series data show that soil water content was a major factor 308 

determining 𝑁𝐷𝑉𝐼 spatiotemporal variability at the site. 𝑁𝐷𝑉𝐼 is an indicator of maize crop health, 309 

and several studies have found positive correlations between 𝑁𝐷𝑉𝐼, 𝐴𝑊, and crop growth 310 

(Scudiero et al., 2014; West et al., 2018). However, those studies were for water scarce conditions. 311 

Crop stress and reductions in growth can occur from too much water in the soil profile as well as 312 

too little (Feddes et al., 1978). In the current study, where maize was grown under nearly 313 

waterlogged conditions for most of the growing season (Fig. 4), changes in 𝑁𝐷𝑉𝐼 and 𝐴𝑊 between 314 

consecutive Sentinel 2 scenes were negatively correlated, with Pearson r equal to -0.64 (MZ1), -315 
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0.87 (MZ2), -0.79 (MZ3), and -0.83 (MZ4) (all significant at p<0.05). Thus, as has been noted 316 

elsewhere (Shanahan et al., 2008; Long et al., 2015; Quebrajo et al., 2018; Scudiero et al., 2018), 317 

𝑁𝐷𝑉𝐼 data alone should not be used to make irrigation management decisions; 𝑁𝐷𝑉𝐼 (and/or other 318 

plant canopy information) should be integrated with soil information to properly understand plant 319 

processes at a site. 320 

With respect to within-season management decisions, one way to make a connection between 321 

𝑁𝐷𝑉𝐼-based dynamic management zone delineation and soil conditions would be to use a 322 

simulation model to make within-season forecasts of soil and crop conditions for different 323 

management options. In the remainder of this paper, we determine a hypothetical optimal irrigation 324 

schedule for each growing stage using the simulation/optimization approach developed by 325 

Fontanet et al. (Vadose Zone Journal, submitted). We first show that a physically based simulation 326 

model, Hydrus-1D (Šimůnek et al., 2016), is consistent with NDVI-based zoning by simulating 327 

the field experiment and demonstrating agreement between measured AW and simulated available 328 

water (𝑆𝐴𝑊 , as well as showing a correspondence between simulated transpiration (𝑆𝑇 ) rates 329 

and 𝑁𝐷𝑉𝐼. Next, we use the calibrated model to investigate what-if irrigation scenarios, 330 

calculating a hypothetical irrigation scheduling table for each dynamic MZ that could have been 331 

generated from NDVI within season to guide irrigation. 332 

 333 

4.2 Hydrus-1D Available Water and Transpiration Simulations 334 

The well-known Hydrus-1D model solves the Richards Equation numerically to simulate 335 

variably saturated water flow and root water uptake in soils. The model inputs and 336 

parameterizations used in our simulations are detailed in Appendix B. Simulations of the 337 

experiment for differing monitoring locations all used the same inputs and parameters except for 338 
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(i.) the soil hydraulic properties, which were measured at each station during the field campaign 339 

(Table 2), and (ii.) the irrigation boundary condition, which differed only for stations P10 and P11 340 

because irrigation was stopped during the experiment. 341 

In Fig. 5, daily observed 𝐴𝑊 for each station is compared with daily-simulated available water 342 

(𝑆𝐴𝑊 . Generally, good agreement between 𝐴𝑊 and 𝑆𝐴𝑊 existed for all stations, although it is 343 

acknowledged that the 𝐴𝑊 time courses were relatively non-dynamic. Still, the simulations were 344 

done using independently measured hydraulic properties and without any parameter fitting, so the 345 

agreement is quite good (modeling details can be found in Appendix B). Missing data towards the 346 

end of the season in P7 was due to rodents chewing on the sensor cables.  347 

Figure 6 shows the weekly-simulated actual transpiration (𝑆𝑇  at each MZ and the potential 348 

transpiration (𝑇 ) at the site. At MZ1 and MZ2, 𝑆𝑇  weekly averages were always equal or near 349 

the potential transpiration. At MZ3 and MZ4, 𝑆𝑇  weekly values were remarkably lower than the 350 

potential. There was good correspondence between 𝑆𝑇  and 𝑁𝐷𝑉𝐼 at each MZ, with a Pearson r 351 

of 0.6 (MZ1), 0.51 (MZ2), 0.69 (MZ3), and 0.82 (MZ4). In agreement with the results discussed 352 

for 𝑁𝐷𝑉𝐼 and AW data (section 3.2. Remote Sensing and Dynamic Management Zones 353 

Delineation), low 𝑆𝑇  values at MZ3 and MZ4 were due to waterlogging (root water uptake and 354 

transpiration is reduced in the model whenever simulated soil water content exceeds a threshold 355 

value; see Appendix B). Stations in MZ3 and MZ4 (see Table 3) had 𝐴𝑊 and 𝑆𝐴𝑊 over 1 for 356 

most of the growing season (Fig. 4).  357 

 358 

4.3 Irrigation scheduling for within-season decision making  359 

We adopted the method of Fontanet et al. (Vadose Zone Journal, submitted) to investigate 360 

optimal irrigation scheduling for dynamic MZs. In this method, irrigation of duration 𝜏 [T] is 361 
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prescribed whenever the soil moisture content decreases below a critical level (ℎ∗) as indicated by 362 

readings from a soil water pressure head sensor(s). The irrigation rate is assumed to be a fixed 363 

constant for a given irrigation system. The recommended duration and threshold are determined 364 

using a simulation/optimization procedure. Simulations are made using forecasted daily or weekly 365 

crop water demand (reference ET0) and a range of values for the irrigation scheduling parameters, 366 

ℎ∗ and 𝜏. The optimal parameter values are those that maximize seasonal transpiration in the 367 

simulations (transpiration being, for many agronomically important crops, proportional to 368 

marketable yield). In adapting the simulation/optimization method, we make separate 369 

recommendations for each MZ, and update them whenever there is a change in MZ station 370 

membership. The recommended values of ℎ∗ and 𝜏 for a given MZ are the average values 371 

determined for monitoring stations within the zone. For simplicity, we use in this example the 372 

known daily potential ET0 for the forecasted model boundary condition (rather than historical data 373 

which would be necessary for actual within-season forecasts). Also, as the season progressed, we 374 

triggered irrigation based on readings from progressively deeper sensors. In principle, when 375 

multiple sensor depths are available, the sensor depth could be treated as an additional optimization 376 

parameter. Full details on our implementation of the Fontanet et al. (Vadose Zone Journal, 377 

submitted) procedure are given in Appendix C. 378 

Although the Fontanet et al. (Vadose Zone Journal, submitted) method prescribes an 379 

optimized irrigation schedule, in practice a grower may not be able to irrigate exactly according to 380 

a schedule and sensor readings, particularly when there are multiple management zones. Therefore, 381 

we also calculated recommended irrigation durations (or, equivalently, irrigation amounts) for 382 

soils that have become dryer than the “optimal” irrigation trigger point.  383 
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The resulting irrigation scheduling calendar for dynamic-MZ irrigation is presented in Table 384 

4. Optimal irrigation strategies for each growth stage are shown in bold. The other table entries 385 

show irrigation recommendations for field sections that are dryer than the optimal trigger point. 386 

Strategies alternatives in order to allow agriculture to readjust irrigation in case that some parts of 387 

the field do not follow the optimal irrigation recommendation. As a general term, and following 388 

the tendency of this work, there are two main optimal parameter groups for irrigation scheduling; 389 

(i) MZ1 with 𝜏=[1.9, 2.6] hꞏd-1 and ℎ∗=[-23.3, -30] kPa; MZ2 with 𝜏=[1.9, 2.0] hꞏd-1 and ℎ∗=[-390 

18.3, -30] kPa. Here, the intervals reflect the temporal variations of optimal values associated with 391 

the different growing stages. These parameters represent medium frequent and short irrigations. 392 

(ii) MZ3 with 𝜏=2 hꞏd-1 and ℎ∗=[-10, -20] kPa; MZ4 with 𝜏=[2.0, 2.3] hꞏd-1 and ℎ∗=[-10, -16.7] 393 

kPa. They represent very frequent and short irrigations. The other situation that can be in the site 394 

is when the pressure head threshold is smaller than the corresponding optimal value. In this case, 395 

𝜏 increases because water consumed might be supplied until to arrive similar values of simulated 396 

actual transpiration as the optimal irrigation scheduling. 397 

Table 5 compares seasonal transpiration and irrigation simulated with optimal scheduling 398 

versus the amounts obtained simulating the field experiment. For MZ1 and MZ2, the optimal 399 

schedule recommended 11 to 13 % less water and increased transpiration by 5 to 8 %. For MZ3, 400 

29 % less water was recommended, with an increase in transpiration of 24 %. And for MZ4, a 17 401 

% reduction in irrigation corresponded to a massive 53% increase in transpiration. These results 402 

are consistent with our earlier findings and discussion indicating the field was over-irrigated, 403 

especially in MZ3 and MZ4.  404 

 405 

6. CONCLUSIONS 406 
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Irrigation scheduling is complicated by the spatial and temporal variability of a number of 407 

variables and parameters. In this work, we investigated a workflow for improved precision 408 

irrigation scheduling using data from a maize field where four maize varieties were sown. The 409 

workflow is based on dynamic MZ delineation with unsupervised 𝑁𝐷𝑉𝐼 clustering. We found that 410 

MZs based on NDVI clustering were better able to statistically represent field variability than MZs 411 

based on maize variety. Additionally, the optimal number and spatial configuration of the MZs 412 

were found to change over the growing season. The highest number of MZs was 4. Management 413 

Zones 1 and 2 (MZ1 and MZ2) corresponded to field sections where NDVI values reflected a 414 

typical maize crop performance, whereas MZ3 and MZ4 featured relatively low 𝑁𝐷𝑉𝐼 values 415 

indicative of poor maize growth. 416 

Soil water content data were analyzed to show that the variation in crop performance was 417 

attributable to soil hydraulic properties, soil available water, and over-irrigation. Further, a 418 

relationship existed between NDVI and soil available water. The results indicated that soil 419 

available water could potentially also be used for, or incorporated into, in-season evaluation of 420 

management zone designs. 421 

Lastly, we proposed a method of combining dynamic management zone delineation with 422 

Hydrus 1-D model forecasts for irrigation scheduling. The field experiment was first simulated to 423 

confirm the model parameterization and demonstrate its consistency with the obtained NDVI and 424 

soil water content data. We then used model simulations to determine an optimal zonation and 425 

irrigation calendar for different crop growth stages that could have been generated and updated in 426 

real time during the season. Simulations with the optimized irrigation schedule produced an 427 

increase in transpiration and a decrease in water use as compared to the field trial (which, again, 428 

was over-irrigated). The improvement was especially remarkable for MZ3 and MZ4, where 429 
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irrigation was reduced by 28.5 and 16.6 %, and transpiration increased by 23.9 and 52.6 %, 430 

respectively.  431 

In summary, we note that although NDVI is useful for dynamically delineating management 432 

zones, for irrigation scheduling, it is recommended that NDVI be combined with some additional 433 

measure of soil conditions. Low NDVI values may be indicative of poor crop performance, but 434 

without other information it is not possible to determine the cause nor recommend a remedial 435 

irrigation or management practice.   436 

 437 

Appendix A. Supplementary figures 438 

Supplementary material related to this article can be found, in the online version, at doi: # 439 

 440 

Appendix B. Hydurs-1D Simulations 441 

Hydrus-1D (Šimůnek et al., 2008, 2016) was used to simulated soil moisture dynamics and 442 

water balance components at each monitoring station. Each simulation spanned 105 days, from the 443 

18th to the 123rd day after sowing. The 60 cm soil profile consisted of three layers/materials, as 444 

specified in Table 2. Soil hydraulic properties were specified using the van Genuchten-Mualem 445 

model (van Genuchten, 1980) as follows:  446 

and 447 

where 𝜃 (cm3ꞏcm-3) is the volumetric water content; h is the soil water pressure head (cm); 𝜃  448 

(cm3ꞏcm-3) is saturated water content; 𝜃   (cm3ꞏcm-3) is residual water content; 𝐾  (cmꞏd-1) is 449 

𝜃 ℎ  
𝜃

𝜃 𝜃
1 |𝛼ℎ|

  ℎ 0

𝜃                                 ℎ 0 
   (B.1) 

𝐾 ℎ  𝐾 𝑆 / 1 1 𝑆 / , (B.2) 
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saturated hydraulic conductivity; 𝑛 and 𝛼 are shape parameters; 𝑆  ; and 𝑚 1 1/𝑛. 450 

In Hydrus, root water uptake is simulated using a sink term 𝑆 which has three parts, the 451 

potential transpiration rate (Tp) (cmꞏd-1), the root density distribution (β) (cm-1), and the 452 

dimensionless water stress function (𝛼(h)): 453 

The actual transpiration rate (Ta) (cmꞏd-1) is calculated by integrating Eq. (B.3) over the root zone 454 

LR: 455 

Root depth was measured twice a month during the field campaign at one location. This 456 

information was used to parameterize the Hydrus root growth module.  457 

Water stress 𝛼 ℎ  was modeled using the Feddes et al. (1978) function: 458 

Parameterized by four critical values of pressure head, Eq. (B.5) defines maximal uptake (𝛼 1) 459 

when the soil water pressure head is ℎ ℎ ℎ . Water uptake decreases linearly above or below 460 

that range (ℎ ℎ ℎ  or ℎ ℎ ℎ ). And uptake is zero when ℎ ℎ  or ℎ ℎ . According 461 

to the Hydrus-1D database, the parameter values for maize are h1 = -1.5, h2 = -3.0, h3 = -60. and 462 

h4 = -800. kPa, respectively. The value of h3 was allowed to vary as a function of evaporative 463 

demand as modeled by Hyrdurs-1D. 464 

𝑆 ℎ, 𝑧, 𝑡 𝛼 ℎ, 𝑧, 𝑡 𝛽 𝑧, 𝑡 𝑇 𝑡  (B.3) 

𝑇 𝑆 ℎ, 𝑧, 𝑡 𝑑𝑧 𝑇 𝛼 ℎ, 𝑧, 𝑡 𝛽 𝑧, 𝑡 𝑑𝑧 (B.4) 

𝛼 ℎ  

⎩
⎪⎪
⎨

⎪⎪
⎧

ℎ ℎ
ℎ ℎ

                   ℎ ℎ ℎ

1                          ℎ ℎ ℎ
ℎ ℎ
ℎ ℎ

                 ℎ ℎ ℎ

    0                       ℎ ℎ  𝑜𝑟 ℎ ℎ

 (B.5) 
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Three observation nodes were inserted in the domain at the same depths as the soil moisture 465 

sensors, 15, 35 and 50 cm. Soil moisture values simulated at the observation nodes were used to 466 

determine the simulated available water (𝑆𝐴𝑊), using the same procedure as with the field data. 467 

The potential evaporation and transpiration rates were calculated by partitioning ETc into potential 468 

evaporation (Ep) and transpiration (Tp) based on the canopy cover fraction (α) according to Raes 469 

et al. (2010). An atmospheric boundary condition was imposed at the surface and a free drainage 470 

condition was used at the bottom. Simulated actual transpiration (𝑆𝑇 ) and simulated applied 471 

irrigation (𝑆𝐴𝐼) results from each station were extracted. 𝑆𝑇  and 𝑆𝐴𝐼 were calculated by averaging 472 

stations located with the dynamic MZs. 473 

 474 

Appendix C. Irrigation Scheduling 475 

Irrigation scheduling was optimized using the methodology developed by Fontanet et al. 476 

(submitted). All soil, environmental and crop inputs are the same as described previously for the 477 

Hydrus-1D simulations (Appendix B). Possible values for the irrigation scheduling parameters 478 

were constrained to be ℎ∗ ∈ {-10, -20, …, -100 kPa} and 𝜏 ∈  {1, 2, 3, 4 hꞏd-1}. The irrigation 479 

rate was constant (6.5 Lꞏh-1ꞏm-2). The soil depth used to trigger irrigation (𝑍 ) changed during 480 

the growing season, becoming deeper as the season progressed.  Irrigation parameters have been 481 

defined at each station and at different crop growing stages (V0-V5, V6-V10, V11-V15, VT, R1-482 

R6). The optimal irrigation at each grow stage and MZ are the average values obtained for the 483 

stations located in the MZ. 484 

 485 

  486 
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Figures: 645 

 646 

 647 

Figure 1. Study site location, soil moisture station locations, and maize variety plantings. The 648 

blue area represents maize variety p0937 (a combination of 500 and 600 series), the red area is  649 

variety d6980 (700 series), the yellow area is p1524 (700 series), and the green area is d6780 650 

(600 series).  651 

  652 
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 653 

Figure 2. Field average evapotranspiration, NDVI, and cumulative water fluxes as a function 654 

of time and maize growth stage. The bars on the NDVI data indicate field maximum and 655 

minimum values. (V is vegetative stage; R is reproductive stage NDVI is Normalized Difference 656 

Vegetation Index; ETc is daily water requirements; Cum P+I is cumulative Precipitation and 657 

Irrigation; and Cum ETc is cumulative water requirements).  658 

 659 

  660 
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 661 

Figure 3. a) Normalized Difference Vegetation Index (NDVI) datasets measured by Sentinel 662 

2 satellite through the growing season; b) dynamic management zone (MZ) delineation. The 663 

letter t indicates days after sowing; and c) Calinski-Harabaz criterion (CHC) for the NDVI 664 

grouped by maize variety (red squares) and with the unsupervised fuzzy-k clustering (green 665 

dots).   666 
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 667 

Figure 4. Soil profile available water (AW) and NDVI averages for a) MZ1, b) MZ2, c) MZ3, 668 

d) MZ4. Shaded areas represent the maximum in minimum AW at each MZ, while dash lines show 669 

available water saturated (𝐴𝑊 ) (θ) and field capacity point (θfc). Error bars represents the 670 

maximum and minimum NDVI at each MZ. Note that AW = 1 corresponds to a soil water content 671 

equal to field capacity. Panel e) shows the daily total within-MZ weighted variance (S2) of AW 672 

relative to the daily field-wide AW variance (i.e., S2=1).  673 

  674 
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 675 

 676 

Figure 5. a) Evaluation of profile available water (AW) simulations showings the fraction of 677 

error greater than 5, 10, and 15%. b to l) Comparison between measured available water (AW) 678 

and simulated available water (SAW) at each station (P1 - P11). 679 
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 681 

Figure 6. Simulated weekly transpiration at each MZ with the growing stages. Error bars 682 

represent the maximum and minimum and the dash line shows the weekly potential transpiration. 683 

  684 
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Tables 685 

Table 1. Soil samples texture, Organic Matter (OM) and bulk density (ρb) averages at each station. 686 

Station 
Depth D<0.002 mm 0.002<D<0.02 mm 0.02<D<0.05 mm 0.05<D<2 mm OM 

(%) 
ρb 

(gr/cm3) (cm) Clay (%) Fine Silt (%) Coarse Silt (%) Sand (%) 

P1 0 - 5 36 27.3 13.8 22.9 1.18 1.66 

 5 - 35 32 33.6 14.5 19.9 0.71 1.63 

 35 - 60 26.5 28.1 9.7 35.7 0.5 1.68 

P2 0 - 5 25.9 26.4 14.8 32.9 1.59 1.57 

 5 - 35 25.2 26.1 15.1 33.6 1.1 1.58 

 35 - 60 24.2 23.4 14.7 37.7 0.98 1.59 

P3 0 - 5 36.5 32.1 14.5 16.9 0.7 1.54 

 5 - 35 21.3 27.8 16.7 34.2 0.5 1.65 

 35 - 60 24.4 31.8 8.3 35.9 0.65 1.60 

P4 0 - 5 28.7 23.6 13.2 34.5 2.71 1.48 

 5 - 35 28.5 28.9 11 31.6 1.02 1.59 

 35 - 60 28.6 19.8 10.4 41.2 1.14 1.60 

P5 0 - 5 22.5 26.3 15.6 35.6 0.57 1.56 

 5 - 35 28.9 36.6 20.3 14.2 0.72 1.58 

 35 - 60 21.8 28.9 7.3 42.0 0.42 1.56 

P6 0 - 5 29.9 26.9 15.1 28.1 2.11 1.64 

5 - 35 29.3 25.7 14.9 30.1 0.85 1.67 

35 - 60 30.2 26 14.8 29.0 0.7 1.69 

P7 0 - 5 28.1 36 17.1 18.8 3.14 1.65 

 5 - 35 28 27.8 11.9 32.3 1.48 1.72 

 35 - 60 27.2 24.3 14.3 34.2 1.27 1.69 

P8 0 - 5 25.7 28.7 15.2 30.4 2.22 1.58 

 5 - 35 27.7 26.1 14.7 31.5 1.5 1.64 

 35 - 60 29.2 27.3 14.7 28.8 1.02 1.78 

P9 0 - 5 23.7 26.1 14.8 35.4 2.48 1.53 

 5 - 35 23.6 27.8 14.4 34.2 1.06 1.51 

 35 - 60 23.5 27.7 14.8 34 0.99 1.51 

P10 0 - 5 27.7 25.8 20.3 26.2 1.84 1.61 

 5 - 35 28.3 29.5 19.2 26.0 0.72 1.62 

 35 - 60 24.6 33.5 9.5 32.4 0.81 1.80 

P11 0 - 5 29.4 35.9 14.9 19.8 0.73 1.63 

 5 - 35 30.3 34.7 14.9 20.1 0.5 1.65 

  35 - 60 26.1 30.5 16.4 27.0 0.5 1.64 
 687 

  688 
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Table 2. Soil hydraulic parameters from each station, where: θs is the saturated water content; θr is the residual water 689 
content; α and n are shape parameters; Ks is the saturated hydraulic conductivity; θfc is simulated field capacity; and 690 
θwp is wilting point. 691 

Station  
Depth θs  θr  α  n  Ks  θfc θwp  
(cm) (cm3ꞏcm-3) (cm3ꞏcm-3) (cm-1) (-) (cmꞏd-1) (cm3ꞏcm-3) (cm3ꞏcm-3) 

P1 0 - 5 0.424 0.026 0.0169 1.140 2.05 0.345 0.196 

 5 – 35 0.407 0.027 0.0150 1.141 2.52 0.351 0.190 

 35 - 60 0.364 0.037 0.0115 1.232 1.00 0.350 0.110 
P2 0 - 5 0.389 0.061 0.0126 1.364 2.95 0.270 0.103 

 5 – 35 0.388 0.060 0.0130 1.358 2.94 0.265 0.104 

 35 - 60 0.321 0.047 0.0242 1.354 1.53 0.290 0.124 
P3 0 - 5 0.418 0.012 0.0103 1.313 4.42 0.330 0.085 

 5 – 35 0.362 0.025 0.0101 1.329 5.63 0.273 0.070 

 35 - 60 0.341 0.017 0.0083 1.345 11.47 0.261 0.066 
P4 0 - 5 0.439 0.024 0.0658 1.301 5.70 0.340 0.187 

 5 – 35 0.400 0.031 0.0143 1.290 4.60 0.300 0.192 

 35 - 60 0.395 0.018 0.0424 1.315 4.90 0.315 0.181 
P5 0 - 5 0.450 0.062 0.0099 1.497 6.88 0.340 0.070 

 5 – 35 0.460 0.067 0.0094 1.402 1.94 0.340 0.080 

 35 - 60 - - - - - - - 
P6 0 - 5 0.420 0.030 0.0126 1.153 12.00 0.371 0.172 

 5 – 35 0.430 0.050 0.0828 1.154 9.40 0.390 0.198 

 35 - 60 0.421 0.010 0.0974 1.146 8.10 0.390 0.182 
P7 0 - 5 0.375 0.024 0.0105 1.118 1.06 0.300 0.208 

5 – 35 0.349 0.026 0.0380 1.141 3.34 0.300 0.196 

 35 - 60 0.361 0.049 0.0391 1.141 4.10 0.280 0.107 
P8 0 - 5 0.402 0.040 0.0135 1.375 4.01 0.310 0.123 

 5 – 35 0.379 0.030 0.0115 1.356 3.05 0.280 0.090 

 35 - 60 0.328 0.020 0.0121 1.287 1.75 0.280 0.080 
P9 0 - 5 0.420 0.060 0.0105 1.462 5.79 0.300 0.089 

 5 – 35 0.430 0.060 0.0107 1.441 4.70 0.330 0.091 

 35 - 60 0.430 0.060 0.0109 1.433 5.52 0.330 0.090 
P10 0 - 5 0.389 0.073 0.0115 1.421 3.98 0.301 0.105 

 5 – 35 0.387 0.072 0.0112 1.425 4.56 0.300 0.080 

 35 - 60 0.320 0.058 0.0181 1.256 1.87 0.290 0.090 
P11 0 - 5 0.400 0.012 0.0784 1.121 10.00 0.380 0.188 

 5 – 35 0.451 0.018 0.0308 1.141 5.27 0.375 0.188 
  35 - 60 0.420 0.014 0.0121 1.112 11.00 0.350 0.250 
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Table 3. Periods where one or more stations change MZ membership. 694 

Period              
(Day after sowing) 

MZ1 MZ2 MZ3 MZ4 

Period 1             
(19-29) 

P8, P9, P10 
P1, P2, P3, 
P4, P5, P6 

P7, P11 - 

Period 2             
(30-44) 

P8, P9, P10 
P1, P2, P3, 

P4, P5 
P6, P7, P11 - 

Period 3             
(45-49) 

P8, P10 
P2, P3, P4, 

P5, P9 
P1, P6, P7, 

P11 
- 

Period 4             
(50-54) 

P8, P10 
P2, P3, P4, 

P9 
P7, P11 P1, P5, P6 

Period 5             
(55-115) 

P8, P10 
P2, P3, P4, 

P5, P9 
P11 P1, P6, P7 

 695 
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Table 4. Irrigation scheduling calendar based on growing stages and MZs distribution. ℎ , is the possible pressure head threshold (the optimal pressure head 696 
threshold in bold); I, is the irrigation required to maximize transpiration; 𝜏, is the irrigation duration; 𝑍 , is the trigger soil depth. Optimal irrigation scheduling is 697 
represented in bold.  698 

  V0-V5 V6-V10 V11-V15 VT R1-R6 

  Trigger Depth = 10 cm Trigger Depth = 20cm Trigger Depth = 20 cm Trigger Depth = 40 cm Trigger Depth = 40 cm 

MZ1 

hth (kPa) 

Irrig. 
Required 

(mm) τ (h) 

Irrig. 
Required 

(mm) τ (h) 

Irrig. 
Required 

(mm) τ (h) 

Irrig. 
Required 

(mm) τ (h) 

Irrig. 
Required 

(mm) τ (h) 

0 - - - - - - - - - - 

-10 - - - - - - - - - - 

-20 - - - - - - - - - - 

-23.3 - - 12.5 1.9 - - - - - - 

-26.7 13.1 2.0 13.5 2.1 - - - - - - 

-30 14.0 2.2 14.1 2.2 19.0 2.9 15.0 2.3 17.0 2.6 

-40 15.0 2.3 14.5 2.2 21.0 3.2 17.0 2.6 21.0 3.2 
-60 16.0 2.5 18.5 2.8 25.0 3.8 23.0 3.5 29.0 4.5 

-100 17.1 2.6 22.5 3.5 29.0 4.5 33.0 5.1 45.0 6.9 

            

MZ2 

hth (kPa) 

Irrig. 
Required 

(mm) τ (h) 

Irrig. 
Required 

(mm) τ (h) 

Irrig. 
Required 

(mm) τ (h) 

Irrig. 
Required 

(mm) τ (h) 

Irrig. 
Required 

(mm) τ (h) 

0 - - - - - - - - - - 

-10 - - - - - - - - - - 

-18.3 12.4 1.9 - - - - - - - - 

-20 12.4 1.9 - - - - - - - - 

-24 12.9 2.0 15.3 2.4 - - - - - - 

-30 13.9 2.1 18.3 2.8 13.0 2.0 13.0 2.0 13.0 2.0 

-40 14.4 2.2 19.3 3.0 18.0 2.8 23.0 3.5 23.0 3.5 

-60 16.9 2.6 24.3 3.7 23.0 3.5 33.0 5.1 33.0 5.1 

-100 19.9 3.1 30.3 4.7 29.0 4.5 45.0 6.9 45.0 6.9 
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MZ3 

hth (kPa) 

Irrig. 
Required 

(mm) τ (h) 

Irrig. 
Required 

(mm) τ (h) 

Irrig. 
Required 

(mm) τ (h) 

Irrig. 
Required 

(mm) τ (h) 

Irrig. 
Required 

(mm) τ (h) 

0 - - - - - - - - - - 

-10 - - 13.0 2.0 13.0 2.0 13.0 2.0 13.0 2.0 

-20 13.0 2.0 17.0 2.6 17.0 2.6 21.0 3.2 21.0 3.2 

-30 15.0 2.3 21.0 3.2 21.0 3.2 29.0 4.5 29.0 4.5 
-40 16.0 2.5 23.0 3.5 23.0 3.5 33.0 5.1 33.0 5.1 

-60 18.0 2.8 27.0 4.2 27.0 4.2 41.0 6.3 41.0 6.3 

-100 20.5 3.2 28.0 4.3 28.0 4.3 43.0 6.6 43.0 6.6 

            

MZ4 

hth (kPa) 

Irrig. 
Required 

(mm) τ (h) 

Irrig. 
Required 

(mm) τ (h) 

Irrig. 
Required 

(mm) τ (h) 

Irrig. 
Required 

(mm) τ (h) 

Irrig. 
Required 

(mm) τ (h) 

0 - - - - - - - - - - 

-10 - - - - - - 13.0 2.0 13.0 2.0 

-16.7 - - - - 15.0 2.3 15.0 2.3 15.0 2.3 

-20 - - - - 16.0 2.5 17.0 2.6 17.0 2.6 

-30 - - - - 19.0 2.9 25.0 3.8 25.0 3.8 

-40 - - - - 21.0 3.2 29.0 4.5 29.0 4.5 

-60 - - - - 23.0 3.5 33.0 5.1 33.0 5.1 

-100 - - - - 29.0 4.5 45.0 6.9 45.0 6.9 
699 
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Table 5. Comparisons of optimal actual transpiration (𝑂𝑝𝑇 ), optimal water applied (𝑂𝑝𝐼𝐴), simulated actual 700 
transpiration (𝑆𝑇 ), and simulated water applied (𝑆𝐴𝐼). 701 

  
𝑂𝑝𝑇  
(mm) 

𝑂𝑝𝑇 𝑆𝑇 /𝑆𝑇  
(%) 

𝑂𝑝𝐼𝐴 
(mm) 

𝑂𝑝𝐼𝐴 𝑆𝐴𝐼 /𝑆𝐴𝐼 
(%) 

MZ1 405.6 8.0 525.5 -11.0 

MZ2 405.6 4.8 517.8 -12.8 

MZ3 107.5 23.9 217.5 -28.5 

MZ4 271.7 52.6 350.2 -16.6 

 702 
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Appendix A. Supplementary data  704 

 705 

 706 

Figure A.1. Historical land use and topography modifications at the study site. 707 

 708 

 709 

Figure A.2. Soil water retention curves at 10 cm depth from two stations located on opposite 710 

edges of the filed. Station P9 is located on the west side and P11 on the east.  711 

 712 

  713 
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714 

Figure A.3. a) Eigenvalue and percent of variance explained by the first eight components of the 715 

principal component (PC) analysis; b) bi-plot of select soil properties (clay, fine silt, coarse silt, 716 
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sand, and organic matter (OM) content; bulk density (ρb); water content at saturation (θs); 717 

residual water content (θr); water content at field capacity (θfc); water content at wilting point 718 

(θwp); saturated hydraulic conductivity (Ks); and shape parameters α and n) for PC1 and PC2; c) 719 

same for PC1 and PC3; d) Pearson correlation matrix for the first three PCs and selected soil 720 

properties (significant (p<0.05) correlations highlighted in red); and e) averages (bars) and 721 

standard deviations (lines) of PC1 for the four management zones (MZs) through the growing 722 

season. Capital letters indicate significant (p<0.05) differences within MZs according to the 723 

Kruskal-Wallis test.  724 


