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Abstract: The lack of sidewalls in a spillway leads to lateral expansion of the flow and, consequently,
a non-uniform transversal flow rate distribution along the chute. The present work shows the
velocity field measured in a physical model of a 1 V:0.8 H steeply sloping stepped spillway without
sidewalls. An application of a Bubble Image Velocimetry (BIV) technique in the self-aerated region is
shown, using air bubbles entrained into the flow downstream of the inception point as tracers. The
results indicate that, for small dimensionless discharges and sufficiently downstream of the point
of inception, the free-surface velocity compares relatively well with the corresponding air–water
interfacial velocity previously obtained with a double-tip fiber optical probe in the same facility. In
turn, the velocity profiles along the normal to the pseudo-bottom, far downstream of the inception
point, are reasonably in agreement with the air–water interfacial velocity profiles in the inner part of
the skimming flow, with the largest differences being verified in the upper skimming flow region
near the free-surface.

Keywords: stepped spillway; skimming flow; air–water flow; Bubble Image Velocimetry;
velocity field

1. Introduction

Since the early 1980s, when systematic laboratory investigations into the hydraulic
performance of stepped spillways were begun, there has been a significant interest in the
design of stepped spillways [1–4].

The use of classical and state-of-the-art metrology in laboratory studies has greatly
contributed to the understanding of both macroscopic and microscopic properties of the
highly turbulent flow over stepped spillways. Examples of application of such techniques
include piezoresistive pressure transducers with high sampling frequency for measuring
pressure fluctuations and extreme pressures on the step faces [5–11], acoustic emission
technology for detecting cavitation characteristics, along with high-speed videography to
provide additional insight into the flow features that drive the formation of cavitation [12],
conductivity probes and fiber-optical probes for measuring local air concentration along
with other microscopic air–water flow properties, and/or velocity [13–22], conductivity
probes along with back-flushing Pitot tubes for estimating the local air concentration and
velocity [23–27], and Laser Doppler Anemometry (LDA) [28] or PIV [29] for measuring the
turbulent flow properties in the non-aerated flow region.

In addition, the advancements of non-intrusive flow visualization techniques lead
to novel procedures, such as ultrasonic sensors or Light Detection and Ranging system
(LiDAR), for estimating free-surface turbulence or air–water flow properties [30,31]. Bubble
Image Velocimetry (BIV) and Optical Flow methods have also been applied to highly
aerated flows, namely in stepped spillways. Different applications of those techniques in
the aerated region of stepped chutes were shown in [32–35] and [36]. In particular, [32]
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applied the BIV technique to measure the void fraction and velocity profiles in a stepped
spillway with a 1 V:2 H slope, [34] and [35] applied the same in a 1 V:1 H stepped chute;
they showed that results tend to underestimate flow velocities when compared to the
conductivity and phase detection probes data. In turn, [36] calibrated a 3D numerical
model using an ultrasonic sensor and Bubble Image Velocimetry in a 0.5 m wide, 1 V:2
H stepped flume. Image-based analysis of free-surface flows on a stepped spillway was
also conducted at model and prototype scales [37,38]. In [37], a robust optical flow (OF)
technique was applied to video movies taken from a downstream observation platform.
The OF data provided physically meaningful surface velocities in the non-aerated flow
region upstream of the inception of free-surface aeration. A novel conceptual model of a 3D
entrapment mechanism was also proposed, based upon the prototype observations. In [38],
an image-based analysis of free-surface flows on a stepped spillway was conducted from
a top-view perspective at laboratory scale (fixed camera installation) and prototype scale
(drone footage). The drone videos were obtained from citizen science data. Analyses were
used to estimate the location of the point of inception, air–water surface velocities, and
their fluctuations, as well as the residual energy at the downstream end of the chute. Those
studies highlighted the feasibility of image-based measurements at prototype spillways.

In the present work, image processing techniques have also been applied. Images
have been recorded using a high-speed video camera, and later processed using particle
image velocimetry (PIV) techniques. The application of PIV in any sort of flow relies on
the ability of tracer particles to follow the flow. In the present study, PIVlab [39,40] has
been used, which is an open-source toolbox available in MATLAB©. This application
obtains the flow velocity field through image processing using the classical non-intrusive
PIV technique [41–44]. A PIV analysis usually consists of three parts: pre-processing,
evaluation, and post-processing of the images. Image pre-processing is done to improve
the quality of the images before correlating them. The image evaluation is based on the
comparison of overlapped regions of a pair of consecutive images, called interrogation
areas, in order to obtain the most probable displacement of a particle within these zones.
This evaluation is mathematically expressed as a cross-correlation algorithm. Usually, it is
necessary to post-process the images in order to obtain reliable results. A basic method for
filtering outliers is to manually choose acceptable velocity limits. However, they can also
be filtered semi-automatically by comparing each velocity component with previously set
lower and upper thresholds. After removing these atypical values, the deleted vectors are
replaced by interpolated values.

The scope of this paper is to illustrate the velocity field measured in highly aerated
flow on a stepped spillway without side constraint using its own air bubbles trapped in the
flow as tracers by means of the BIV technique. The results obtained for distinct flow rates,
image acquisition rates, and size of the interrogation areas are presented and analyzed.

2. Experimental Set-Up
2.1. Physical Model

The experimental data presented in this paper were gathered on a stepped chute
assembled at the Hydraulics and Fluid Mechanics Laboratory of the Civil Engineering
School at the Universitat Politècnica de Catalunya (UPC), in the framework of [45]. The
model is 5 m high (from crest to toe), with a slope of 1 V:0.8 H and a total width of 3.0 m
(Figure 1). It consists of 57 identical steps 0.08 m high (h), 0.064 m long (l), and 8 additional
steps at the top of the model fitted to a Creager profile [17]. In its upper part, the spillway
includes a 0.75 m long guiding wall at 1 m of the right side of the chute (view from
upstream). Downstream of this wall, the flow is allowed to spread across the width of the
chute. The model is built of transparent methacrylate in order to allow visual inspection
of the flow. The hydraulic behavior of stepped spillways without sidewalls was studied
in [17,45]. In these studies, results such as the point of inception of air entrainment, the
transversal flow rate distribution due to lateral expansion, the development along the chute
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of the characteristic flow depth, and the air concentration or the velocity and pressure fields
were presented.
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Figure 1. Frontal view of the physical model built in the Hydraulics and Fluid Mechanics Laboratory
of the Civil Engineering School at UPC.

In the present study, the discharge varied between 85 and 260 l/s, and the dimension-
less flow rate dc/h, varied between 1.13 and 2.38, where dc is the critical depth and h is the
step height.

2.2. Video Recording Apparatus

The images were recorded with a high-speed video camera positioned in front of
the model. The camcorder used in this work was the MV2-D1280-640 CMOS model
from the Photonfocus company (Lachen, Switzerland). This camera has a resolution of
1.3 megapixels and can record up to 490 fps (frames per second) at its maximum resolution
of 1280 × 1024 pixels.

Additionally, the camcorder needs a high-capacity computer, as the camera generates
a significant amount of information. Therefore, an Intel Core i7 processor and 12 GB of
RAM was used.

An image is made up of a set of illuminated dots, called pixels. The light intensity of
each point in the actual image is captured by the digital camera, storing each pixel as a
combination of 8 bit. Therefore, 28 = 256 light intensity values can be obtained, where the
value 0 corresponds to black and the value 255 to white.

3. Methodology
3.1. Position of the Camera

Two different views of the flow have been recorded: frontal and lateral. From the
frontal images, the velocity field near the complex free-surface of the flow (hereinafter
referred to simply as free-surface) has been determined. On the other hand, from the lateral
recordings, a characteristic flow depth and the depth-wise velocity profile on the chute
have been estimated.

3.1.1. Frontal View

The high-speed video camera was positioned at the front of the stepped chute, on a
platform of about 3.5 m high. Given the dimensions of the experimental facility and the
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characteristics of the camera used, only images of an initial reach of the stepped chute were
obtained, as shown in Figure 2. This area goes, longitudinally, from L/Lt = 0.17 to 0.44,
that is from step 11 to step 29, and transversely, up to 2.25 m from the right side of spillway
(L being the streamwise distance along the chute to the outer edge of the step and Lt being
the total length of the chute).
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Figure 2. Plain view of the stepped chute (dimensions in mm). The guiding wall at 1 m from the
right side is shown. The field of view of the camera covers an area from L/Lt = 0.17 to 0.44 (step 11
to step 29), and transversely, up to 2.5 m from the right side of the chute.

Dimensionless discharge (dc/h) of 1.13, 1.83, and 2.38 was recorded at 200 fps and
400 fps. The recorded videos were fragmented, that is, 1000 images of 1280 × 1024 pixels
were obtained from each video.

3.1.2. Lateral View

In this case, the images collected correspond to the right side of the chute, on the
step corresponding to L/Lt = 0.49. This step is located shortly downstream of the field of
view used in the frontal videos. Additionally, a third group of images were obtained on
the locations corresponding to L/Lt = 0.88 and 0.89. Figure 3 shows the image collection
apparatus used to obtain video recordings on L/Lt = 0.49 with frontal illumination
(equivalent to that on L/Lt = 0.88 and 0.89). Either way, due to the lighting system, this
method in contrast to the PIV does not discern the velocity field exactly in the same plane.
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Figure 3. (a) Image collection apparatus for L/Lt = 0.49 (which is equivalent to that on L/Lt = 0.88 )
using frontal illumination. (b) Image collection apparatus for L/Lt ranging from 0.88 to 0.89 using
back illumination.

3.2. Folding Images
3.2.1. Frontal View

Once the images were obtained, it could be observed that the lens of the camera is not
completely parallel to the plane of the stepped chute, as it is shown looking at the blue line
in the left image of Figure 4. This fact can distort the velocity field values estimated from
the recorded images. For this reason, it was necessary to fold all the images in order to
position the blue auxiliary line vertically, as per Pons [46].
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Figure 4. (a) Original frame #0001 of video 0 (without water, 200 fps); the blue line is the foot of the
right sidewall of the chute. (b) Image folding (profile view). (c) Folded original frame #0001 of video
0; the green line represents the foot of the folded right sidewall of the chute.



Water 2022, 14, 2587 6 of 17

3.2.2. Lateral View

The images were taken in such a way that their base matches with the footprint of
the step (Figure 5a). Therefore, the image offers a visualization of the flow in which the
skimming flow zone is not horizontal. In order to achieve a more comfortable procedure
to analyze the images, all the recordings have been rotated 51.3◦ counterclockwise, trans-
forming the pseudo-bottom into a horizontal line (Figure 5b). For example, this rotation on
the video frames allowed us to perform an easier screening of the velocity outliers in the
skimming flow zone, as there, the dominant velocities should be practically horizontal.
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3.3. Preprocessing Frames in PIVlab

In the case of lateral video recordings, the backlighting used, as shown in Figure 3,
creates areas that are practically saturated with light next to the solid contour of the steps,
and at the same time, the high concentration of air in the flow makes the areas farthest
from the flow dark (Figure 5). This requires pre-processing of the images to highlight the
air bubbles so that they can be good flow tracers.

In both frontal and lateral analysis of the respective velocity fields, a Contrast Limited
Adaptive Histogram Equalization (CLAHE) filter was applied [39]. The CLAHE filter is
used to enhance the images by spreading out the most frequent intensities in the images to
the full range from 0 to 255. Usually, CLAHE filter improves the probability of detecting
valid vectors. In Figures 6 and 7, examples of the application of CLAHE filter are shown,
with contrast improvement for the latter.
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3.4. Interrogation Areas in PIVlab

The displacement vectors are estimated by means of a 2D cross-correlation function
of the discrete Fourier transformation (DFT) of two consecutive frames. Both images are
analyzed by subdividing them into partially overlapped interrogation areas. There is a
strict relationship between the size of the interrogation areas and the region of interest
where the velocity field will be analyzed. The density of vectors to be obtained in the
velocity field is also dependent on the size of the interrogation areas [29,39]. Thus, the
smaller the size of the interrogation areas, the greater the amount of information obtained.
However, the reduction in the size of the interrogation areas has a negative effect on the
computational time and also decreases the values of the obtained correlation. In general,
it was observed that a reduction in the size of the interrogation areas worsens the quality
of the results. What actually happens is that, by reducing the size of the interrogation
areas, the probability of coincidence in the pixel values of the analyzed areas is reduced,
thereby leading to outlier correlations. This method usually increases the noise in the
correlation matrix which induces some loss of information. This effect decreases accuracy,
as it entangles the detection of the intensity peak. For that reason, it is advisable to run
several passes of the DFT on the same two consecutive frames by reducing the interrogation
area [39].

3.4.1. Frontal View Velocity Field

In the case of the frontal view, the size of the interrogation areas that minimized the
amount of non-valid velocity vectors was obtained, with 4 steps using decreasing size areas
from 300 px to 50 px.

In Figure 8, the gross frontal velocity field obtained in frame 691 for dc/h = 2.38 is
shown in function of b/b0, being b, the transverse distance from the right sidewall of the
chute and b0, the chute width at the upstream end. It can be seen that the darkness of the
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image upstream of the inception point introduces major errors in the estimation of the flow
direction. This fact points to the lack of tracers in the flow in this area, which causes lower
correlations than those obtained outside it. This makes a careful post-processing of all the
images essential. Likewise, it can be observed that downstream of the inception point, the
air itself acts as a seed to obtain coherent estimators of the velocity directions. In Figure 9,
the time evolution of the correlation obtained for 400 fps and 200 fps on L/Lt = 0.30 and
b/b0 = 1.17 is presented. Values oscillating around an average of 0.8 were obtained, which
may be considered acceptable.
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correlation for 400 fps and 200 fps across the chute width at L/Lt = 0.30.
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3.4.2. Lateral View Velocity Field

In the analysis of velocity field observed from the lateral view of the chute, two main
flow patterns coexist [1–5]: the skimming flow above the pseudo-bottom formed by the
external edges of the steps and the recirculating flow inside the cell between those external
edges. Upper skimming flow results in an almost unidirectional velocity profile with high
velocities, which vary depending on the flow rate. Recirculating flow in the step cavity is
characterized by smaller velocities whose directions vary, forming a main eddy pattern.

Considering the aforementioned characteristics of the velocity field, the influence of
the size of the interrogation areas on the results has been analyzed. In Figure 10, the average
velocity field for dc/h = 2.38 is shown for the test with an interrogation area from 288 pixels
reduced to 36 pixels in 3 steps, acquired at 400 fps and 200 fps. As the scale used for the
vector representation is the same for both images, it can be seen that the velocities obtained
in the area above the pseudo-bottom is significantly higher for the 400 fps record than in
the case of 200 fps. The same conclusion can be observed in Figure 11, where the horizontal
component of velocity obtained along the normal to the pseudo-bottom, from the internal
edge of the step, is shown. Furthermore, one can conclude that, in the case of the record
obtained at 400 fps, the results are practically independent of the size of the interrogation
area. However, in the case of 200 fps, the velocities obtained depend significantly on the
size of the interrogation area, in addition to being significantly smaller than those obtained
for 400 fps.
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Figure 10. Average velocity field obtained at L/Lt = 0.49 for dc/h = 2.38 and (a) 200 fps (b) 400 fps,
when reducing the interrogation area in 3 steps from 288 to 144, then to 72, and then to 36 pixels.

These discrepancies in the results as a function of the image acquisition rate show that
200 fps will not be adequate for the phenomenon to be studied. In Figure 12, the correlation
and coefficient of variation (Cv) obtained for both 400 fps and 200 fps are shown. The
velocity fields obtained with an acquisition rate of 200 fps are poorly represented due to
the lower correlation and higher coefficient of variation. For this reason, recordings made
on lateral view at 200 fps were subsequently discarded.
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Figure 11. Longitudinal component of velocity (u) obtained at L/Lt = 0.49 along the normal to
the pseudo−bottom from the internal edge of the step for 200 fps and 400 fps, for interrogation
areas reduced in 2 steps from 194, to 97, and then to 49 pixels (a); in 2 steps from 256, to 128, and
then to 64 pixels (b) and in 3 steps from 288 to 144, then to 72, and then to 36 pixels. The scheme
includes the layout of the vertical where the velocities were obtained. The dashed line represents the
pseudo−bottom (y = 0).
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4. Results and Discussion
4.1. Post-Processing of the Velocity Fields

From the analysis of the frontal view velocities, all valid vectors should present a
predominant longitudinal direction downstream of the guiding wall, with an increasing
transverse component in the lateral zone where the flow is allowed to spread from the
right to the left side of the chute. In turn, from the analysis of the lateral view velocities, in
the upper skimming flow above the recirculating cells, velocity vectors should present a
predominant direction nearly parallel to the pseudo-bottom.

Additionally, a standard deviation filter consisting of neglecting velocities outside
of eight standard deviations of the mean was applied to all frames. Finally, the velocity
field was obtained using a local median filter that considers each velocity vector in the
image and looks at its nearby neighbors to decide whether or not it is representative of its
surroundings. Figure 13 shows the post-processed frontal velocity field obtained in frame
691 for dc/h = 2.38.
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Figure 13. Post-processed frontal velocity field obtained in frame 691 for dc/h = 2.38.

4.2. Frontal View Velocity Field

In Figure 14, the velocity field obtained for dc/h = 2.38 at 200 fps is shown and
compared with that obtained at 400 fps. There are no substantial differences in the velocity
fields obtained by the aforementioned acquisition rates. Thus, it can be seen that the velocity
magnitude is increasing downstream (gray upstream to white downstream), as expected,
for the gradually varied flow region. The influence of the dimensionless discharge on the
location of the point of inception and on the velocity field is illustrated in Figure 15.

These results are compared with those obtained by [17,45], namely on the streamwise
development of the free-surface velocity defined as that corresponding to a distance to the
pseudo-bottom equal to the characteristic depth (d90), where the air concentration is 90%.
The development along the chute of the ratio of the estimated surface velocity with that
obtained in the inception point of air entrainment (u/ui) is shown in Figure 16.
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From the analysis of Figures 14–16, the following results can be highlighted:

• Shortly downstream of the point of inception, where air is not fully entrained, a
dark zone is observed. That causes a reduction in the estimation of the correlations
between consecutive frames and, therefore, generates a greater dispersion and errors
in the velocity measurement. In this area, it is observed that the estimation of the
dimensionless velocity (u/ui) is, in general, significantly underestimated with respect
to that obtained by [17,45] in the same physical model.

• Downstream of the previous dark zone, there is a bright area that coincides with the
area where aeration inception has already occurred. This brightness allows a better
tracking of correlations between consecutive images. That is, surface air acts as an
acceptable flow tracer for velocity estimation. However, an overall tendency of overes-
timation of the dimensionless velocity (v/vi) is noticeable sufficiently downstream of
the point of inception, namely for the largest dimensionless flow rate.

• Improving the lighting of the darkest area is detrimental to creating brightness satu-
ration in the area where the air has already reached the surface. This makes it very
difficult to find optimal lighting for both regions. Additional research should be
developed on this topic.
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comparison with the empirical formula obtained by [17,45].

4.3. Lateral View Velocity Profile

Figure 17 shows the dimensionless horizontal (u) velocity profile at L/Lt = 0.49 for
400 fps image acquisition rate obtained on the inner step edge (A) and on the outer step
edge (B). In the case of position (B), two profiles are shown. It can be seen that image
correlations are able to detect the recirculation eddy formed in the inner cavity below the
pseudo-bottom. In turn, it is also seen that, in the outer zone, a maximum of velocity is
obtained considerably below the free-surface, which is not in agreement with the results
obtained by other authors on the same chute or in steeply sloping chutes, using double-tip
fiber-optical probes ([13,17,45]). The fact that the external zone of the flow is darker than
that corresponding to the cavity flow causes quite low values of the correlations between
successive frames that question the goodness of the estimates of the velocity obtained with
PIVlab, as previously shown in Figure 12. This may also explain the different velocity
profiles in this zone, namely at identical position (B), suggesting that the lighting system
used in this study should be improved. Finally, in Figure 18 an acceptable agreement
between the dimensionless velocity profiles obtained in the present work with those in [13]
and [17] is shown, except in the external flow zone, where larger differences were obtained,
as expected.
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frontal and lateral analysis and a CLAHE filter were applied. Overall, for both views, 

the results were not influenced by the size of the interrogation areas. 

 PIVlab appears to be a valid tool to estimate free-surface velocities from frontal view 

measurements, for highly aerated flows, using air bubbles as tracers. Correlations 

between consecutive frames are acceptable, regardless of the image acquisition rate. 

However, inaccurate estimations were obtained shortly downstream of the inception 

point, in the partially aerated region. 

Figure 17. Dimensionless longitudinal (u) velocity profiles at L/Lt = 0.49 for dc/h = 2.38, in the
locations (A) and (B) for 400 fps. The scheme includes the layout of the verticals (A) and (B) where
the velocities were obtained. The dashed line represents the pseudo−bottom (y = 0). Two different
profiles in (B) position were obtained.
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Figure 18. Dimensionless longitudinal velocity profile at L/Lt = 0.49 along the normal to the
pseudo−bottom from the internal edge of the step, for 400 fps and for 1.13 ≤ dc/h ≤ 2.38. Compari-
son with the results by Boess and Hager [13] and Estrella et al. [17].

5. Conclusions

From the experiments carried out in skimming, highly-aerated flow on a stepped
chute without sidewall constraint, using a BIV technique for a range of discharges and
image acquisition rates, the following conclusions can be drawn:

• Image pre-processing is considered necessary to improve contrast so as to highlight
the presence of air within the flow. In the present study, a rotation of images for both
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frontal and lateral analysis and a CLAHE filter were applied. Overall, for both views,
the results were not influenced by the size of the interrogation areas.

• PIVlab appears to be a valid tool to estimate free-surface velocities from frontal view
measurements, for highly aerated flows, using air bubbles as tracers. Correlations
between consecutive frames are acceptable, regardless of the image acquisition rate.
However, inaccurate estimations were obtained shortly downstream of the inception
point, in the partially aerated region.

• Free-surface velocities, obtained from frontal view measurements, tend to increase
downstream of the inception point, showing an increasing transverse component due
to the lack of a lateral sidewall. For small dimensionless discharges and sufficiently
downstream of the point of inception, the free-surface velocity compares relatively
well with the air–water interfacial velocity previously obtained with a double-tip fiber
optical probe in the same facility. However, for the largest dimensionless discharges,
significant differences were obtained regardless of the image acquisition rate.

• The velocity profiles estimated from the lateral view measurements are practically
independent of the size of the interrogation area for 400 fps. In contrast, for 200 fps,
the velocities are markedly dependent on the size of the interrogation area, being
significantly smaller than those obtained for 400 fps.

• The velocity profiles along the normal to the pseudo-bottom far downstream of the
inception point, for 400 fps, are in reasonable agreement with air–water interfacial
velocity profiles previously obtained in the same chute, except in the external flow
zone, where larger differences were obtained, possibly due to poor lighting, yielding
low correlations between consecutive frames. Providing adequate lighting of the area
of interest is judged of relevance to improve the performance of air as a flow tracer.
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Notations

The following symbols are used in this paper:
b transverse distance from the right wall of the chute (m)
b0 chute width at the upstream end (m)
Cv coefficient of variation (-)
dc critical depth (m)
d90 characteristic flow depth relative to 0.90 air concentration (m)
g gravitational acceleration (m/s2)
h step height (m)
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ks step roughness height (m)
L streamwise distance along the chute to the outer edge of the step (m)
Lt total length of the chute (m)
q unit discharge at the chute entrance (m2/s)
y coordinate perpendicular to and starting at the pseudo-bottom (m)
t time (s)
u velocity (m/s)
u90 velocity at d90 (m/s)
ui velocity at the inception point (m/s)
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