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Abstract: Many real-life combinatorial optimization problems are subject to a high degree of dy-
namism, while, simultaneously, a certain level of synchronization among agents and events is
required. Thus, for instance, in ride-sharing operations, the arrival of vehicles at pick-up points needs
to be synchronized with the times at which users reach these locations so that waiting times do not
represent an issue. Likewise, in warehouse logistics, the availability of automated guided vehicles at
an entry point needs to be synchronized with the arrival of new items to be stored. In many cases,
as operational decisions are made, a series of interdependent events are scheduled for the future,
thus making the synchronization task one that traditional optimization methods cannot handle easily.
On the contrary, discrete-event simulation allows for processing a complex list of scheduled events
in a natural way, although the optimization component is missing here. This paper discusses a
hybrid approach in which a heuristic is driven by a list of discrete events and then extended into a
biased-randomized algorithm. As the paper discusses in detail, the proposed hybrid approach allows
us to efficiently tackle optimization problems with complex synchronization issues.

Keywords: discrete-event heuristics; biased-randomization; dynamic optimization; synchronization

1. Introduction

The industrial world today is characterized by much more complex systems and
machines than in the past [1]. Companies are increasingly investing in integrating complex
systems to boost their productivity and efficiency to gain an edge over their competitors.
Hence, in modern companies, it is easy to see automated storage and retrieval systems
(AV/RS) [2,3], automated guided vehicles (AGVs) [4,5], advanced software for transports
optimization or production scheduling, and complex software architectures with a high
level of parallelism. A similar process happened in cities, hospitals, airports and everyday
services, where it is more and more common to see activities like car-sharing [6], bike-
sharing [7], ride-sharing [8], short-term rental, and advanced management of personnel
and flights [9]. These are all examples of real systems with a high degree of dynamism
that require a good level of organization between different events and continuous process
optimization. Figure 1 shows an illustrative example of a dynamic optimization problem
with synchronization issues. A total of three agents, initially located at an origin depot (O),
have to visit a series of locations (numbered from 1 to 9) and then return to a destination
depot (D). In order to move around the system, these agents employ a ride-sharing service
provided by two vehicles. The box size associated with each location corresponds to the
time each agent or vehicle spends at that location. In the solution depicted in this figure,
vehicle 1 drives agent 1 to location 1, then takes agent 2 to location 5, and then drives
agent 1 to locations 2 and 3 before leaving this agent at D. Similarly, vehicle 2 will drive
agent 2 to location 4, then agent 3 to locations 7 and 8, then agent 2 again to location 6,
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agent 3 to location 9, and finally agents 2 and 3 to D. Of course, in order for this solution
to be feasible, we need to make sure that the vehicles can complete the assigned tasks
on time (synchronization issue), which might depend upon which locations are assigned
to each agent and which vehicle is assigned to each trip. Here, a goal such as finding
a feasible solution that minimizes the total time invested in completing all the routing
processes (makespan) could be considered, and many alternative solutions could be tested
for feasibility and makespan value.

Figure 1. A simple example of a dynamic optimization problem with synchronization issues.

Due to the complexity of these systems, classical optimization approaches risk being
ineffective or even detrimental. In fact, all classical optimization approaches (e.g., linear
programming, dynamic programming, heuristics, metaheuristics, etc.) are based on the
optimization of an objective function. If this objective function does not correctly represent
the variables to be optimized in a system, the effort involved in the optimization model
is almost useless. Following the seminal work of Fikar et al. [10], this paper describes a
hybrid approach which combines concepts from discrete-event simulation (DES) [11] with
heuristic algorithms [12] and biased-randomized techniques [13]. As we will discuss in
this paper, the ‘discrete-event heuristic’ (DEH) approach allows us to efficiently deal with
time dependencies and synchronization issues in dynamic optimization problems. The
heuristic component allows the computation of effective solutions according to the problem
constraints, while the DES enables the consistent estimation of the effect the provided
solutions might have on the system. A DES is understood as a dynamic system that evolves
by the occurrence of a series of discrete events [14]. The logic of discrete-event systems is
found in multidisciplinary fields such as manufacturing systems, communication networks,
traffic systems, computer systems, among others [15], and it could be used to represent
both simple and complex processes, regardless of whether or not they present stochasticity.
Hence, DEH constitutes a novel and powerful approach for solving dynamic optimization
problems with time dependencies and synchronization issues [16].

Figure 2 shows the evolution, over the last decade, in the number of Scopus-indexed
documents referred to the following searching terms: (i) ‘TITLE-ABS-KEY ((synchronization
OR time dependencies) AND optimization)’; and (ii) ‘TITLE-ABS-KEY ((discrete event)
AND optimization)’. One can notice that the first search seems to provide an increasing
trend over the years, while the second one seems to be more stable in time. As discussed in
this paper, however, there is a lack of effective methods in the literature to solve dynamic
optimization problems with synchronization issues, which can be certainly complex due to
the time dependencies they generate.
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Figure 2. Number of articles indexed in Scopus for the main topics addressed in this article.

The main contributions of this work are: (i) to provide the theoretical fundamentals of
the novel Biased-Randomized DEH (BR-DEH) methodology; (ii) to discuss some examples
of how it can be used to solve dynamic optimization problems with time dependencies
and synchronization issues; and (iii) to highlight future research perspectives related to
BR-DEH algorithms. The remainder of this work is structured as follows. Section 2 provides
a precise description of the concept of discrete event simulation. Next, a description of
the fundamentals behind BR-DEH algorithms is presented in Section 3, and an overview
of the optimization problems that can be solved with BR-DEH algorithms is offered in
Section 5. Then, Sections 6 and 7 analyze existing works that employ similar approaches
and summarize their computational results, respectively. Finally, conclusions and future
research perspectives are reported in Section 8.

2. Discrete Event Simulation Concepts

Researchers benefit from DES concepts in studying systems [17–19]. The DES method-
ology enables the analysis of systems with time dependency between system elements.
The name of DES refers to the use of events and the discrete-time advancement in the
simulation execution. Events cause the state of a simulated model to change. For example,
finishing the process of a job on a machine lets the machine become idle if no other job waits
in its queue, and another machine could start processing the job in its manufacturing route.
Another example is a postman arriving at a node in a network to deliver orders to the node.
The time at which an event occurs defines the time advancement in the simulation model.
Thus, a list of events that will occur in the future is defined and ordered chronologically
according to events’ time.

The events in DES are divided into events with a defined time to occur and are listed
in the event list [18], e.g.,: the end of processing job i on machine A. This event time
depends on the start of a process that lasts for a specific time, such as processing job i on
machine A. Other events are conditional [19]. Their occurrence depends on satisfying one
or more conditions. For example, processing job i on machine B requires an extra part to be
delivered to the machine. If this part is not delivered, the processing of job i cannot start.
Hence, the finish processing time cannot be scheduled yet.

At the execution of the DES, simulation clock time advances to the time of the first
event in the event list, as illustrated in Figure 3. This event is executed, and changes are
applied to the simulation model according to defined event routines. These changes include
updating model variables and states. Therefore, new events are defined and added to
the event list, and the executed event is removed from the list. This execution continues
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until all events have been considered. Events with similar occurrence time are executed
sequentially when the simulation clock time reaches their time. In addition, conditional
events are checked at each time advancement to execute those with satisfied conditions.

Figure 3. Flow-chart illustrating the discrete event simulation running.

This execution of events enables the handling of dependencies between different
elements in the model. As a result, complex systems are modeled and analyzed using the
DES methodology. In addition, the defined relation between events helps to guarantee
the synchronization of processes and elements in the simulated model. Most real-world
systems are complex concerning the relation among system elements, such as production
lines and logistics systems. Accordingly, the DES approach has become a candidate tool
for analyzing these systems. For example, DES was used to analyze health care processes
and support planning in them [20,21]. Ahalt et al. [22] evaluated different crowding scores
in an emergency department using DES, and Demirli et al. [23] evaluated recommended
solutions to reduce resource waste using DES. In transportation and logistics, Ref. [24]
studied the impact of delivery time strategies on last-mile delivery distribution problems.
In addition, DES can be used to analyze the stochastic behavior of systems because of the
ability to generate observations from random variables during the execution of a simulation
run. Researchers integrated DES into their developed frameworks to support decision-
making, such as enhancing offshore service levels [25] and reducing material logistics costs
in road construction [26].

3. Fundamentals of Discrete-Event Heuristics

The development of discrete-event based heuristics was motivated by the need to
address realistic optimization problems in which synchronization of agents had to be
considered. Thus, for instance, the movement of drivers has to be synchronized with the
arrival of service users (riders) or objects that need to be transported. Thus, DEHs rely
on the combined use of: (i) a discrete-event list that schedules the events happening in a
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system (notice that new events might emerge in the future as a response to managerial
decisions to handle past events, as in any discrete-event simulation process); and (ii) a
sorted list of possible decisions associated with each occurring event, where these decisions
are sorted by priority according to a specific efficiency criterion; and (iii) biased-randomized
techniques, which allow us to quickly generate many alternative solutions, all of which
are based on the efficiency criterion but introducing slight departures from them in order
to explore alternative paths while handling the discrete-even list. Hence, in the context
of house health care, Fikar et al. [10] analyze a realistic scenario in which an initial list of
events is composed of nurses’ and doctors’ departures from a depot towards the houses
they have to visit first. A fixed set of vans is employed to transport the medical staff using
a ride-sharing mobility concept. Once the arrival events occur, new end-of-service events
arise in the future, which generates the need to handle them by coordinating the vans so
that nurses and doctors can be moved to their next visit. This process continues until no
more visits need to be scheduled, and the health professionals can return to the depot.
In parallel to this process, van drivers also have to be coordinated to pick up nurses and
doctors after each house service. If the goal is to minimize the waiting times of nurses and
doctors, the efficiency criterion should try to assign each member of the medical staff to the
closest available van, so he or she does not have to wait for too long to be picked up and
moved to his/her next destination. However, following a greedy criterion might clearly
lead to sub-optimal solutions since short-term assignments might affect the efficiency of
long-term ones. It is precisely here where biased-randomization strategies can offer a
fast and effective way to explore solutions in the neighborhood of the greedy one so that
randomness is introduced without losing the logic behind the efficiency criterion.

A schematic presentation of the simheuristic approach is shown in Figure 4. Given
an optimization problem with synchronization issues or time dependencies among their
potential tasks, we consider an iterative process that will help us to find a feasible solution
of high quality. In each iteration, a list of discrete events is initialized. The events in this list
are sorted according to their time of occurrence in the future, and they might be of different
types (e.g., arrivals of a new order to a system, completion of a job processing, activation of
a new service, etc.). Notice that, whenever an event is triggered, it might generate a new
event that needs to be included in the list and scheduled into a future time (e.g., if a job starts
being processed by a machine, and the processing time is known, a new event referring to
the termination of this process will be included in the list). The generation of new events
might depend on how previous events have been managed, so different ways of handling
triggered events might lead to the generation of different events in the future (therefore,
when managerial decisions are made during the processing of the events list, the actual
configuration of this list might take one path or another depending on these decisions).
The discrete-event list is being processed, always selecting the next event in time as the
simulation clock advances. However, unlike a typical discrete-event simulation, every
time a decision has to be made regarding how to handle this next event, an optimization
component is called. This optimization component makes use of a heuristic following a
logical criterion (e.g., if we need to assign a vehicle to a new service, the closest vehicle will
be selected from the list of available vehicles; if we need to assign a task to a machine, from
the list of available machines, the fastest one in completing that task will be selected, etc.).
This mechanism allows us to incorporate a certain level of ‘intelligence’ into the simulation
process. Still, in addition to that, our approach also adds a biased-randomization strategy,
i.e., every time a decision has to be made to handle a new event, instead of acting in
a greedy way (always selecting the vehicle, machine, etc., at the top of the operational-
decisions list according to some logical criterion), we will assign decreasing probabilities
of being selected to each of the available options for the decision maker. Hence, with a
high probability, the element at the top of the operational-decision list will be selected,
but sometimes (with a lower probability), the second one in the list will be selected, and
sometimes (with an even lower probability), it will be the third one, etc. This way, we
are introducing some ‘oriented’ (biased or non-uniform) randomization while processing
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the list of events, which leads to a different configuration of this list, different values of
the system status and, therefore, to a different solution in most cases. In summary, each
time we start the initialization of the list of events, and thanks to this biased-randomized
component, we are likely to obtain a new solution to our problem that, by design, will be
feasible in terms of time dependencies (thanks to the discrete-event component) and of
good quality—thanks to the logic behind the heuristic, which aims at prioritizing good
decisions by assigning them a high probability.

Figure 4. Flow-chart illustrating the DEH concept.

4. Illustrative Example

In this section, an illustrative example is described. We consider the application of
a DEH algorithm to a shuttle–lift–crane based automated storage and retrieval system
(SLC-AS/RS) [27]. The SLC-AS/RS is an automated warehouse frequently used in the
steel industry, where it is generally dedicated to billets or metal bar bundles storage. The
storage and retrieval operations involve three different types of machines: shuttles, lifts,
and cranes. Each machine is autonomous, but it has to cooperate with other machines.
Because of this requirement, the system is characterized by a high degree of synchronization
in the tasks of the machines. An accurate description of an SLC-AS/RS is provided in
Zammori et al. [28], Bertolini et al. [29] and Neroni [27], who provide a good description
of the system elements (Figure 5).
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Figure 5. Schematic representation of SLC-AS/RS elements.

The optimization of the SLC-AS/RS productivity involves several decisions and many
different aspects. On the one hand, the entering material must be assigned to a storage
location that can host it, and the assignment to a specific storage location causes certain
machines to be involved. On the other hand, customers’ orders are characterized by three
elements: the product required, the quantity required—expressed in kilograms—and the
minimum quality level required. According to these three characteristics, the system has to
define which items in stock are retrieved to fulfill each customer order. Retrieving one item
instead of another might have a significant impact on the operations schedule.

The optimization of a system like this requires two different components: (i) a discrete
event simulation process to correctly reproduce the system behavior, including all synchro-
nizations and machines interoperability; and (ii) a heuristic optimization component able
to take all the above-mentioned decisions by providing a high-quality solution in a short
computational time. In this way, the DES component can be used to evaluate the effects
of the decisions made by the heuristic procedure, and the heuristic component can use
the DES response to make its next decisions. In order to provide an illustrative example,
the heuristic component is simply a greedy approach that emulates the ‘common sense’
decisions an expert manager would make. The greedy approach is then enhanced with a
biased randomization behavior in order to generate a different solution at each iteration,
thus allowing exploring the solution space to escape from local optima. A simplified
pseudo-code of the proposed solution is illustrated in Algorithm 1.

Algorithm 1 The proposed solution approach based on the DEH

bestSol ← heuristic()
bestMakespan← simulation(bestSol)
while availableComputationalTime > 0 do

newSol ← heuristic()
newMakespan← simulation(newSol)
if newMakespan < bestMakespan then

bestSol ← newSol
bestMakespan← newMakespan

end if
end while
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It is important to point out that using the DES provides the framework with many
further benefits in terms of flexibility and simplicity. First, it would be possible to consider
aspects that are typical in a real-world scenario (e.g., machine downtimes and failures).
Secondly, the DES could be extended into a simheuristic approach through the introduction
of stochastic operations with only slight changes in the overall framework. Finally, the
simulation may provide additional information to define if a solution is better than another,
such as the overall machine waiting time, the length of queues, etc. In Figure 6, the results
of the BR-DEH algorithm are compared to the ones provided by a simple greedy heuristic.
The results are expressed in terms of the makespan needed to carry out 20 storage and
retrieval requests (hence, lower is better). The SLC-AS/RS used for in the example is the one
presented in Figure 5. It consists of two shuttles exclusively dedicated to input operations,
two shuttles dedicated to output operations, three cranes (one on each storage rack), and
12 lifts. Results in Figure 6 show the efficiency of the BR-DEH, and the computational times
displayed in Figure 7 prove that this approach can be implemented in a real-life scenario.

Figure 6. Results of the DEH on the SLC-AS/RS.

Figure 7. Computational times of the DEH on the SLC-AS/RS.
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5. Optimization Problems with Synchronization Issues

Problems with synchronization have attracted much attention in research related to
the behavior of complex networks. The ability of a network to synchronize depends on
many factors and parameters associated with its structure [30]. There are many examples
in the industry today where event synchronization plays an important role in ensuring the
efficient functioning of a network or system. Generally, the application of BR-DEH algo-
rithms targets all those problems characterized by synchronization issues. These scenarios
are typically characterized by three aspects: (i) a high coefficient of dynamism; (ii) a limited
number of elements or resources; and (iii) a set of events whose triggering and succeeding
depend on each other. In particular, the triggering of an event can depend on the succeed-
ing of one or more other events, and the succeeding of an event may give rise to other
events not scheduled before. In these cases, the integration of DES in a biased-randomized
algorithm is essential to model the system and verify with consistency and accuracy the
effects of each decision made by the heuristic [31]. In this section, we give an overview of
the main optimization problems with synchronization issues, where the implementation of
the BR-DEH strategy is suggested as a natural and effective solving procedure.

In manufacturing, flow-shop and job-shop optimization problems might require the
implementation of a BR-DEH in scenarios characterized by dependencies on machines,
resources, and unpredictable inconveniences such as machine failures and down-times.
For instance, it is frequent to have a flow shop in which the processing time on a machine
depends on the jobs that the machine processed before. This dependency is usually be-
cause of tool wear and setup times. In job shops, there are situations in which machines
require operators (or resources). A limited number of operators (or resources) are shared
between all machines, moving from one machine to another according to their necessity.
Both flow shops and job shops can be solved using a BR-DEH when influenced by unpre-
dictable events, such as machine failures or the arrival of unscheduled jobs. An example
of a real problem encountered in the literature is processing different jobs by a series of
machines modeled as a hybrid flow-shop problem with several additional and realistic
constraints [32]. Another example is on-demand production systems when a workflow has
parallel processes, specific machine loops or re-entry cycles, in which jobs may re-enter
specific processes at some point in the flow-shop chain [33]. Similarly, semiconductor
manufacturing can be modeled as a hybrid flow-shop problem with time dependencies
and priority constraints [34].

In logistics and transportation, vehicle routing problems with synchronization are
addressed and associated with different real-life cases. The adoption of BR-DEH algo-
rithms is suggested when the interference among vehicles is not negligible. This is true
for transportation problems related to last-mile delivery networks [35–37], omnichannel
vehicle routing [31], or home healthcare services [38,39] with traffic and precedence con-
straints, among others [40]. They are also seen in internal logistics when optimizing paths
traveled by AGVs [41]. This involves many well-known operations research problems,
such as path finding, minimum spanning tree, traveling salesman problem, and many
else. Transportation problems usually face situations characterized by sudden events,
such as changes in delivery points or requests and necessities to reorganize the routes.
The high dynamism makes them a suitable target for BR-DEH algorithms. A realistic
example studied by Arnau et al. [42] shows the dynamism of modern transport systems.
They present the problem of transporting containers through interconnected networks.
Containers are transported from origin to their final destinations on or before a given time
frame and may be temporarily stored at network hubs. Each truck carries one container at
a time, containers may be transported by different trucks during their journey from origin
to destination, and drivers have to be back at their starting points in due time.

Telecommunication networks are another field in which optimization challenges involve
synchronization issues in their structure. They require strict frequency and time synchroniza-
tion between neighboring base stations to accelerate data transfer without overflow, underflow,
bit errors, or other adverse effects. This occurs in code division multiple access, global system
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for mobile communications, and universal mobile telecommunications systems. In global
positioning systems, the use of signals is also conditioned by the location of antennas to obtain
a clear view of the sky [43]. For these reasons, operators are constantly searching for a better
synchronization scheme that allows for sharing very accurate timing information reliably and
cost-effectively [44]. Al-Makhadmeh and Tolba [45] study one of the most popular problems
in telecommunications, the unit-response (or master–slave) configuration, in which there
is a leader (master) and several devices (slaves) that need to synchronize with the leader.
This problem is known as master–slave synchronization of chaotic systems. In secure com-
munications, for instance, there is an unknown input—the transmitted information—that
is only retrieved for transmission if and only if the master and slave devices are correctly
synchronized. Similar situations characterized by the three aspects mentioned above (i.e.,
high dynamism, limited shared resources, and dependent events) can also be found in cloud
computing [46]. Even in this case, limited resources (e.g., servers or endpoints), unexpected
requests and the fact that events depend on each other make this problem a perfect target
for BR-DEH algorithms.

Other fields in which dynamic optimization problems with synchronization issues
are encountered, and where BR-DEH algorithms might be helpful, are those involving
different agents whose actions depend on each other. For example, problems considering
automated storage and retrieval (AS/RS) systems (Section 4). In these systems, a single
operation involves many different machines capable of exchanging the unit loads. These
machines can be seen as resources in the case of the job shop, since they are limited, shared
by different operations, and dependent on each other. Even in this case, when two or more
machines share the same path, we need to model interferences among machines (as in the
case of AGVs). A similar situation concerns ride-sharing and car-sharing scenarios [47],
where other traffic constraints and unexpected requests might be considered to provide
solutions suitable for being implemented in real life. In addition, in genetics, optimization
problems with synchronization issues occur. This is the case of the so-called consensus
genetic mapping of species, which is based on different sources of mapping information.
The challenge arises from inter-population differences in the rate of recombination and the
distribution of exchanges along chromosomes, variations in the dominance of the markers
used, and the use of different subsets of markers in different laboratories. Thus, for instance,
Ronin et al. [48] model it as a traveling salesman problem with synchronization. For each
data set, the goal was to search for the order that gives the minimum sum of recombination
distances between adjacent markers.

Therefore, given the current availability of data on different real-life networks (e.g.,
biological, informational, social, etc.) and with complex infrastructures, there can be
many variants of optimization problems with synchronization issues associated with the
occurrence of different events. This is because many networks have features such as
noise-generating disruptions, evolving or changing connections, and fixed structures, but
the activation of nodes depends on a related factor. In general, regardless of the field of
application, BR-DEH algorithms can be used to solve dynamic optimization problems with
synchronization issues, which typically involve one or more agents that depend on the
actions or results that other agents generate.

6. Existing Work on DEH Algorithms

After describing the DES approach and using it to model and simulate complex
systems, Fikar et al. [10] noticed that it could be combined with heuristics to solve NP-Hard
optimization problems with synchronization requirements. This section summarizes some
contributions utilizing BR-DEH algorithms. Thus, the aforementioned authors proposed
a solution approach for a home service routing problem. In the home service routing
problem, operators are assigned several customer homes to visit, and vehicles distribute
them among homes. Because of new placed service requests and cancellations, home
assignments and routes are dynamic and should be updated during the day. The solution
approach supports planners in assigning operators and defining vehicle routes dynamically.
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In addition, this approach benefits from a defined event list to construct vehicle routes
and operator-homes assignments during the day, which allows for minimizing the number
of required vehicles. Similarly, Bayliss et al. [31] used a BR-DEH approach to solve the
omnichannel vehicle routing problem. In the problem, a retail store is replenished, and
online-customers orders should be picked up and delivered. The solution approach utilizes
the BR-DEH methodology to construct solutions that are refined using a local search
operator. The approach found promising solutions for most of the problem instances.
Another transportation problem is solved by Arnau et al. [42]. In their problem, a container
should be delivered on or before a given deadline. This container is transported along a
network of hubs by trucks. One truck could transport only one container, and the containers
could be stored temporarily at any hub. A BR-DEH algorithm is employed to solve the
problem by specifying which containers are selected to be temporarily transported from
a hub, as well as which containers have to be stored at hubs until future notice. Then, a
biased-randomized behavior is introduced into the heuristic to construct several variants
of the deterministic solution. In order to propose an approach to handle the problem, an
iterated local search framework integrates the biased-randomized heuristic to find the most
promising solutions in short computation times.

As discussed in Section 5, problems in manufacturing are good candidates to be solved
using the BR-DEH approach. For example, Laroque et al. [32] use this methodology to solve
a flow-shop problem in the semiconductor industry. Jobs are processed by machines based
on job type, and these jobs could be batched along the production line. In an extension to
the problem, job priorities of being processed on machines in the flow-shop problem are
considered. Similarly, Laroque et al. [34] used a DEH algorithm to recommend a solution
that minimizes the production makespan. In addition, the solution approach utilizes biased
randomization to construct several solutions and Monte Carlo simulation to evaluate the
solutions. Another manufacturing problem involves the re-entry and re-processing of parts
on machines. This problem considers re-entry cycles of jobs due to quality issues. Thus, the
same machine that processed the job in the first cycle should handle it for the second cycle.
This problem is modeled as a flow-shop problem, and Juan et al. [33] defined a discrete-
event list to manage the defined constraints in the problem. In addition, the authors
integrated a biased-randomized procedure to find a solution in a short computational time.

A dynamic ride-sharing problem arises in the context of edge computing in smart
cities and the integration of the Internet of Things. The dynamic ride-sharing problem refers
to one of the routing problems related to smart cities, in which a driver uses a private car to
pick up riders along a route. However, after departing from the origin (after defining the
initial route), new ride requests and traffic conditions might influence decisions regarding
defined routes. Thus, the routes should be dynamically updated with the changes along the
route. This problem is solved using a multi-start approach integrating BR-DEH to construct
solutions [49].

7. Cross-Problem Analysis of Computational Results

This section presents a summary of results previously published in different works
available in the literature. Specifically, this section shows the computational results obtained
using BR-DEH algorithms to solve several dynamic optimization problems with time
dependencies. On the one hand, Table 1 reports the chosen papers and the references used
to gather the computational results. On the other hand, Table 2 presents the solution values
reported by the different authors for the listed problems. The first column identifies the
reference from where the solution values have been gathered, while the second column
identifies the problem. Afterwards, the following two columns report the Best Known
Solution for the specific problem (BKS) and the solution obtained using the BR-DEH
approach (OBS), respectively. Finally, the last column shows the percentage gap between
OBS and BKS.
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Table 1. Selected optimization problems.

Problem Acronym Reference

Dynamic Home Service Routing Problem DHSRP [10]
Multi-Server Flow-Shop Problems with Machine Re-Entering MS-FSP [33]
Multi-Vehicle Container Transport MVCT [42]
Hybrid Flow-Shop Problem with Time Dependencies HFSP [34]
Hybrid Flow-Shop Problem with Batching and Multiple Paths HFSP [32]
Omnichannel Vehicle Routing Problem OVRP [31]

Table 2. Information on the selected problems.

Reference Problem BKS OBS GAP (%)

Fikar et al. [10] DHSRP 895.0 897.3 0.26%
Juan et al. [33] MS-FSP 1336.3 1392.7 4.22%
Arnau et al. [42] MVCT 8.4 8.4 0.00%
Laroque et al. [34] HFSP 10,079.8 9913.6 −1.65%
Laroque et al. [32] HFSP 13,975.1 13,844.6 −0.93%
Bayliss et al. [31] OVRP 520.2 527.2 1.36%

The gaps between the different solutions for the analyzed works are presented in
Figure 8, where the y-axis represents the gap between OBS and BKS. According to the
results, BR-DEH algorithms provide good performance, improving on average in about
−0.62% the BKS and varying from about 4.22% for the MS-FSP up to −1.65% for the HFSP.
Concerning the MS-FSP, which presents the highest gap, authors compare the obtained
results using the classical single-sever flow-shop problem without loops. Moreover, they
argue that BKS was obtained using a complete metaheuristic that uses analytical expressions
to compute the solution, together with local search operators and data structures that allow
for more efficient solution space exploration. Unfortunately, these metaheuristics cannot
be employed in general scenarios with multi-server machines and loops due to their time
dependencies. Thus, a BR-DEH algorithm is necessary to solve these problems efficiently.

3UREOHP

*
$
3
���

�

���

��

��

��

��

'+653 06�)63 09&7 +)63 +)63 2953

*$3�����ZLWK�UHVSHFW�WR�WKH�%.6

BKS

–2%

–1.65%

–0.93%

Figure 8. Gaps between OBS and BKS (baseline 0% gap).

8. Conclusions and Future Work

This paper has reviewed the concept of biased-randomized discrete-event heuristics,
which hybridizes biased-randomization techniques with discrete-event simulation concepts
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with the purpose of solving dynamic optimization problems with time dependencies or
synchronization issues. The manuscript also explains why the BR-NEH approach can
effectively solve complex dynamic optimization problems with time dependencies, which
can be frequently found in real-life applications. The way in which the different components
interact in a BR-DEH has also been discussed, emphasizing the different stages that can
contribute to make the approach more efficiently while searching for high-quality solutions
that satisfy the synchronization issues.

Recent applications of BR-DEH algorithms in fields such as logistics and transportation
or manufacturing and production have also been analyzed, and a numerical summary of
previous works illustrating the capabilities of BR-DEH methods to provide high-quality
solutions to different dynamic problems is also provided.

There are several lines of research that are still open in the field of BR-DEH algorithms.
Among these, we can highlight the following ones: (i) the introduction of machine learning
methods that allow us to predict the evolution of the system, and, therefore, help us to make
better decisions in the long term; (ii) the efficient and easy integration of BR-DEH code
developed with modern programming languages with commercial simulators like FlexSim,
which currently supports a friendly interaction with Python; and (iii) the extension of BR-
DEH algorithms into simheuristics [50,51], so they can also deal with stochastic versions of
the dynamic optimization problems.
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