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Abstract

Abstract In theoretical physics, Quantum Field Theory (QFT) is an extremely successful theoretical
framework combining both Special Relativity and Quantum Mechanics, enabling to design physical models
of subatomic particles and quasiparticles describing the most fundamental aspects of matter with an
incredibly high accuracy. Among these theories, the Chern-Simons QFT is a special one, not only describing
topological phenomena in physics such as the Quantum Hall Effect, but also fitting the notion of what
is known as a Topological Quantum Field Theory (TQFT). It was by using the axioms of TQFTs that
Edward Witten showed back in 1989 how closely related the Chern-Simons theory is to the realm of
polynomial invariants appearing in Knot Theory, such as the well-known Jones polynomial. In the past
years, further research in this field has led to new and more powerful invariants of links and, by means
of Dehn surgeries on them, of 3-manifolds as well. For instance, the Gukov-Manolescu series proposed
recently in 2020 —denoted FK(x, q)— is a conjectural invariant of knot complements that, in a sense,
analytically continues the colored Jones polynomials. Shortly after, Sunghyuk Park introduced the Large
Color R-matrix approach for sl(2,C) to study FK for some simple links, giving a definition of FK for
positive braid knots and computing FK for various knots and links. This procedure has in turn been
extended by Angus Gruen to all other Lie algebras sln+1 beyond sl2. In this work, after a broad review on
the above mentioned background, we move on to the family so2n of complex semisimple Lie algebras in
Cartan’s classification, mainly focusing on the so8 case attracted by the three-fold symmetry in its Dynkin
diagram D4.
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Representation Theory, Quantum Groups.
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Resumen En física teórica, la Teoría Cuántica de Campos (TCC) es un marco teórico extremadamente
exitoso que combina la Relatividad Especial con la Mecánica Cuántica, permitiendo el diseño de modelos
físicos de las partículas subatómicas y cuasipartículas que describen los aspectos más fundamentales de
la materia con una precisión increíblemente alta. Entre dichas teorías, la TCC Chern-Simons es una
especial, que no sólo describe fenómenos topológicos en física tales como el Efecto Hall Cuántico, sino
que encaja con la noción de lo que se conoce como una Teoría Topológica de Campos Cuánticos (TTCC).
Fue utilizando estos axiomas de las TTCCs que Edward Witten mostró en 1989 cómo de estrechamente
relacionada está la teoría de Chern-Simons con el ámbito de invariantes polinómicos que aparecen en la
Teoría de Nudos, tales como el bien conocido polinomio de Jones. En estos últimos años, investigaciones
en este campo han dado lugar a nuevos y más poderosos invariantes de enlaces y, a través de cirugías
de Dehn sobre ellos, así mismo de 3-variedades. Por ejemplo, la serie de Gukov-Manolescu recientemente
propuesta en 2020 —denotada FK(x, q)— es un invariante conjetural de complementos de nudos que,
en cierto sentido, continúa analíticamente los polinomios de Jones coloreados. Poco después, Sunghyuk
Park introdujo el enfoque de la Matriz R de Gran Color correspondiente a sl(2,C) para estudiar FK
para trenzados positivos y calcular FK para varios nudos y enlaces. Este procedimiento ha sido a su vez
extendido por Angus Gruen a todas las otras álgebras de Lie sln+1 más allá de sl2. En la presente obra,
tras un extenso repaso sobre los anteriormente mencionados conceptos, abordamos la família so2n de
álgebras de Lie semisimples sobre los complejos en la clasificación de Cartan, centrándonos principalmente
en el caso so8 atraídos por la simetría triple en su diagrama de Dynkin D4.

Palabras clave: Teoría Topológica Cuántica de Campos, Teoría de Nudos, Cirugía de Dehn, Chern-Simons,
Álgebra de Lie, Teoría de Representaciones, Grupos Cuánticos.
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Resum A física teòrica, la Teoria Quàntica de Camps (TQC) és un marc teòric extremadament reeixit
que combina la Relativitat Especial amb la Mecànica Quàntica, permetent el diseny de models físics de
les partícules subatómiques i quasipartícules que descriuen els aspectes més fundamentals de la matèria
amb una precisió increïblement alta. Entre aquestes teories, la TQC Chern-Simons és una especial, que
no només descriu fenòmens topològics a la física com ara l’Efecte Hall Quàntic, sinó que encaixa amb
la noció del que es coneix com una Teoria Topològica de Camps Quàntics (TTCQ). Va ser fent servir
aquests axiomes de les TTCQs que Edward Witten va mostrar al 1989 com d’estretament relacionada
està la teoria de Chern-Simons amb l’àmbit d’invariants polinòmics que apareixen a la Teoria de Nusos,
com ara el ben conegut polinomi de Jones. En aquests darrers anys, investigacions en aquest camp han
donat lloc a nous i més poderosos invariants d’enllaços i, a través de cirurgies de Dehn sobre ells, de
3-varietats també. Per exemple, la sèrie de Gukov-Manolescu recentment proposta el 2020 —denotada
FK(x, q)— és un invariant conjectural de complements de nusos que, en cert sentit, continua analíticament
els polinomis de Jones colorejats. Poc després, Sunghyuk Park va introduir l’enfoc de la Matriu R de Gran
Color corresponent a sl(2,C) per estudiar FK per trenats positius i calcular FK per a diversos nusos i
enllaços. Aquest procediment ha estat així mateix extès per Angus Gruen a totes les altres àlgebres de
Lie sln+1 més enllà de sl2. En aquest treball, després d’un extens repàs sobre els anteriorment esmentats
conceptes, abordem la família so2n d’àlgebres de Lie semisimples sobre els complexos a la classificació de
Cartan, centrant-nos principalment en el cas so8 atrets per la simetria triple al seu diagrama de Dynkin
D4.

Paraules clau: Teoria Topològica Quàntica de Camps, Teoria de Nusos, Cirurgia de Dehn, Chern-Simons,
Àlgebra de Lie, Teoria de Representacions, Grups Quàntics.
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Preface

In the broad light of day, mathematicians check their equations and their proofs, leaving no stone unturned
in their search for rigour. But, at night, under the full moon, they dream, they float among the stars and
wonder at the miracle of the heavens. They are inspired. Without dreams there is no art, no mathematics,
no life.

Michael Atiyah

The present work is organized as follows.

We start in Chapter 1 by introducing the reader to the notion of a TQFT, both giving the categorical
description as well as the underlying ideas this encapsulates in terms of cobordisms and vector spaces.
The chapter is ended with a few comments on the interest of TQFTs for physicists and mathematicians.

The next chapter is at a first stage devoted to the introduction of some basic concepts in Knot theory
and skein relations, jumping then into the surgery description of 3-manifolds in terms of Dehn surgery on
knots and links, showing that the clasification problems of knots and of 3-manifolds are closely related.
Being Dehn surgery defined through embedded tori, a review on the Mapping Class Group of the torus T 2

is carried out to then better describe surgeries on links in S3. Further, the topological invariant known as
the linking number is introduced, which enables an alternative description of the framing concept. An
alternative graphical notation in terms of plumbed graphs and the invariant moves between them —known
as Kirby moves— is also presented. These notions are basic tools appearing in the construction of recently
developed knot invariants.

In Chapter 3 we finally introduce the Chern-Simons theory, both the abelian and non-abelian version.
We proceed by showing how the skein relation defining the Jones polynomial is recovered from the
Chern-Simons theory when viewed as a TQFT as described in Chapter 1. We do so by following Witten’s
approach. We conclude by describing two different fields in physics in which Chern-Simons theory can
play a role, namely the Quantum Hall Effect and Quantum Gravity.

Last, in Chapter 4 we present the carried-out research project, preceded by a review on the braiding
construction of knot invariants through the so-called R-matrices satisfying the Yang-Baxter equation.
After redoing the computations for the symmetric representation of sl2, its quantum version and the
resulting Large Color R-matrix, we procede to present the obtained results on the so2n family. The first
cases are reduced to simpler ones concerning sl2 or sln+1. Then, the approach for so8 is presented, giving
the corresponding symmetric representation in terms of a polynomial representation analogous to the one
employed for sl2, yet slightly more involved. The necessary ingredients required by the general R-matrix
product-formula are almost completely obtained, leaving the not-fully-developed quantum version of the
obtained representation for future steps.

An Appendix with the required notions on Smooth manifolds, Lie algebras and Representation theory,
and Homology and Cohomology theory is added, along with some of the Mathematica codes employed
throughout the development of the project.
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1: We refer the reader to Appendix A
for a review on smooth manifolds. In
particular, recall that a closed man-
ifold is a compact manifold without
boundary.

Figure 1.1: Representation of a mani-
fold M with boundary ∂M = Σ0

⊔
Σ1.
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In recent years there has been a remarkable renaissance in the relation
between Geometry and Physics. This relation involves the most advanced
and sophisticated ideas on each side and appears to be extremely deep.
The traditional links between the two subjects, as embodied for example
in Einstein’s Theory of General Relativity or in Maxwell’s Equations
for Electro-Magnetism are concerned essentially with classical fields of
force, governed by differential equations, and their geometrical interpre-
tation. The new feature of present developments is that links are being
established between quantum physics and topology. It is no longer the
purely local aspects that are involved but their global counterparts. In
a very general sense this should not be too surprising. Both quantum
theory and topology are characterized by discrete phenomena emerging
from a continuous background. However, the realization that this vague
philosophical view-point could be translated into reasonably precise and
significant mathematical statements is mainly due to the efforts of
Edward Witten who, in a variety of directions, has shown the insight
that can be derived by examining the topological aspects of quantum
field theories.

Michael Atiyah [Ati89]

Being the Chern-Simons theory a Topological Quantum Field Theory
(TQFT), we start by presenting this notion first introduced in 1988 by
E. Witten [Wit88b] and rigorously axiomatized in 1989 by M. Atiyah
[Ati89].

1.1 A First Approach to TQFTs

Let us first present the general idea of the notion of a TQFT and
gain some insight in its meaning and features. We start by giving an
axiomatic description and procede by extracting their consequences
and interpretation. At the very end we will reformulate its definition
in a categorical way. We mainly follow [Koc03; Bai].1

Definition 1.1.1 Roughly, a TQFT in dimension n ∈ N over a
field K is a rule Z that assigns:

▶ to every closed oriented (n − 1)-dimensional manifold Σ, a
K-vector space Z(Σ),

▶ and to every oriented n-dimensional manifold M with boundary
∂M = Σ, an elementa Z(M) in Z(Σ)

subject to some axioms, discussed below.
a Being Z(Σ) a vector space, the element Z(M) is sometimes referred to as a

vector.
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Figure 1.2: The disjoint union of
cobordisms “running in parallel” cor-
responds to the tensor product of the
associated linear maps: f ⊗ g ⊗ h.

Figure 1.3: Compositions of cobor-
disms are given by glueing two cobor-
disms along a common boundary.

2: Orientations in the boundary of a
cobordism are defined with respect to
the n-manifold, in such a way that
there are only two possible orientations.
See the section on cobordisms.
3: Indeed, there is an isomorphism

U∗ ⊗ V ∼= Hom(U, V )

making this identification possible:
given u∗⊗v ∈ U∗⊗V define f : U → V

by contraction with the first entry, i.e.
by setting f(·) := u∗(·)v.

A graphical picture worth having in mind can be seen in Figure 1.1.
We may think of the (n − 1)-manifolds as representing space and
the n-manifolds having them as boundaries (called cobordisms) as
representing spacetime. There is a notion of order in cobordisms from
their left boundary to their right one capturing a sense of evolution.
For this reason, cobordisms are sometimes referred to as arrows.

We will see that elements in the second item are just linear maps
Z(M) : Z(Σ0) → Z(Σ1) from the vector space associated to the left
boundary Σ0 to the one associated to the right boundary Σ1. In other
words, we can view any cobordism M between Σ0 and Σ1 as inducing
a linear transformation Z(M) : Z(Σ0) → Z(Σ1). This makes clearer
the use of the word arrows mentioned before (cobordisms are sent to
arrows).

On the other hand, we may think of these vector spaces associated
to each space as Hilbert spaces whose vectors are quantum states of
a physical system, while the linear map associated to spacetime as a
linear operator between Hilbert spaces, representing a process from one
state to another.

Thus, TQFTs present themselves as an axiomatization of an interre-
lation between special relativity and quantum theory, which is in fact
what Quantum Field Theory (QFT) deals with. This gives some insight
to why TQFTs deserve their name.

This rule Z is subject to a collection of axioms containing the essential
information, which can be briefly given as:

Definition 1.1.2 The axioms for a TQFT are:

(A1) Σ ∼= Σ′ ⇒ Z(Σ) ∼= Z(Σ′).
(A2) Z(Σ× I) = IdZ(Σ).
(A3) M =M ′ ∪M ′′ ⇒ Z(M) = Z(M ′′) ◦ Z(M ′).
(A4) Z(Σ⊔Σ′) = Z(Σ)⊗Z(Σ′) and Z(M1⊔M2) = Z(M1)⊗Z(M2).
(A5) Z(Σ∗) = Z(Σ)∗.
(A6) Z(∅n−1) = K and Z(∅n) = 1.

The first axiom (A1) tells us that diffeomorphic manifolds Σ, Σ′ (i.e.
topologically equivalent) are sent to isomorphic vector spaces. Further,
(A4) tells us that Z is multiplicative in the sense that disjoint unions
go to tensor products: in the first case, disjoint boundaries go to the
tensor product of the associated vector spaces. The second case (A4b)
is discussed later on. In (A5), Σ∗ denotes the same manifold with
the opposite orientation2 and Z(Σ)∗ the dual vector space. Thus,
the second item along with (A4)-(A5) tells us that a given oriented
manifold M with oriented boundary ∂M = Σ∗

0 ⊔Σ1 is assigned by Z to
an element Z(M) living in the vector space Z(∂M) = Z(Σ∗

0 ⊔ Σ1) =

Z(Σ0)
∗ ⊗ Z(Σ1) ∼= Hom(Z(Σ0),Z(Σ1))

3 , the vector space of linear
maps from Z(Σ0) to Z(Σ1). Hence, the elements Z(M) are trully linear
maps. This fourth axiom (A4b) tells us that multiplicativity must also
hold for disjoint cobordisms M1 ⊔ M2; i.e. cobordisms “running in
parallel” (Figure 1.2) are sent to the tensor product of linear maps.
Next, (A3) comes to say that given a decomposition of a cobordism
(e.g. Figure 1.3), the associated linear map is given by the composition
of linear maps (preserving the order). The second axiom (A2) tells us
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Figure 1.4: Cylinder cobordism Σ×I,
where I = [0, 1] and ∂Σ = Σ∗

0 ⊔ Σ1.

Y1

X1 X2

Y2

Y3

X3 X4

Y4

h1

f12

h2

g12h3

g34

h4

g34

g13

f13 f24

g24

Figure 1.5: Category Theory formal-
izes mathematical structure and its
concepts in terms of objects and mor-
phisms, which can be viewed as the
nodes and edges of a labeled directed
graph (representing the category it-
self).

that the identity cobordism Σ× I (the cylinder in Figure 1.4) is sent
to the identity map of Z(Σ). Last, axiom (A6) says that the empty
(n− 1)-manifold Σ = ∅ goes to the ground field K (whence the emtpy
cylinder ∅× I goes to the identity map of K) and the empty n-manifold
goes to the neutral element with respect to the tensor product.

Axioms (A1)-(A3) yield functoriality, while (A4) and (A6) yield monoidal-
ity, as will be manifest in the coming sections introducing these concepts.
Axiom (A5) states that Z is involutory.

The fact of considering general cobordisms instead of just cylinders
(as done in the homotopy axiom for homology theories) is related to
relativistic invariance. The fact of taking (A4) to be multiplicative and
not additive is related to the quantum nature of the theory, expressing
the common principle in Quantum Mechanics that the state space of
two independent systems is the tensor product of the two state spaces
associated to each system.

Axioms (A1)-(A2) express that the theory is topological. Hence, evolu-
tion depends only on the diffeomorphism class of spacetime and not on
additional structures such as metric or curvature. It is for this reason
that TQFT may serve as baby models to explore and understand the
key features of the commonly complicated QFTs.

1.2 Categories and Functors

Let us now introduce the concepts of categories, functors and cobor-
disms, which enable a mathematically more elegant and precise descrip-
tion of TQFTs capturing all of the aforementioned axioms.

Category theory is in some sense a generalization of different math-
ematical structures, given by a collection of objects and a collection
of morphisms between them. Further, the notion of morphism can be
upgraded to that of functor : maps between categories. These concepts
are then required to satisfy certain properties so as to confer the desired
structure. In this setting, it turns out that a TQFT can actually be
described as a functor between the category of cobordisms and the
category of vector spaces.

Definition 1.2.1 A category C consists of a collection of objects
ob(C) together with sets of morphisms HomC(A,B) from A to B for
each pair of objects A,B ∈ ob(C). Further, for every triple A,B,C ∈
ob(C) there is a composition law

HomC(A,B)×HomC(B,C) −→ HomC(A,C)

(f, g) 7→ g ◦ f

subject to the following conditions:

C1) Associativity: Given A,B,C,D ∈ ob(C) and the composition of
morphisms

A
f−→ B

g−→ C
h−→ D

we have h ◦ (g ◦ f) = (h ◦ g) ◦ f .
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F (A) F (B)

G(A) G(B)

F (f)

αA αB

G(f)

Figure 1.6: Commutative diagram for
a natural transformation α.

C2) Identity: For every B ∈ ob(C) there exists an identity mor-
phism IdB ∈ HomC(B,B) such that IdB ◦ f = f for any
f ∈ HomC(A,B) and g ◦ IdB = g for any g ∈ HomC(B,C).

C3) The sets HomC(A,B) and HomC(A
′, B′) are disjoint unless

A = A′ and B = B′.

Some examples of categories are: Sets (where objects are sets and
morphisms are functions between sets), VectK (K-vector spaces and
linear maps), Top (topological spaces and continuous maps), G (groups
and homomorphisms of groups) and Diff (differentiable manifolds and
diffeomorphisms), among others.

Definition 1.2.2 Let B and C be categories. A covariant functor
F : B −→ C is a rule that assigns

i) An object F (A) ∈ ob(C) for every object A ∈ ob(B).
ii) For every morphism f : A→ B in B, a morphism F (f) : F (A)→

F (B) in C satisfying:

F1) F (IdA) = IdF (A) for every A ∈ ob(B).
F2) Given A f−→ B

g−→ C in B we have F (g ◦ f) = F (g) ◦F (f).

A contravariant functor F : B → C satisfies i) and

ii’) For every morphism f : A→ B in B, a morphism F (f) : F (B)→
F (A) in C satisfying F1) and:

F2) Given A f−→ B
g−→ C in B we have F (g ◦ f) = F (f) ◦F (g).

There are also some generalizations of the notion of isomorphism and
equivalence at the level of categories, which go as follows.

Definition 1.2.3 Given two functors F,G : C −→ D, a natural
transformation α : F =⇒ G consists of a morphism αA : F (A) −→
G(A) in D for every A ∈ ob(C) such that for every morphism f ∈
HomC(A,B) the diagram in D given by Figure 1.6 commutes.

Definition 1.2.4 Given two functors F,G : C −→ D, a natural
isomorphism α : F =⇒ G is a natural transformation with an
inverse natural transformation β : G =⇒ F such that β ◦ α = IdF
and α◦β = IdG. That is, every component αA of α is an isomorphism.

Definition 1.2.5 A functor F : C −→ D is an equivalence if it
has a weak inverse: a functor G : D −→ C such that there exist two
natural isomorphisms α : G ◦ F =⇒ IdC and β : F ◦ G =⇒ IdD.
Two categories C and D are equivalent, denoted C ≃ D, if there is an
equivalence between.

Categories may have further structures, as for instance that of monoidal-
ity. We will talk about symmetric monoidal functors. These allow us to
study topological invariants; that is, properties that remain unchanged
under homeomorphisms, similar to what is done in Homology Theory
in Algebraic Topology.
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4: These serve as background for defin-
ing different maps (monoids). For in-
stance, a monoid in (VectK,⊗,K) is
precisely a K-algebra A, since the mul-
tiplication map is described as a K-
linear map A⊗A −→ A and the unit
map as K −→ A.

(A⊗ I)⊗B A⊗ (I ⊗B)

A⊗B

αA,I,B

ρA ⊗ IdB IdA ⊗ λB

Figure 1.7: Triangle diagram.

A⊗ (B ⊗ C)

(A⊗ B) ⊗ C

(B ⊗ A) ⊗ C B ⊗ (A⊗ C)

B ⊗ (C ⊗ A)

(B ⊗ C) ⊗ A

αA,B,C

βA,B ⊗ IdC

αB,A,C

IdB ⊗ βA,C

αB,C,A

βA,B⊗C

Figure 1.9: Hexagon diagram.

1.3 Monoidal Categories

Roughly, a monoidal category is one equipped with some sort of “prod-
uct” satisfying certain properties and a “unit”, a neutral element with
respect to this product4 .

In the following, the cartesian product of categories is defined on objects
and morphisms in the natural way. The empty product category 1 is
the one with a single object and no other than its identity morphism.

Definition 1.3.1 (Monoidal category) A monoidal category is a
category C equipped with

1) a functor ⊗ :M×M→M called the tensor product,
2) a functor I : 1→ C called unita, and
3) three natural isomorphisms satisfying some coherence condi-

tions (comutativity of Pentagon and Triangle diagrams:
Figure 1.8, Figure 1.7) expressing that the tensor operation

• is associative: there is a natural isomorphism α, called
associator, with components

αA,B,C : (A⊗B)⊗ C ∼= A⊗ (B ⊗ C),

• has I as a left and right identity: there are two natural
isomorphisms λ and ρ, called unit isomorphisms, with
components λA : I ⊗A ∼= A and ρA : A⊗ I ∼= A

a The image of the only element in 1 will be simply denoted by I ∈ Ob(M).

(A⊗B)⊗ (C ⊗D)

((A⊗B)⊗ C)⊗D

(A⊗ (B ⊗ C))⊗D A⊗ ((B ⊗ C)⊗D)

A⊗ (B ⊗ (C ⊗D))

αA⊗B,C,D αA,B,C⊗D

αA,B,C ⊗ IdD

αA,B⊗C,D

IdA ⊗ αB,C,D

Figure 1.8: Pentagon diagram.

A strict monoidal category is one for which α, λ, ρ are identities.
That is, (A⊗B)⊗ C = A⊗ (B ⊗ C) and A⊗ I = A = I ⊗A.

A symmetric monoidal category will be one whose tensor products
commute. For this purpose, define the twist functor T : C×D → D×C
as:

▶ T (A×B) = B ×A for any objects A ∈ Ob(C), B ∈ Ob(D)
▶ T (f × g) = g × f for any morphisms f, g in C,D.

Definition 1.3.2 (Symmetric monoidal category) A symmetric
monoidal category is a monoidal category (M,⊗, I) such that for
each pair of objects A,B ∈ Ob(M) there is a natural isomorphism
β, with components βA,B : A⊗B → B ⊗A, such that:

• Inverse law or symmetric condition: β is its own inverse, i.e.
βB,A ◦ βA,B = IdA⊗B,
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I2 ⊗2 F (A)

F (I1) ⊗2 F (A) F (I1 ⊗1 A)

F (A)

φ ⊗2 F (A)

ΦI1,A

F (λA)

λF (A)

Figure 1.10: Commutativity coher-
ence condition for monoidal functor F .

F (A) ⊗2 I2

F (A) ⊗2 F (I1) F (A⊗1 I1)

F (A)

F (A) ⊗2 φ

ΦA,I1

F (ρA)

ρF (A)

Figure 1.11: Commutativity coher-
ence condition for monoidal functor F .

F (B) ⊗2 F (A)

F (A) ⊗2 F (B)

F (A⊗1 B)

F (B ⊗1 A)

βF (A),F (B)

ΦA,B F (βA,B)

ΦB,A

Figure 1.13: Commutative diagram
defining a symmetric monoidal functor.

Figure 1.14: Two-dimensional cobor-
dism from Σ1 to Σ2, where arrows
represent the positive normal vectors,
often omitted understanding them to
point from left to right.

• associativity coherence: the Hexagon diagram commutes (Fig-
ure 1.9),
• Unit coherence: λA ◦ βA,I = ρA.

Given two monoidal categories, a monoidal functor between them will
be one such that it preserves the monoidal structure.

Definition 1.3.3 (Monoidal functor) A monoidal functor between
two monoidal categories (M1,⊗1, I1) and (M2,⊗2, I2) is a functor
F :M1 →M2 equipped with:

1) a natural isomorphism Φ, with components ΦA,B : F (A) ⊗2

F (B)→ F (A⊗1 B), and
2) an isomorphism φ : I2 → F (I1) in M2

such that the diagrams in Figure 1.10, Figure 1.11 and Figure 1.12
commute for any objects A,B,C in M1.

Figure 1.12: Commutativity coher-
ence condition for monoidal functor F .

F (A⊗1 B)⊗2 F (C)

(F (A)⊗2 F (B))⊗2 F (C)

F (A)⊗2 (F (B)⊗2 F (C)) F (A)⊗2 F (B ⊗1 C)

F (A⊗1 (B ⊗1 C))

F ((A⊗1 B)⊗1 C)
ΦA⊗1B,C

ΦA,B ⊗2 IdF (C)

αF (A),F (B),F (C)

IdF (A) ⊗2 ΦB,C

ΦA,B⊗1C

F (αA,B,C )

Finally, we can define the notion of a symmetric monoidal functor.

Definition 1.3.4 (Symmetric monoidal functor) A symmetric
monoidal functor is a monoidal functor F between two symmet-
ric monoidal categories (M1,⊗1, I1) and (M2,⊗2, I2) such that the
diagram in Figure 1.13 commutes for any objects A,B ∈ ob(M1).

This notion will be important for our definition of a TQFT.

1.4 Cobordisms

In our first approach to TQFTs we vaguely introduced the notion of
cobordisms between two manifolds Σ1 and Σ2 as a manifold M having
them as boundary, Σ1 ⊔Σ2 = ∂M . We aim now to briefly present them
and the category they form.

Definition 1.4.1 (Oriented cobordism) Given two closed oriented
(m− 1)-manifolds Σ1 and Σ2, an oriented cobordism from Σ1 to
Σ2 is an oriented m-manifold M along with two smooth maps

ιin : Σ1 −→M ←− Σ2 : ιout

such that ιin (resp. ιout) is an orientation-preserving diffeomorphism
that maps Σ1 (resp. Σ2) onto the in-boundaries (resp. out-boundaries)
of M .
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M

Σ1

N

Σ2
∼=φ

Figure 1.15: Equivalence of cobor-
disms.

Figure 1.16: Cylinder cobordism.

Cobordisms are drawn placing their in-boundaries to the left and their
out-boundaries to the right (Figure 1.14).

In the category of cobordisms, these are defined up to an equivalence
relation as follows.

Definition 1.4.2 (Equivalent cobordisms) Two cobordisms M and
N , both from Σ1 to Σ2, are equivalent if there exists a diffeomor-
phism φ :M −→ N making the diagram in Figure 1.15 commute.

This indeed gives an equivalence relation defining the equivalence
classes of cobordisms between two given manifolds, which will be the
morphisms in the category. Composition will be given by gluing.

Definition 1.4.3 Let M and N be two cobordisms with a common
boundary Σ , along with morphisms ιMout : Σ −→M and ιMin : Σ −→
M . Then, the cobordism resulting from gluing M and N along Σ

is
M ⊔Σ N :=M ⊔N/ ∼,

where ∼ is the equivalence relation given by identifying two points
p ∈M and q ∈ N iff there exists a point x ∈ Σ such that ιMout(x) = p

and ιMin (x) = q.

The identity morphisms are given by cylinders (Figure 1.16).

Definition 1.4.4 Given a closed oriented manifold Σ, the cylinder
CΣ is defined as Σ× [0, 1] oriented with Σ× {0} as in-boundary and
Σ× {1} as out-boundary. Thus, with the canonical maps

ιin : Σ
∼−→ Σ× {0} ↪→ CΣ ←↩ Σ× {1}

∼←− Σ : ιout

we have that CΣ is a cobordism from Σ to itself.

One can further show that gluing a cobordism M with a cylinder doesn’t
change the equivalence class, obtaining thus an equivalent cobordism.

Definition 1.4.5 The category of cobordisms nCob consists of:

• Ob(nCob): objects are closed oriented (m− 1)-manifolds Σ.
• HomnCob(Σ,Σ

′): morphisms M : Σ1 −→ Σ2 are equivalence
classes of cobordisms from Σ1 to Σ2.
• The identity morphisms IdΣ : Σ −→ Σ are the equivalence

classes of cylinders CΣ.
• The composition N ◦M : Σ1 −→ Σ3 of two morphisms M :

Σ1 −→ Σ2 and N : Σ2 −→ Σ3 is the equivalence class of
M ⊔Σ2 N .

The composition law is given by glueing together cobordisms along a
boundary.

Notice that, opposite to what is usual in most categories, the name of
this one comes from its morphisms (cobordisms) instead of its objects.
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Figure 1.17: Resemblance between
Feynman diagrams and cobordisms,
now viewed from top to bottom. Both
can be associated with the multipli-
cation operation A ⊗ A −→ A in a
K-algebra A.

5: Recall that in quantum field the-
ory, given the action S as a functional
of field configurations φ, the partition
function is given by

Z =

∫
DφeiS[φ],

where Dφ is a (not well defined) mea-
sure over all possible field configura-
tions on all of spacetime, and then the
usual time-ordered vacuum expecta-
tion value of a functional F is given
by

⟨F ⟩ :=
1

Z

∫
DφF [φ]eiS[φ]

with Z in the denominator ensuring
normalization.

1.5 Definition of a TQFT

With all the previous machinery, one can finally summarize what a
TQFT is in the following categorical definition.

Definition 1.5.1 An n-dimensional TQFT over a field K is a
symmetric monoidal functor Z from nCob to VectK:

Z : nCob→ VectK

Here it is used the fact that (VectK,⊗,K, σ) and (nCob,⊔, ∅, T ) are
symmetric monoidal categories, with (respectively) tensor product and
disjoint union as tensor operations, ground field and empty set as units
and twists given by σ : V ⊗W −→W ⊗ V and T : Σ⊔Σ′ ∼−→ Σ′ ⊔Σ.

1.6 Physical and Mathematical interests

Let us end this chapter with some further comments on the physical
and mathematical interests on TQFTs, besides the ones already made
in the previous pages.

As mentioned, intuitively TQFTs capture the notion of space (the
closed manifolds, bordisms) and spacetime “evolving between them”
(the cobordism itself) —basic ingredients in General Relativity— be-
ing assigned by the TQFT-functor to the associated vector or Hilbert
spaces representing the state spaces and to an operator understood as
a time-evolution operator (or more commonly known in the physics
literature as transition amplitude or Feynman path integral or partition
function5 ), respectively —which in turn are basic ingredients in Quan-
tum Mechanics and Quantum Field Theory. Further, the multiplicative
axiom (A4b) stating that Z(Σ ⊔ Σ′) = Z(Σ) ⊗ Z(Σ′) expresses the
common principle in quantum mechanics that the state space of two
independent systems is the tensor product of the two states.

Thus, although at a first glance general relativity and quantum theory
use “different sorts of mathematics”, one based on objects such as
manifolds and the other on others such as Hilbert spaces, it turns out
that both can be described categorically in a similar way, as TQFTs
make manifest.

The resemblance of the TQFT-functor with the Feynman path integral
formulation suggests a relation between Feynman diagrams (contribu-
tions representing terms in an expansion of the Feynman path integral
or partition function) and cobordisms or even algebraic operations. For
instance, the “merging of particles” diagram would correspond to the
inverted pair of pants (see Figure 1.17) or the multiplication operation
A⊗A −→ A in a K-algebra. Similarly, there are analogue cobordisms
for the creation, splitting and annihilation diagrams, and corresponding
to the unit K −→ A, comultiplication A −→ A⊗A and counit A −→ K.
Observe the intuitive notion of time in cobordisms accounting for the
distinction between merging and splitting. Also, correspondingly, in the
algebraic or categorical description, the notion of morphism involves a
sense of direction: arrows from source to target.
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Figure 1.18: In Loop Quantum Grav-
ity, the spinfoam is a topological struc-
ture representing a configuration (anal-
ogous to a Feynman diagram) taken
into account in a Feynman path inte-
gral description of Quantum Gravity.

6: Alternatively, Z(M) ∈ Z(∅∗ ⊔ ∅) =
K∗⊗K ∼= Hom(K∗⊗K,K∗⊗K) giving
a linear map f : K −→ K which is
equivalent to giving a constant k =

f(1) ∈ K.

Furthermore, TQFTs possess features one expects from a theory of
quantum gravity. For instance, Feynman diagrams are replaced in string
theory by so-called worldsheets, 2-dimensional cobordisms describing
the embedding of a string in spacetime. Also, the theory of Loop
Quantum Gravity (LQG) —pursuing to merge general relativity and
quantum mechanics, adding matter of the Standard Model of Particle
Physics to the pure quantum gravity description— can be formulated
as a generalized TQFT, as shown e.g. in [Rov11].

Being topological, as mentioned earlier, a TQFT serves as a baby
model to do calculations and gain experience before embarking into
the full theory (QFT), which is yet not fully understood and expected
to be much more complicated. That the theory is topological means
that transition amplitudes do not depend on any additional structure
on spacetime like Riemannian metric or curvature, but only on the
topology. In particular, there is no time-evolution along “cylindrical”
spacetime.

Last, monoidality in nCob is given by the disjoint union and so one
may understand a disjoint union of spacetimes as evolving in parallel, in-
dependent from one another. In the case of VecK, however, monoidality
comes from the tensor product of vector spaces instead of the cartesian
product, opening the possibility of interesting phenomenons such as
quantum entanglement.

From a mathematical point of view, the classification of low dimensional
manifolds has been one of the important questions attempted by both
mathematicians and physicists in the last decades. A quantum field
theoretic approach to these problems has shown to be an elegant
technique giving consistent results and, further, topological field theories
play a very important role in capturing the topological features of
manifolds. In fact, TQFTs play a role in the study of knots and three-
manifolds, as happens in the case of Chern-Simons theory for instance.
The Hilbert space of the Chern-Simons theory is given by the space of
conformal blocks of a Wess-Zumino conformal field theory, while gauge
invariant topological observables are the Wilson loop operators whose
expectation value give the knot invariants.

To see why TQFTs should give rise to such invariants, note that when
M is a closed m-manifold so that it has no boundary, ∂M = ∅, then
Z(M) ∈ Z(∅) = K is a constant6 (element of the ground field), being
the same for any manifold in the equivalence class of M . Thus the
theory produces in particular invariants of closed m-manifolds.

These notions will be explored later on by studying the Chern-Simons
TQFT and its relation with the well-known Jones Polynomial giving
invariants of knots.





1: See https://www.ias.edu/video/

witten-friends

Figure 2.1: Diagram of the Figure
Eight knot.

Figure 2.2: Example of a link: the
borromean rings.

2: Let M,N be smooth manifolds with
dimensions m ≤ n. A smooth map
f : M → N is called an immersion
if dxf : TxM → Tf(x)N is injective
for all x ∈ M . The map f is an em-
bedding if it is an immersion which
further is injective and proper, i.e. the
preimage of every compact set in N is
compact in M .
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So, what’s the deal with ‘knot theory’? Is it theory... or knot?

A knot is simply a tangled loop in ordinary three-dimensional space,
such as often causes us frustration in everyday life. Knots are also the
subject of a rather rich mathematical theory. In the last three decades,
it has unexpectedly turned out that rather deep aspects of the theory
of knots are best understood in the context of 20th and 21st century
developments in quantum physics. In his talk Knots and Quantum
Theory, Edward Witten —Charles Simonyi Professor in the School of
Natural Sciences— attempts to explain what quantum theory has to do
with knots.

Insitute for Advanced Study1

Let us now introduce the reader to some relevant topological notions
concerning links and 3-manifolds. As we shall see in coming chapters,
this theory yields a connection between Chern-Simons theory and the
Jones polynomial appearing in Knot Theory. The key result is the
theorem asserting that any closed orientable 3-manifold M can be
obtained from S3 by an integral surgery on a link L ⊂ S3. We introduce
the required notions to understand this fact and its consequences and
applications. We show that any such 3-manifold can be described by a
plumbed graph with decorated nodes, and how different graphs giving
rise to the same 3-manifold are related by a sequence of moves, known
as Kirby moves. These are useful tools for the construction of invariants
of links and three-manifolds. We mainly follow [Sav12; PK16].

2.1 Knots and Links in 3-manifolds

We all are familiar with the everyday life notion of tying a knot to fix our
shoelaces or the experience of finding our earphones in a tangled mess of
strings. Mathematicians refer to a knot as an abstraction of this concept,
meaning a possibly tangled loop freely floating in ordinary space. What
concerns mathematicians is thus the tangle itself.

Definition 2.1.1 (Knot, link) A finite collection of smoothly embed-
ded closed curves in a closed orientable 3-manifold M

S1 ⊔ · · · ⊔ S1 ↪→M

is called a link. A one-component link is called a knot.

Pictorically, one has in mind knots and links as e.g. the ones in Figure 2.1
and Figure 2.2, thinking them inside R3. Recall that a closed manifold
is a compact one without boundary. The requirement that each of the
curves of a link be smoothly embedded2 avoids pathological examples

https://www.ias.edu/video/witten-friends
https://www.ias.edu/video/witten-friends
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Figure 2.3: Pathological cases to be
avoided when defining the mathemati-
cal notion of a knot.

Figure 2.4: Reidemeister moves I, II
and III.

Figure 2.5: Possible intersections:
overcrossing and undercrossing.

like the ones in Figure 2.3. One does not distinguish between equivalent
knots and links, the ones that can be continuously obtained from one
another by just “wiggling the string” without ever snapping it.

Definition 2.1.2 (Equivalent links) Two links L and L′ in M are
said to be isotopically equivalent if there is a smooth orientation
preservinga automorphism h :M →M such that h(L) = L′.
a In the case where links have two or more components, one also assigns a fixed

ordering of the components and requires that h respects the ordering.

To know whether two knots are isotopically equivalent or not, there
exists a minimal set of moves called Reidemeister moves (the ones
in Figure 2.4) which are known to preserve the isotopy class. That
is, any two equivalent knots can be obtained from one another by
a finite number of Reidemeister moves. These moves are applied to
knot diagrams, i.e. a regular projection of the knot onto a plane which
enables the drawing of the knot.

Definition 2.1.3 Let P be a plane in R3 and π : R3 → P the
orthogonal projection. Given a link L in R3, one says that π is a
regular projection for L if every line π−1(x), x ∈ P , intersects
L in 0, 1 or 2 points and the Jacobian dyπ has rank 1 at every
intersection point y ∈ π−1(x).

Observe that we thus only allow simple crossings, as the ones depicted in
Figure 2.5. The nice thing about these projections is that the following
holds:

Proposition 2.1.1 Every link admits a regular projection.

Thus, links are often described by their regular projections, and drawn
as smooth curves in R2 with marked undercrossings and overcrossings
at each double point. The simplest knot is the one whose projection is
(isotopically equivalent to) a circle:

Definition 2.1.4 Any knot equivalent to the knot (cos t, sin t, 0),
0 ≤ t ≤ 2π, is called a trivial knot or an unknot.

It is clear that in general distinguishing two arbitrary knots is not an
easy task at all (think of knots such as the one in Figure 2.7). For
this reason, one searches for powerful invariants. An invariant is a
mathematical object (such as a number or a polynomial) assigned to
a given knot, which remains unchanged under Reidemeister moves
so that it is well defined in the isotopy class of the knot. Different
knots are then known to be different if their corresponding invariants
are not the same. However, in principle the assignment need not be
injective, so that two knots with the same invariant may or may not
be equivalent. This is a major problem in the classification of knots.
Hence, one ideally aims for perfectly injective assignments and says
that the invariant is stronger or more powerful the more unequivalent
knots it can distinguish (the more closer to being injective).
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3: See [GS14] for more details and ex-
amples.

Figure 2.6: Overcrossing (+), under-
crossing (−) and no crossing (0), re-
spectively, appearing in skein relations.

Figure 2.7: Example of a complicated
knot with multiple crossings. The cor-
responding invariant can be computed
recursively by iteratively replacing a
specific crossing by the opposite one
and no crossing at all, and comput-
ing the invariant corresponding to each
of the two new and simpler knots ob-
tained.

4: Name due to the different groups
involved in this proposal.

One common approach is to deal with polynomial invariants associated
to each knot. These are constructed ensuring they respect the Reide-
meister moves so that they indeed constitute topological invariants.
The earliest such polynomial known is the Alexander polynomial and
a more recent and famous one is the Jones polynomial. Since Jones’
times, different generalizations of these have appeared (some involving
more variables) being even more powerful. These polynomials are often
obtained through a recursion relation, called skein relation, which
enables to compute a knot invariant in terms of the invariants corre-
sponding to simpler knots, obtained in each step by replacing a specific
crossing (say, a positive one) by an undercrossing or no crossing (see
Figure 2.6), finally obtaining some copies of unknots. A normalization
is therefore usually given by fixing a value for the unknot.3

For example, the Alexander polynomial in the variable q, denoted P+(q)

for a link L+, is defined by means of the skein relation

Alexander polynomial

P+(q)− P−(q) =
(
q

1
2 − q− 1

2

)
P0(q)

with normalization PU (q) = 1 for the unknot U . It cannot, however,
distinguish mirror knots and gives zero for disjoint unions of knots. It
was around sixty years later that the stronger, Jones polynomial was
found. It is given by the skein relation

Jones polynomial

q−1V+(q)− qV−(q) =
(
q−

1
2 − q 1

2

)
V0(q),

which is a slight modification of the Alexander one. This can, for exam-
ple, distinguish a knot K from its mirror image K∗ and their invariant
polynomials satisfy the symmetry VK∗(q) = VK(q−1). Further and more
interestingly, the Jones polynomial for disjoint links is given by the
product of invariants for each component, similar to the multiplicative
expected property in QFT for the expectation value of uncorrelated
observables. Since Jones’ contribution, some other generalizations have
been constructed and research in this field is still active. For example,
a two-variable generalization known as HOMFLY-PT4 polynomial,
which is even more powerful. Its skein relation is given by

HOMFLY-PT polynomial

w− 1
2 q−

1
2P+(w, q)− w

1
2 q

1
2P−(w, q) =

(
q−

1
2 − q 1

2

)
P0(w, q).

Observe that it recovers the Jones polynomial for w = q and the
Alexander polynomial for w = q−1. Such polynomials are shown to
be given by Chern-Simons theory, as we will present later in this
thesis following E. Witten’s paper [Wit89]. Unfortunately, none of these
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5: In the final chapter of this thesis we
will show our results on a particular
example corresponding to the choice
of the so8 Lie algebra and the r-th
symmetric representations.

Figure 2.8: A figure eight knot γ in
S3 with its tubular neighborhood.

6: There is an alternative equivalent
definition of the 3-sphere S3 in terms
of quaternions. Recall their definition
H := {a + bi + cj + dk | a, b, c, d ∈
R and i2 = j2 = k2 = −1} with the
norm defined as ||a+ bi+ cj + dk||2 =

a2+b2+c2+d2. Then, the three sphere
is S3 := {h ∈ H | ||h|| = 1} ⊂ H. One
can show that it is a Lie group and
further that S3 ∼= SU(2) ∼= Sp(1) and
S3/{±1} ∼= RP 3 ∼= SO(3).

polynomials solves the classification problem in knot theory and further
polynomial invariants are still being searched.5

Here, we will focus on topological aspects concerning the construction
of manifolds through surgery on knots and links. This will lead to
invariants of manifolds in the framework of the classification of low
dimensional manifolds, closely related to the one for knots.

For this purpose, we will be interested in considering specific neighbor-
hoods of knots, sketched in Figure 2.8 and defined below.

Definition 2.1.5 Every link L ⊂M can be thickened to a tubular
neighborhood N(L) consisting of a collection of smoothly embedded
disjoint tori, one for each link component, whose cores {0}×S1 form
the link L.a
a The tubular neighborhood of a knot is the embedded solid torus and thus

possibly tangled. However, it is commonly identified with the solid torus D2×S1
itself.

Links will be considered to live in the compactification of 3-dimensional
euclidean space, S3 = R3 ∪ {∞}, while being thought of as links in
R3 (see illustration in Figure 2.8). The reason for working with S3 is
obviously its compactness (further, it is the only closed 3-manifold of
Heegard genus 0).6

2.2 Surgery on Links in a 3-manifold

With these notions at hand, let us introduce the concept of surgery on
links in a given 3-manifold. First we describe our working tools.

Definition 2.2.1 Given two topological spaces X and Y and a
continuous map f : Z ⊂ X → Y , consider the disjoint union X ∪ Y
and the equivalence relation z ∼ f(z) iff z ∈ Z. Then,

X ∪f Y := (X ∪ Y )/ ∼

with the quotient topology is said to be the space obtained by gluing
X and Y along f .a

a In most cases, f will be a homeomorphism of Z onto f(Z) ⊂ Y .

We want also to have an “inverse” operation to the gluing of spaces.
This is given by cutting the space open along a subspace.

Definition 2.2.2 Let X be a connected space and Y ⊂ X a closed
subspace such that the closure of X\Y recovers X, and let X\Y con-
sist of a finite number of connected components X1, . . . , Xn. Define
the space

X ′ =
⋃
Xi × {i} ⊂ X × R,

“pulling the components apart”. Then, the closure of X ′ in the product
topology on X × R is the result of what is referred to as cutting X

open along Y .
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Figure 2.9: Gluing opposite edges of
a square, with the shown orientation
each, to give a torus.

7: Notice that we are going to glue and
cut along a torus. Hence the points to
be identified are the ones composing
the whole surface, which is not as easy
to visualize as the previous example
where we glued along curves only.

8: This can be done thanks to the extra
point ∞ giving the compactification of
R3, since it is where the second torus
closes back to itself.
9: Let A,B be two topological spaces
and consider its cartesian product A×
B with the product topology. Then, its
boundary is given by:

∂(A×B) = (∂A×B) ∪ (A× ∂B).

10: The space enclosed by an n-
sphere Sn := {x ∈ Rn+1 | ||x|| = 1}
is called an (n+ 1)-ball, Dn+1. Thus:

∂Dn+1 = Sn.

Notice that, with this at hand, we
have S3 = ∂D4 = ∂(D2 × D2) =

(S1 × D2) ∪ (D2 × S1) which shows
the previously mentioned decomposi-
tion of the 3-sphere into two solid tori
glued along their common boundary,
the torus T 2 = S1 × S1.
11: Given an m-manifold M , a k-
handle is defined as

Hk := Dk ×Dm−k,

where Dk is a k-ball, with 0 ≤ k ≤ m.
The k-handles are then attached to the
boundary of M along (∂Dk)×Dm−k

using an embedding f : (∂Dk) ×
Dm−k → ∂M . The corners that arise
can be smoothed out and hence M ∪f
(Dk ×Dm−k) is again a smooth mani-
fold.

One may visualize these pictures by considering a torus. Construct it
by starting with a square and identifying opposite edges, as in Figure
2.9. Observe that the identified points along which we glue become thus
the same topological point. Notice the importance of the orientation in
the gluing process. Now, in this example, cutting along a circle would
correspond to the converse of the last depicted step. Doing it along two
circles, we would be left with two cylinders (i.e. two different connected
components apart from each other).

In fact, tori will be key tools for us. In a more general setting:

Definition 2.2.3 The n-torus is the product of n circles:

Tn := S1 × · · · × S1.

It is just a generalization of the usual 2-torus T 2 = S1 × S1, already
encountered as given by a “doughnut” shaped surface. We are now
ready for the definition.7

Definition 2.2.4 (Dehn surgery) Given a knot k in a closed ori-
entable 3-manifold M and its tubular neighborhood N(k), cut the
manifold open along the embedded 2-torus ∂N(k) obtaining two man-
ifolds: on the one hand the knot exterior K := M\intN(k), and
on the other the embedded solid torus N(k). In this way, K is a
manifold with boundary ∂K = T 2 and —abusing notation— one
has M = K ∪ (D2 × S1), where D2 × S1 refers to N(k) identified
through the embedding. Finally, using an arbitrary homeomorphism
h : ∂D2×S1 → ∂K to glue D2×S1 back in K, one obtains the space

Q := K ∪h (D2 × S1),

which is a closed orientable 3-manifold. It is then said that Q is
obtained from M by Dehn surgery along k.

Usually one takes M = S3 and then K is called the knot complement.
Observe that a knot complement (the complement of an embedded
solid torus in S3) is also an embedded torus in S3. Indeed, link the two
tori through their holes and blow up one of them to all of S3.8 This
extends through the embedding.

Observe that the manifold Q depends on the chosen homeomorphism
h. It turns out that the manifold Q is completely determined by the
image of the meridian ∂D2 × {∗} of the solid torus D2 × S1; that is,
by the curve c = h(∂D2 × {∗}) lying on the boundary of K.

Regarding this last statement, we pause now for a moment and devote
a section to the mapping class group of T 2, before coming back to
relevant results on surgery in the three sphere.

2.3 The Mapping Class Group of T 2

Recall first the concept of a handlebody and a Heegard splitting, for
which we will need to bear in mind some other notions.9 10 11
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Figure 2.10: Representation of a han-
dlebody.

Definition 2.3.1 The handlebody of genus g is the orientable
3-dimensional manifold given by attaching g 1-handles H1 = D2 ×
[−1, 1] to a 3-ball D3. The gluing homeomorphisms match the 2g

discs D2 × {±1} with 2g disjoint 2-discs in ∂D3 = S2 in such a way
that the resulting manifold is orientable (See Figure 2.10).a

a Remark: the boundary of a handlebody of genus g turns out to be homeomorphic
to a Riemann surface of genus g, hence the word genus.

Interestingly, any closed orientable 3-manifold M can be obtained by
gluing together two handlebodies with the same genus.

Definition 2.3.2 Given a closed oriented 3-manifold M , a Hee-
gaard splitting of genus g is M = H ∪H ′, where H and H ′ are
handlebodies of genus g such that H ∩H ′ = ∂H = ∂H ′.

Theorem 2.3.1 Any closed orientable 3-manifold admits a Heegaard
splitting of some genus.

This is interesting because it allows us to talk about closed orientable
3-manifolds and surgeries on them in terms of the handlebodies, as was
actually done in the definition of Dehn surgery. One just has to study the
gluing homeomorphisms. Given a Heegard splitting H ∪f H ′, meaning
that the handlebodies H and H ′ are glued by a homeomorphism
f : F → F along their common boundary F , the mapping class group
will measure which of the different homeomorphisms give rise to the
“same” manifold. Before giving a precise definition, recall first the
necessary notion of isotopy.

Definition 2.3.3 Two homeomorphisms f0, f1 : F → F are said to
be isotopic whenever there exists a homotopy ft, 0 ≤ t ≤ 1, between
them such that each ft is a homeomorphism.

Observe that all homeomorphisms isotopic to an orientation preserving
(reversing) homeomorphism f are orientation preserving (reversing,
respectively). It can be shown that gluing two handlebodies H and H ′

by isotopic homeomorphisms produces homeomorphic manifolds. This
observation justifies the following definition.

Definition 2.3.4 (Mapping class group) Denote by Homeo(F ) the
groupa of orientation preserving homeomorphisms f : F → F of a
closed oriented surface F , and Homeo0(F ) for the normal subgroup
consisting of the homeomorphisms that are isotopic to the identity.
Then, the mapping class group of the surface F is the quotient
group

MCG(F ) := Homeo(F )/Homeo0(F ).

a With composition ◦ as group operation.

Notice that the mapping class group is a subgroup of the larger group
consisting of all homeomorphisms of F modulo isotopy. Notice also that
the composition of any two orientation reversing homeomorphisms is
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Figure 2.11: Dehn twist.

Figure 2.12: Sketch of the generators
of the mapping class group of a closed
orientable surface of genus g.

Figure 2.13: Meridian and longitude
on a torus.

12: Recall that the fundamental
group of a topological space X is the
group of equivalence classes under ho-
motopy of the loops in the space, rela-
tive to a base point. The group opera-
tion is given by composition of loops,
“travelling twice as fast”. For a path-
connected space, the base point makes
no difference up to isomorphism and
we write π1(X).
The fundamental group records infor-
mation about the basic shape or holes
of the topological space. Moreover, it is
the first and simplest homotopy group.
The fundamental group is a homo-
topy invariant: homotopy equivalent
path-connected spaces have isomorphic
fundamental groups:

X ≃ Y ⇒ π1(X) ∼= π1(Y ).

The abelianization of the fundamental
group can be identified with the first
homology group of the space.

Figure 2.14: A torus knot. Curves on
a torus are defined by pairs (a, b) cor-
responding to the number of meridian
and longitude turns, respectively.

orientation preserving. We now describe a set of generators forMCG(F )

known as Dehn twists.

Definition 2.3.5 (Dehn twist) Let F be a closed orientable surface.
Let c be a simple closed curve (the embedding of a circle) in F and
consider an annulus U(c) one of whose two boundary components is
c. Identifying U(c) with the annulus {z ∈ C | 1 ≤ |z| ≤ 2}, a Dehn
twist τc : F → F along the curve c is defined as the homeomorphism
given by

r · eiϕ 7→ r · ei(ϕ+2π(r−1))

inside th annulus U(c), and by the identity outside.

A practical way to think of a Dehn twist (see Figure 2.11) is as the result
of stretching around ; i.e. the result of cutting F along c, giving a one
whole turn twist to one of the ends in one of the possible two directions
and then gluing the ends back together. Different choices of U(c) or of
the curve c within its isotopy class yield isotopic twists. Choosing the
opposite twist direction gives the inverse element inMCG(F ). These
twists give the desired set of generators.

Theorem 2.3.2 Given a closed orientable surface Fg of genus g,
the mapping class group MCG(Fg) is generated by the 3g − 1 Dehn
twists along the curves αi, βj , γk, 1 ≤ i, j ≤ g, 1 ≤ k ≤ g − 1, shown
in Figure 2.12.

Having presented this machinery, consider now the case relevant to us
consisting in a 2-torus T 2 = S1×S1. We are going to study its mapping
class group.

First, pick two generators of its fundamental group12 π1(T
2) = Z⊕ Z

as follows. Regard T 2 as the boundary of a solid torus D2 × S1 as in
Figure 2.13. Then, denoting by θ and ψ the standard angle coordinates
on T 2 = S1 × S1, the curves µ and λ determined respectively by the
equations ψ = 0 and θ = 0 are called the meridian and longitude.
These curves play different roles, since µ bounds a disc in D2×S1 while
λ does not and can thus cannot be contracted to a trivial curve (it is
not isotopic to the identity). Meridian and longitude constitute then a
set of generators for π1(T 2) = Z⊕ Z, as desired (See Figure 2.14). An
orientation on the torus is given by the choice of basis (∂/∂ψ, ∂/∂θ) in
the tangent space.

We are now ready to explicitly describe the mapping class group of the
torus. It goes as follows. Observe first that the π1 functor13 transforms a
homeomorphism f of T 2 into a group automorhism f∗ of π1(T 2) = Z⊕Z
and in particular converts a homeomorphism of T 2 isotopic to identity
into the identity map on π1(T

2). Now, the automorphisms of Z ⊕ Z
are extremely simple since they can be described by integral 2 × 2-
matrices invertible over the integers, which means that its determinant
must be ±1 to avoid any fraction when inverting elements.14 Among
these, the matrices with unit determinant associated to automorphisms
f∗ are in one-to-one correspondence with the orientation preserving
homeomorphisms f , thus giving a well-defined homomorphism

Π :MCG(T 2)→ SL(2,Z)
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13: If f : X → Y is a continuous map,
x0 ∈ X and y0 ∈ Y with f(x0) = y0,
then every loop in X with base point
x0 can be composed with f to yield a
loop in Y with base point y0. This oper-
ation is compatible with the homotopy
equivalence relation and with composi-
tion of loops. The resulting group ho-
momorphism, called the induced ho-
momorphism, is written as π1(f) or
f∗ : π1(X,x0) → π1(Y, y0). The neces-
sary compatibility conditions allow one
to state that π1 is actually a functor

π1 : Top∗ → Grp

(X,x0) 7→ π1(X,x0)

from the category of topological spaces
together with a base point to the cate-
gory of groups.
Last to mention, the fundamental
group functor takes products to prod-
ucts. That is, if X and Y are path-
connected, then

π1(X × Y ) ∼= π1(X)× π1(Y ).

14: We have:(
−q s

p r

)−1

=
−1

qr + ps

(
r −s
−p −q

)
.

15: This fact will be very important
for the surgeries we will describe next.

16: Up to isotopy and change of orien-
tation

where SL(2,Z) is the group 2× 2-matrices over the integers, with unit
determinant. Each matrix A ∈ SL(2,Z) can be given by a product of
matrices of the form(

1 ±1
0 1

)
and

(
1 0

±1 1

)
since any element in SL(2,Z) can be reduced to the identity by perform-
ing elementary transformations on its rows and columns. The orientation
preserving homeomorohisms corresponding to these matrices are the
twists along the curves µ and λ described before, showing that Π is
surjective. Furthermore, it can actually be proven that:

Theorem 2.3.3 The mapMCG(T 2)→ SL(2,Z) is an isomorphism.

With all these results at hand, one can proceed to describe the 3-
manifolds of Heegaard genus 1, such as the torus we are interested
in. Indeed, as has been done before, consider a manifold M obtained
by the process of gluing two solid tori by an orientation reversing
homeomorphism of their boundaries f : T 2 → T 2. Choosing the
meridian-longitude basis on each torus, (µ1, λ1) and (µ2, λ2), the matrix
corresponding to the homeomorphism f has the form

A =

(
−q s

p r

)
with qr + ps = 1.

Observe that the image of the meridian µ1 on the first torus is then
isotopic to the curve −q · µ2 + p · λ2 on the second torus, winding −q
times in the θ2-direction and p times in the ψ2-direction.

We finally reach the last statement claimed in the previous section:

Lemma 2.3.4 The image of the meridian µ1 completely determines
the manifold M .

This means that the manifold M is completely determined by just two
integer numbers p and q.15 Such manifold is what we call a lens space,
denoted L(p, q), which will be used in the next section. The reason for
their relevance will be clear in a moment. Notice that the previous unit
determinant condition qr + ps = 1 on the matrix A tells us that p and
q must be relatively prime numbers.

Now, it must be pointed out the fact that different pairs (p, q) may
give the same lens space L(p, q) up to homeomorphism. The reason for
this lies in an ambiguity in the choice of basis curves on T 2 and in the
non-uniqueness of longitude choice.

▶ Concerning the first case, the meridians µ1 and µ2 are uniquely
determined16 by the condition of bounding a 2-disc. Changing
the orientation of µ1 entails a change in the orientation of λ1
as well, replacing thus A by−A. Therefore, one may assume p ≥ 0.

▶ As for the second reason, notice that any curve of the form
n · µ1 + λ1 maps to λ1 by n Dehn twists along µ1, thus being as
good as the latter as candidate choice for a longitude.
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17: Which is a manifold of Heegard
genus 0.

Figure 2.15: Orienting the boundary
∂K ∼= T 2 of the tubular neighborhood.

18: Since the tubular neighborhood is
an embedded torus, hence in particular
homeomorphic.
19: We refer the reader to Appendix C
on Homology and Cohomology Theory.

20: Called canonical longitude.

Now, for p = 0 one may assume that A =
(−1 0

0 1

)
and so the corre-

sponding lens space L(0, 1) is S1 × S2. Suppose then that p > 0, thus
being able reduce the cases by making q non-negative and less than p,
i.e. 0 ≤ q ≤ p− 1. If p = 1 then necessarily q = 0, so one can assume
that A = ( 0 1

1 0 ), and thus L(1, 0) is the three-sphere17 S3. Hence, in
any other case p ≥ 2 and 1 ≤ q ≤ p − 1, and so the following result
holds.

Theorem 2.3.5 Any 3-dimensional manifold of genus 1 is either
S1 × S2 or a lens space L(p, q) with p and q relatively prime, p ≥ 2,
and 1 ≤ q ≤ p− 1.

Last, the construction of lens spaces can be generalized to give:

Definition 2.3.6 (Seifert manifold) Consider the surface F =

S2\int(D2
1 ∪ · · · ∪ D2

n) consisting of a 2-sphere after removing the
interior of n disjoint discs. Then the product F × S1 will be a com-
pact orientable 3-manifold with n tori (∂D2

i )× S1, i = 1, . . . , n, as
boundary. Its fundamental group F × S1 has a presentation in terms
of generators and relations as

⟨x1, . . . , xn, h | hxi = xih, x1 . . . xn = 1⟩,

the generators xi representing the curves ∂D2
i oriented as the bound-

ary curves of F . Now, gluing in n solid tori so that the meridian
of the i-th solid torus is glued to a curve on (∂D2

i ) × S1 isotopic
to ai · xi + bi · h —with (ai, bi) pairs of relatively prime integers,
ai ≥ 2—, the obtained closed manifold is called the Seifert mani-
fold M((a1, b1), . . . , (an, bn)) with n singular fibers.

2.4 Surgery on Links in S3

With this knowledge on the mapping class group of the torus, we turn
now to surgery on links on M = S3, where a curve on ∂K ∼= T 2 will
as well be given —up to isotopy— by a pair (p, q) of relatively prime
integers. The construction is detailed in the following, relying on the
results in the last section through the homeomorphism between tubular
neighborhoods and tori.18

Observe first that the knot complement K has integral homology
groups19 H0(K) = H1(K) = Z and Hi(K) = 0 if i ≥ 2. Then, any
meridian of N(k) —the image of the torus meridian through the
embedding N(k) ∼= T 2— is a generator of H1(K), a curve on ∂K

we will denote by m. Concerning the longitude, there is —up to
isotopy— a unique one20 determined by the condition that it be
homologically trivial in K, a curve on ∂K we will denote ℓ. Thus, we
have a basis {m, ℓ} for H1(∂K) that is unique modulo isotopy and
reversing the orientations of m and ℓ.

As for the orientations, chose first the standard orientation on S3 =

R3 ∪ {∞}, thus inducing an orientation on K. Then, directions on m
and ℓ are chosen so that the triple ⟨m, ℓ, n⟩ has the positive orientation,
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Figure 2.16: Link with an integer
framing. In general, framings are given
by rational numbers ai/bi.

21: Continued fraction decompo-
sition, defined inductively: consider a
real number r. Let i = ⌊r⌋ be the in-
teger part of r and let f = r − i be
the fractional part of r. Then the con-
tinued fraction decomposition of r is
[i, a1, a2, . . . ], where [a1, a2, . . . ] is the
continued fraction decomposition of
1/f . The algorithm stops when f = 0

(corresponding to r being an integer
number). This procedure yields the ex-
pression:

r = a0 +
1

a1 +
1

a2 +
1

a3 +
. . .

If r is rational, the sequence is finite.

where n denotes the vector normal to ∂K pointing inwards to the knot
complement K (see Figure 2.15).

Notice that, in this way, any simple curve c on ∂K will now be —up
to isomorphism— of the form

c = p ·m+ q · ℓ,

i.e. completely determined by a pair (p, q), which may be conve-
niently thought ofa as a reduced fraction p/q ∈ Q ∪ {∞}, the so
called surgery coefficient of K.
a Recall that p and q are relatively prime.

This means that we have a one-to-one correspondence between reduced
fractions p/q and isotopy classes of non-trivial simple closed curves
on the “torus” ∂K, completed with 1/0 = ∞ corresponding to the
meridian m. The surgery along such curves is called p/q-surgery, or
rational surgery, and in particular 1/0-surgery on any knot k ⊂ S3
gives S3 again.

Definition 2.4.1 A surgery is said to be integral if q = ±1.

Rational and integral surgeries along a link L ⊂ M are defined in
a similar way, by taking rational (integral) surgeries along each link
component. In the case of links in the 3-sphere S3 there is a canonical
choice —as mentioned before—of the longitudes ℓi, which are taken to
be null-homologous in the knot complement K. The key theorem then
reads that integral surgeries suffice.

Theorem 2.4.1 (Lickorish and Wallace) Every closed orientable
3-manifold M can be obtained from S3 by an integral surgery on a
link L ⊂ S3.

Conclusion

Any closed orientable 3-manifold can be given by an integral surgery
along a link L ⊂ S3. The result depends both on the link L and on
the chosen simple closed curves in the boundary ∂N(k) of each link
component k, these being uniquely determined by reduced fractions
p/q, including the case 1/0.

This leads to the following definition.

Definition 2.4.2 A framed link is a link L with a framing, i.e.
a choice of one such fraction for each link component.

Thus, any closed orientable 3-manifold can be specified by a framed
link, as in Figure 2.16. And, since an integral surgery corresponds to
a link framed by integers, the previous theorem guarantees us that it
suffices to consider only integer-framed links. The precise reduction to
the integer case is given by the following proposition, by means of a
so-called continued fraction decomposition.21
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Figure 2.17: Equivalence of a rational
p/q-surgery on a trefoil and an integral
surgery on a link composed by a chain
of unknots knotted to the trefoil and
framed by a continued fraction decom-
position of p/q.

22: The Lens space L(p, 1) can be ob-
tained from it by gluing in a solid torus
by the homeomorphism(

0 1

1 0

)
.

Figure 2.18: Sketch of the obtained
manifold with boundary a torus.

Figure 2.19: Surgery description of
L(pq − 1, q) with framings −p and −q.

Proposition 2.4.2 Let k be a knot in S3. Then, the 3-manifold
obtained by a rational p/q-surgery on k can also be obtained by an
integral surgery on the link consisting of k together with a chain of
unknots with integer framings determined by a continued fraction
decomposition p/q = [x1, . . . , xn], as shown in Figure 2.17

The appearance of continued fraction decompositions into the picture
will be clear in the following, when studying surgeries of lens spaces
and Seifert manifolds.

2.5 Surgery decription of Lens spaces and
Seifert manifolds

Recall how we introduced the notion of a lens space L(p, q) when
considering the mapping class group of a torus, where we saw that a
manifold obtained by surgery on a torus was determined by the image
of the meridian and thus by only two coprime integers p and q.

Let now p ≥ 2 and consider first the lens space L(p, 1), obtained by
gluing two solid tori along their boundaries by the homeomorphism(

−1 0

p 1

)
matching the meridian µ1 of the first torus to the curve −µ2 + p · λ2
on the second.

To visualize the gluing, turn the second solid torus inside out and view
it as a being a trivial knot exterior —so that it complements the first
torus in S3. Then, the meridian µ1 will now be matched with the curve
ℓ− p ·m on ∂K. Thus L(p, 1) has surgery description given by a trivial
knot framed by −p.

Any lens space L(p, q) will similarly be given by a rational surgery on
a (−p/q)-framed unknot. The construction, however, is slightly more
involved. One first replaces one of the solid tori S1 ×D2 by S1 ×Θ2

with Θ2 being an annulus (so we have removed a core torus from inside
the torus). Following the previous construction for L(p, 1) give then a
manifold with boundary consisting of a torus (the one corresponding to
the part missing from the annulus: (S1 ×D2)\(S1 ×Θ2). Schematically
(Figure 2.18), we have a (−p)-surgery described by an unknot with −p
framing, but with a missing torus yet to be “filled in”.22

The same procedure is carried out with any integer q coprime to p. The
two resulting surgered solid tori as just described are then glued together
along their boundaries (the missing tori) by the homeomorphism(

0 1

1 0

)
,

obtaining S3 surgered along the link depicted in Figure 2.19.
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Figure 2.20: Surgery description of
a Lens space L(p, q), where p/q =
[x1, . . . , xn] is a continued fraction de-
composition.

23: Notice that we already computed
the corresponding matrix when obtain-
ing L(pq − 1, q).

Figure 2.21: Graph description of a
chain of unknots framed by integers,
corresponding to the continued fraction
decomposition of a rational surgery co-
efficient.

To see the lens space to which this picture corresponds, we observe
that on the other hand the resulting gluing homeomorphism is given
by the composition(

−1 0

p 1

)(
0 1

1 0

)(
−1 0

q 1

)
=

(
−q −1

pq − 1 p

)
,

giving a matrix which tells us —by looking at the first column de-
termining the image of the meridian— that the previous framed link
represents the Lens space

L(pq − 1, q).

This brings us to the following theorem.

Theorem 2.5.1 Any lens space L(p, q) has a surgery description
as in Figure 2.20, where p/q = [x1, . . . , xn] is a continued fraction
decomposition of the form

[x1, . . . , xn] = x1 −
1

x2 −
1

· · · −
1

xn

Notice the change in sign with respect to the usual definition for a
continued fraction decomposition. The following proof reveals how
continued fractions come into play.

Proof. To produce the previous link, it is enough to repeat the con-
struction for L(pq− 1, q) sufficiently many times. The only thing which
remains to check is that, if p/q = [x1, . . . , xn], then(

−1 0

x1 1

)(
0 1

1 0

)(
−1 0

x2 1

)
· · ·
(
−1 0

xn 1

)
=

(
−q s

p r

)
for some r and s (the ones such that qr + ps = 1). Clearly, this is true
when n = 1 and n = 2 because p

1 = [p] and23 pq−1
q = p − 1

q = [p, q],
respectively. Proceed then by induction and suppose that p′/q′ =

[x2, . . . , xn]. Compute then(
−1 0

x1 1

)(
0 1

1 0

)(
−q′ s′

p′ r′

)
=

(
−p′ −r′

x1p
′ − q′ x1r

′ + s′

)
to see from the first column that

x1p
′ − q′

p′
= x1 −

q′

p′
= x1 −

1

[x2, . . . , xn]
= [x1, . . . , xn].

Finally, every rational number has a finite continued fraction of the
desired form, so we are done.

The link in Figure 2.20 is typically simplified and drawn as the weighted
graph in Figure 2.21, vertices corresponding to unknots and edges
connecting two vertices corresponding to linked unknots.
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Figure 2.22: Surgery de-
scription of a Seifert manifold
M((a1, b1), . . . , (an, bn)).

Figure 2.23: Surgery de-
scription of a Seifert manifold
M((a1, b1), . . . , (an, bn)) given by a
plumbing graph.

Figure 2.24: Assignment of under-
crossings defining the linking number.

Figure 2.25: A trefoil knot along with
its natural parallel longitude. The cor-
responding linking number is ℓk(k, ℓ) =
−3.

Similarly, Seifert manifoldsM((a1, b1), . . . , (an, bn)) have rational surgery
descriptions as in Figure 2.22, which can be described as in Figure 2.23
with the continued fraction decompositions ai/bi = [xi1 , . . . , ximi

].

2.6 The Linking number

Let us now introduce a topological invariant of knots which will appear
latter on in the next chapter. Wee provide two equivalent definitions
which are most relevant to us.

Definition 2.6.1 Given two disjoint oriented knots L1 and L2 in
S3 or R3, their linking number ℓk(L1, L2) is defined in either of
the equivalent forms:

(1) Considering a regular projection of L1 ∪L2, counting as shown
in Figure 2.24 for each point where L1 crosses under L2 and
summing over all such crossings to give ℓk(L1, L2).

(2) In terms of homology groups, denoting by [L1] the homology
class of L1 in H1(S3\L2) and by [m] the homology class of a
meridian m of L2 generating the group H1(S3\L2) = Z, as the
solution to the equation [L1] = ℓk(L1, L2) ·m, with the choice
of orientation on m as shown in Figure 2.15.

Observe that the following symmetries hold: ℓk(L1, L2) = ℓk(L2, L1)

and ℓk(−L1, L2) = −ℓk(L1, L2), where −L1 is L1 with the opposite
orientation.

The linking number allows one to describe easily the canonical meridian-
longitude pair (m, ℓ) for a knot k ⊂ S3 in the following way. Recall
when we saw that m and ℓ are simple closed curves on the surface ∂K
such that [m] ∈ H1(K) = Z is a generator and ℓ is a longitude such
that it is null-homologous in the knot complement: 0 = [ℓ] ∈ H1(K).
The second definition of the linking number then tells us that [ℓ] = 0

is equivalent to ℓk(ℓ, k) = 0. Last, recall how orientations for m and ℓ
were chosen so that ℓk(k,m) = +1, assuming the orientations of k and
ℓ to be consistent.

Example 2.6.1 Consider the trefoil knot. Observe that the natural
choice of ℓ as a longitude running “parallel” to k as seen in Figure 2.25
yields ℓk(k, ℓ) = −3, so it does not give the canonical longitude —which
involves instead several twists.

Remark

In this way, the integral n-framing of a knot k is equivalent to the
choice of a longitude ℓ turning around k in such a way that

ℓk(ℓ, k) = n.

Thus, another way of representing a framed knot is depicting it as a
closed band, one of whose boundary components represents the knot
itself and the other one the chosen longitude (see Figure 2.25).
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Figure 2.26: Kirby move K1.

Figure 2.27: Kirby move K2.

Figure 2.28: Sketch of a full right
twist.

2.7 Kirby moves

Last, let us address the natural question of determining when two
framed links in S3 give rise to the same 3-manifold under integral
surgery. The answer is given by the following two elementary operations
which leave the resulting 3-manifold unchanged.

Definition 2.7.1 Let L ⊂ S3 be a framed link, defining a closed
orientable 3-manifold by integral surgery on it. The Kirby moves
on the link and its framing are defined as:

K1. Add or delete any unknotted circle with framing ±1 (see Figure
2.26).

K2. Slide one component of the link L over another.
This goes as follows. Consider two link components L1 and
L2 respectively framed by integers n1 and n2 and let L′

2 be a
longitude defining the framing n2 of L2 —i.e. ℓk(L2, L

′
2) = n2.

The pair L1 ∪ L2 is then replaced by L# ∪ L2 where L# =

L1#bL
′
2 with b being any band connecting L1 to L′

2 (see Figure
2.27). It is said that L1 was slid over L2 and denote the new
component L# = L1 + L2.

Remark 2.7.1 Observe that all framings are preserved but the one
for L1, whose modification L# has framing

n1 + n2 + 2ℓk(L1, L2).

An orientation for both L1 and L2 must be given in order to compute
ℓk(L1, L2). This is done in such a way that they together define an
orientation on L#, which dependes on how the band b is glued in.
Finally, the answer to our question:

Theorem 2.7.1 (Kirby) The closed oriented manifolds obtained
by integral surgery on framed links L and L′ are homeomorphic by
an orientation preserving homeomorphism if and only if L′ can be
obtained from L by a sequence of moves of types K1 and K2.

For computational purposes, it is handy to have the following result,
where a full twist means the one given by Figure 2.28.

Proposition 2.7.2 An unknot with framing ±1 can always be moved
away from the rest of the link L with the effect of giving all arcs going
through the unknot a full left/right twist and changing the framings by
adding ∓1 to each arc, assuming they represent different comoponents
of L (see Figure 2.29 below).a

a In general, the framing changes according to the rule n1 + n2 + 2ℓk(L1, L2)
seen before.

See Figure 2.30 and Figure 2.31 for the cases with 1 and 2 arcs. In
Figure 2.31, the framings increase by ±1 if the arcs belong to different
components of L, but change by either 0 or ±4 if they belong to the
same component.
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Figure 2.29: Reversible operation on
an unknot with framing ±1.

Figure 2.30: Operation for 1 arc pass-
ing through the ±1 framed unknot.

Figure 2.31: Operation for 2 arcs
passing through the ±1 framed unknot,
showing the corresponding full twist.

Definition 2.7.2 The operation shown in Figure 2.29 along with
discarding the unknotted, unlinked component is known as blow-
down, and the converse operation as blow-up.

The following final useful result allows one to further simplify these
framing diagrams when special required conditions are met, as described
below.

Proposition 2.7.3 Given a framed link L with a zero-framed unknot
component L0 linking just one other component L1 geometrically
once, then removing L0 ∪ L1 away from the link L doesn’t change
framings and cancells out.

Similarly, one can work with the earlier described graphs and define
corresponding moves on them. For instance, the blow up and blow
down moves for the equivalent plumbing graphs are shown in Figure
2.32 when considering (a) two arcs and (b) one single arc going through
the unknot with framing −1.

Figure 2.32: Neumann moves (a) and
(b) for plumbing graphs, corresponding
to Kirby moves K1 and K2.

These notions are used for instance in [GM19] when considering negative
definite plumbing graphs to obtain specific invariants of plumbed knot
complements.





1: These interactions are the ones fa-
mously represented by Feynman dia-
grams in the perturbation theory of
quantum mechanics (see Figure 3.1).

Figure 3.1: Feynman diagram for
gluon radiation.

2: The Yang-Lee-Fibonacci model.
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It is shown that 2 + 1 dimensional quantum Yang-Mills theory, with an
action consisting purely of the Chern-Simons term, is exactly soluble
and gives a natural framework for understanding the Jones polynomial
of knot theory in three dimensional terms. In this version, the Jones
polynomial can be generalized from S3 to arbitrary three manifolds,
giving invariants of three manifolds that are computable from a surgery
presentation. These results shed a surprising new light on conformal
field theory in 1 + 1 dimensions.

Edward Witten [Wit89]

In theoretical physics, Quantum Field Theory (QFT) is an extremely
successful theoretical framework combining both Special Relativity and
Quantum Mechanics. While yet not fully understood and unable to
describe Gravity in a consistent manner, some of its predictions have
been experimentally tested to agree with an incredibly high accuracy,
higher than any other theoretical prediction in physics. The final great
unification fitting Gravity into this picture is being studied by different
candidate theories such as Quantum Loop Gravity or Twistor Theory,
for instance, related to the String Theory world of theoretical physics.

Quantum Field Theory is important because it enables the construc-
tion of physical models of subatomic particles and quasiparticles in
different fields such as particle physics and condensed matter physics.
It regards particles as excited states (quanta) of their fundamental
underlying quantum field, whose interactions are described by coupling
or interaction terms in the Lagrangian of the theory1 . Typically, QFTs
are defined by giving their Lagrangian or directly by the corresponding
action, from where the partition function of the theory is obtained.

Here we present a famous QFT known as Chern-Simons theory (mainly
following [Wit89; PK16; Gra]), which has turned out to be very at-
tractive due to its interesting features. Given that its defining action
does not depend on the metric of spacetime, the theory shows to own
interesting topological properties. It is in fact the main example of a
Topological Quantum Field Theory as defined in the first chapter. It
further describes topological order in the so-called fractional quantum
Hall effect in condensed matter physics, enables the description of
topological insulators and is a key mathematical object in the theory of
Topological Quantum Computers (TQC), where the most simple any-
onic model2 is described by a SU(2) Chern-Simons theory. Moreover,
its dynamics on the 2-dimensional boundary of 3-manifolds reveals a
strong relation to Conformal Field Theory, specifically to the Wess-
Zumino-Witten theory. In mathematics, it is closely related to the
theory of quantum groups, Khovanov homology, and the theory of knot
and 3-manifold invariants such as the Jones polynomial, as shown by
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3: We refer the reader to Appendix
B for a review on Lie groups and Lie
algebras.

4: The Standar Model of particle
physics, for example, is a non-abelian
gauge theory with symmetry group
U(1)× SU(2)× SU(3).

5: To simplify, one may think of it as
the trivial bundle E =M×G, although
the theory works in the general setting.

Figure 3.2: A connection can equiv-
alently be described by the choice of
a horizontal subspace Hp ⊂ TpP for
each tangent space to the principal bun-
dle P . A way to think of a connection
form ω of the principal bundle is view-
ing it as projection operator onto the
tangent bundle TP . The kernel is then
given by the horizontal subspaces for
the associated Ehresmann connection.
Compatibility with the right group ac-
tion of G on P is required.

Edward Witten in [Wit89], and which constitutes a field of current
research.

It is in this last framework where our project is carried out, yet without
losing our interest in the physical features of the theory. In fact, we end
this chapter with some comments on the relation between Chern-Simons
theory and both the Quantum Hall Effect and Quantum Gravity.

3.1 Abelian Chern-Simons Theory

We start by presenting the abelian Chern-Simons theory, which re-
covers some weak topological invariants such as the linking number
encountered in Chapter 2.

First, we introduce some geometrical background. We start with an
oriented 3-manifold M representing spacetime and further a mathemat-
ical object confering some structure: a compact, simple Lie group G

(also called gauge group) with the corresponding Lie algebra g.3 The
term abelian, then, refers to the commutativity of the gauge group G
in the theory. In physics, one calls a gauge theory a field theory with
some symmetry –given by the Lie group– in a way that the Lagrangian
of the theory remains invariant under local transformations carried
out by smooth operations composing the Lie group, known as gauge
transformations.4 The symmetry naturally extends to the dynamics
of the theory. The term gauge refers to the mathematical formalism to
regulate redundancies in degrees of freedom of the Lagrangian of the
theory. Chern-Simons theory is indeed a gauge theory, meaning that a
classical configuration on a given manifold M with gauge group G can
mathematically be described by a G-bundle5 on M , typically denoted
E →M . The sections of E are precisely the gauge transformations; i.e.
smooth maps

g :M → E

x 7→ (x, gx)

where gx ∈ G. Abusing notation one may simply write g(x) = gx
thinking of g as a map M → G producing spacetime-dependent el-
ements of G. For gx lying close to the identity element of G, one
considers instead infinitesimal gauge transformations (the generators
of the gauge group by exponentiation) and views g(x) as a g-valued
0-form, a spacetime-dependent Lie algebra generator.

We also introduce into the game a principal connection A on E,
which may be roughly regarded as a g-valued 1-form on M . In local
coordinates, it reads A = Aµdx

µ with the Aµ(x) lying in the Lie
algebra called the gauge field. Each of these can be expanded in a
basis Ta of g as Aµ(x) = Aaµ(x)Ta, with a = 1, . . . ,dimG. Under gauge
transformations, it is known that the gauge field transforms as

Aµ −→ A′
µ = g−1Aµg + g−1∂µg, g = g(x) ∈ E.

For the infinitesimal analogue of this law dealing with the Lie algebra
instead, one introduces the covariant derivative D acting on g-valued
differential forms ω by Dµω = ∂µω + [Aµ, ω], with [·, ·] the Lie bracket.
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6: Here Ω0(M, g) denotes the set of
g-valued 0-forms on M .

7: For we expect twist-free derivatives
to commute.

8: The Lie group U(n) is the group of
unitary n × n matrices, which in the
n = 1 case reduces to the group of unit
complex numbers eiψ, each given by
a phase ψ. The symmetry then corre-
sponds to invariance under change of
phase.

9: Indeed, observe that A′ ∧ dA′ with
A′ = A+ dΛ expands as

A ∧ dA+ dΛ ∧ dA+ (A+ dΛ) ∧ d2Λ,

where the term d2Λ vanishes and the
second one can be written as an ex-
act form dΛ ∧ dA = d(ΛdA) (recall
Λ ∈ C∞(M) is a zero-form). Hence,
the integral after the change of vari-
ables splits into two terms: one giving
the abelian Chern-Simons action and
the other being an integral of an ex-
act form over a closed manifold M . By
Stokes theorem∫

M
dω =

∫
∂M

ω

with ∂M = ∅ and ω = ΛdA, the second
term vanishes.
10: While in classical mechanics the
trajectory followed by a particle is de-
termined by the path minimizing the
action functional S[A], in quantum
mechanics one considers the contribu-
tions of all the paths connecting the
two points, averaged by the probability
function eiS/ℏ. This is called the par-
tition function or Feynman path in-
tegral. In the present discussion, how-
ever, the term ℏ will be absorbed into
the action functional.
Concerning the correspondence princi-
ple, observe that in the classical limit
ℏ → 0 large contributions to the inte-
gral will tend to be cancelled because
of the rapid oscillations in eiS/ℏ. Nev-
ertheless, these cancellations wont hap-
pen at the critical points of S, so the
main contributions to the Feynman
path integral will come from the classi-
cal trajectories of the particle.

With this at hand, a gauge field will transform under an infinitesimal
or local gauge transformation ϵ(x) ∈ Ω0(M, g)6 as

Aµ −→ A′
µ = Aµ +Dµϵ.

Notice that Dµ is kind of a twisted version of ∂µ ruled by [Aµ, ·]. A
way to measure the strength of the twisting effect produced by Aµ is
to observe how much Dµ fails to commute with itself7 . This gives rise
to the definition of the curvature of the connection (also called gauge
field strength), given by

Fµν := [Dµ, Dν ] = ∂µAν − ∂νAµ + [Aµ, Aν ] ≡ F = dA+A ∧A.

For abelian G, all commutators vanish and so Dµ = ∂µ. The curvature
Fµν reduces then to the familiar Maxwell field strength tensor. In
the next section, however, we will consider the case of non-abelian
Chern-Simons theory. The connection A is said to be flat if F = 0.

Finally, we can present the abelian Chern-Simons theory [PK16] with
gauge group8 U(1), which is the theory is described by the ac-
tion

Abelian Chern-Simons action

S =
κ

4π

∫
M

A ∧ dA

where κ is a coupling parameter or Chern-Simons level and 4π is a
factor given by convention. Observe the absence of metric dependence
in the action, as opposed to what is common in other field theories. It
shows gauge invariance under transformations of the form A→ A+ dΛ

with Λ a zero-form9 . Physicists may rewrite this action as

S =
κ

4π

∫
M

d3x ϵµνρAµ∂νAρ,

analogous to the photon field in electrodynamics. Recall that ϵµνρ is
the totally antisymmetric Levi-Civita symbol. Despite its simplicity,
this theory already captures some topological invariants, as we shall
see in the following. Given the action S, the partition function is the
functional integral given by10

Partition function

Z(M) =

∫
DAeiS[A],

where DA is the functional measure. The integration is thus carried
out over all possible gauge connections modulo gauge transformations.
Actually, the classical phase space of the theory is given by the moduli
space of flat connections (modulo gauge transformations), since the
equations of motion following from the action are

δS = 0⇒ κ

4π
ϵµνρFνρ = 0⇒ F = 0,
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11: In differential geometry, the notion
of holonomy of a connection A on a
smooth manifoldM is a consequence of
the curvature of the connection. It mea-
sures the loss of geometrical informa-
tion when being transported through
parallel transport (see Figure 3.3).

Figure 3.3: Parallel transport of a vec-
tor v along a closed piecewise smooth
path γ on a sphere, yielding a vector
Pγ(v). The corresponding element of
the holonomy group is the rotation of
v into Pγ(v) by an angle α.

where Fµν = ∂µAν−∂νAµ in this abelian situation, hence the boring no
dynamics in the theory with zero curvature. However, a more interesting
theory can be obtained by adding some coupling terms into the theory,
as we shall explore in a later section.

Now, the observables of this theory respecting the symmetries of gauge
invariance and metric independence are the Wilson loop or knot opera-
tors given by the holonomy11 of A around the closed loop determined
by a knot K as

W (K) = exp

(
n

∮
K

A

)
where n ∈ Z is said to measure the charge of the knot. The quantum
information of a theory is obtained through the expectation value of
its observables, which in this case are given by

⟨exp (n
∮
K

A)⟩ = ⟨W (K)⟩ = 1

Z

∫
DA W (K)eiS[A]

= exp

(
n2

2
⟨
∮
K

Aµ(x)dx
µ

∮
K

Aν(y)dy
ν⟩
)
.

In the case of a two-component link L with components K1 and K2,
the corresponding observable has an expectation value

⟨W (L)⟩ = ⟨exp (
∮
K1

A) exp (

∮
K2

A)⟩

whose exponential form can be expressed in terms of two-point functions
⟨Aµ(x)Aν(y)⟩. Choosing the Lorentz gauge ∂µAµ = 0, the explicit form
of these for the Chern-Simons action is

⟨Aµ(x)Aν(y)⟩ =
i

κ
ϵµνρ

(x− y)ρ

|x− y|3
.

This finally gives

⟨
∮
K1

A

∮
K2

A⟩ = 4πi

κ
L(K1,K2)

where
L(K1,K2) =

1

4π

∮
K1

∮
K2

dxµdyνϵµνρ
(x− y)ρ

|x− y|3

turns out to indeed define the linking number of the two knots, a
topological invariant we introduced in Chapter 2. A self-linking number
or framing can also be defined by choosing a framing of the knot K,
giving a displaced knot Kf with shifted coordinates yµ(s) = xµ(s) +

ϵnµ(s) where s parametrizes K, ϵ → 0 and nµ(s) is the unit vector
field which is normal to the curve at s:

SL(K) = lim
ϵ→0

1

4π

∮
K

∮
Kf

dxµdyνϵµνρ
(x− y)ρ

|x− y|3
.

In general, for a link L = ⊔Ni=1Ki, the expectation value of the Wilson
loop will be

⟨W (L)⟩ = exp

2πi

κ


N∑
ℓ=1

n2ℓSL(Kℓ) +
∑
ℓ̸=m

nℓnmL(Kℓ,Km)
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12: Notice the resemblance to other in-
dex theorems in differential geometry
—such as the Atiyah-Singer theorem or
the Gauss-Bonnet theorem

2πχ(Σ) =

∫
Σ
K dµΣ,

where Σ is an embedded closed surface
in R3, K : Σ → R its gaussian curva-
ture, µΣ the measure induced by the
riemannian metric and χ(Σ) its Euler
characteristic–, all of which appearing
as an equality involving the integral of
a differential form on the one side and
a specific topological invariant on the
other.

13: This is to be put into contrast with
other theories, such as the standard
Yang-Mills theory

SYM =

∫
M

√
ggµρgνσTr(FµνFρσ),

depending on a choice of metric gµν .

14: Under infinitessimal gauge trans-
formations

Aµ → Aµ +Dµϵ,

with ϵ a generator of the gauge group
and corresponding covariant derivative

Dµ = ∂µ + [Aµ, ·].

15: The one actually appearing in the
partition function

Z =

∫
DA eiS .

Consistency of QFT does not require
the action of the theory to be sin-
gle valued, but only the term eiS , as
in Dirac’s famous work on magnetic
monopoles for instance.

Recall that there exists a canonical frame in S3 where SL(K) is zero,
the 0-framing for knots described in Chapter 2. This canonical framing
is unchanged under Reidemeister moves so it can be used to construct
ambient isotopy invariants. On the other hand, the braiding does not
preserve the frame and extra correction factors must be added. However,
the relating framing factors are exactly known. In our project, we will
deal with 0-framed knots.

3.2 Non-abelian Chern-Simons Theory

The name “Chern-Simons theory”, however, mainly refers to the more
interesting non-abelian case refering to the non-commutativity of its
gauge group G. We start with its definition.12

Definition 3.2.1 Consider given a closed 3-manifold M and a
compact (non-abelian) semisimple Lie group G. Let E be a G-bundle
and on E place a connection A = Aµdx

µ = (AaµTa)dx
µ, a field

which we may view as a Lie algebra valued one-form. Then, the
(non-abelian) Chern-Simons theory in three dimensions is the one
given by the actiona

SCS =
κ

4π

∫
M

Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
where κ is the level or coupling constant.
a The symbol Tr here denotes an invariant bilinear form on the Lie algebra g of
G, which is a multiple of the Killing form. The normalization condition is given
by Tr(TaTb) =

1
2
δab.

Compare the this expression to the abelian case, where the additional cu-
bic term was missing. The choice of the famous Chern-Simons three-form
for the definition of SCS is naturally given by the aim of formulating a
generally covariant theory through a metric-independent Lagrangian,
so that all observables be topological invariants13 . Physicists may write
the CS action in the equivalent form

SCS =
κ

4π

∫
M

d3x ϵµνρ Tr

(
Aµ(∂νAρ − ∂ρAν) +

2

3
Aµ[Aν , Aρ]

)
.

The equations of motion are obtained from the variation δSCS produced
by a field variation δA, yielding

δSCS = 0⇒ F aµν = 0.

Thus, the phase space of the theory is the space of flat connections on
the G-bundle E.

To impose the theory to be gauge invariant14 , means imposing gauge
invariance on the quantity with physical meaning15 eiS . This results
in the condition that the phase term ei2πκ equals one, from where the
quantization condition κ ∈ Z is obtained.
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16: Path-ordering P being necessary
for a consistent definition, since
holonomies yield elements of the gauge
group, which in this case is non-
commutative.

17: Although not explicitly written, no-
tice the dependence on A of both in-
tegral factors. Recall that integration
is carried out over the space of all con-
nections modulo gauge transformations
A/G.

18: As mentioned earlier, the path in-
tegral formulation of QT comes from
the notion that particles don’t follow
the definite paths governed by New-
ton’s laws but rather follow “all the
possible paths”, to be summed with a
given assigned probability each. These
paths in spacetime can be quite irregu-
lar and even knotted, with any number
of loops and zigzags, although these
complicated ones turn out to be less
likely.

19: Meaning the operation of both
Ki → −Ki and Ri → R̄i for all
i = 1, . . . , s.

20: Definition of q may vary in sign or
a power of two depending on conven-
tions.

One can proceed with perturbation theory (as is common in QFT) by
rescaling Aµ → λAµ and redefining κ = 4π/λ2, yielding

SCS =

∫
M

d3x ϵµνρTr

(
Aµ∂νAρ + λ

2

3
AµAνAρ

)
,

and expanding this expression in λ. Notice that large κ means here
weak coupling, since κ ∝ 1

λ2 .

Concerning observables, in QFT one wants them to satisfy gauge
invariance as well. Again, the Wilson loops from QCD give a natural
family of observables which are further metric independent, thus keeping
general covariance. A Wilson loop operator of a link L will now be a
functional of the connection A consisting of the product of the path-
ordered holonomies16 of A around the curve defined by each knot
component Ki, yielding a group element of G defined up to conjugacy,
and subsequently taking its trace TrRi

in the irreducible representation
Ri with which each Ki is decorated:

WR1,...,Rs
(L) =

s∏
i=1

TrRi

(
P exp

∮
Ki

A

)
.

The obtained observables are thus the vacuum expectation values given
by the Feynman path integrals17 18

Chern-Simons Feynman path integral

VR1,...,Rs
(L) = ⟨WR1,...,Rs

(L)⟩ = 1

Z

∫
A/G
DA eiSCSWR1,...,Rs

(L)

which requires the link to be framed. Here the normalization factor
Z is the partition function, corresponding to the integral computed
in the absence of Wilson loops. As we shall see, these expressions
indeed give invariants of framed links as expected from the topological
invariance. For convenience, we will work with the unnormalized integral
Z · VR1,...,Rs(L) and denote it Z(M ;L) for short. Observe that the
orientation of the knots Ki give the direction in which a particle moves
around that loop, with charge corresponding to the representation Ri.
Since changing orientation Ki → −Ki is equivalent to conjugation of
Ri → R̄i, charge conjugation19 leaves Z(M ;L) invariant and hence
the Chern-Simons action as well. Notice also that it is through the
Wilson loop operators that knots have come to play a role.

In the coming section we will show how these invariants are in the case
of links in S3 precisely the ones appearing in the Jones theory and its
generalizations, which further yield invariants of three-manifolds—knot
complements— through surgery on links, as seen in Chapter 2. This
will be done by choosing the gauge group SU(N) and the Ri all being
its N -dimensional representation, yielding in this case the two variable
generalization of the Jones polynomial, where the variables N and κ

are analytically continued to complex values, such as20

q = exp

(
2πi

N + κ

)
.
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21: In the formalism of canonical quan-
tization, the mathematical description
of classical mechanics is upgraded to
the one of quantum mechanics by re-
placing objects such as the manifolds
representing phase spaces, fields on
them and the Poisson bracket, by the
usual Hilbert spaces, operators and the
commutator bracket, respectively.
22: To view the Chern-Simons par-
tition function as a TQFT, one for-
mulates the theory to allow manifolds
with boundary. Given a manifold M

with boundary ∂M and a connection
α ∈ Ω1(∂M, g), denote Aα for the
space of fields A ∈ A such that they
restrict to A|∂M = α. Then

Z(M)α =

∫
Aα/G

DAeiSCS

and is viewed as a function of α on
Ω1(∂M, g). In [Koh02] it is described
in detail how to define the quantum
Hilbert space Z∂M of functions on
Ω1(∂M, g) where Z(M)α lives in and
satisfying the TQFT axioms such as

▶ (orientation) Z(∂M)∗ = Z∗
∂M .

▶ (multiplicativity) For a disjoint
boundary ∂M = N1 ⊔N2,

ZN1⊔N2
= ZN1

⊗ ZN2
.

▶ (gluing) For a decomposition
M =M1 ∪M2 with boundaries
∂M1 = (∂M2)∗,

Z(M) = ⟨Z(M1), Z(M2)⟩.

23: To be normalized by Z(S3;L).

Figure 3.4: A manifold M with a link
consisting of one knot or curve C sit-
ting inside. Around an inconvenient
crossing, a small sphere S is consid-
ered, cutting M into the simple inte-
rior piece and the more complicated
exterior piece.

However, other Lie groups (or corresponding Lie algebras) can be
chosen. In fact, in the section on Quantum Gravity we will deal with
the Lie algebra sl2, the complexification of su2. And in our project in
the next chapter we will not only comment on results concerning sl2
and slN+1 in general, but will also work with the Lie algebras so2N .

3.3 Chern-Simons and the Jones Polynomial

We present here the main ideas shown by Witten in [Wit89] about
the connnection between the Chern-Simons field theory and the the
Jones polynomial invariant of knot theory. We use notions on TQFTs
introduced in Chapter 1. Invariants of 3-manifolds can then obtained
by arguments concerning surgeries on links, as described in Chapter 2.
We also refer the reader to [PK16].

We will follow an approach in the framework of canonical quantization21

in which a manifold M containing a link L is sliced into many pieces,
each appearing locally as Σ× R with Σ a two-dimensional Riemann
surface. On each of these pieces, the action SCS in the gauge A0 = 0

yields the classical solution of zero curvature Fµν = 0 corresponding
to a flat connection. This means that the physical space is the moduli
space of flat connections on Σ modulo gauge transformations, which
—nicely enough— has a finite volume. Quantization after imposing such
constraint produces a finite dimensional Hilbert space HΣ with states
related to the correlation functions of the Wess-Zumino-Novikov-Witten
Conformal Field Theory (CFT) in dimension two.

Applied to Chern-Simons theory, this yields a TQFT22 given by the
Feynman path integral23 Z(Σ × R;L) sending Σ × R to a vector
|ψ⟩ ∈ HΣ that can be expanded in the basis states of the Hilbert space
(the conformal blocks in CFT). Now, a key step in the reasoning we
will follow relies on the fact that the dimension of HΣ depends on Σ,
the number of punctures we have on the boundary Σ due to Wilson
loops and the choice of representations of the gauge group with which
these loops are decorated. In the case we will deal with, CFT tells us
that the dimension must be exactly two, and this will be crucial.

Indeed, consider a three sphere S3 as our closed manifold M and a link
L sitting inside, decorated with the fundamental representation R of
the gauge group SU(N) of our CS theory. Now, as described above,
slice S3 into two pieces, say ML and MR, with boundary S2 each but
with opposite orientations, cutting the link L inside it in such a way
that the boundaries S2 are left with four punctures or marked points
each (see Figure 3.4 and Figure 3.5). The TQFT sends the two S2
boundaries of ML and MR with opposite orientations to dual Hilbert
spacesHL = H∗

R. CFT then tells us that these must be two-dimensional.
And this will be the key fact to exploit to obtain the skein relations
defining the Jones polynomial. As we will see, the Chern-Simons TQFT
sends MR to a vector |ψ⟩ ∈ HR and ML to a dual vector ⟨χ| ∈ HL, the
Jones polynomial skein relation emerging from the pairing ⟨χ|ψ⟩.

Indeed, let us show how this happens. As discussed in Chapter 1, a
TQFT will send a closed manifold such as S3 to a linear map Γ : K→ K,
yielding an invariant γ = Γ(1) which will be our polynomial in the
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Figure 3.5: The cutting of M into the
two pieces is shown more explicitly in
a schematic way: the complicated piece
on the left and the simple one on the
right.

24: Recall the vector space isomor-
phisms U∗ ⊗ V ∼= Hom(U, V ) and
U ⊗ V ∼= V ⊗ U and the fact that
K∗ ∼= K.
25: It will correpond to an overcrossing
in the simple piece of link inside MR.

26: They must be three-balls, since
they have the two-sphere S2 as bound-
ary.

Figure 3.6: The skein relation will fol-
low from considering the replacement
of MR with other linearly independent
substitutes X1, X2.

variable q depending on both N and κ. This linear map can alternatively
be computed in terms of the decomposition given by ML and MR,
according to the axioms of TQFTs. That is, being ML a cobordism
with empty in-boundary and out-boundary Σ∗ the sphere S2 with
opposite orientation, it is sent by the TQFT functor to a linear map24

ψ ∈ K ⊗HL ∼= Hom(K,HL) ∼= HL (by linearity, ϕ(1) determines the
morphism), and likewise MR with boundary Σ is sent to a linear map
χ ∈ HR⊗K = H∗

L⊗K = Hom(HL,K) = H∗
L. Then, the map Γ can be

expressed as the composition of maps Γ : K ψ−→ HL
χ−→ K corresponding

to the decomposition M =ML ∪Σ MR, which is given, denoting these
mutually dual vectors in the bra-ket notation as ⟨χ| and |ψ⟩, by the
pairing ⟨χ|ψ⟩ =: γ (as stated in [Wit88b]).

Denoting our link by L+ instead for convenience25 , we have just seen
that the Chern-Simons TQFT given by the Feynman path integral
gives us the knot invariant

VR(L+) = ⟨χ|ψ⟩.

It is now where we use the two-dimensionality of the Hilbert space
to evaluate this invariant. Indeed, this information tells us that any
state |ψ⟩ can be expressed as a linear combination of precisely two
independent states |ψ1⟩ and |ψ2⟩, condition which we may write as

|ψ⟩+ α|ψ1⟩+ β|ψ2⟩ = 0,

for some complex scalars α and β.

Let |ψ1⟩ and |ψ2⟩ be the vectors correspondingly assigned by the TQFT
two some other three-balls26 X1 and X2 with the same boundary S2 as
MR, but with different strand structure in them as shown in Figure 3.6.
These linearly independent configuration differ in that strands overcross,
undercross or not cross at all. When gluing, this yields the same manifold
M as before but with different links L+, L− and L0 differing only in that
particular crossing. By gluing ML, the linear independence condition
gives the following relation between the corresponding link invariants

⟨χ|ψ⟩+ α⟨χ|ψ1⟩+ β⟨χ|ψ2⟩ = 0,

which constitutes thus a recursion relation between these three link
invariants, what we call a skein relation.

Remark 3.3.1 It can be shown that the CS invariant for a link L
consisting of different knot components is given by the product of the knot
invariants corresponding to each component separately (slice M separating
the different components).

It is yet left to show that this indeed corresponds to the Jones poly-
nomial skein relation. What we need to do is to figure out what the
coefficients α and β are. For this purpose one uses results from CFT.
Specifically, in the Hilbert space of four-point conformal blocks, the
vectors |ψ1⟩ and |ψ2⟩ are obtained from |ψ⟩ through a braiding operator
B producing half-twists among the strands by interchanging two of
the marked points. In Figure 3.6 the two bottom punctures are flipped
when moving from MR to X1 and again to X2, each time in the same
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27: Cayley-Hamilton theorem.

28: We have now seen a way of com-
puting the Jones polynomial in quan-
tum theory using CS theory, which de-
mands the knot to be a path in a three-
dimensional spacetime (two space di-
mensions plus one time dimension)
rather than the four-dimensional one
describing real world in GR. Since the
1980s, attempts to generalize the Jones
polynomial have lead to the concept
of Khovanov homology, where a
knot becomes a physical object in four-
dimensional spacetime. It was Sergei
Gukov, Albert Schwarz and Cumrun
Vafa who recently developed a quan-
tum interpretation of Khovanov homol-
ogy, connecting it closely to most inno-
vative ideas on QFT and String The-
ory.

direction. In other words,

|ψ1⟩ = B|ψ⟩, |ψ2⟩ = B2|ψ⟩.

We may use now a classic result from linear algebra27 which states
that for an operator B over a commutative ring (such as C in our
case) satisfies its own characteristic equation. Recall that on a two-
dimensional vectors space (as is the case we are dealing with) the
characteristic equation is

det(B − λ1) ≡ λ2 − Tr(B)λ+ det(B) = 0,

where Tr(B) = λ1+λ2 and det(B) = λ1λ2. Cayley-Hamilton’s theorem
then tells us that

B2 − Tr(B)B + det(B) = 0.

Applying |ψ⟩ to this equation and recalling the expressions |ψ1⟩ = B|ψ⟩
and |ψ2⟩ = B2|ψ⟩, we get

|ψ2⟩ − Tr(B)|ψ1⟩+ det(B)|ψ⟩ = 0.

CFT gives us then the eigenvalues of this braiding operator:

λk = ± exp (iπ(4hR − hEk
)), k = 1, 2,

where a framing factor is taken into account and where hR and hEk
are

conformal weights corresponding to representations R and Ek (each Ek
being the irreducible representation appearing in the decomposition of
R⊗R = E1 ⊕ E2 as symmetric or antisymmetric parts, to which the
signs ± correspond, respectively). Explicitly,

hR =
N2 − 1

2N(N + κ)
, hE1

=
N2 +N − 2

N(N + κ)
, hE2

=
N2 −N − 2

N(N + κ)
,

which yields

λk = ± exp

(
iπ
N ∓ 1

N + κ

)
.

Using the definition of the parameter q = exp
(

2πi
N+κ

)
, this means

λ1 = q
N−1

2 , λ2 = −q
N+1

2 .

and so with Tr(B) = λ1 + λ2 and det(B) = λ1λ2 the above expression
|ψ2⟩ − Tr(B)|ψ1⟩+ det(B)|ψ⟩ = 0 after hitting it by ⟨χ| turns into

⟨χ|ψ2⟩ − (q
N−1

2 − q
N+1

2 )⟨χ|ψ1⟩ − qN ⟨χ|ψ⟩ = 0

Recalling VR(L+) = ⟨χ|ψ⟩, VR(L0) = ⟨χ|ψ1⟩ and VR(L−) = ⟨χ|ψ2⟩, we
finally obtain28

Skein relation for the (generalized) Jones polynomial

q
N
2 VR(L+)− q−

N
2 VR(L−) =

(
q

1
2 − q− 1

2

)
VR(L0),
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29: The invariant for two disconnected
component links is the product of their
corresponding invariants.

30: As seen in Chapter 2. The exten-
sion requires some further arguments,
but the underlying notions are the ones
presented there.

31: We refer the reader to [Ton16] for
a complete treatment on the Quantum
Hall Effect.

Figure 3.7: Classical Hall effect.

32: Here m is the mass of the particles,
e its charge and τ a friction term known
as scattering time.
In the previous sections we worked in
units where e = ℏ = 1. In the present
discussion, however, we will write these
parameters explicitly for clarity.

33: The structure of the matrix follows
from rotational invariance.

which precisely is the skein relation for the Jones polynomial when
N = 2 and replacing t = −q 1

2 and it is the HOMFLY-PT polynomial
skein relation

w− 1
2 q−

1
2P+(w, q)− w

1
2 q

1
2P−(w, q) =

(
q−

1
2 − q 1

2

)
P0(w, q)

for w = −q−(N+1). In the continuum limit N → 0, this recursion
recovers the skein relation for the Alexander polynomial. Given a skein
relation, one can compute the polynomial invariant for any link and
knot by recursively using it and the multiplicative property29 . Some
normalization must be given, typically by giving a value to the unknot
U , such as the quantum integer:

VR(U) = [N ] ≡ qN − q−N

q1 − q−1
.

Hence, we have seen how Chern-Simons theory gives invariants of
arbitrary links in S3 through the expectation value of Wilson loop
operators. These extend to invariants for closed oriented three-manifold
M by means of Dehn surgery, since any such manifold can be reduced
to S3 through a surgery description on a link.30 Thus, the classification
of three-dimensional manifolds is closely related to the classification of
framed links. The remaining step understanding how these invariants
are transformed under surgery is detailed in [Wit89]. In [PK16] it is
shown how these invariants for 3-manifolds are given by the Chern-
Simons partition function, up to some factor.

3.4 Chern-Simons and Quantum Hall Effect

We now move on to considerations Physics. Recall that the Chern-
Simons theory on its own presents no dynamics, since the equations
of motion are given by the condition of zero curvature. However, the
Chern-Simons term can be coupled together with other theories to
obtain a theory with dynamics where the CS term plays an interesting
role. Here we discuss the so-called Quantum Hall Effect (QHE) in the
context of condensed matter physics and its connection to Chern-Simons
theory.31

Recall first the classical Hall effect in which electrons are restricted to
move in the (x, y)-plane in the presence of a magentic field B towards
the z-direction. The Hall effect then describes that a current I made
to flow in the x-direction will induce a voltage VH in the y-direction (see
Figure 3.7). This effect can be explained through the Drude model32

m
dv

dt
= −eE− ev ×B− mv

τ
,

whose equilibrium solutions, after rewriting the velocity in terms of the
current density J = −nev with n the density of charge carriers, must
then satisfy (

1 ωBτ

−ωBτ 1

)
J =

e2nτ

m
E

where ωB = eB
m is the cyclotron frequency. This can in turn be expressed

as J = σE with33
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Figure 3.8: Plot for the longitudi-
nal ρxx and transverse ρxy resistivities
against the magnetic field intensity, as
predicted classically by the Hall effect.

Figure 3.9: Plot for the longitudi-
nal ρxx and transverse ρxy resistivi-
ties against the magnetic field intensity,
showing the Integer Quantum Hall Ef-
fect.

34: Recall that the electromagnetic po-
tential Aµ = (A0,A) contains the in-
formation about the electric and mag-
netic fields

E = −
1

c
∇A0 −

∂A

∂t
, B = ∇×A.

35: the measure d3x corresponds to
dealing with currents living in a d =

2 + 1 dimensional slice of spacetime.

36: Recall that Jµ = (ρ,J) in c = 1

units, so that the familiar continuity
equation

∂ρ

∂t
+∇J = 0

is recovered.

σ =

(
σxx σxy
−σxy σyy

)
the conductivity tensor, which for the Drude model takes the form

σ =
σDC

1 + ω2
Bτ

2

(
1 −ωBτ

ωBτ 1

)
with σDC = ne2τ

m the DC conductivity in the absence of a magnetic
field. The off-diagonal terms in the conductivity tensor are then the
responsible for the Hall effect.

Now, concerning the resistivity tensor

ρ = σ−1 =

(
ρxx ρxy
−ρxy ρyy

)
with, respectively, ρxx and ρxy the transverse and longitudinal resistiv-
ities one measures experimentally, the classical prediction (see Figure
3.8) is that they be given by

ρxx =
m

ne2τ
and ρxy =

B

ne
.

However, at low temperatures and strong magnetic fields, quantum
effects emerge and one experimentally stumbles with the Integer and
Fractional Quantum Hall Effects (see Figure 3.9). One of the
most striking features here are the plateaux on which the transverse
resistivity ρxy sits in some ranges of magnetic field before jumping to
the contiguous plateau. Measurements carried out to an extraordinary
accuracy show that the transverse resistivity is taking the values

ρxy =
2πℏ
e2

1

ν

with ν ∈ Z for the Integer QHE and ν ∈ Q for the Fractional QHE.
The latter appears when impurities are decreased, causing the inte-
ger plateaux to be less prominent while emerging other plateaux at
fractional values.

Notice the relevance of these results, since one typically expects quan-
tum effects to be observed at the microscopic level whereas these
phenomena are clearly macroscopic. Interestingly, these effects turn out
to be well explained by the Chern-Simons theory, as we shall comment
briefly in the following.

The key in the describing model lies in coupling the electromagnetic
gauge potential34 Aµ to the dynamical degrees of freedom through the
appropriate current Jµ by including a term35

SA =

∫
d3x JµAµ

in the action of the theory. Gauge invariance of SA under transforma-
tions Aµ → Aµ + ∂µω is guaranteed by the conservation of current
∂µJ

µ = 0.36 An effective field theory is given by the abelian Chern-
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37: Given a functional F [f ] depending
on fields f(x), the functional deriva-
tive δF

δf
is defined as

δF
δf(x)

= lim
ϵ→0

F [f(x′)+ϵδ(x−x′)]−F [f(x′)]
ϵ

,

in analogy to the familiar derivative
of a function. Here, instead, the func-
tional derivative tells how the num-
ber returned by the functional F [f(x)]

changes when slightly varying the fed
function f(x) by a delta distribution.
Hamilton’s principle of least ac-
tion then reads

δS

δx(t)
= 0

for S[x(t)] the action functional.

38: Recall the quantization condition
κ ∈ Z previously seen for the Chern-
Simons theory in units where e = ℏ =

1, which justifies the fact ν ∈ Z.

Figure 3.10: Quantum Hall Effect de-
scribing topological insulators, materi-
als behaving as insulators in their inte-
rior (with electrons moving in localized
closed orbits) while containing surface
conducting states along the edges.

39: We follow [Ren].

Simons action

Seff [Aµ] =
κ

4π

∫
d3x ϵµνρAµ∂νAρ,

which together with the coupling term yields the arising current through
the functional derivative37

Ji = ⟨Ji(x)⟩ =
δSeff [A]

δAi
= − κ

2π
ϵijEi

from where the Hall conductivity

σxy =
κ

2π
=

e2

2πℏ
ν

can be read after identifying κ = e2ν/ℏ, thus recovering the ν ∈ Z
Landau levels in the Integer QHE.38

Regarding the Fractional QHE, one can describe the ν = 1/m Laughlin
states by considering the mixed Chern-Simons effective action

Seff [a;A] =
e2

ℏ

∫
d3x

(
1

2π
ϵµνρAµ∂νaρ −

m

4π
ϵµνρaµ∂νaρ + . . .

)
involving the additional U(1) gauge field aµ. The previous arguments
lead to m ∈ Z and by removing the dynamical variable aµ by means of
the solution aµ = Aµ/m to its equation of motion, gives

Seff [A] =
e2

2π

∫
d3x

1

4πm
ϵµνρAµ∂νAρ.

From here, the fractional Hall conductivity

σxy =
e2

2πℏ
1

m

is obtained, as is expected for the Laughlin state. This can be generalized
to other filling fractions other than 1/m, as discussed in [Ton16].

To end this section, let us comment that the Quantum Hall Effect
plays a role in —to give an example— describing a topological state of
quantum matter in two dimensions concerning edge states in topological
insulator thin films (see Figure 3.10). We refer the interested reader to
[ZLS15] for more information.

3.5 Chern-Simons and Quantum Gravity

Last, let us briefly comment the relation between Chern-Simons theory
and (2 + 1)-dimensional gravity.39 We refer the interested reader to
Edward Witten’s work [Wit88a] and the more recent work [Guk05] by
Sergei Gukov for the quantum aspects of this gravitational theory.

Start by recalling the non-abelian Chern-Simons in local coordinates

SCS =
κ

4π

∫
M

dx3 ϵµνρ Tr

(
Aµ(∂νAρ − ∂ρAν) +

2

3
Aµ[Aν , Aρ]

)
,
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40: This choice will appear as well in
the coming chapter, when invariants
corresponding to the Lie algebra choice
sl2 will be considered.
41: The Killing form is K with com-
ponents Kab = Tr(TaTb).

42: Usual gravity is recovered when
d = 3 and κ = c4

16πG
.

Figure 3.11: Diagram of a Black Hole,
delimited by its event horizon at a dis-
tance given by Schwarzschild’s radius.
The information paradox at the sin-
gularity may be solved by means of a
Fuzzball.

43: Fuzzballs are theorized by some
superstring theory scientists to be
the true quantum description of black
holes.
Fuzzball theory removes the singularity
at the heart of a black hole by replac-
ing the whole interior region within
its event horizon by a ball of strings,
considered as the ultimate building
blocks of matter and energy. These
are thought of as bundles of energy
constantly vibrating in complex ways
in the three physical dimensions of
space and further in extra, compact
dimensions in the quantum or space-
time foam.
44: In particular, this means that the
chosen Lie algebra is determined by
the commutation relations

[Ta, Tb] = ϵ c
ab Tc,

which are precisely satisfied by the (re-
scaled) sl2 Lie algebra generators.

where A = Aµdx
µ, with µ = 1, 2, 3, was the connection and Aµ = AaµTa

was expanded in the basis Ta, with a = 1, . . . ,dim(G), generating the
corresponding Lie algebra with corresponding Lie group G. Here, the
gauge group G = SL(2,C) is chosen, viewed as a complexification of
the SU(2) Lie group considered before.40 Taking the trace and using
the Killing metric form41 Kab = Rηab with ηab = diag(−1,+1,+1) the
Minkowski metric, the CS action takes the form

SCS =
κR

4π

∫
M

d3x

(
Aaµ∂νAaρ +

1

3
fabcA

a
µA

b
νA

c
ρ

)
ϵµνρ,

where fabc are the structure constants of the Lie algebra given by
[Ta, Tb] = f c

ab Tc, up to contractions with the metric. We will come to
this expression for the non-abelian CS theory later on.

On the other hand, Gravity is described as a field theory through the
Einstein-Hilbert action

SEH [gµν ] = κ

∫
M

d(D+1)x
√
−g(R− 2Λ)

where M is a (D + 1)-dimensional Lorentzian manifold, g denotes
the determinant of the metric gµν , R is the scalar curvature and the
cosmological constant Λ has been added.42 In the present case, we
are interested in D = 2. The equations of motion are obtained from
Hamilton’s principle of least action δS

δgµν
= 0, yielding the famous

Einstein equations

Rµν −
1

2
Rgµν + Λgµν = 0.

It can be seen, [Fec06], that the Einstein-Hilbert action can be written
in the form

SCartan[e, ω] =−
1

8πG

∫
M

d3x

{
ea ∧

(
dωa +

1

2
ϵabc ω

b ∧ ωc
)}

+
1

8πG

∫
M

d3x

(
Λ

3!
ϵabc e

a ∧ eb ∧ ec
)
,

where ea are the so-called dreibein and ωa the components of the spin
connection. Restricting to the case of negative cosmological constant
Λ = −1/ℓ2 —since it is the only one where black hole43 type solutions
appear— and defining the variables

A±a = ωa ± 1

ℓ
ea,

the action takes the following form

S =− ℓ

32πG

∫
M

(
A+a ∧ dA+

a +
1

3
ϵabc A

+a ∧A+b ∧A+c

)
+

ℓ

32πG

∫
M

(
A−a ∧ dA−

a +
1

3
ϵabc A

−a ∧A−b ∧A−c
)

− ℓ

32πG

∫
M

d
(
A+a ∧A−

a

)
.

Comparing this expression with the one for the Chern-Simons action
SCS found before, we see that taking44
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45: According to Stokes theorem, the
integral of an exact form can be ex-
pressed as an integral over the mani-
fold’s boundary∫

M
dξ =

∫
∂M

ξ,

which vanishes for instance if ∂M = ∅.

κR = − ℓ

8G
and fabc = ϵabc,

the Einstein-Hilbert action describing Gravity can be expressed in
terms of two copies of the Chern-Simons action

SEH = SCS [A
+]− SCS [A−] +B.T.

plus a boundary term that vanishes for suitable boundary conditions.45



1: These knot complements are repre-
sented by plumbing graphs with one
distinguished vertex, as the ones de-
scribed in the end of Chapter 2.
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Resurgence is the process of recovering non-perturbative features of
a function from its asymptotic (perturbative) expansion. This is very
useful in quantum mechanics and quantum field theory.

We are interested in applying resurgence analysis to the Chern-Simons
functional. This was done for closed 3-manifolds, and we will show how
the same techniques can be used for knot complements.

Sergei Gukov and Ciprian Manolescu [GM19]

In their recent work [GM19], S. Gukov and C. Manolescu theorized
about the existence of a two-variable series, denoted FK(x, q) for every
knot K, which may be viewed as an analytical continuation of the
colored Jones polynomial∗. Here, the large color R-matrix approach
discussed in [Par20] is followed to study FK for some links and extend
these results to other Lie algebras different from the building block sl2,
such as so(2n) for small n ∈ N.

By means of the theory of quantum groups [Kas95], we first derive the
R-matrix for sl2 by working with the symmetric representation and a
suitable basis. This R-matrix is in turn implemented in a Mathematica

notebook, where the FK series for different links in its braid descriptions
can be obtained. The Jones polynomial is shown to recover by setting
x = q2. Having understood this case, we present how to extend these
results for other Lie algebras such as the first so(2n), n = 2, 3, 4 . . . ,
corresponding to the Dn family of Dynkin diagrams. The main difficulty
here being to find a suitable description for the symmetric representation
of so(8) and its quantum version.

4.1 Braiding and Large Color R-matrix

Let us start by introducing the FK series and how it may be obtained.
The story begins with the invariant Ẑa(Y ; z, n, q) for knot complements1

Y = Ŷ \νK introduced by S. Gukov and C. Manolescu in [GM19],
which consists in a two-variable series in z and q depending on a choice
of a relative Spinc structure a ∈ Spinc(Y, ∂Y ) and a parameter n ∈ Z.
It turns out that in the case where the weakly negative definite plumbed
manifold Y is the complement of a knot in an integral homology sphere
Ŷ , all the different Ẑa(Y ; z, n, q) are given by a single two-variable
series

FK(x, q) := Ẑ0(Y ;x1/2, n, q) ∈ 2−cq∆Z[x1/2, x−1/2][q, q−1]]

∗ The colored Jones polynomial is the analogue of the Jones polynomial of a
knot when decorated or colored by choosing the n-dimensional representation of
sl2 := sl(2,C) (instead of the fundamental one, where elements of sl2 act naturally
as 2 by 2 matrices, i.e. n = 2). The reduced colored Jones polynomials, denoted
JK(n; q), are the ones normalized so that they yield 1 for the unknot.
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2: At least, bigger than the previously
known ones, since FK had only been
obtained for torus knots and —in an ex-
perimental way— the figure-eight knot.

3: The name braid comes from the fa-
miliar notion of hair braids.

4: The n here is different from the one
appearing in Ẑa(Y ; z, n, q).

Figure 4.1: Trivial braid.

Figure 4.2: Generator σi of the braid
group Bn.

Figure 4.3: A knot or link may be
obtained from a braid by closing it, i.e.
identifying opposite end strands.

5: The term trace refers to an opera-
tion satisfying the usual cyclic relation
for matrix traces Tr(AB) = Tr(BA)

—motivated here by demanding invari-
ance under Markov move I—, although
further conditions on this operation
may be required.

where c ∈ Z+, ∆ ∈ Q and Z[x1/2, x−1/2][q, q−1]] denotes the ring
of Laurent power series in q with coefficients in the polynomial ring
Z[x1/2, x−1/2]. It is in [Par20] where S. Park proposed a way to actually
compute the FK(x, q) series for a wide class of knots2 by using the
so-called “Large Color R-matrix”.

To understand the idea, let us introduce some concepts (we refer the
reader to [PK16; KRT]). Start by considering what is called a braid,3

a mathematical object which is going to be very useful for our purposes.
A braid consists in n vertical (possibly crossing) strings between a lower
and an upper horizontal bar.4 When there is no crossing at all (see
Figure 4.1), one calls it the trivial braid or identity braid e. When
there is a single overcrossing of the i-th string with the (i+1)-th string
(see Figure 4.2), we denote the braid as σi —the undercrossing being
denoted σ−1

i . One then realizes that these elements form a group under
composition of these generators σi, which is called the braid group
Bn and has neutral element e.

Definition 4.1.1 (Braid group) Given an integer n ≥ 3, the braid
group with n strands is the group Bn generated by n− 1 elements
σ1, . . . , σn−1 and relations

σiσj = σjσi if |i− j| > 1,

σiσi+1σi,= σi+1σiσi+1 for 1 ≤ i, j ≤ n− 1.

A general element of the braid group can be seen in solid lines in Figure
4.3. Observe in the dotted lines how a knot or link can be obtained by
identifying opposite ends of braid. This process is known as closure
of braids. The key statement is that any link can be obtained in such
a way. This theorem was proven by Alexander. Although the mapping
of braids to knots is not one to one, there is a set of moves known as
Markov moves under which braids can be transformed while still
keeping invariant the corresponding knot obtained by braid closure.
These are just two moves, given by

I : AB ←→ BA, II : A←→ Aσ±
n

for A,B ∈ Bn and Aσ±
n ∈ Bn+1, and sketched in Figure 4.4 and Figure

4.5. The steps to follow to obtain a topological invariant for knots and
links are then:

• Construct a braid representation ρ : Bn → Aut(V ).
• Find a trace5 operation ρ such that it is invariant under these

Markov moves, defining thus a knot invariant.

Here is whereR-matrices come into play. Recall its definition.

Definition 4.1.2 Let V be a vector space over K. The Yang-Baxter
equation is the following equation for a linear automorphism c of
V ⊗ V :

(c⊗ idV )(idV ⊗ c)(c⊗ idV ) = (idV ⊗ c)(c⊗ idV )(idV ⊗ c),

which holds in the automorphism group of V ⊗ V ⊗ V . A solution is
called an R-matrix.
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Figure 4.4: Markov move I.

Figure 4.5: Markov move II.

6: The representation corresponding to
Figure 4.6 is the map ρβ : V ⊗4 → V ⊗4

given by

V ⊗ V ⊗ V ⊗ V

V ⊗ V ⊗ V ⊗ V

V ⊗ V ⊗ V ⊗ V

V ⊗ V ⊗ V ⊗ V

idV ⊗R⊗idV

R−1⊗idV ⊗idV

idV ⊗R⊗idV

composed from bottom to top.

Figure 4.6: A braid β ∈ B4 sliced in
three blocks each containing an over or
undercrossing.

In a basis {vi} of V , such an automorphism c may be given by

c(vi ⊗ vj) =
∑
k,ℓ

ckℓij vk ⊗ vℓ

for some scalars {ckℓij }. The Yang-Baxter equation takes then the form∑
p,q,y

cpqij c
yn
qk c

ℓm
py =

∑
y,q,r

cq,rjk c
ℓy
iq c

mn
yr , ∀i, j, k, ℓ,m, n.

Solving these equations is a highly non-trivial problem. Nevertheless,
great progress in finding solutions to the Yang-Baxter equation has
been made in the last decades. Some of them, for instance, appear
in the context of the theory of Quantum Groups. This is in fact the
underlying mathematical structure on which the Large Color R-matrix
is defined, the choice of vector space V being given by a representation
of the selected quantum group.

Now, these solutions to the Yang-Baxter equation play a role here in
the discussion on braids because of the following result stating that
R-matrices give rise to representations of the braid groups Bn, as
desired.

Proposition 4.1.1 Let V be a vector space and c ∈ Aut(V ⊗ V ) a
solution to the Yang-Baxter equation, i.e. an R-matrix. Then, for any
n > 0, there exists a unique homomorphism ρcn : Bn → Aut(V ⊗n)

such that ρcn(σi) = ci for i = 1, . . . , n− 1, where the ci are the linear
automorphisms of the n-fold tensor power V ⊗n given by

ci =


c⊗ idV ⊗(n−2) if i = 1,

idV ⊗(i−1) ⊗ c⊗ idV ⊗(n−i−1) if 1 < i < n− 1, ,

idV ⊗(n−2) ⊗ c if i = n− 1.

This representation allows us to think of a given braid in the following
way. Slice the braid β ∈ Bn horizontally into finitely many blocks in
such a way that each block has a single over or under crossing (see
Figure 4.6). Assign to each block the automorphism of the n-fold tensor
V ⊗n consisting of idV for each vertical strand and an R-matrix (or
its inverse R−1) for each overcrossing (or undercrossing). Composing
from bottom to top the different operators corresponding to each sliced
block, one obtains an automorphism ρβ := ρRn (β) ∈ Aut(V ⊗n) for the
braid.6 The knot invariant is then obtained by taking its trace.

In general, the trace of an endomorphism is defined as follows (see
[Loc02]), where the evaluation and coevaluation maps —eV , iV — and
the bidual isomorphism —δV — appearing in the definition are provided
by the ribbon category, which is a braided category with some additional
structure.

Definition 4.1.3 (Trace) Let V be an object in a ribbon category
C and f an endomorpshism of V . Then, the trace of f , denoted
Tr(f) ∈ End(1) ∼= K, is defined as the composition

1
iV−→ V ⊗ V ∗ f⊗idV ∗−−−−−→ V ⊗ V ∗ δV ⊗idV ∗−−−−−−→ V ∗∗ ⊗ V ∗ eV ∗−−→ 1.
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Figure 4.7: The closure of a braid
β gives a knot, whose invariant is ob-
tained by the tracing operation.

This generalizes in the following way. Given a braid β ∈ Bn with n

strands, let the corresponding automorphism f = ρβ : V ⊗n → V ⊗n be
given on a basis {vi} of V by

vi1 ⊗ · · · ⊗ vin 7→
∑

k1,...,kn

fk1,...,kni1,...,in
vk1 ⊗ · · · ⊗ vkn .

Now consider the closure of this braid (as depicted in Figure 4.7) and
read it from bottom to top, starting with no strands at all —situation
to which we assign the ground field K. To each strand pointing upwards
assign the vector space V , and to each strand pointing downwards assign
its dual V ∗. Keep reading upwards till encountering the n bottom lines
from right to left —to which we assign coevaluations iV : K→ V ⊗ V ∗

given by 1 7→
∑
i vi ⊗ vi, where {vi} is the basis of V ∗ dual to {vi}.

For the n strands one gets then a map

iV ⊗n : K→ V ⊗n ⊗ (V ∗)⊗n

1 7→
∑

i1,...,in

vi1 ⊗ · · · ⊗ vin ⊗ vi1 ⊗ · · · ⊗ vin

creating n left upward strands and n right downward strands out of
nothing, corresponding to V ⊗n, (V ∗)⊗n and K, respectively. Procede
reading upwards and encounter the braid β and n downward strands
on its right hand side. To this we assign the operator

f ⊗ id(V ∗)⊗n : V ⊗n ⊗ (V ∗)⊗n → V ⊗n ⊗ (V ∗)⊗n∑
i1,...,in

vi1 ⊗ · · · ⊗ vin ⊗ vi1 ⊗ · · · ⊗ vin 7→

7→
∑

i1,...,in

∑
k1,...,kn

fk1,...,kni1,...,in
vk1 ⊗ · · · ⊗ vkn ⊗ vi1 ⊗ · · · ⊗ vin

where recall we are using the notation f = ρβ . Finally, read the top
part of the braid closure, assigning evaluation maps eV : V ⊗ V ∗ → K
given by vi ⊗ vj 7→ vj(vi) = δji , where the dual isomorphism V → V ∗∗

is implicitly used. For n strands we get

eV ⊗n : V ⊗n ⊗ (V ∗)⊗n → K∑
i1,...,in

∑
k1,...,kn

fk1,...,kni1,...,in
vk1 ⊗ · · · ⊗ vkn ⊗ vi1 ⊗ · · · ⊗ vin 7→

7→
∑

i1,...,in

∑
k1,...,kn

fk1,...,kni1,...,in
vi1(vk1)⊗ · · · ⊗ vin(vkn)

=
∑

i1,...,in

∑
k1,...,kn

fk1,...,kni1,...,in
δi1k1 ⊗ · · · ⊗ δ

in
kn

=
∑

i1,...,in

f i1,...,ini1,...,in
= Tr(f)

annihilating all the n upward strands with the n downward strands.
The trace is then this state sum operation of creation, braid action and
subsequent annihilation given by the linear operator

K
iV ⊗n−−−→ V ⊗n ⊗ (V ∗)⊗n

f⊗id(V ∗)⊗n

−−−−−−−−→ V ⊗n ⊗ (V ∗)⊗n
eV ⊗n−−−→ K

defining thus a scalar Tr(f) ∈ K.

In the context of Quantum Groups, there is an analogue called quan-
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7: Where Vn is the irreducible n-
dimensional representation of the quan-
tum group Uq(sl2) —the notation n

being arbitrary and different from the
one in Bn, and will actually be denoted
r in coming pages.
8: A topological invariant of a knot
given by the number of positive cross-
ings minus the number of negative
crossings.

Figure 4.8: Right-closure of a braid
with the leftmost strand open.

9: Verma modules.

10: Although n ∈ Z+, after this change
the variable x is considered to be
generic.

11: We refer the reader to Appendix
B for a review on Lie algebras and
their Representation Theory, contain-
ing a large amount of the notions used
throughout this chapter.

12: Observe that sl(2,C) is the com-
plexification of su(2) —the Lie alge-
bra of 2× 2 traceless skew-Hermitian
matrices corresponding to the Lie
group SU(2) of unitary matrices with
unit determinant we used when intro-
ducing the non-abelian Chern-Simons
theory—, meaning that

sl(2,C) ∼= su(2)⊗R C ∼= su(2)⊕ isu(2)

given by the Lie algebra isomorphism

C⊗R su(2) → sl(2,C)
1⊗X1 + i⊗X2 7→ X1 +

(
i 0
0 i

)
X2

for X1, X2 ∈ su(2) any two Lie algebra
generators.
13: That is, closed subgroups of the
general linear group GL(n,C).

tum trace differing by some factor of q,

Trq(f) = Tr(q2ρf),

given by quantum versions for the evaluation and coevaluation maps.

For example, the unreduced Vn-colored7 Jones polynomial of a knot
K when presented as the closure of a braid β can be recovered by

J̃K(n; q) = q−
n2−1

4 w(β)Trq(ρβ)

where w(β) is the writhe8 of the braid. In the case being considered
here, however, the framing factor wont be relevant, since only 0-framed
knots are considered.

To obtain reduced invariants, the trace is carried out over the i2, . . . , in
leaving the first strand open (Figure 4.8). The choice of i1 is not
relevant when choosing an irreduccible representation, since Schur’s
lemma guarantees that the resulting map Vn → Vn be central, i.e. a
constant multiple of the identity: C · id for some C ∈ K. The factor C
is then the reduced Vn-colored Jones polynomial JK(n; q).

Notice how in this whole construction of the trace operation underlying
the invariant, the building block is precisely the R-matrix represent-
ing the crossings in the braiding. The one used to compute the FK
invariant series, and which recovers the Jones polynomials, is a spe-
cial R-matrix —called Large Color R-matrix— given by considering
infinite-dimensional modules9 of the chosen quantum group (e.g. Uq(sl2)
for the sl2 Lie algebra) appearing in the large color limit of Vn. This
ends up giving a two-variable series in q and x := qn, which is precisely
the FK(x, q) invariant.10 For details, we refer the reader to [Par20],
where the Large Color R-matrix is defined for the special case Uq(sl2).

To deal with the general case, one obtains the Large Color R-matrix
by taking the n-dimensional irreducible representation of the quantum
group taken into consideration, which (from now on and for convenience,
using the notation r instead of n) will be the r-th symmetric represen-
tation defined over the fundamental representation, and subsequently
replacing qr 7→ x. This ends up yielding an R-matrix in two variables,
R(x, q), which is then employed in the state sum operation of tracing,
giving the FK(x, q) invariant.

4.2 The sl2 case

The Lie algebra11 sl(2,C) —or sl2 for short— owes its name to its
corresponding Lie group SL(2,C), the special linear group consisting
of invertible matrices with unit determinant.12 Given a Lie group G,
one can obtain a corresponding Lie algebra g as the tangent space to
G at the identity element e of the group. This construction deals with
the so-called left invariant vector fields and involves a certain amount
of calculations. There is, however, a shortcut argument in the case of
matrix Lie groups13 that shows how this can be achieved more directly.
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14: In the case of matrix Lie groups,
this map is precisely the exponential
power series

esX =

∞∑
k=0

sk

k!
Xk.

15: [See Appendix B.1]. The exponen-
tial map is a local diffeomorphism:
there exists U ⊂ TeG an open set con-
taining zero such that the restriction

exp |U : U → exp(U) ⊂ G

is bijective, smooth and with smooth
inverse log = exp |−1

U .
The Lie group is completely recovered
when exp is surjective (e.g. if G is com-
pact).

16: This method is equivalent to ap-
plying the Regular Value Theorem
showing that g = TeG is given by
the kernel of the differential of the
function f —defining the Lie group
as a closed manifold by the condition
f(·) = 0— evaluated at the identity
e := Id, that is:
A path γ(t) ∈ G such that γ(0) = Id

and γ′(0) = A ∈ TeG = g, is necessar-
ily of the form γ(t) = Id + tA+O(t2).
Then, for G = SL(2,C) given by the
condition f(X) = det(X) − 1 = 0

for X ∈ G, differentiating f(γ(t)) =

det(Id + tA + O(t2)) − 1 at t = 0

—corresponding to the identity γ(0) =
Id— precisely gives the condition of
traceless matrices.

17: Usually one refers to a represen-
tation ρ : g → End(V ) of a Lie al-
gebra g both as being the morphism
ρ and the vector space V . And typ-
ically one omits the notation ρ(x)v

(note that ρ(x) ∈ End(V ) is an endo-
morphism, so it may act on a vector
v ∈ V ) and denotes simply x · v, being
the action understood by the context.
Notice, as well, that a representation
may be viewed as a g-module whose
action is given by

g× V → V

(x, v) 7→ x · v

It is well-known that there exists a map, the exponential map14

exp : g→ G

A 7→ exp(A),

allowing to recover the local group structure of the Lie group from
its Lie algebra.15 The idea is to figure out through this exponential
map what the conditions imposing the Lie algebra structure must be,
given the ones for the Lie group. For instance, consider any small
element ϵA in sl2 and obtain a corresponding element in SL(2,C) by
exponentiating it, which will be close to the identity element of the
group. We want to impose that it indeed belongs to the Lie group for
small ϵ > 0, so we only have to keep track of the first order terms in ϵ.
Hence, we directly simplify the exponential to this order, writing it as
1+ϵA. Imposing that this element belongs to the Lie group SL(2,C),

1 = det(1+ ϵA) = det

(
1 + ϵa ϵb

ϵc 1 + ϵd

)
= 1 + ϵTr(A) +O(ϵ2),

and looking at the first order term, we see that the condition to be
satisfied for A is clearly Tr(A) = 0.16 Thus, sl2 consists of the vector
space over C of 2× 2 traceless matrices together with the commutator
as Lie bracket. The standard notations and generators for sl2 are

e =

(
0 1

0 0

)
, f =

(
0 0

1 0

)
, h =

(
1 0

0 −1

)
,

which satisfy the commutation relations

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

Observe, thus, that we have three generators e, f and h of sl2 as a
vector space, while only two —say e and f— suffice to generate it as a
Lie algebra: h = [e, f ].

Symmetric Representation

One always has the fundamental representation17 V2 given by acting
simply by matrix multiplication. We wish to deal with the more inter-
esting r-th symmetric representations, which will give us an asymptotic
behavior for large r. These are defined as

SymrV2 := {(v1, . . . , vr) ∈ V r2 }/Sr.

Typically one works with the symmetric tensor product representation,
where the r-th vector space Vr is given by symmetrizing the r-th
tensor product of copies of V2 and the action follows from the algebra
comultiplication map ∆ : g→ g⊗g given by ∆(x) ·v1⊗v2 = x ·v1⊗v2+
v1 ⊗ x · v2, extended iteratively as ∆k = (∆k−1 ⊗ 1) ◦∆, obtaining

∆r(x) · v1 ⊗ · · · ⊗ vr = x · v1 ⊗ · · · ⊗ vr + · · ·+ v1 ⊗ · · · ⊗ x · vr.

Notice that elements acting on symmetric tensors under index permu-
tation will give the same coefficients. As for the case of sl2, we will be
interested in finding the highest weight vector of this representation
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18: The highest weight vector v sits
“at the bottom of the ladder” defined
by the raising action f and lowering e
(also known as ladder operators). At
the bottom, e lowers v acting by zero,
annihilating the vector. Then, repeated
action of f on v ascends through the
ladder yielding a full set of vectors
forming a basis for the considered rep-
resentation.

19: Observe the need of the inverse to
indeed define a group action:

(BA) · p(x, y) = p((BA)−1 · (x, y))

= p(A−1B−1 · (x, y))

= B · p(A−1 · (x, y))
= B · (A · p(x, y)).

and the corresponding (unique) highest weight. This requires that such
vector v be annihilated18 by the lowering operator e and at the same
time be an eigenvector of h. In this very case, the vector w =

(
1
0

)
∈ V2

is trivially an eigenvector for h on the fundamental representation and is
as well annihilated by e. This highest weight vector with highest weight
λ = 1 extends naturally to a highest weight vector for the (symmetric)
tensor product representation to the vector wr = w⊗· · ·⊗w ∈ Vr with
highest weight λ = r, since it trivially satisfies the required conditions
just by looking at the expressions:

∆r(e) · wr = e · w ⊗ · · · ⊗ w + · · ·+ w ⊗ · · · ⊗ e · w = 0

∆r(h) · wr = h · w ⊗ · · · ⊗ w + · · ·+ w ⊗ · · · ⊗ h · w = r · wr

We are about to introduce the polynomial representation. As will be
shown, such representation is isomorphic to the symmetric represen-
tation. This is done by invoking the Highest Weight Theorem, which
amounts to showing that it is an irreducible representation whose
highest weight vector has the same highest weight r.

Polynomial Representation

Beyond the fundamental representation where SL(2,C) acts naturally
by matrix multiplication on vectors

( x
y

)
∈ C2, one can let SL(2,C) act

also on C[x, y] as19

A · p(x, y) = p(A−1 · (x, y)),

where p(x, y) ∈ C[x, y], A ∈ SL(2,C) and A−1 · (x, y) is the standard
representation acting by matrix multiplication A−1

( x
y

)
. One can then

use the derived action:

Definition 4.2.1 Given a Lie group G with Lie algebra g and a
smooth G-action on a set V , the corresponding derived action of g
on V is given by

X · v :=
d

dt
(exp(tX) · v)

∣∣∣
t=0

where X ∈ g and v ∈ V .

This indeed defines a Lie algebra action and, for V a complex vector
space, it allows us to obtain a Lie algebra representation of g from a
Lie group representation of G.

For instance, we may see how the thus induced action acts on C[x, y]
by letting the generators of sl2 act on the degree-r monomials xr−kyk.
We obtain:

e · xr−kyk =
d

dt

(
exp(te) · xr−kyk

) ∣∣∣
t=0

=
d

dt

(
(x− ty)r−kyk

) ∣∣∣
t=0

= −(r − k)xr−k−1yk+1 = −y ∂
∂x

(
xr−kyk

)
where we have used that the inverse of exp(tX) is exp(−tX) and the
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20: Indeed, by using h2 = 1 and thus
h2k = 1 and h2k+1 = h for k ≥ 0, we
have

exp(th) =

∞∑
k=0

tk

k!
hk

=

∞∑
k=0

t2k

(2k)!
1+

∞∑
k=0

t2k+1

(2k + 1)!
h

= cosh(t)1+ sinh(t)h.

21: All signs have been reversed and
the swap e↔ f has been applied. This
is a symmetry of the commutation re-
lations.

fact that e2 = 0⇒ exp(te) = 1+ te. Similarly, for f and h we obtain

f · xr−kyk =
d

dt

(
exp(tf) · xr−kyk

) ∣∣∣
t=0

=
d

dt

(
xr−k(−tx+ y)k

) ∣∣∣
t=0

= −kxr−k+1yk−1 = −x ∂
∂y

(
xr−kyk

)
and, with exp(th) = cosh(t)1+ sinh(t)h,20

h · xr−kyk =
d

dt

(
exp(th) · xr−kyk

) ∣∣∣
t=0

=
d

dt

(
((cosh t− sinh t)x)r−k((cosh t+ sinh t)y)k

) ∣∣∣
t=0

= −(r − k)xr−kyk + kxr−kyk =

[
−x ∂

∂x
+ y

∂

∂y

] (
xr−kyk

)
These generators indeed satisfy the commutation relations for sl2. For
convenience, however, we prefer to use these other slightly modified
generators which still satisfy the commutation relations21

e = x
∂

∂y
, f = y

∂

∂x
, h = x

∂

∂x
− y ∂

∂y
.

Observe that V := C[x, y] splits now in the different subspaces Vr of
degree-r polynomials

C[x, y] =
⊕
r≥0

Vr,

where every Vr is irreducible. Indeed, we first observe that {xr−kyk}rk=0

is a basis of Vr (with dim(Vr) = r + 1) and the generators act on this
basis elements as

e · xmyn = nxm+1yn−1, f · xmyn = mxm−1yn+1, h · xmyn = (m− n)xmyn

and thus (setting r = m+ n) the Vr are invariant subspaces:

e · Vr ⊂ Vr, f · Vr ⊂ Vr, h · Vr ⊂ Vr, r ≥ 0.

Further, let W ⊂ Vr be a non-zero invariant subspace under the action
of the generators and pr ∈ W ⊂ Vr a non-zero degree-r polynomial
pr(x, y) =

∑r
k=0 ckx

r−kyk. Let it act by e exactly r times such that
we are only left with er · pr = r!crx

k = cxr ∈W ⊂ Vr, concluding that
xr ∈ W . Let now f act on this element to iteratively obtain f · xr =
rxr−1y ∈ W , f2 · xr = r(r − 1)xr−2y2 ∈ W, . . . , fr · xr = r!yr ∈ W .
Thus, the {fk · xr}rk=0 ⊂W and, given the obtained expressions, they
are known to span all of Vr. Hence, W = Vr and Vr is irreducible.

Definition 4.2.2 Given a representation V of a Lie algebra g over
C and λ : h → C a linear functional on its Cartan subalgebra h,
define the weight space of V with weight λ as the subspace

V [λ] := {v ∈ V | ∀h ∈ h, h · v = λ(h)v}.

A weight of V is then a linear functional λ such that V [λ] is nonzero,
and nonzero elements in V [λ] are called weight vectors. Thus,
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22: See Appendix B.5 for a review on
Root systems.
23: For this theorem, recall that an
element λ ∈ h∗ is said to be dominant
if

(λ, α) ≥ 0

for all positive roots α ∈ R+, and is
said to be integral if

2(λ, α)

(α, α)

is an integer number for each root α ∈
R. A dominant integer element is
one that is both dominant and integral.

24: In an abuse of notation, we mean
here that λ ∈ h∗ is given by sending the
unique generator h of h to the complex
number r, i.e. the linear functional

λ : h → C
h 7→ r

25: We introduce here the notation

vk :=
(r − k)!

r!
fk · xr = xr−kyk.

26: See Appendix B.3 for the definition
of the universal enveloping algebra.

weight vectors are simultaneous eigenvectors for the action of the
elements of h with eigenvalue λ.a

Further, a weight λ ∈ h∗ is called a highest weight if it is higher
than every other weight of V . In turn, V is called a highest weight
module if it is generated by a weight vector v ∈ V [λ] that is annihi-
lated by all positive roots in g. Then, v is called a highest weight
vector and λ is the highest weight.
a Notice that simultaneous diagonalization is guaranteed by being h composed of

commutative elements, by definition.

Here, a weight λ ∈ h∗ is said to be higher than another weight η ∈ h∗

if their difference λ − η can be expressed as a linear combination of
positive roots with non-negative real coefficients.22 Having defined
these concepts, we can now state the following important result.23

Theorem 4.2.1 (Highest Weight Theorem) Let V be a finite dimen-
sional irreducible representation of a semisimple complex Lie algebra
g. Then,

(1) V has a unique highest weight.
(2) The highest weight is a dominant integral element.
(3) Two finite-dimensional irreducible representations with the

same highest weight are isomorphic.
(4) Every dominant integral element is the highest weight of an

irreducible representation.

In our case, we immediately see that xr ∈ Vr is the highest weight
vector for each irreducible representation Vr, since on the one hand the
Cartan subalgebra h of sl2 is generated by h and we have h · xr = rxr

(also showing that the highest weight is λ = r),24 and on the other
hand the positive root space is generated by e and we have e ·xr = 0.

Observe that the polynomial representation has given us finite dimen-
sional irreducible representations Vr with the same highest weight r as
in the symmetric representation. By the Highest Weight Theorem we
then conclude that they are isomorphic representations and so we can
equivalently work with the former one instead.

Further, the highest weight vector xr generates all of Vr under the action
of f yielding the basis {xr, f ·xr, . . . , fk ·xr = r!

(r−k)!x
r−kyk, . . . , fr ·xr}.

Using the renormalized basis {xr, . . . , (r−k)!r! fk · xr, . . . , 1
r!f

r · xr} we
have for k = 0, . . . , r, that the generators act on this basis vectors as25

h · vk = (r − 2k)vk

e · vk = kvk−1

f · vk = (r − k)vk+1

obtained by using simply the commutation relations. One can check that
indeed [e, f ] ·vk = ((k+1)(r−k)− (r−k+1)k)vk = (r−2k)vk = h ·vk.
The situation for each Vr can be described as a ladder of weight spaces

Vr[−r]
e−⇀↽−
f
· · · e−⇀↽−

f
Vr[r − 2k]

e−⇀↽−
f
Vr[r − 2k + 2]

e−⇀↽−
f
· · · e−⇀↽−

f
Vr[r].

The representation is the same for the universal enveloping algebra
U(sl2) of sl2.26
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27: QEA for short.

28: Unfortunately, there are several dif-
ferent conventions throughout the lit-
erature on Quantum Groups.

29: Again, up to conventions. Other
references may use

q
n
2 − q−

n
2

q − q−1

or even
1− qn

1− q
.

One may explicitly show the depen-
dence on q by denoting the quantum
integer as [n]q .

30: As done before, we omit here the
details on the Hopf algebra structure
(comultiplication, antipode, etc.), un-
necessary for our discussion. We refer
the reader to [Kas95].

Quantum Enveloping Algebra of sl2

This picture extends to the quantum enveloping algebra27 Uq = Uq(sl2),
a one-parameter deformation of U(sl2), the universal enveloping algebra
of sl2 (see [Kas95], Chapter VI). We transfer to the world of quantum
groups since the R-matrix approach provides us invariants of links.
This is actually the main example of a quantum group and it presents
properties similar to the ones in U(sl2) when the parameter q is not a
root of unity. The definition goes as follows:

Definition 4.2.3 Define Uq = Uq(sl2) as the algebra generated by
the variables E,F,K,K−1 with the relations

KK−1 =K−1K = 1,

KEK−1 = q2E, KFK−1 = q−2F,

[E,F ] =
K −K−1

q − q−1
.

Here the parameter q is an invertible element of the ground field C
different from 1 and −1 so that the above fraction is well defined. Also,
K plays a similar role to the usual Cartan subalgebra generator H in
the form ehH/2, up to possible ± signs and factors of 2 due to possible
conventions.28 Identifying q with eh/2, the usual universal enveloping
algebra U(sl2) is recovered from Uq(sl2) when q → 1.

It is useful to define further the so-called quantum integer for any
integer n, given by the geometric sum29

[n] :=
qn − q−n

q − q−1
= q−n+1 + q−n+3 + · · ·+ qn−3 + qn−1.

This is clearly a q-deformation of n, recovered when setting q → 1.
One also has the following combinatorial q-analogues. For any non-
negative integer k, set [k]! = [1][2] · · · [k] if k > 0 and [0]! = 1. Then,
for 0 ≤ k ≤ n, the q-binomial is defined as[

n

k

]
:=

[n]!

[k]![n− k]!
.

Alternatively, one may work instead with the similar and closely related
Hopf algebra Uh(sl2) defined as follows.30

Definition 4.2.4 Define Uh = Uh(sl2) to be the algebra generated
by the three variables X,Y,H and relations

[H,X] =2X, [H,Y ] = −2Y,

[X,Y ] =
ehH/2 − e−hH/2

eh/2 − e−h/2
.

Both Uh and Uq are indeed related through the following proposition,
and so we may talk about one or the other indistinctly.
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31: See [Kas95], Chapter XVII.

32: An appropiate choice of basis, as
the one shown below, yields simpler
expressions for the R-matrix, which
considerably ease the implementation
to a Mathematica code.

33: It follows from the identity

[a][b]− [a+ c][b− c] = [c][a− b+ c].

34: Recall the definition of the q-
Pochhammer symbol

(x; q)k :=

k−1∏
j=0

(1− xqj).

Proposition 4.2.2 There exists an injective map of Hopf algebras

ι : Uq −→ Uh

such that

ι(E) = XehH/4, ι(F ) = e−hH/4Y, ι(K) = ehH/2, ι(K−1) = e−hH/2

and ι(q) = eh/2. The ground field on which Uq is defined is the field
of fractions of the algebra of complex formal series, denoted C(q).

As mentioned, this allows us to identify Uq with the subalgebra of Uh
generated by q = eh/2, E = XehH/4, F = e−hH/4Y , K = ehH/2 and
K−1 = e−hH/2. With this at hand, the following expression for an
R-matrix can be obtained.31

Theorem 4.2.3 The element

R =
∑
ℓ≥0

(q − q−1)ℓ

[ℓ]!
q−ℓ(ℓ+1)/2e

h
2 (

H⊗H
2 + 1

2 (ℓH⊗1−1⊗ℓH))(Xℓ ⊗ Y ℓ)

is a universal R-matrix for Uh(sl2).

Notice that the infinite sum is actually finite for a representation whose
ladder is finite (at least semi-infinite), since XL ≡ 0 or Y L ≡ 0 for
some ℓ = L, truncating thus the sum and yielding polynomials instead
of infinite series. Now, given this expression, one chooses one such
representation and picks up a basis in order to explicitly obtain the
corresponding entries for this R-matrix, which in turn enables the
computation of the desired link invariants.32

Inspired by the above symmetric representation in the classical case,
we again have analogue irreducible (r + 1)-dimensional representations
Vr of Uh(sl2) with the ladder picture of weight spaces

Vr[−r]
X−⇀↽−
Y
· · · X−⇀↽−

Y
Vr[r − 2k]

X−⇀↽−
Y
Vr[r − 2k + 2]

X−⇀↽−
Y
· · · X−⇀↽−

Y
Vr[r].

where Vr[n] is the qn-eigenspace of Vr under the action of qH , although
now

[X,Y ]v = [r − 2k]v

for v ∈ Vr[r− 2k]. Replacing the notation xr−kyk by the basis elements
|r; k⟩ ∈ Vr, we get an analogous representation

qH |r; k⟩ = qr−2k|r; k⟩
X|r; k⟩ = [k]|r; k − 1⟩
Y |r; k⟩ = [r − k]|r; k + 1⟩

Where we indeed have33

[X,Y ]|r; k⟩ = ([k + 1][r − k]− [r − k + 1][k])|r; k⟩ = [r − 2k]|r; k⟩

Given this quantum representation and using the ket notation for basis
vectors, we derive the following explicit expression for the sl2 R-matrix
in terms of q-Pochhammer symbols.34
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35: For clarity throughout the proof,
we recall here the employed quantum
representation:

qH |r; k⟩ = qr−2k|r; k⟩
X|r; k⟩ = [k]|r; k − 1⟩
Y |r; k⟩ = [r − k]|r; k + 1⟩

Proposition 4.2.4 In this basis {|r; i, j⟩ := |r; i⟩ ⊗ |r; j⟩}ri,j=0, the
R-matrix on Vr ⊗ Vr has the following form

R|r; i1, j1⟩ = qr
2/4

i1∑
j2=0

δi2+j2i1+j1
x−

j1+j2
2 qj1j2

(q;q)i1 ·(x
−1qj1 ;q)i1−j2

(q;q)i1−j2 ·(q;q)j2
|r; j2, i2⟩

where we have redefined q 7→ q1/2 and hence x := qr 7→ x1/2.

The reason for the redefinition of the variable q is that it leads to this
simpler R-matrix, more handy for our computations. We now give the
proof of this result.35

Proof. As mentioned earlier, notice first that the infinite sum over ℓ ≥ 0

truncates at some point where the ladder ends, yielding a polynomial
rather than an infinite series. Indeed, we have Xℓ|r; k⟩ = [ℓ]!

[k−ℓ]! |r; k− ℓ⟩
and so after applying X precisely k times we run out of basis elements
and the action of Xk+1 on |r; k⟩ must then be zero. With this formula
at hand, we may now write

(Xℓ ⊗ Y ℓ)|r; i, j⟩ = [i]!

[i− ℓ]!
[r − j]!

[r − j − ℓ]!
|r; i− ℓ, j + ℓ⟩.

Recalling now the action of qH on this eigenbasis yielding the weights
qr−2k, the R-matrix

Rh =
∑
ℓ≥0

(q − q−1)ℓ

[ℓ]!
q−ℓ(ℓ+1)/2e

h
2 (

H⊗H
2 + 1

2 (ℓH⊗1−1⊗ℓH))(Xℓ ⊗ Y ℓ),

after replacing eh/2 by q, yields

Rh|r; i1, j1⟩ =
i∑

ℓ=0

(q−q−1)ℓ

[ℓ]! q−ℓ(ℓ+1)/2qφ [i]!
[i−ℓ]!

[r−j]!
[r−j−ℓ]! |r; i− ℓ, j + ℓ⟩

where φ = 1
2
(r− 2(i− ℓ))(r− 2(j+ ℓ))+ 1

2
(ℓ(r− 2(i− ℓ))− ℓ(r− 2(j+ ℓ))) =

r2

2
−r(j+i)+2(i−ℓ)j+2(i−ℓ)ℓ−ℓ(i−j−2ℓ). The first quantum factorials

here can be grouped into a q-binomial and we may then rewrite the
remaining fraction of factorials as

[r − j]!
[r − j − ℓ]!

=

ℓ−1∏
k=0

qr−j−k − q−(r−j−k)

q − q−1
=

ℓ−1∏
k=0

qr−jq−k
(
1− q−2(r−j−k))

(q − q−1)ℓ

=
q(r−j)ℓq−

∑ℓ−1
k=0 k

(q − q−1)ℓ

ℓ−1∏
k=0

(
1− x−2q2(j+k)

)
=
q(r−j)ℓq−ℓ(ℓ−1)/2

(q − q−1)ℓ

ℓ−1∏
k=0

(
1− x−2q2(j+k)

)
where x = qr. Notice how the denominator will cancel out the first
factor in the R-matrix. Since ℓ(ℓ+ 1) + ℓ(ℓ− 1) = 2ℓ2, we get

∑
ℓ≥0

[
i

ℓ

](
ℓ−1∏
k=0

(
1− x−2q2(j+k)

))
q(r−j)ℓq−ℓ

2

qr
2/2x−(j+i)qϕ|r; i− ℓ, j + ℓ⟩

where ϕ = 2(i− ℓ)j + 2(i− ℓ)ℓ+ ℓ(j − i+ 2ℓ). Rearranging terms, it
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36: Indeed, concerning the quantum
factorial we have

[n]′! =
n∏
k=1

qk/2 − q−k/2

q1/2 − q−1/2

=

n∏
k=1

q−k/2(1− qk)(−1)

q1/2 − q−1/2

=
q
− 1

2

n∑
k=1

k

(−1)n

(q1/2 − q−1/2)n

n∏
k=1

(1− qk)

=
q−n(n+1)/4

(q1/2 − q−1/2)n
(−1)n · (q; q)n.

Figure 4.9: The braid description of
a right-handed Trefoil knot, decorated
with the dummy indices involved in the
state sum.

37: See Appendix D for more details.

becomes

q
r2

2

∑
ℓ≥0

[
i

ℓ

](
ℓ−1∏
k=0

(
1− x−2q2(j+k)

))
x−((j−ℓ)+j)q2(i−ℓ)j+(i−ℓ)ℓ|r; i− ℓ, j + ℓ⟩.

We now apply the change q 7→ q1/2 and thus, correspondingly, x 7→
x1/2. At this stage we realize that the product becomes simply the
q-Pochhammer (x−1qj ; q)ℓ. Also, the quantum integer becomes36

[n]′ =
qn/2 − q−n/2

q1/2 − q−1/2
and thus [n]′! =

q−n(n+1)/4

(q1/2 − q−1/2)n
(−1)n · (q; q)n.

Therefore also [
i

ℓ

]′
=

[i]′!

[ℓ]′![i− ℓ]′!
=
q−(i−ℓ)ℓ/2(q; q)i
(q; q)ℓ(q; q)i−ℓ

.

With these changes, we get

q
r2

2

i∑
ℓ=0

x−
(i−ℓ)+j

2 q(i−ℓ)jq
(i−ℓ)ℓ

2 q−
(i−ℓ)ℓ

2
(q;q)i(x

−1qj ;q)ℓ
(q;q)ℓ(q;q)i−ℓ

|r; i− ℓ, j + ℓ⟩

Thus, by defining i1 := i, j1 := j and i2 := j1 + ℓ, j2 := i1 − ℓ, we
finally obtain the expression

R|r; i1, j1⟩ = qr
2/4

i1∑
j2=0

δi2+j2i1+j1
x−

j1+j2
2 qj1j2

(q;q)i1 ·(x
−1qj1 ;q)i1−j2

(q;q)i1−j2
·(q;q)j2

|r; j2, i2⟩,

as desired.

One can implement this R-matrix to a Mathematica notebook and
compute knot invariants such as the Jones polynomial or the FK(x, q)

invariant. Consider for instance the case of the right-handed Trefoil
knot (see Figure 4.9). One can use the fact that there is a delta δi2+j2i1+j1

in the R-matrix giving the conservation equation i1 + j1 = i2 + j2.
All other cases simply don’t contribute to the state sum. One then
assigns integer labels on each strand and obtains the entries for each
R-matrix involved in the state sum computation. One does so by
assigning the label 0 to the open left strand both at the bottom and at
the top of the braid (recall that they are identified when closing the
braid) and dummy labels m to the other strands, always respecting
the conservation equation. These dummy variables are the ones over
which the state sum is carried out, after composing the corresponding
R-matrices and the eventual inverses. In the case of the right-handed
Trefoil, we only have to compose RMat[x, q, 0, m, m, 0], RMat[x,
q, m, 0, m, 0] and RMat[x, q, m, 0, 0, m] and sum over m from
0 to i.37 In the case of the n-th colored Jones polynomial, we obtain:

n Jn(q)

0 1
1 − 1

q4 + 1
q3 + 1

q

2 1
q11 −

1
q10 −

1
q9 + 1

q8 −
1
q7 + 1

q5 + 1
q2

3 − 1
q21 + 1

q20 + 1
q19 −

1
q17 + 1

q15 −
1
q14 −

1
q13 + 1

q11 −
1
q10 + 1

q7 + 1
q3

Table 4.1: The values for the first n-
colored Jones polynomials.
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38: Although different in form, the ex-
pressions given here are equivalent to
the ones presented in the end of Ap-
pendix B, where Serre’s relations are
given in terms of the adjoint maps.
This is done for convenience and clar-
ity, since it shows more explicitly the
relation with the quantum version.

As for the FK(x, q) invariant, one can fix an order and expand up
to that power. For example, expanding up to sixth order yields the
expression

FK(x, q) = 1 + qx− (−1 + q)q2x2 − q3(−1 + q + q2)x3

− q4(−1 + q + q2)x4 + q5(1− q − q2 + q5)x5 +O(x6)

4.3 Procedure for other semisimple Lie
algebras

To obtain the R-matrix for any other semisimple Lie algebra, we
need to introduce Serre’s presentation, to be then extended to the
quantum version.38 Recall first that any semisimple Lie algebra can
be characterized by its Cartan matrix A = (aij)1≤i,j≤n. This matrix
consists of non-positive integers on the off-diagonal entries and has
aii = 2 on the diagonal. Recall also that the diagonal matrix D =

diag(d1, . . . , dn) —whose entries are the (renormalized) root lengths: 1,
2 or 3— is such that the matrix DA is symmetric positive definite (in
particular, invertible). We have the following theorem:

Theorem 4.3.1 (Chevalley-Serre) The enveloping algebra U(g) of a
complex semisimple Lie algebra with Cartan matrix A = (aij)1≤i,j≤n
is isomorphic to the algebra generated by {Xi, Yi, Hi}1≤i≤n and the
relations

[Hi, Hj ] = 0, [Xi, Yj ] = δijHi,

[Hi, Xj ] = aijXj , [Hi, Yj ] = −aijYj ,

and if i ̸= j

1−aij∑
k=0

(−1)k
(
1− aij
k

)
Xk
i XjX

1−aij−k
i = 0

and a
1−aij∑
k=0

(−1)k
(
1− aij
k

)
Y ki YjY

1−aij−k
i = 0.

a These are equivalent to ad(Xi)
1−aij (Xj) = 0 and ad(Yi)

1−aij (Yj) = 0.

Then, the q-analogue is given by the following definition.

Definition 4.3.1 Let g be a complex semisimple Lie algebra with
Cartan matrix A = (aij)1≤i,j≤n and diagonal matrix of root lengths
D = diag(d1, . . . , dn), di = 1

2 (αi, αi). Then, the algebra Uh(g) is the
algebra generated by {Xi, Yi, Hi}1≤i,j≤n and the relations

[Hi, Hj ] = 0, [Xi, Yj ] = δij
ehdiHi/2 − e−hdiHi/2

ehdi/2 − e−hdi/2
,

[Hi, Xj ] = aijXj , [Hi, Yj ] = −aijYj ,
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39: Indeed, rewriting the commuta-
tions relation [Hi, Xj ] = aijXj as

HiXj = Xj(Hi + aij1)

we have

Hk
i Xj = Xj(Hi + aij1)

k

and thus

eλHiXj =

∞∑
k=0

λk

k!
Hk
i Xj

=

∞∑
k=0

λk

k!
Xj(Hi + aij1)

k

= Xje
λ(Hi+aij1)

= eλaijXje
λHi .

40: As stated in [Kas95].

41: Recall that ∆op = τ ◦ ∆, where
τ : A⊗B → B ⊗A is the twist map.

42: We warn the reader to pay care-
ful attention to convention differences
when comparing in the literature.

and if i ̸= j

1−aij∑
k=0

(−1)k
[
1− aij
k

]
Xk
i XjX

1−aij−k
i = 0

and
1−aij∑
k=0

(−1)k
[
1− aij
k

]
Y ki YjY

1−aij−k
i = 0,

where qi = ehdi/2.

The third and fourth relations imply that for all i, j and any complex
number λ ∈ C we have39

eλHiXj = eλaijXje
λHi , eλHiYj = e−λaijYje

λHi .

Setting h to zero (which is equivalent to q → 1), one recovers the
enveloping algebra of U(g) in Serre’s presentation. To put it another
way, there is an isomoprhism of algebras

Uh(g)/hUh(g) ∼= U(g).

Concerning the existence of a universal R-matrix for Uh(g), Drinfeld
proved that such is of the form40

Rh =
∑
ℓ∈Nn

eh(
t0
2 + 1

4 (Hℓ⊗1−1⊗Hℓ))Pℓ

where (1) Hℓ =
∑

1≤ℓ≤n ℓiHi for ℓ = (ℓ1, · · · , ℓn), (2) t0 is the ele-
ment

t0 =
∑

1≤i,j≤n

(DA)−1
ij Hi ⊗Hj

of g⊗ g, and (3) Pℓ is a polynomial in the variables Xi ⊗ 1 and 1⊗ Yj
(homogeneous of degree ℓi in Xi ⊗ 1 and 1 ⊗ Yi). These polynomials
Pℓ can be determined inductively on ℓ with P0 = 1⊗ 1 and using the
relation ∆op(a) = R∆(a)R−1 in the definition of the universal R-matrix
of a topological quasi-bialgebra A.41

There is actually a more explicit formula in the literature, given by
A.N. Kirillov and N. Reshetikhin [KR90] and rewritten by M. Rosso
[Ros91], nicely given as a multiplicative analogue of the sl2 case.42

Theorem 4.3.2 The universal R-matrix for Uh(g) is of the form

R =
∏

α∈∆+

( ∞∑
ℓ=0

(1−q−2
α )ℓ

[ℓ]α! q
ℓ(ℓ−1)

2
α (Eℓα ⊗ F ℓα)

)
exp

(
h
2

∑
i,j

BijHi ⊗Hj

)

where the product is carried out over the total order of positive roots
∆+ determined by the reduced decomposition of the longest element
w0 in the Weyl group; i.e. fora w0 = ri1 · · · riν (with ν = |∆+| and
ri(αj) = αj − aijαi, i, j = 1, . . . , n, the reflection automorphisms)
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43: This is done by matching the differ-
ent notations and the following consid-
erations. First, the Ti automorphisms
don’t apply since n = 1 and aij = 2,
and so Eα = X, Fα = Y . Further, the
exponential term reads now e

h
4
H⊗H

since d = 1 and so B = 1/2. This
also means qα = q = eh/2 and then
[ℓ]α! = [ℓ]! and (1−q−2)ℓ can be rewrit-
ten as q−ℓ(q − q−1)ℓ yielding an extra
factor q−ℓ. To move e

h
4
H⊗H to the left,

one takes λ = h/4 in the expression

(Xℓ ⊗ Y ℓ)eλH⊗H =

= eλ(H⊗H+2ℓH⊗1−1⊗2ℓH)e−4λℓ2 .

This expression is obtained by rewrit-
ting [H,X] = 2X and [H,Y ] = −2Y

as

XH = (H−21)X, Y H = (H+21)Y

and using these in

XℓHk = Xℓ−1(XH)Hk−1

= Xℓ−1(H − 21)XHk−1

= · · · = Xℓ−1(H − 21)kX

= · · · = (H − 21)kXℓ

and

Y ℓHk = · · · = Y ℓ−1(H + 21)kY

= · · · = (H + 21)kY ℓ

to obtain

(Xℓ ⊗ Y ℓ)eλH⊗H =

=
∑
k≥0

λk

k!
(XℓHk)⊗ (Y ℓHk)

=
∑
k≥0

λk

k!
((H − 2ℓ1)kXℓ)⊗ ((H + 2ℓ1)kY ℓ)

= eλ(H−2ℓ1)⊗(H+2ℓ1)(Xℓ ⊗ Y ℓ).

Rearranging the factors of q = eh/2,
one then recovers the sl2 R-matrix up
to notation conventions.
44: Work about to publish.
45: Again, the proposed method is
equivalent to applying the Regular
Value Theorem:
Feed the path γ(t) = Id + At+O(t2)

into the functions defining the Lie
group. In this case, the second function
det(X)− 1 = 0 gives redundant infor-
mation already contained in proceed-
ing with the first ones (γ(t))t(γ(t))−
Id = 0. Differentiating (Id + At +

O(t2))t(Id +At+O(t2))− Id = t(A+

At) +O(t2) at t = 0 yields the condi-
tion A+At = 0.

46: A+ At = 0 means akk + akk = 0

on the diagonal and thus akk = 0 so
that Tr(A) is eventually satisfied.

and Π = {α1, · · · , αn} the simple roots, the order on ∆+ is given by

β1 = αi1 , β2 = ri1(αi2), . . . , βν = ri1 · · · riν−1
(αiν ).

The Eα and Fα are then given by

Eβs = Ti1 · · ·Tis−1(Xis), Fβs = Ti1 · · ·Tis−1(Yis), s = 1, . . . , ν,

where the Ti are the automorphisms uniquely determined by

TiXi = −Yie−
hdiHi

2 , TiXj =
−aij∑
s=0

(−1)s−aij qsi X
(−aij−s)
i XjX

(s)
i i ̸= j

TiYi = −e
hdiHi

2 Xi, TiYj =
−aij∑
s=0

(−1)s−aij q−si Y
(s)
i YjY

(−aij−s)
i i ̸= j

Tie
hdjHj

2 = e
h(djHj−aijdiHi)

2 .

Finally, qα is qdi = e
hdi
2 for each α in the orbit of αi under the

action of the Weyl group and (Bij)1≤i,j≤n is the inverse matrix of
DA = (diaij)1≤i,j≤n.

a The result is independent of the choice of reduced tuple (i1, . . . , iν) of integers
1 ≤ is ≤ n.

Notice the importance of the order in ∆+ since — in general — different
generators wont commute. One can check that the sl2 R-matrix indeed
recovers from this expression.43

4.4 The so2n family

Now, having studied the sl2 case, the proposed project aims to extend
the same procedure of computing FK(x, q) to other semisimple Lie
algebras, obtaining the corresponding invariants.

The family An in Cartan’s classification (see Figure 4.10) has already
been studied by Angus Gruen.44 The choice for this work has been an
element of the family Dn corresponding to the Lie algebras so(2n,C).
The Lie algebra so(m,C) —som for short— is the one associated to
the special orthogonal group SO(m,C) = {M ∈ GL(m,C) | M tM =

1, detM = 1}. The description for so(m,C) is obtained was shown
shown for SL(2,C).45 In this case,

1 = (1+ ϵA)t(1+ ϵA) = 1+ ϵ(At +A) +O(ϵ2)

gives the condition A+At = 0 and

1 = det(1+ ϵA) = 1 + ϵTr(A) +O(ϵ2)

gives Tr(A) = 0, although this condition is included in the other one
and is therefore redundant.46 Thus, the corresponding Lie algebra is
given by the skew-symmetric matrices

so(m,C) = {A ∈ gl(m,C) | A+At = 0}.

The classification in terms of Dynkin diagrams for these Lie algebras
fall into two families: Bn for odd m = 2n+ 1 and Dn for even m = 2n.
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47: Also, to be accurate, the familyDn
in Cartan’s classification starts with
n = 4, corresponding to so8.

Figure 4.10: Cartan’s classification
of semisimple Lie algebras in terms of
their Dynkin diagrams, where An and
Dn correspond to the Lie algebras sln
and so2n, respectively.

48: The Cartan matrix for so4 is then
given by

A =

(
2 0

0 2

)
.

Here we deal with the latter case, mainly focusing on so(8,C) as the
first interesting case.47 The reason for this will soon be clear.

The so4 case

Being so2 ∼= C too simple, we start with so4, which can be easily worked
out through the Lie algebra isomorphism so4 ∼= sl2 ⊕ sl2 —what in
particular shows that it is semisimple.

Isomorphism so4 ∼= sl2 ⊕ sl2

The isomorphism is explicitly given by(
0 a b c

−a 0 d e
−b −d 0 f
−c −e −f 0

)
7→
(

i(c−d) (a−f)+i(e+b)
−(a−f)+i(e+b) −i(c−d)

)
⊕
(

i(c+d) (a+f)+i(e−b)
−(a+f)+i(e−b) −i(c+d)

)
.

Hence, we can make use of all our results on sl2 with the following
notation for the generators:

e1 = e⊕ 0, e2 = 0⊕ e
f1 = f ⊕ 0, f2 = 0⊕ f
h1 = h⊕ 0, h2 = 0⊕ h

where e, f, h are the usual generators of sl2 with the corresponding com-
mutation relations. By using these, it is immediate that the generators
ek, fk, hk (k = 1, 2) satisfy Serre’s relations determining the semisimple
Lie algebra48

[h1, h2] = 0, [hi, ej ] = 2δijej , [hi, fj ] = −2δijfj
[ei, fj ] = δijhj , [e1, e2] = [f1, f2] = 0

where the Lie bracket is defined component-wise:

[x1 ⊕ y1, x2 ⊕ y2] := [x1, x2]⊕ [y1, y2].

Now, let {vk}rk=0 be the eigenbasis we used for the r-th symmetric
representation Vr of sl2. Then, {vk1 ⊕ vk2}rk1,k2=0 is an eigenbasis for
the representation Vr ⊕ Vr of so4. The highest weight vector will now
be vr⊕vr, being vr the highest weight vector of sl2 with highest weight
r. Observe that the highest weight remains the same, which thus shows
we are indeed still considering the r-th symmetric representation. The
action of the generators on this basis is given by

ej · vk1 ⊕ vk2 = kj · vk1−δ1j ⊕ vk2−δ2j

fj · vk1 ⊕ vk2 = (r − kj) · vk1+δ1j ⊕ vk2+δ2j

hj · vk1 ⊕ vk2 = (r − 2kj) · vk1 ⊕ vk2

The quantum version reads then
Xj |r; (k1, k2)⟩ = [kj ] · |r; (k1 − δ1j , k2 − δ2j)⟩
Yj |r; (k1, k2)⟩ = [r − kj ] · |r; (k1 + δ1j , k2 + δ2j)⟩
qHj |r; (k1, k2)⟩ = qr−2kj · |r; (k1, k2)⟩
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49: See Appendix B.5 on root systems
for the case of reducible root systems
R = R1⊔R2 corresponding to semisim-
ple Lie algebras g1 ⊕ g2.

50: Warning: notice the change of nota-
tion with respect to the sl2 case, where
the indices i2 and j2 where used differ-
ently.

where |r; (k1, k2)⟩ := vk1 ⊕ vk2 . Now, going back to the last theorem
in the previous section and specifying to so4, we get that: d1 = d2 = 1

and so all the qα reduce to q = e
h
2 . There are only two positive roots

∆+ = {α1, α2} corresponding each copy of the sl2 root system.49 The
longest element of the Weyl group is just a reflection w0 = r2 sending
r2(α1) = α2 − a12α1 = α2 since a12 = 0, and the automorphism T2
simply acts as the identity. The order of the positive roots doesn’t
matter because of the commutativity between both e1 and f1 with
both e2 and f2. We further use the fact that each hk commutes with
the other ek′ , fk′ . Finally, the matrix B is simply diag(1/2, 1/2). Thus,
using all these observations showing that the R-matrix splits in the
product of two sl2 R-matrices and the fact that the general R-matrix
recovers the sl2 case, the R-matrix for so4 is then given by

R = exp

h
2

∑
i,j

Bijhi ⊗ hj

 2∏
k=1

∑
ℓ≥0

(qk − q−1
k )ℓ

[ℓ]k!
q

ℓ(ℓ−1)
2

k (eℓk ⊗ f ℓk)



= e
h
4 h1⊗h1

∑
ℓ≥0

(q − q−1)ℓ

[ℓ]!
q

ℓ(ℓ−1)
2 (eℓ1 ⊗ f ℓ1)

 ·
· eh

4 h2⊗h2

∑
s≥0

(q − q−1)s

[s]!
q

s(s−1)
2 (es1 ⊗ fs1 )

 =: R1 ·R2.

Finally, the explicit expression in the basis50 |r; (i1, i2), (j1, j2)⟩ :=
(vi1 ⊕ vi2)⊗ (vj1 ⊕ vj2) of (Vr ⊕ Vr)⊗ (Vr ⊕ Vr) is given by

R |r; (i1, i2), (j1, j2)⟩ = R1R2 |r; (i1, i2), (j1, j2)⟩

= R1 ·
∑
ℓ2≥0

R(ℓ2; i2, j2)|r; (i1, i2 − ℓ2), (j1, j2 + ℓ2)⟩

=
∑
ℓ2≥0

R(ℓ2; i2, j2) ·R1 |r; (i1, i2 − ℓ2), (j1, j2 + ℓ2)⟩

=
2∏
k=1

∑
ℓk≥0

R(ℓk; ik, jk)

 |r; (i1 − ℓ1, i2 − ℓ2), (j1 + ℓ1, j2 + ℓ2)⟩

where again the redefinition q 7→ q1/2 ha been applied and where we
have defined the function

R(ℓ; i, j) := q
r2

4 θ[i− ℓ]x−
(i−ℓ)+j

2 q(i−ℓ)j
(q; q)i · (x−1qj ; q)ℓ
(q; q)ℓ · (q; q)i−ℓ

coming from the sl2 case, where θ[n] is the discrete Heaviside function,
introduced to limit the range of the sum up to ℓ = i.

The so6 case

In this case we have the Lie algebra isomorphism so6 ∼= sl4.

Isomorphism sl4 ∼= so6

The Lie algebra isomorphism here is more involved. It comes from
considering the 6-dimensional vector space

∧2 C4 and defining a sym-
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Figure 4.11: Dynkin diagram D4 for
the semisimple Lie algebra so8.

51: It indeed is a toral subalge-
bra (commutative and consisting of
semisimple elements) and coincides
with its centralizer:

C(h) = {x ∈ g | [x, h] = 0} = h.

metric bilinear form B :
∧2 C4 ×

∧2 C4 → C as follows. Considering
u1 ∧ v1, u2 ∧ v2 ∈

∧2 C4 and using the fact that
∧4 C4 ∼= C is generated

by e1 ∧ e2 ∧ e3 ∧ e4 with {ei}4i=1 the canonical basis, B(u1 ∧ v1, u2 ∧ v2)

can be defined to be the unique scalar for which it holds

u1 ∧ v1 ∧ u2 ∧ v2 = B(u1 ∧ v1, u2 ∧ v2) e1 ∧ e2 ∧ e3 ∧ e4.

One then checks that this defines a symmetric bilinear form which is non-
degenerate (the corresponding matrix in the basis {ei∧ej}i<j has non-zero
determinant), thus defining an isomorphism w2 7→ (w1 7→ B(w1, w2)) for
w1, w2 ∈

∧2 C4. The action of sl2 on
∧2 C4 (inherited from the tensor

representation C4 ⊗ C4, determined in the usual way from the standard
action on C4 acting by matrix multiplication) then defines a morphism
of algebras

sl4 → so6

which is injective. Being both sl4 and so6 15-dimensional, we actually
have an isomorphism.

Observe as well that they indeed have the same Dynkin diagram A4.
The work of obtaining FK(x, q) with the family slN has already been
studied by Angus Gruen in a work yet to be published. Hence the
reasons for skipping this case.

The so8 case

We naturally reach the so8 case as the first non-trivial one. Moreover, it
presents an interesting three-fold symmetry to be observed through its
Dynkin diagram (Figure 4.11), or more specifically through the Cartan
matrix

A =


2 −1 0 0

−1 2 −1 −1
0 −1 2 0

0 −1 0 2

 ,

where an explicit common behavior with respect to the second row and
column is manifest.

Let us begin by obtaining a set of Serre generators {Xi, Yi, Hi}4i=1 for
this semisimple Lie algebra (in fact simple). Recall that

so8 = {A ∈ gl(8,C) | A+At = 0}.

The natural basis to choose for the underlying vector space is ℓij :=
eij − eji for 0 ≤ i + 1 ≤ j ≤ 8 (the eij being the canonical basis for
gl(m,C): all entries 0 but the (i, j)-th entry being 1), consisting of∑8−1
k=1 k = (8−1)8

2 = 28 vector space generators. The elements hk =

ℓ2k−1,2k with k = 1, . . . , 4 are seen to generate the Cartan subalgebra
h of so8,51 the commutator given by

[ℓij , ℓkℓ] = δjkℓiℓ + δℓiℓjk − δjℓℓik − δkiℓjℓ
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52: All the generators ℓij are of the
form

ℓ25 =


0 0 0 0 0 0 0 0
0 0 0 0 +1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


with a +1 at position (i, j) and a −1

at position (j, i).

53: This can be shown by computing
the different commutators [hk, ℓij ] and
observing that there are some invariant
subspaces of the form {ℓ2k−1,j , ℓ2k,j}
and {ℓi,2k−1 − ℓi,2k}. The inspiration
for this comes from the previous study
of the so4 Lie algebra.

54: These should then be fixed by the
remaining Serre relations.

following from the trivial relation eijekℓ = δjkeiℓ. In matrix form:

h1 =


0 +1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

 , h2 =


0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 +1 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

 ,

h3 =


0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 +1 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

 , h4 =


0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 +1
0 0 0 0 0 0 −1 0

 ,

Notice that all [ℓij , ℓkℓ] vanish but the ones obtained from the symmetry
ℓij = −ℓji and [ℓkj , ℓkℓ] = −ℓjℓ, j ̸= k ̸= ℓ. It will be convenient to
define the index set

Λ := {(i, j) | 0 ≤ i+ 1 ≤ j ≤ 8}\{(2k − 1, 2k)}4k=1

corresponding to the indices for the generators ℓij different from the
four hk = ℓ2k−1,2k ones.52 Now, Serre’s theorem tells us that so8 as a
Lie algebra is generated by only 12 generators {Xi, Yi, Hi}4i=1, all other
vector space generators being obtained through the Lie bracket [·, ·].
To obtain these generators, we impose Serre’s relations starting with
the [Hi, Xj ] = aijXj and [Hi, Yj ] = −aijYj ones. Such Hi generators
will be linear combinations of the hk’s we just presented (thus still
generating the Cartan subalgebra h). A general element of the Lie
algebra can be written in our chosen basis as

∑
1≤i+1≤j≤8 β

ijℓij for
some coefficients βij . Among these we know that at least four will vanish
in the commutator with the hk’s (the hk’s themselves). So the index
set in the sum can be constrained to Λ. Thus, the general expression
for the commutator to impose and determine the parameters αk and
βij determining the Lie algebra generators Xi, Yi and Hi is 4∑

k=1

αkhk,
∑

(i,j)∈Λ

βijℓij


which has been computed to yield53

4∑
k=1

αk

{
8∑

j=2k+1

(β2k,jℓ2k−1,j − β2k−1,jℓ2k,j) +
2(k−1)∑
i=1

(βi,2kℓi,2k−1 − βi,2k−1ℓi,2k)

}
.

At this stage, it should already be clear that this description for the Lie
algebra so8 is not nice at all for computational purposes. Anyways, one
can go ahead and impose the special cases when aij = 0 in the Cartan
matrix —which yield the conditions αi = ±αj — or the diagonal
elements aii = 2 —which fix some of the βij ’s. This long procedure
finally allows us to write the Xi and Yi with only six remaining free
parameters54 and all having a form similar to

X±
4 = β13(ℓ13 ∓ iℓ23 ∓ iℓ14 − ℓ24) + β15(ℓ15 ∓ iℓ25 ∓ iℓ16 − ℓ26)+
+ β17(ℓ17 ∓ iℓ27 ± iℓ18 + ℓ28) + β35(ℓ35 ∓ iℓ45 ∓ iℓ36 − ℓ46)+
+ β37(ℓ37 ∓ iℓ47 ± iℓ38 + ℓ48) + β57(ℓ57 ∓ iℓ67 ± iℓ58 + ℓ68)

where X+
4 = X4 and X−

4 = Y4. This clearly demands for an alternative
description.
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55: See Appendix D for some lines of
the code.

56: The change of basis matrix thus
given by

+i −i 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 +i −i 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 +i −i 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 +i −i
0 0 0 0 0 0 1 1



57: For example, B1 is given by

B1 =


0 0 +1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


58: For example, H2 is given by

H2 =


0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 +1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



Such alternative basis for the Lie algebra is obtained through a change of
basis with the help of a Mathematica notebook.55 The idea is that the
hk’s all commute with each other so one can simultaneously diagonalize
them. Indeed, the eigenvectors are easily seen to be {±ie2k−1+e2k}4k=1

with ei the canonical basis vectors. Applying this change of basis56 to
a general element of so8 expressed as

0 ℓ12 ℓ13 ℓ14 ℓ15 ℓ16 ℓ17 ℓ18
−ℓ12 0 ℓ23 ℓ24 ℓ25 ℓ26 ℓ27 ℓ28
−ℓ13 −ℓ23 0 ℓ34 ℓ35 ℓ36 ℓ37 ℓ38
−ℓ14 −ℓ24 −ℓ34 0 ℓ45 ℓ46 ℓ47 ℓ48
−ℓ15 −ℓ25 −ℓ35 −ℓ45 0 ℓ56 ℓ57 ℓ58
−ℓ16 −ℓ26 −ℓ36 −ℓ46 −ℓ56 0 ℓ67 ℓ68
−ℓ17 −ℓ27 −ℓ37 −ℓ47 −ℓ57 −ℓ67 0 ℓ78
−ℓ18 −ℓ28 −ℓ38 −ℓ48 −ℓ58 −ℓ68 −ℓ78 0


one can see by inspection —checking the related pairs of entries— that
a general element of the Lie algebra in this basis is given by

B =


H1 0 B1 B2 B5 B6 B9 B10
0 −H1 B3 B4 B7 B8 B11 B12

−B4 −B2 H2 0 B13 B14 B17 B18
−B3 −B1 0 −H2 B15 B16 B19 B20
−B8 −B6 −B16 −B14 H3 0 B21 B22
−B7 −B5 −B15 −B13 0 −H3 B23 B24
−B12 −B10 −B20 −B18 −B24 −B22 H4 0
−B11 −B9 −B19 −B17 −B23 −B21 0 −H4


Notice that these new generators “Bk” are no longer anti-symmetric
elements.57 However, they still generate the same Lie algebra as so8 up
to isomorphism, since they will satisfy the same Serre relations which
completely determine any semisimple Lie algebra. Notice also that the
elements we have denoted by H1, . . . ,H4 constitute a basis for the
Cartan subalgebra and they act now diagonally!58

Inspired by the similar description of this Lie algebra and its root
system given in [Kir] for so2n (see the appendix therein), we guess
that the Hk generators are given by the following linear combinations:
H1 = H1−H2, H2 = H2−H3, H3 = H3−H4, H4 = H3+H4. With
these, we check the output of the commutators [Hk,B] for k = 1, . . . , 4

and see which elements fit the aij coefficients for the so8 Cartan matrix
in Serre’s relations for all the Hk simultaneously. This finally leads to
the following Serre generators

H1 =


+1

−1
−1

+1
0

0
0

0

 , H2 =


0

0
+1

−1
−1

+1
0

0

 ,

H3 =


0

0
0

0
+1

−1
−1

+1

 , H4 =


0

0
0

0
+1

−1
+1

−1

 ,

X1 =


0 0 +i 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 −i 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

 , Y1 =


0 0 0 0 0 0 0 0
0 0 0 +i 0 0 0 0
−i 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

 ,

X2 =


0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 +i 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 −i 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

 , Y2 =


0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 +i 0 0
0 0 −i 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

 ,
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59: Where V8 denotes the fundamental
representation of so8 given by matrix
multiplication

60: Indeed, the problem reduces to
counting the number of different ways
to assign r index numbers between 1
and 8. If each number k appears nk
times, the constraint is

n1 + · · ·+ n8 = r

with nk ≥ 0. This is the same as the
number of combinations of typing ex-
actly 8− 1 + signs between a row of r
1’s. The number of 1’s between each +

sign corresponds to nk each. This fills
a total of 8− 1+ r entries out of which
8− 1 have to be chosen to be + signs:(8− 1 + r

8− 1

)
=
(8− 1 + r

r

)
.

61: Notice again that

C[x1, . . . , x8] =
∞⊕
r=0

Vr.

62: Observe that the matrix E2
1

vanishes and recall exp(tX)−1 =

exp(−tX).

63: Observe that the resulting expres-
sion is given by

Xk = −
8∑

i,j=1

Mk
ij xj

∂

∂xi
,

where Mk
ij are the entries of Xk in

matrix form.
64: This is a symmetry of Serre’s rela-
tions, so the new generators still satisfy
the desired commutation relations.

X3 =


0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 +i 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 −i 0 0

 , Y3 =


0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 +i
0 0 0 0 −i 0 0 0
0 0 0 0 0 0 0 0

 ,

X4 =


0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 +i
0 0 0 0 0 0 0 0
0 0 0 0 0 −i 0 0
0 0 0 0 0 0 0 0

 , Y4 =


0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 +i 0
0 0 0 0 0 0 0 0
0 0 0 0 −i 0 0 0

 ,

which are checked to indeed satisfy all other Serre relations. Notice
the radical simplifications this represents with respect to the previous
approach. Observe further that the pairs Xk, Yk are all hermitian con-
jugates. The fact of obtaining generators Hk of the Cartan subalgebra
acting diagonally has been essential, and will further be extremely
helpful when working with representations.

Now one aims to find a nice description for the r-th symmetric repre-
sentation59

V r := SymrV8 = {(v1, . . . , vr) ∈ V r8 }/Sr,

whose dimension is60

dimV r =

(
8− 1 + r

r

)
.

This is equivalent to considering symmetric tensor products. As will
be shown in a moment, we have seen that this representation can
again be obtained by the polynomial representation, now slightly more
involved.

Polynomial Representation

Recall the polynomial representation we introduced for the sl2 case.
In the case of so8, we search for generators acting on the vector space
of polynomials in eight variables with total degree r, denoted Vr ⊂
C[x1, . . . , x8].61 By acting on a general element qr(x) :=

∏8
i=1 x

αi
i ,

with
∑8
i=1 αi = r, through the derived action, one obtains62

X1 · qr(x) =
d

dt

(
exp(tX1) ·

8∏
i=1

xαi
i

)∣∣∣∣∣
t=0

=
d

dt
((x1 − tix3)α1xα2

2 xα3
3 (itx2 + x4)

α4xα5
5 · · ·x

α8
8 )

∣∣∣∣∣
t=0

= −ix3α1 x
α1−1
1

8∏
i=2

xαi
i + ix2α4 x

α1
1 · · ·x

α3
3 xα4−1

4

8∏
i=5

xαi
i

= −
(
ix3

∂

∂x1
− ix2

∂

∂x4

)
qr(x)

and similarly for the other generators.63 As done in the sl2 case and as
a matter of preference, one can choose to switch the roles of the Xk’s
and Yk’s while flipping the signs and changing the Hk’s by a sign as
well,64 finally obtaining the generators:
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65: This will be clear in a moment.

66: At a first stage, the obtained basis
consisted of eight variables ai show-
ing a closer relation to the above men-
tioned chain. However, only seven vari-
ables where expected, since the condi-
tion of the exponents summing up to r
was directly met by construction. Such
reduction was indeed found, yielding
the presented result.

67: Recall that the Cartan matrix for
so8 is (

2 −1 0 0
−1 2 −1 −1
0 −1 2 0
0 −1 0 2

)
.

68: We denote |r; ai+1⟩ for the vector
with tuple (a1, . . . , ai + 1, . . . , a7).

X1 = i

(
x4

∂

∂x2
− x1

∂

∂x3

)
, Y1 = i

(
x3

∂

∂x1
− x2

∂

∂x4

)
X2 = i

(
x6

∂

∂x4
− x3

∂

∂x5

)
, Y2 = i

(
x5

∂

∂x3
− x4

∂

∂x6

)
X3 = i

(
x8

∂

∂x6
− x5

∂

∂x7

)
, Y3 = i

(
x7

∂

∂x5
− x6

∂

∂x8

)
X4 = i

(
x7

∂

∂x6
− x5

∂

∂x8

)
, Y4 = i

(
x8

∂

∂x5
− x6

∂

∂x7

)
and

H1 = x1
∂

∂x1
− x2

∂

∂x2
− x3

∂

∂x3
+ x4

∂

∂x4
,

H2 = x3
∂

∂x3
− x4

∂

∂x4
− x5

∂

∂x5
+ x6

∂

∂x6
,

H3 = x5
∂

∂x5
− x6

∂

∂x6
− x7

∂

∂x7
+ x8

∂

∂x8
,

H4 = x5
∂

∂x5
− x6

∂

∂x6
+ x7

∂

∂x7
− x8

∂

∂x8
.

One then wishes to find a suitable assignment for the αi’s to obtain a
basis for Vr in which the generators act by changing some of the labels
by ±1 at most.65 By following the actions of the Xi and Yi generators
on the labels, where each xj ∂

∂xi
reduces αi by 1 and increases αj by 1,

we observe the following chain:

1←→ 3←→ 5←→ {7, 8} ←→ 6←→ 4←→ 2,

where the left and right arrows correspond to Xi and Yi actions, re-
spectively. From this diagram, we obtain the suitable basis of degree-r
polynomials66

pr(x) = xa11 x
r−a2
2 xa3−a13 xa2−a44 xa5−a35 xa4−a6−a76 xa7−a57 xa68 .

With the notation pr(x) ≡ |r; a⟩, for a = (a1, . . . , a7) subject to the
constraints

0 ≤ a1, a2 ≤ r, a1 ≤ a3 ≤ a3 + r, a2 − r ≤ a4 ≤ a2,
a3 ≤ a5 ≤ a3 + r, a5 ≤ a7 ≤ a5 + r, 0 ≤ a6 ≤ a4 − a7,

the action of the Hk’s on this basis yields the eigenvalues

H1 : +2(a1 + a2) −1(a3 + a4) −r
H2 : −1(a1 + a2) +2(a3 + a4) −1(a5 + a6) −1(a7)
H3 : −1(a3 + a4) +2(a5 + a6)

H4 : −1(a3 + a4) +2(a7)

Notice how the symmetry in the Cartan matrix67 is recovered in
the eigenvalues of this representation. The action of the remaining
generators is given by68

X1|r; a⟩ = i((r − a2)|r; a2 + 1⟩−(a3 − a1)|r; a1 + 1⟩)
X2|r; a⟩ = i((a2 − a4)|r; a4 + 1⟩−(a5 − a3)|r; a3 + 1⟩)
X3|r; a⟩ = i((a4 − a6 − a7)|r; a6 + 1⟩−(a7 − a5)|r; a5 + 1⟩)
X4|r; a⟩ = i((a4 − a6 − a7)|r; a7 + 1⟩−a6|r; a5 + 1, a6 − 1, a7 + 1⟩)
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69: These generators have been
checked to indeed define the Lie
algebra so8 by checking one by one
each of the Serre relations with the
help of a Mathematica notebook (see
Appendix D.3).

70: It should be clear that it is so
when choosing the basis

∏8
i=1 x

αi
i with∑8

i=1 αi = r, since it is completely
analogous to the symmetric tensor rep-
resentation construction. However, we
show here that the different choice of
labeling ai still gives the symmetric
representation.
71: Each entry respectively cor-
responding to the eigenvalue of
H1, . . . , H4. These values for λ can be
obtained from the eigenvalues shown
above by plugging the corresponding
values for ai’s in the case pr(x) = xr1.

Y1|r; a⟩ = i(a1|r; a1 − 1⟩−(a2 − a4)|r; a2 − 1⟩)
Y2|r; a⟩ = i((a3 − a1)|r; a3 − 1⟩−(a4 − a6 − a7)|r; a4 − 1⟩)
Y3|r; a⟩ = i((a5 − a3)|r; a5 − 1⟩−a6|r; a6 − 1⟩)
Y4|r; a⟩ = i((a5 − a3)|r; a5 − 1, a6 + 1, a7 − 1⟩−(a7 − a5)|r; a7 − 1⟩)

where we see that only ±1 jumps in the seven-dimensional lattice given
by the ai parameters occur. The Xi’s and Yi’s act here, respectively,
almost as raising and lowering operators in this lattice, each raising
or lowering in two directions at the same time. The almost refers to the
second term in X4 and the first in Y4, where instead two entries are
raised and one lowered, and viceversa. We will call them raising and
lowering operators anyway. This is by far a much better description
than the one we first encountered and shows the desired features as we
move forward.69

For the R-matrix we should compute ℓ-th powers of these generators.
They yield formulas of the form

Xℓ
1|r; a⟩ = (i)ℓ

ℓ∑
k=0

(
ℓ
k

)
(−1)k (r−a2)!

(r−(a2+k))!
(a3−a1)!

(a3−(a1+ℓ−k))! |r; a1 + ℓ− k, a2 + k⟩.

However, since these expressions are getting complicated enough to
handle with in the expression for the R-matrix, we leave them aside
for the time being. The idea is that these will be implemented in a
Mathematica notebook after having obtained the corresponding quan-
tum representation for the R-matrix.

Nevertheless, let us stop for a moment and show that the obtained
polynomial representation is indeed the desired r-th symmetric repre-
sentation.70 We first observe that the highest weight vector is xr1, with
highest weight71 λ = (r, 0, 0, 0). Indeed, we see that the coefficients in
the above expressions for the action of the raising operators Xi’s corre-
spond to the exponents of the xi’s from 2 to 8 in the general expression
for the basis vectors. Thus, for pr(x) = xr1 all exponents other than the
power of x1 vanish, and hence all coefficients in the action for the Xi’s.
Therefore, xr1 is annihilated by all the raising operators Xi ∈ n+. By
repeated action of the Yi’s one obtains all the other basis vectors. This
will be clear when we argue the irreducibility of this representation.

On the other hand, we have that the highest weight for the funda-
mental representation is clearly the first canonical vector e1 (since it
is annihilated by all the matrices Xi and is an eigenvector for all the
Hi’s) with eigenvalue λ = (1, 0, 0, 0). Thus, for the symmetric tensor
representation with the action of an element x ∈ g on a tensor vector
being

∆r(x) · v1 ⊗ · · · ⊗ vr = x · v1 ⊗ · · · ⊗ vr + · · ·+ v1 ⊗ · · · ⊗ x · vr,

the highest weight vector is non other than e1 ⊗ · · · ⊗ e1 with highest
weight λ = (r, 0, 0, 0) given by the sum of each of the r terms with
eigenvalues 1 or 0, respectively.

Thus, both the polynomial and the symmetric representation have the
same highest weight. Now, if the former one is indeed irreducible, we
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72: Indeed, one of its irreducible sub-
representations should contain the
highest weight vector, and thus by the
Highest Weight Theorem be isomor-
phic to the symmetric representation.

73: The reflections inherit thus the
symmetry in the Cartan matrix.

would be done since the Highest Weight Theorem tells us they are
isomorphic representations. Suppose it were not irreducible. Then the
polynomial representation would contain the symmetric representation
as a subrepresentation72 and would thus necessarily have a strictly
greater dimension than this. However, the dimensions are the same.
Indeed, the dimension of the polynomial representation is given by the
number of assignments for the ai’s respecting the constraints that were
given previously, so it can be computed as the iterated sum

r∑
a1=0

r∑
a2=0

a1+r∑
a3=a1

a2∑
a4=a2−r

a3+r∑
a5=a3

a5+r∑
a7=a5

a4−a7∑
a6=0

1

which has been implemented into a Mathematica notebook to give the
expression

5040+13068r+13132r2+6769r3+1960r4+322r5+28r6+r7

5040 =
(
8−1+r
r

)
,

which precisely is the dimension of the symmetric representation. There-
fore, the polynomial representation is irreducible and, having the same
highest weight, it is isomoprhic to the symmetric representation.

Having seen this, we aim now to obtain the positive roots of so8 and
figure out their order, as explained in the theorem giving the general
R-matrix.

Using the already mentioned results in [Kir] (see the appendix therein),
we notice that the Cartan subalgebra of so8 in this description is given
by h = {diag(x1,−x1, . . . , x4,−x4)}. Define the following basis {ei}4i=1

of h∗ by
ei : diag(x1,−x1, . . . , x4,−x4) 7→ xi

with bilinear form (ei, ej) = δij . With this notation, the root system is
then ∆ = {±ei ± ej | i ̸= j}, where the signs are chosen independently.
The set of positive roots is ∆+ = {ei ± ej | i < j} with a total of
4(4− 1) = 12 positive roots. Among these, the fundamental roots are
Π = {α1, . . . , α4} with

α1 = e1 − e2, α2 = e2 − e3, α3 = e3 − e4, α4 = e3 + e4.

One can thus write all the positive roots in terms of positive sums of
simple roots, and the explicit relations can be seen to be given by

e1 − e2 = α1 e1 + e2 = α1 + 2α2 + α3 + α4

e1 − e3 = α1 + α2 e1 + e3 = α1 + α2 + α3 + α4

e1 − e4 = α1 + α2 + α3 e1 + e4 = α1 + α2 + α4

e2 − e3 = α2 e2 + e3 = α2 + α3 + α4

e2 − e4 = α2 + α3 e2 + e4 = α2 + α4

e3 − e4 = α3 e3 + e4 = α4.

Next, one needs to figure out the order of the positive roots. This can be
done as it was stated in the theorem, i.e. in terms of the longest element
in the Weyl group W generated by the four reflections r1, . . . , r4 given
by ri(αj) = αj − aijαi, with aij the Cartan matrix of so8.73 We will
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74: This is just one possible reduced
expression for w0 the longest element
in the Weyl group, but there might
exist other reduced expressions (all of
them with the same length, of course).
However, one only needs to fix one such
reduced expression to work with, since
the computations wont depend on this
choice.
75: That is, βi < βj for i < j.

76: The orbits are the ones given by
the action of the Weyl group.

77: It is enough to give this tables,
since by definition of algebra homo-
morphisms they satisfy linearity and

T (AB) = T (A) · T (B),

and so

T (A−1) = T (A)−1, T (Ak) = T (A)k.

need the following table, which can be computed easily:

r1(α1) = −α1, r1(α2) = α2 + α1, r1(α3) = α3, r1(α4) = α4

r2(α1) = α1 + α2, r2(α2) = −α2, r2(α3) = α3 + α2, r2(α4) = α4 + α2

r3(α1) = α1, r3(α2) = α2 + α3, r3(α3) = −α3, r3(α4) = α4

r4(α1) = α1, r4(α2) = α2 + α4, r4(α3) = α3, r4(α4) = −α4

Now, from [SST16] we obtain an expression for the longest element of
the Weyl group for the family Dn, explicitly given by

w0 =(r1r2 · · · rn−1rnrn−2rn−1 · · · r2r1)(r2 · · · rn−1rnrn−2rn−1r2) · · ·
· · · (rn−2rn−1rnrn−2)rn−1rn.

In our case D4, the longest element is thus given by74

w0 = (r1r2r3r4r2r1)(r2r3r4r2)r3r4.

Notice that the longest element has indeed length 12, the number of
positive roots. With this at hand, we can finally give an order for the
positive roots, which we will denote as βi with i specifying the order:75

β1 = αi1 , β2 = ri1(αi2), . . . , β12 = ri1 · · · ri11(αi12)
with (i1, . . . , i12) = (1, 2, 3, 4, 2, 1, 2, 3, 4, 2, 3, 4). Carrying out the somehow
tedious but easy iterative process of feeding the αi’s to the sequences
of rj ’s and using the table above, one obtains

β1 = α1 = e1 − e2, β2 = α1 + α2 = e1 − e3,

β3 = α1 + α2 + α3 = e1 − e4, β4 = α1 + α2 + α4 = e1 + e4,

β5 = α1 + α2 + α3 + α4 = e1 + e3, β6 = α1 + 2α2 + α3 + α4 = e1 + e2,

β7 = α2 = e2 − e3, β8 = α2 + α4 = e2 + e4,

β9 = α2 + α3 = e2 − e4, β10 = α2 + α3 + α4 = e2 + e3,

β11 = α3 = e3 − e4, β12 = α4 = e3 + e4.

Also importantly, one needs to keep track of the orbits to which the
βi’s belong.76 These are given by

β1, β6 belong to the α1 orbit
β2, β5, β7, β10 belong to the α2 orbit
β3, β8, β11 belong to the α3 orbit
β4, β9, β12 belong to the α4 orbit

Finally, we give here the action of the four automorphisms77 T1, . . . , T4
that were described in the theorem giving the R-matrix, acting on the
generators Xi, Yi and on elements of the form e

h
2Hi . Notice that we are

using here the (normalized) lengths di = 1 for the simple roots in D4.

Table 4.2: Action of the Ti automor-
phisms on the generators X1, Y1 and
e

h
2
H1 .

X1 Y1 e
h
2H1

T1 −Y1e−
h
2H1 −e−h

2H1X1 e
h
2H1

T2 q2X1X2 −X2X1 q−2Y2Y1 − Y1Y2 e
h
2H2e

h
2H1

T3 X1 Y1 e
h
2H1

T4 X1 Y1 e
h
2H1
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X2 Y2 e
h
2H2

T1 q2X2X1 −X1X2 q−2Y1Y2 − Y2Y1 e
h
2H1e

h
2H2

T2 −Y2e−
h
2H2 −eh

2H2X2 e−
h
2H2

T3 q2X2X3 −X3X2 q−2Y3Y2 − Y2Y3 e
h
2H3e

h
2H2

T4 q2X2X4 −X4X2 q−2Y4Y2 − Y2Y4 e
h
2H4e

h
2H2

Table 4.3: Action of the Ti automor-
phisms on the generators X2, Y2 and
e

h
2
H2 .

X3 Y3 e
h
2H3

T1 X3 Y3 e
h
2H3

T2 q2X3X2 −X2X3 q−2Y2Y3 − Y3Y2 e
h
2H2e

h
2H3

T3 −Y3e−
h
2H3 −eh

2H3X3 e−
h
2H3

T4 X3 Y3 e
h
2H3

Table 4.4: Action of the Ti automor-
phisms on the generators X3, Y3 and
e

h
2
H3 .

X4 Y4 e
h
2H4

T1 X4 Y4 e
h
2H4

T2 q2X4X2 −X2X4 q−2Y2Y4 − Y4Y2 e
h
2H2e

h
2H4

T3 X4 Y4 e
h
2H4

T4 −Y4e−
h
2H4 −eh

2H4X4 e−
h
2H4

Table 4.5: Action of the Ti automor-
phisms on the generators X4, Y4 and
e

h
2
H4 .

78: This guess comes from replacing
the derivatives acting on the poly-
nomials and using instead quantum
derivatives

∂qi · p(x) :=
p(qxi)− p(q−1xi)

q − q−1
,

which return the quantum integer [n]

when acting on polynomials xni .

We would then have to compute the expressions

Eβs
= Ti1 · · ·Tis−1

(Xis), Fβs
= Ti1 · · ·Tis−1

(Yis), s = 1, . . . , ν,

but these rapidly become very involved for increasing s. Instead, they are
left to be implemented in a Mathematica notebook. Notice how apparent
is that the interactions come from the second triple of generators
{X2, Y2, H2}, since its the one with which all terms interact as shown
in the so8 Cartan matrix.

4.5 Future steps

Last, it remains to find the quantum analogue of the found representa-
tion. This work is still in progress. We outline here a few aspects that
have been studied so far.

First to mention, the natural guess for a quantum analogue for our poly-
nomial representation would be to replace all coefficients by quantum
integers:78

X1|r; a⟩ = i([r − a2]|r; a2 + 1⟩−[a3 − a1]|r; a1 + 1⟩)
X2|r; a⟩ = i([a2 − a4]|r; a4 + 1⟩−[a5 − a3]|r; a3 + 1⟩)
X3|r; a⟩ = i([a4 − a6 − a7]|r; a6 + 1⟩−[a7 − a5]|r; a5 + 1⟩)
X4|r; a⟩ = i([a4 − a6 − a7]|r; a7 + 1⟩−[a6]|r; a5 + 1, a6 − 1, a7 + 1⟩)

Y1|r; a⟩ = i([a1]|r; a1 − 1⟩−[a2 − a4]|r; a2 − 1⟩)
Y2|r; a⟩ = i([a3 − a1]|r; a3 − 1⟩−[a4 − a6 − a7]|r; a4 − 1⟩)
Y3|r; a⟩ = i([a5 − a3]|r; a5 − 1⟩−[a6]|r; a6 − 1⟩)
Y4|r; a⟩ = i([a5 − a3]|r; a5 − 1, a6 + 1, a7 − 1⟩−[a7 − a5]|r; a7 − 1⟩)

with [n] = qn−q−n

q−q−1 the quantum integer, and the Hi generators being
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79: See Appendix D.4 for some lines
of code in Mathematica.

80: Here it can be useful to look at the
relation

[n+ 2]− [2][n+ 1] + [n] = 0

to cancel terms between the three con-
tributions. This is obtained from

[a][b]− [a+ c][b− c] = [c][a− b+ c]

by setting a = n+ 1, b = 2, c = 1 and
rearranging terms to the right hand
side.
81: Being X2 the interaction term
among X1, . . . , X4, it is convenient to
leave it as simple as possible.

82: Again, we have used here the iden-
tity

[a][b]− [a+ c][b− c] = [c][a− b+ c].

replaced by

qH1 = q+2(a1+a2) q−1(a3+a4) qr

qH2 = q−1(a1+a2) q+2(a3+a4) q−1(a5+a6) q−1(a7)

qH3 = q−1(a3+a4) q+2(a5+a6)

qH4 = q−1(a3+a4) q+2(a7)

where we recall that q = e
h
2 , so qHi = e

h
2Hi .

However, these have been seen not to satisfy all of the commutation
relations in Serre’s presentation. Hence, some slight modification should
be found. In order to obtain such one, a Mathematica notebook has
been used to implement the action of these generators on basis vectors
|r; a1, . . . , a7⟩ and gain some insight in what is impeding them to
satisfy Serre’s relations.79 The hope here is to identify some minor
corrections that can be applied on the coefficients by adding factors of
q (e.g. qa3−2a7) fixing these inconveniences, while still recovering the
polynomial representation when setting q → 1.

In this direction, some progress has been made, although yet incomplete.
For example, regarding the commutation relation

X2X
2
1 − [2]X1X2X1 +X2

1X2 = 0

with the quantum integer [2] being (q + q−1), the left hand side was
yielding instead

+
iq1−2a2−a3−a5−2r(q2a3 − q2a5 )(−q2a2 + q2r)(−q2+2a2 + q2r)

(−1 + q)(1 + q)3
|r; a2 + 2, a3 + 1⟩

+
iq1−a1−2a2−a3−a4−r(q2a3 − q2a1 )(q2a4 − q1+2a2 )(q2r − q2a2 )

(q − 1)(1 + q)2
|r; a1 + 1, a2 + 1, a4 + 1⟩

+
iq1−a1−a2−2a3−a5−r(q1+2a3 − q2a1 )(q2a5 − q2a3 )(q2r − q2a2 )

(q − 1)(1 + q)2
|r; a1 + 1, a2 + 1, a3 + 1⟩

+
iq1−2a1−a2−2a3−a4 (q2a1 − q2a3 )(q2a3 − q2+2a1 )(q2a4 − q2a2 )

(q − 1)(1 + q)3
|r; a1 + 2, a4 + 1⟩

when acting on a general basis element |r; a1, . . . , a7⟩. For each one of
them, by looking at each contribution of the different X2X

2
1 , X1X2X1

and X2
1X2 separately, we have found the following correction80

X1|r; a⟩ = i(qa3+3a1 [r − a2]|r; a2 + 1⟩ − qa4+a2 [a3 − a1]|r; a1 + 1⟩)

on X1 while leaving X2 the same.81 Using this generators simplifies
the above non-vanishing terms by killing all of them but one.

iq2+4a1−a3+a4−a5−r(1 + q2)(q2a3 − q2a5 )(q2r − q2a2 )

q2 − 1
|r; a1 + 1, a2 + 1, a3 + 1⟩

still to be analyzed.

On the other hand, forgetting about these additional prefactors and
concerning the commutation relations of the form [Xi, Yi] =

qHi−q−Hi

q−q−1 ,
we have seen analytically —by letting [X1, Y1] act on an arbitrary
vector |r; a⟩— that82

[X1, Y1]|r; a⟩ = ([2a1 − a3] + [2a2 − a4 − r])|r; a⟩

instead of the initial guess

[X1, Y1]|r; a⟩ = [2(a1 + a2)− (a3 + a4)− r]|r; a⟩.
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83: As opposed to the natural guess
mentioned above.

Looking then at the commutation relations

[X1, Y1]|r; a⟩ = ([2a1 − a3] + [2a2 − a4 − r])|r; a⟩

Looking at

[Hi, Xj ] = aijXj ⇝ qHiXj = qaijXjq
Hi

we have then found that the quantum analogue for the Cartan subalge-
bra generators reads instead83

qH1 = q(a1)−(a3−a1) + q−(r−a2)+(a2−a4)

qH2 = q(a3−a1)−(a5−a3) + q−(a2−a4)+(a4−a6−a7)

qH3 = q(a5−a3)−(a7−a5) + q−(a4−a6−a7)+(a6)

qH4 = q(a5−a3)+(a6) + q−(a2−a6−a7)+(a7−a5)

whose exponents are to be compared with the coefficients of the Xi

and Yi generators. For instance, regarding qH1 , the first power comes
from the a1 coefficients in X1 and Y1 added together, while the second
power comes from the a2 coefficients in X1 and Y1 added together as
well but with an overall minus sign instead.

As can be seen, some progress in this direction leading to a quantum
representation has been made, although yet incomplete. Once such rep-
resentation be obtained, the implementation of the Ti automorphisms
acting on the set of generators will be possible, leading to the final
form for the desired so8 Large Color R-matrix.





Appendix





1: The index α in the third item runs
in some (non-necessarily countable) set
Λ, whereas the second item applies only
for finite intersections of open sets. Us-
ing set theory, one can define the closed
sets in a similar way as the open ones
by replacing arbitrary unions and fi-
nite intersections with arbitrary inter-
sections and finite unions, respectively.
2: The following definition is equiva-
lent to the familiar epsilon-delta one
in the particular case of a function
f : Rn → Rm: it is continuous if for
all x ∈ Rn and for all ϵ > 0, there
∃δ > 0 such that ||y − x|| < δ =⇒
||f(y)− f(x)|| < ϵ.

3: In fact, we use some related termi-
nology, such as chart and atlas which
remind us about these cartographic
ideas.

A
Smooth Manifolds

Smooth manifolds are important mathematical objects in physics, con-
stituting the basic structure for several theories such as Classical Me-
chanics, General Relativity and Yang-Mills theory. The development of
a calculus on smooth manifolds is what is known as Differential Geom-
etry. Here we give a brief review on some relevant concepts involving
smooth manifolds [Grà; Bai; BM94].

A.1 Definition

We start with some basic concepts leading to the formal definition of a
smooth manifold while still understanding the intuition and motivating
ideas.

Definition A.1.1 A topological space is a set X together with a
collection T of subsets of X, called open sets, satisfying:

1) The empty set ∅ and X are open.
2) If U, V ⊆ X are open, so is U ∩ V .
3) If the sets Uα ⊆ X are open, so is the union

⋃
Uα.

The collection T of open sets is called the topology of X. A neigh-
borhood of a point x ∈ X is an open set U ∈ T containing it. The
complements of open sets are called closed sets.1

Having a topology allows us to define the notion of continuity,2 roughly
understood as sending nearby points to nearby points.

Definition A.1.2 (Continuity) Given two topological spaces Xand
Y , a function f : X → Y between them is continuous if for any
open set U ⊂ Y its inverse image f−1(Y ) ⊂ X is also open.

The idea of a manifold is that it can be covered by patches, called
charts, each one looking like Rm, just as with the Earth globe,3 such
that they are ‘glued’ with some notion of continuity.

Definition A.1.3 (Chart) Let M be a topological space. An m-
dimensional chart of M is a pair (U,φ) where U ⊂ M is an open
subset and φ : U → φ(U) ⊂ Rm is a homeomorphism with some open
set of Rm.
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Figure A.1: Sketch of the notion of a
smooth manifold.

Recall that in topology a homeomorphism is a continuous function
between topological spaces that has a continuous inverse function.

Definition A.1.4 (Atlas) An m-dimensional atlas in M is a set of
m-dimensional charts A = {(Uα, φα)}α∈A such that their domains
cover M and any two charts are compatible. That is:

• M =
⋃
α∈A Uα and

• for all α, β ∈ A the transition functions

φαβ := φβ ◦ φ−1
α |φα(Uα∩Uβ) : φα(Uα ∩ Uβ) −→ φβ(Uα ∩ Uβ)

are smooth.

Observe that the transition functions are defined between open sets of
Rm. Now, we finally reach the desired definition.

Definition A.1.5 (Smooth manifold) An m-dimensional smooth
manifold M is a topological space equipped with a maximal atlas.

Maximality here means that no further charts can be added to the
given atlas without losing compatibility. The term smooth may be
omitted when already understood by the context (and further, unless
otherwise stated, the manifolds will be assumed to be Hausdorff and
paracompact).

Intuitively, what this means is that every point in M lives in an open
set Uα that looks like Rm and one can patch the whole manifold out of
such pieces that look like Rm.

A.2 Smooth maps and diffeomorphisms

The smooth manifold structure further enables the definition of smooth
functions on M without ambiguity.

Definition A.2.1 (Smooth map) A continuous map f : M → N

between two manifolds is a smooth map if for all charts (U,φ) and
(V, ψ) of M and N respectively, the composition

ψ ◦ f ◦ φ−1|φ(U∩f−1(V )) : φ(U ∩ f−1(V )) −→ ψ(V )

is smooth as a map from Rm to Rn.

An isomorphic smooth map (i.e. with smooth inverse) is called a diffeo-
morphism. When N = R, we have the notion of a smooth function.

Definition A.2.2 Given an m-manifold M , a function f :M → R
is said to be smooth if f ◦ φ−1

α : φα(Uα) ⊂ Rm → R is smooth for
any chart (Uα, φα).

The set of all smooth functions is denoted as C∞(M).
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Figure A.2: Tangent space.

The unambiguity comes from the fact that for charts defined on over-
lapping domains we can write

f ◦ φ−1
β = (f ◦ φ−1

α ) ◦ (φα ◦ φ−1
β ),

where the second term in parenthesis on the right hand side is a
transition function and hence smooth, so that smoothness on the
overlapping is well defined.

A.3 Tangent space

Another elementary notion is the one of tangent space. The tangent
space to a manifold M at a point p ∈M , denoted TpM, is defined as
the vector space of equivalence classes of tangent paths at the point.
To put it precisely:

Definition A.3.1 (Tangent space) Given an m-manifold M , a path
is a smooth map γ : I →M defined in a non-degenerate intervala I.
Given the set

CM,p = {γ : I →M | γ smooth path st. γ(0) = p}

two paths γ1, γ2 ∈ CM,p are tangent (at 0) whenever there exists a
chart (U,φ) of M at p such thatb D(φ◦γ1)(0) = D(φ◦γ2)(0). In this
way, tangency defines an equivalence relation ∼ whose equivalence
classes are the tangent vectors at p, denoted [γ]p. The tangent
space is then the quocient TpM := CM,p/ ∼. The bijective map
θφ,p : TpM → Rm sending [γ]p 7→ D(φ ◦ γ)(0) enables to transport
the vector space structure of Rm to TpM .

a We will consider open intervals I containing 0.
b γ̂ = φ ◦ γ : I ⊂ R → Rm is called the local expression of γ in the chart (U,φ)
and D is the usual differential operator in Rn. Thus, two paths are tangent if
their local expressions are so.

Alternatively, there is a theorem stating the equivalence (isomorphism)
between tangency classes of paths and punctual derivations, which
allows us to identify the tangent space TpM with the R-vector space
of punctual derivations Dp(M). Thus, we may view tangent vectors as
punctual derivations δ : C∞(M)→ R, i.e. such that

δ(fg) = δ(f)g(p) + f(p)δ(g)

for any f, g ∈ C∞(M) smooth functions. In this perspective, it is
common when working in a given chart φ = (x1, . . . , xm) to write
tangent vectors in the basis of the so-called coordinate tangent
vectors at the given point: ∂/∂xi|p. That is,

up = ui
∂

∂xi

∣∣∣∣
p

∈ TpM.
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4: The standard orientation of {0} be-
ing the + sign.

5: Orientation preserving means that
its differential has positive determi-
nant.

6: The Klein bottle, for instance, is
non-orientable.

Figure A.3: Manifold with boundary.

7: See next section for the notion of
compactness.

A.4 Orientation

One can further endow manifolds with a structure of orientation.

Definition A.4.1 (Orientation) An orientation of the real vector
space Rn is a choice of sign (+ or −) for every ordered basis, such
that two ordered basis have the same sign iff the linear transformation
from one to the other has positive determinant.

In other words, an orientation is a choice of an ordered basis, which
we assign to be positive (the sign of the other ordered bases are then
uniquely determined).

Notice therefore that Rn admits only two possible orientations. One
naturally assigns a + sign to the canonical basis

((1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1))

of Rn, and calls it the standard orientation.4

The notion of orientation of a manifold M is then given by a smooth
choice of orientations of the tangent spaces TpM , meaning that the
transition functions φαβ = φβ ◦ φ−1

α are orientation preserving.5

Definition A.4.2 (Orientable manifold) A manifold M is said to
be orientable if it admits an orientation.

Not all manifolds, however, admit an orientation.6

Remark A.4.1 In Homology Theorya language, a closed m-manifold M

is said to be orientable if Hm(M ;Z) = Z. An orientation is the choice
of a generator [M ] in Z, the fundamental class of M . An oriented manifold
is one equipped with a choice of orientation. When M is a compact m-
manifold with boundary, it is said to be orientable if Hm(M,∂M ;Z) = Z,
and an orientation is given by a choice of generator [M,∂M ] in Z. Finally,
a smooth manifold M is said to be orientable if and only if the restriction
of its tangent bundle to every smooth curve is trivial. Last to mention,
one can show that the boundary of an orientable manifold is orientable.

a See Appendix C on Homology and Cohomology Theory.

A.5 Manifolds with boundary

The previous concepts can be extended to manifolds with boundary
by allowing the charts φ : U −→ Rm have as image open subsets of
Hm := {(x1, . . . , xm) | xm ≥ 0}, known as the half-plane.

A point lies in the boundary of the manifold M if it is mapped by a chart
to a point in ∂Hm := {(x1, . . . , xm) | xm = 0}. The set of boundary
points forming the boundary of M is denoted by ∂M . It turns out
to be a submanifold of M without boundary and with codimension
one: dim∂M = dimM − 1. A compact7 manifold without boundary,
∂M = ∅, is called closed.
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Figure A.4: A two-dimensional mani-
fold with positive basis (N,E) whose
positive normal vectors point outwards
for counterclockwise-oriented S1 and
inwards for clockwise-oriented S1.

There is a notion of how the orientation of ∂M with respect to M is.

Definition A.5.1 Given Σ a closed submanifold of M of codimen-
sion one, let p ∈ Σ and (v1, . . . , vm−1) be a given positive basis for
TpΣ. Then, a vector w ∈ TpM is said to be positive normal if
(v1, . . . , vm−1, w) is a positive basis for TpM .

The different connected components of the boundary of a manifold can
thus be classified in two classes.

Definition A.5.2 Given a manifold M with boundary, a connected
component of ∂M is called an in-boundary if its positive normal
vectors point inwards, and is called an out-boundary if its positive
normal vectors point outwards.

The definition does indeed not depend on the choice of positive normal
vector. In this way, every boundary ∂M of an oriented manifold M is
given by a disjoint union of in-boundaries and out-boundaries.

A.6 Compactness

Last, there is an important concept capturing the idea of whether a
given manifold extends indefinitely in all directions like R3 or does not
like S3; it is compact.

Definition A.6.1 (Compactness) A topological space X is said to
be compact if for every cover

⋃
α Uα of X by open sets Uα there is

a finite collection Uα1
, ..., Uαr

that still covers X.

For manifolds, one may as well use the equivalent definition:

Definition A.6.2 (Compact manifold) A manifold M is compact
if and only if every sequence in M has a convergent subsequence.

Finally, a basic theorem says that a subset of Rm is compact if and
only if it is closed and fits inside a ball of sufficiently large radius.





1: Recall that a group is a set with
a group operation • such that it is as-
sociative, has a neutral element and
every element has an inverse (and may
be also commutative, what we call an
abelian group)

2: Some examples of Lie groups are:

▶ The 1-sphere S1 = {z ∈ C :

|z| = 1} with • the multipli-
cation on C. This (commuta-
tive) Lie group (S1, •) is usually
called U(1).

▶ The general linear group
GL(n,R) = {linear φ : Rn →
Rn | ,detφ ̸= 0} with • the com-
position of maps ◦.

3: Although not a group isomorphism.
4: Given a manifold M , a vector field
in M is a section of the tangent bundle
τM : TM → M , that is, a map X :

M → TM such that τM ◦ X = IdM .
Thus, at each point p ∈ M it gives a
tangent vector X(p) ≡ Xp ∈ TpM .

B
Lie Algebras and Representation Theory

Lie groups and Lie algebras are useful and interesting mathematical
objects with many physical applications, with a special emphasis in
quantum physics. As an example, the Standard Model of particle
physics –describing the fundamental building blocks of the universe
we live in– is encapsulated in the representations of the Lie group
SU(3)× SU(2)× U(1), which can in turn be studied in terms of the
representations of the associated Lie algebras su(3), su(2) and u(1).

In the following, we present a brief introduction to the theory of Lie
algebras, root systems and their representations [Kir; Hum72].

B.1 Lie groups and Lie algebras

We start with the definition of a Lie group and proceed to show
how the corresponding Lie algebra is obtained. We then focus on the
classification of finite-dimensional semisimple complex Lie algebras.1

Definition B.1.1 A Lie group (G, •) is a group which further has
a structure of smooth manifold and such that the multiplication and
inverse maps are both smooth:

µ : G×G −→ G i : G→ G

(g1, g2) 7→ g1 • g2 g 7→ g−1

The inverse map i is well defined since G is a group. To be a smooth
manifold is a much stronger condition than being just a group, since one
is giving a topology on it and a smooth structure. Here, the manifold
G×G inherits the smooth atlas from G.2

There is a special map which constitutes the main tool to define the
Lie algebra corresponding to a Lie group.

Definition B.1.2 Given a Lie group (G, •) and any element g ∈ G,
define the left translation with respect to g as the map

ℓg : G→ G

h 7→ g • h

Each smooth map ℓg is clearly bijective and thus a diffeomorphism3

on G. Through ℓg one can now push forward any vector field4 X on
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5: Recall that a subalgebra is a sub-
set of an algebra which is closed under
all its operations and defined with the
induced operations.
In the case of a Lie algebra (g, [·, ·]),
a subspace h ⊂ g is called a Lie sub-
algebra if it is closed under the Lie
bracket: [h, h] ⊂ h. A subspace h ⊂ g is
called an ideal if [g, h] ⊂ h.

G to another vector field given at any point h ∈ G by

(ℓg∗X)gh := ℓg∗(Xh).

There are special vector fields which remain the same under this proce-
dure and are therefore more interesting.

Definition B.1.3 Given a Lie group (G, •), a vector field X on G

is called left-invariant if for any g ∈ G the vector field equation

ℓg∗X = X

is satisfied or, equivalently, ∀f ∈ C∞(G) it holds

X(f ◦ ℓg) = (Xf) ◦ ℓg.

The set of all left-invariant vector fields on a Lie group G is denoted
L(G) and is a subset of Γ(TG), the set of vector fields on the manifold
G (sections of the tangent bundle). We are about to see that these
are in fact Lie algebras, i.e. vector spaces equipped with a specific
additional operation.

Definition B.1.4 A Lie algebra (g,+, •, [[·, ·]]) is a K-vector space
(g,+, •) equipped with a map [[·, ·]] : g× g→ g, called Lie bracket,
which is bilinear, antisymmetric and satisfies the Jacobi identity:

[[x, [[y, z]]]] + [[y, [[z, x]]]] + [[z, [[x, y]]]] = 0.

We write here [[·, ·]] for the Lie bracket to distinguish it from the usual
commutator in differential geometry, but it is typically denoted as [·, ·].
Also, one usually denotes simply g to refer to the whole Lie algebra.
With this at hand, we can now state the following theorem.

Theorem B.1.1 (L(G), [·, ·]) is a Lie subalgebra of (Γ(TG), [·, ·]).

That is,5 the bracket [·, ·] : L(G)×L(G)→ L(G) really maps to L(G);
i.e. the image does indeed give left-invariant vector fields. Further and
most important, we have the following theorem which enables us to
identify the Lie algebra g of a group G with its tangent space at the
identity TeG.

Theorem B.1.2 There is a Lie algebra isomorphism L(G) ∼= TeG,
where e is the neutral element in G.

Proof. The linear isomorphism j : TeG
∼−→ L(G) is defined by sending

every tangent vector A ∈ TeG to the left-invariant vector field j(A) ∈
L(G) given at each g ∈ G by the pushforward j(A)g := ℓg∗A ∈ TgG. To
obtain a Lie algebra isomorphism, define the bracket [[·, ·]] : TeG×TeG→
TeG by precisely imposing the condition j([[A,B]]) = [j(A), j(B)], i.e.

[[A,B]] := j−1[j(A), j(B)]

for any A,B ∈ TeG.



B.1 Lie groups and Lie algebras 81

6: By the local existence and unique-
ness of solutions to an ODE
7: On a compact manifold, for exam-
ple, every vector field is complete.

Exponential map

One may go back and recover part of the Lie group from its Lie algebra
through the so-called exponential map, as we briefly outline here. This
involves the following concepts.

Definition B.1.5 Let M be a smooth manifold and X be a smooth
vector field on M . Then a smooth curve γ : (a, b)→M is called an
integral curve if

∀λ ∈ (a, b) : γ′(λ) = Xγ(λ),

where γ′(λ) is the vector tangent to the curve γ at the point γ(λ).

There is a unique integral curve γ of X through each point of the
manifold.6 Such a curve is called complete if its domain (a, b) can
be extended to all of R.7 It turns out that every left-invariant vector
field on a Lie group G is complete. This enables the definition of the
exponential map.

Definition B.1.6 Let (G, •) be a Lie group. Given A ∈ TeG, define
the uniquely determined left-invariant vector field XA given at each
g ∈ G by XA

g := ℓg∗A, and let γA : R→ G be the integral curve of
XA through the point γA(0) = e. Then, the exponential map is
given by

exp : TeG→ G

A 7→ γA(1)

The name of this map is justified because it satisfies similar properties
to the familiar ones for usual exponentials and it further recovers the
exponential power series when dealing with matrix Lie groups. The
exponential map satisfies some interesting properties.

Theorem B.1.3 Let (G, •) be a Lie group. Then:

(1) The exponential map exp is a local diffeomorphism: there exists
U ⊆ TeG an open set containing zero such that the restricted
map

exp|U : U → exp(U) ⊆ G

is bijective, smooth and with smooth inverse log := exp|−1
U .

(2) If G is compact, then exp is surjective and thus exp(TeG) = G.

Choosing a basis A1, . . . , Aν (with ν = dimG) of TeG hence provides a
parametrization of the Lie group G through the exponential map. The
basis elements are then called the (infinitesimal) generators of the
Lie group.

Definition B.1.7 A one-parameter subgroup of a Lie group
(G, •) is a Lie group homomorphism; that is to say, a smooth map
ξ : (R,+)→ (G, •) for which ξ(λ1 + λ2) = ξ(λ1) • ξ(λ2).
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G H

TeG TeH

f

exp exp

f∗

Figure B.1: Commutative diagram
for the exponential map exp and a
given smooth group homomorphism f .

8: Recall that the general linear al-
gebra gl(V ) consisting of linear endo-
morphisms V → V is the Lie algebra of
the general linear group GL(n,K)

of invertible matrices with matrix mul-
tiplication, where n is the dimension
of V over the field K.

Theorem B.1.4 Let (G, •) be a Lie group. Then:

(i) The map ξA : R→ G, ξA(λ) := exp(λA), is a one-parameter
subgroup of G for any A ∈ TeG. In particular, (ξA(λ))−1 =

ξA(−λ).
(ii) Any one-parameter subgroup of G is of this form.

This means that for any element A =
∑ν
i=1 λ

iAi ∈ TeG of the Lie
algebra, the corresponding element exp(A) of the Lie group can be
expressed as

∏ν
i=1 exp(λiAi). Finally, the following theorem states

that the exponential map behaves well with respect to smooth group
homomorphisms.

Theorem B.1.5 Let (G, •) and (H, ∗) be Lie groups and f : G→ H

both a smooth map and group homomorphism:

f(g1 • g2) = f(g1) ∗ f(g2), ∀g1, g2 ∈ G.

Then, the diagram in Figure B.1 commutes.

B.2 Representations of Lie algebras

In some sense, one can translate the abstract Lie algebra g into a
more familiar matrix Lie algebra gl(V ) through what is known as a
representation.8

Definition B.2.1 A representation of a Lie algebra g is a vector
space V together with a morphism ρ : g→ gl(V ).

Representations are often required to be K-linear, with K the field over
which V is defined. Being ρ a morphism of Lie algebras, in particular
it has to respect the Lie bracket:

ρ([[a, b]]) = [ρ(a), ρ(b)] ≡ ρ(a) ◦ ρ(b)− ρ(b) ◦ ρ(a), ∀a, b ∈ g.

Notice that the commutator [·, ·] : gl(V ) × gl(V ) → gl(V ) is anti-
symmetric and satisfies the Jacobi identity.

Example B.2.1 Some examples:

▶ Abstractly, the special linear algebra sl(2,C) is generated by
elements X1, X2 and X3 with relations

[[X1, X2]] = 2X2, [[X1, X3]] = −2X3, [[X2, X3]] = X1.

However, sl(2,C) is usually identified with the Lie algebra consisting
of traceless 2× 2 matrices due to the representation ρ : sl(2,C) →
gl(C2) sending

ρ(X1) =

(
+1 0

0 −1

)
, ρ(X2) =

(
0 1

0 0

)
, ρ(X3) =

(
0 0

1 0

)
,

usually denoted h, e and f , respectively.
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9: Given a real Lie algebra g, its com-
plexification is the complex Lie al-
gebra gC = g ⊗R C = g ⊕ ig with the
obvious Lie bracket.
For example: (su(2))C = sl(2,C).
10: In the case of the tensor represen-
tation, the natural guess

ρ(x)(v ⊗ w) = ρ(x)v ⊗ ρ(x)w

doesn’t define a Lie algebra representa-
tion. The given one is derived from the
Lie group tensor representation using
the Leibniz rule, which provides the
sum.

11: Irreducible representations are im-
portant in physics. For instance, physi-
cists may say sentences like “a particle
is an irreducible representation of its
underlying symmetry group”.

▶ A representation ρ : so(3,R) → gl(R3) for the three-dimensional
special orthogonal algebra so(3,R) is given by

ρ(X1) =
(

0 1 0
−1 0 0
0 0 0

)
, ρ(X2) =

(
0 0 −1
0 0 0
1 0 0

)
, ρ(X3) =

(
0 0 0
0 0 1
0 −1 0

)
identifying it with the Lie algebra of skew-symmetric matrices.
Another representation is given by ρspin : so(3,R) → gl(C2) sending

ρspin(X1) =
1

2
σ1, ρspin(X2) =

1

2
σ2, ρspin(X3) =

1

2
σ3

with σi the usual Pauli matrices.
▶ There is always the trivial representation on any vector space

ρtriv : g → gl(V )

x 7→ 0gl(V )

although not very interesting.
▶ Every Lie algebra has a non-trivial representation, the adjoint

representation

ad : g → gl(V )

x 7→ [[x, ·]]

where ad stands for adjoint.

So there might be lots of representations for a given Lie algebra. The
interesting ones will be presented later.

Notice that, given a representation ρ : g→ gl(V ) of a real Lie algebra
g, one may extend it to a representation for its complexification gC by
ρ(x+ iy) = ρ(x)+ iρ(y).9 Given two representations V and W of g, one
can also define their direct sum V ⊕W and tensor representation
V ⊗W by their action10

ρ(x)(v ⊕ w) = ρ(x)v ⊕ ρ(x)w, ρ(x)(v ⊗ w) = ρ(x)v ⊗ w + v ⊗ ρ(x)w

for x ∈ g and v ∈ V,w ∈ W . To define the dual representation
V ∗ one requires the natural pairing V ⊗ V ∗ → C to be a morphism
of representations. Taking the tensor representation and considering
C as the trivial representation, one gets ⟨ρ(x)v, v∗⟩ + ⟨v, ρ(x)v∗⟩ =
0, from where ρV ∗(x) = −(ρV (x))t is obtained. This extends to a
canonical structure for a representation on any tensor space V ⊗k ⊗
(V ∗)⊗ℓ. Further:

Definition B.2.2 Given a representation V of g, a subrepresen-
tation is a vector subspace W ⊂ V which is stable under the action:

ρ(x)W ⊂W, ∀x ∈ g.

Given a subrepresentation, the quotient space V/W has a canonical
structure of a representation, called quotient representation.

In order to classify the different existing representations, one defines the
building blocks consisting of the most simple ones, known as irreducible
representations.11
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12: Hence the name reducible, referring
to the possibility of being reduced to
an irreducible one.

13: In the following, we will simplify
notation and denote xv for x ∈ g acting
on v ∈ V instead of ρ(x)v.

Definition B.2.3 A non-zero representation V of g is called irre-
ducible or simple if it has no subrepresentations other than 0 and
V . Otherwise, V is called reducible.

Reducible representations may or may not split into irreducible repre-
sentations.12

Definition B.2.4 A representation V is said to be completely
reducible or semisimple if it splits as a direct sum of irreducible
representations:

V ∼=
⊕

Vi, Vi irreducible.

The problem of whether a representation is completely reducible is
equivalent to the one of diagonalizability. Now an important lemma.

Lemma B.2.1 (Schur’s Lemma) Given an irreducible complex rep-
resentation V of g, any intertwining operator V → V is constant:

Homg(V, V ) = C id.

Recall that an intertwining operator is a linear map V → W

commuting with the action of g. As a corollary, any irreducible complex
representation of a commutative Lie algebra g is one-dimensional.13

Example B.2.2 The Lie algebra sl(2,C) introduced before turns out
to be the building block for all finite dimensional semisimple complex Lie
algebras. The following results are then the basis for the analysis of more
complicated Lie algebras.

One can show that any representation of sl(2,C) is semisimple. One then
aims to classify all its irreducible representations. Recall first that a basis
for sl(2,C) is given by the generators e, f, h and relations

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h,

constituting a simple Lie algebra.

One then procedes and diagonalizes h. Given a representation V , a vector
v ∈ V is called vector of weight λ ∈ C if hv = λv. The subspace of
eigenvectors of weight λ is then denoted V [λ]. A lemma then shows that

eV [λ] ⊂ V [λ+ 2], fV [λ] ⊂ V [λ− 2].

This leads to a theorem stating that every finite-dimensional representation
V of sl(2,C) splits into these eigenspaces

V =
⊕
λ

V [λ]

called the weight decomposition of V . One then focuses on V irreducible
representations of sl(2,C) and defines a highest weight of V to be a
weight λ which is maximal with respect to the real part Re(λ) ≥ Re(λ′).
Vectors v ∈ V [λ] are then called highest weight vectors. There is a
lemma stating that any highest weight vector v ∈ V [λ] is annihilated by e
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14: Th following notion of a universal
enveloping algebra (UEA) finds an ana-
logue in the realms of quantum groups,
where the quantum universal en-
veloping algebra Uq(g) is defined as
a q-deformation of the UEA.

(i.e. ev = 0) and that it defines a basis

vk :=
fk

k!
v, k ≥ 0

on which the generators act as

hvk = (λ− 2k)vk, fvk = (k + 1)vk+1, evk = (λ− k + 1)vk−1.

For any n ≥ 0, this defines then an irreducible representation Vn with
highest weight n and basis v0, . . . , vn. Any finite-dimensional irreducible
representation of sl(2,C) is isomorphic to one such Vn and for any two
n ̸= m the representations Vn, Vm are non-isomorphic. Finally, any finite-
dimensional complex representation V of sl(2,C) admits an integral weight
decomposition

V =
⊕
n∈Z

V [n]

with dimV [n] = dimV [−n] and isomorphisms

en : V [n] → V [−n], fn : V [−n] → V [n]

for n ≥ 0.

B.3 Structure Theory of Lie algebras

Quantum Enveloping Algebra

To begin with, notice that there is no multilication in a Lie algebra g,
i.e. xy is not defined for any x, y ∈ g. The product in gl(V ), however,
is well-defined. One may then pick a representation ρ : g→ gl(V ) and
consider the algebra generated by products of ρ(x) with x ∈ g.14

Definition B.3.1 Given a Lie algebra g over a field K, the universal
enveloping algebra of g, denoted U(g), is the associative algebra
with unit over K and generators i(x), x ∈ g, subject to i(x + y) =

i(x) + i(y), i(cx) = ci(x), c ∈ K, and

i(x)i(y)− i(y)i(x) = i([x, y]).

It turns out that i : g → U(g) is injective and so g can be seen as a
subspace of U(g) and denote x ∈ U(g) instead of i(x). The first two
relations in the definition correspond to the tensor algebra

Tg =
⊕
n≥0

g⊗n,

so one can describe the universal enveloping algebra as the quotient

U(g) = Tg/(xy − yx− [x, y]), x, y ∈ g.

Interestingly, representations of g and of U(g)-modules are equivalent.

Semisimple Lie algebras and Killing form

Moving now to semisimple Lie algebras, recall that an ideal of g is a
vector subspace h ⊂ g such that [h, g] ⊂ h. Recall also that, given the
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15: The Casimir element deter-
mined by the non-defenerate invariant
symmetric bilinear form BV (x, y) =

Tr(ρ(x), ρ(y)) is given by

CBV
=
∑

xix
i ∈ U(g)

where xi is a basis of g and xi the dual
basis with respect to BV .
16: Precisely, the constant is

dim g

dimV
.

derived series of ideals Di+1g = [Dig, Dig] with

g = D0g ⊇ D1g ⊇ · · · ⊇ Dkg ⊇ · · · ,

we say g is solvable if Dng = 0 for large enough n. Then:

Definition B.3.2 A Lie algebra g is called simple if it is not
abelian and contains no non-trivial ideals (i.e. other than 0 and g). A
Lie algebra is called semisimple if it contains no non-zero solvable
ideals.

One then shows that any simple Lie algebra is semisimple. Further,
considering the radical of g, denoted rad(g), the unique solvable ideal
containing no other solvable ideal, one has a stronger result:

Theorem B.3.1 (Levi theorem) Every Lie algebra can be decomposed
as a direct sum

g = rad(g)⊕ gss

where gss is a semisimple subalgebra in g.

Given a representation V of g, one may define a symmetric invariant
bilinear form on g by

BV (x, y) = Tr(ρ(x)ρ(y)).

An interesting case is when one takes the adjoint representation.

Definition B.3.3 The Killing form K : g×g→ C is the symmetric
invariant bilinear form given by K(x, y) = Tr(adxady).

The following shows how this is related to semisimplicity of g.

Theorem B.3.2 (Cartan’s criterions) A Lie algebra g is solvable iff
K([g, g], g) = 0. A Lie algebra g is semisimple iff the Killing form is
non-degenerate.

B.4 Complex Semisimple Lie Algebras

Throughout this section g will be a finite-dimensional semisimple Lie
algebra and it will be complex unless otherwise stated.

Theorem B.4.1 Given a semisimple Lie algebra g and an ideal
I ⊂ g, there exists and ideal I ′ ⊂ g such that g = I ⊕ I ′.

Thus, a Lie algebra g is semisimple iff g = g1⊕· · ·⊕gk, for gi simple Lie
algebras. And the ideals in g are of the form I =

⊕
i∈J gi for some J ⊂

{1, . . . , k}. Further, given a non-trivial irreducible representation V of a
semisimple Lie algebra g, there exists a central element CV ∈ Z(U(g)),
called the Casimir element,15 acting by a non-zero constant in V .16



B.4 Complex Semisimple Lie Algebras 87

17: Recall first that an element x ∈ g is
said to be semisimple [nilpotent] if
ad x : g → g is a semisimple [nilpotent]
operator. A toral subalgebra h ⊂
g is then a commutative subalgebra
consisting of semisimple elements.

The Casimir element plays a relevant role in proving the following
important theorem.

Theorem B.4.2 Any complex finite-dimensional representation of a
semisimple Lie algebra g is completely reducible.

There is a well-known decomposition for a given semisimple Lie algebra
known as root decomposition. It requires some previous definitions.17

Definition B.4.1 Given a semisimple complex Lie algebra g, a
Cartan subalgebra h ⊂ g is a toral subalgebra coinciding with its
centralizer

C(h) := {x | [x, h] = 0} = h.

There always exists a Cartan subalgebra in every complex semisimple
Lie algebra, since any maximal toral subalgebra is such. We finally
reach the root decomposition and root systems.

Theorem B.4.3 Let g be a complex semisimple Lie algebra and
h ⊂ g a Cartan subalgebra. Then:

▶ The Lie algebra decomposes into

g = h⊕
⊕
α∈R

gα,

called the root decomposition, where

gα = {x | [h, x] = ⟨α, h⟩x ∀h ∈ h}
R = {α ∈ h∗\{0} | gα ̸= 0}

are the root subspaces gα and the root system R of g.
▶ We have [gα, gβ ] ⊂ gα+β, with g0 = h.
▶ If α+ β ̸= 0, then gα and gβ are orthogonal with respect to the

Killing form: K(gα, gβ) = 0.
▶ For any α, the pairing gα⊗ g−α → C given by the Killing form
K is non-degenerate, and in particular the restriction of K to
h is so.

Theorem B.4.4 Consider g =
⊕n

i=1 gi with g1, . . . , gn simple Lie
algebras. Then:

• If hi ⊂ gi are Cartan subalgebras of gi with corresponding root
systems Ri ⊂ h∗i , then h =

⊕n
i=1 hi is a Cartan subalgebra in

g with corresponding root system R =
⊔n
i=1Ri.

• Each Cartan subalgebra in g is of the form h =
⊕

hi with
hi ⊂ gi Cartan subalgebras of g.

Denoting by ( , ) the non-degenerate invariant bilinear form on g, since
its restriction to h is non-degenerate, notice that it defines a linear
isomorphism h → h∗ and a non-degenerate bilinear form on h∗, also
denoted ( , ). Explicitly, denoting Hα for the element in h corresponding
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18: First, for α ∈ R, we have (α, α) =

(Hα, Hα) ̸= 0. Then, given eα ∈ gα
and fα ∈ g−α such that (eα, fα) =

2
(α,α)

and defining

hα :=
2Hα

(α, α)
,

we have ⟨hα, α⟩ = 2 integer and the ele-
ments eα, fα, hα satisfy the same com-
mutation relations as in sl(2,C). De-
note this subalgebra as sl(2,C)α ⊂ g.
Finally, the definition of hα is indepen-
dent of the choice of non-degenerate
invariant bilinear form ( , ).

to α ∈ h∗, then
(α, β) = ⟨Hα, β⟩ = (Hα, Hβ)

for any α, β ∈ h∗. With this definition for Hα, for any eα ∈ gα and
fα ∈ g−α it holds [eα, fα] = (eα, fα)Hα, analogous to the sl(2,C) case.
Some other analogies18 to the sl(2,C) case bring us to:

Theorem B.4.5 Consider a complex semisimple Lie algebra g with
Cartan subalgebra h and root decomposition g = h

⊕
α∈R gα. Pick

( , ) a non-degenerate symmetric invariant bilinear form on g. Then:

(1) The root system R spans h∗ as a vector space, while elements
hα for α ∈ R span h as a vector space.

(2) Each root subspace gα for α ∈ R is one-dimensional.
(3) The number

⟨hα, β⟩ =
2(α, β)

(α, α)
∈ Z

is integer for any two roots α, β ∈ R.
(4) Defining the reflection operators rα : h∗ → h∗ for a given

root α ∈ R by

rα(λ) = λ− ⟨hα, λ⟩α = λ− 2(α, λ)

(α, α)
α,

for any root β ∈ R the element rα(β) is also a root.a

(5) The only multiples of a root α ∈ R that are also roots are ±α.
(6) For any two roots α, β ̸= ±α, the subspace

V =
⊕
k∈Z

gβ+kα

is an irreducible representation of sl(2,C)α.
(7) We have [gα, gβ ] = gα+β for any two roots α, β ∈ R such that

α+ β ∈ R, i.e. is also a root.
a In particular, for α ∈ R then −α = rα(α) ∈ R is also a root.

B.5 Root systems

The last theorem shows that the set of roots R of a semisimple complex
Lie algebra fits in what is known as an abstract root system. These have
been widely studied and give important results for the study of Lie
algebras.

Definition B.5.1 An abstract root system is a finite set of non-
zero elements R ⊂ E\{0} in an Euclidean space E with inner product
( , ), such that:

(R1) The set R generates E as a vector space.
(R2) For any two roots α, β ∈ R, the following number is integer

nαβ =
2(α, β)

(β, β)
∈ Z.
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19: Notice that conditions (R2) and
(R3) tell us that rα is nothing but
a reflection around the hyperplane
Lα = {λ ∈ E | (α, λ) = 0}. Notice also
that these reflections are linear in λ

but not in α.

20: The group operation being the
composition of reflections.

Table B.1: Exhaustive table of possi-
ble relations between pairs of roots.

φ |α|/|β| nαβ nβα

π/2 - 0 0
2π/3 1 −1 −1
π/3 1 1 1

3π/3
√
2 −2 −1

π/4
√
2 2 1

5π/6
√
3 3 1

π/6
√
3 −3 −1

(R3) Given the map rα : E → E defined by

rα(λ) = λ− 2(α, λ)

(α, α)
α,

for any roots α, β ∈ R the image rα(β) is again a root.

If R moreover satisfies the property

(R4) If both α, cα ∈ R, then necessarily c = ±1.

then it is called a reduced root system.

The number r = dimE is called the rank of the root system.19

Now:

Theorem B.5.1 The set of roots R ⊂ h∗R\{0} corresponding to the
root decomposition of a semisimple complex Lie algebra g is a reduced
root system.

Weyl group

Most of the important information about the root system is contained
in the numbers nαβ rather than in the inner products between roots.
This motivates the next definition.

Definition B.5.2 Given two root systems R1 ⊂ E1 and R2 ⊂ E2,
an isomorphism between them φ : R1 → R2 is a vector space
isomoprhism φ : E1 → E2 such that φ(R1) = R2 and preserves the
numbers nφ(α)φ(β) = nαβ for any α, β ∈ R1.

Among these, the reflections rα are special automorphisms of the root
system R constituting a group.20 We give it a name.

Definition B.5.3 The subgroup of GL(E) generated by the reflec-
tions rα for α ∈ R is called the Weyl group of the root system R

and is denoted W.

It satisfies several properties such as:

Lemma B.5.2 The Weyl group W constitutes a finite subgroup of
the orthogonal group O(E) and it leaves the root system R invariant.
Further, for any w ∈ W and α ∈ R, we have rw(α) = wrαw

−1.

Pairs of roots

The following theorem will be important for the classification of all
root systems, which in turn leads to a classification of all semisimple
Lie algebras. Throughout R will be a reduced root system.

Theorem B.5.3 Given two roots α, β ∈ R, α ̸= cβ and |α| ≥ |β|,
with angle φ between them, then one among Table B.1 must hold.
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21: Indeed, since (α, β) = |α||β| cosφ,
one sees that nαβ = 2

|α|
|β| cosφ so that

nαβnβα = 4 cos2 φ. Along with the
fact nαβnβα ∈ Z, this means that
nαβnβα ∈ {0, 1, 2, 3}, which leads to
the statement of the theorem.

22: Sometimes the set of roots is de-
noted ∆ and the positive and negative
roots ∆+ and ∆−, respectively. Also,
the simple roots are sometimes called
fundamental roots.

Figure B.2: Example given by the
root system A2 consisting of the six
shown vectors on the plane R2. A po-
larization is given by the choice of a
regular element t, so that the positive
roots are α1, α2 and α1 + α2, the first
two ones being simple.

This result comes from the strong restrictions (R2) and (R3) in the
definition of an abstract root system.21 Last, the following lemma
concerning pairs of roots is used later on.

Lemma B.5.4 For any two roots α, β ∈ R with (α, β) and α ̸= cβ,
their sum α+ β ∈ R.

Positive and simple roots

To find a set of generating roots for R, one chooses a so-called regular
element t ∈ E, i.e. one such that for any root α ∈ R it holds (α, t) ̸= 0.
Given such an element, one can decompose R as a polarization
R = R+ ⊔R− with

R+ = {α ∈ R | (α, t) > 0} and R− = {α ∈ R | (α, t) < 0}

the sets of positive and negative roots, respectively.22 A positive
root α ∈ R+ is then called simple if it cannot be expressed as a sum
of two positive roots. The set of simple roots is denoted Π ⊂ R+. Some
important results follow.

Lemma B.5.5 Every positive root can be expressed as a sum of
simple roots. And for any α, β ∈ R+ that are simple, (α, β) ≤ 0.

Theorem B.5.6 The simple roots Π of a root system R = R+⊔R− ⊂
E form a basis of the vector space E.

Corollary B.5.7 Every root α ∈ R can be expressed as a linear
combination of simple roots with integer coefficients

α =

r∑
i=1

niαi, ni ∈ Z

where {α1, . . . , αr} = Π is the set of simple roots. For positive roots
α ∈ R+ all ni ≥ 0 and for negative roots α ∈ R− all ni ≤ 0.

The height of positive roots α ∈ R+ is then defined by setting
ht (
∑
niαi) =

∑
ni ∈ Z+. In particular, ht(αi) = 1. Further:

Proposition B.5.8 Given two polarizations R = R+ ⊔R− = R′
+ ⊔

R′
− of the same root system with corresponding sets of simple roots

Π and Π′, there exists an element w ∈ W sending w(Π) = Π′.

Simple reflections

Now, the simple roots Π don’t only generate E as a vector space, but
in some sense generate the whole Weyl group W and recover the root
system R by action of W on them.
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23: For example, the Cartan matrix
for the root system An is given by

A =


2 −1
−1 2 −1

−1 2 −1

. . .
−1 2 −1

−1 2

 .

Notice from the definition, however,
that the Cartan matrix need not be
symmetric. Notice also that the off-
diagonal entries can only be 0,−1,−2

or −3.
24: If φ is the angle between simple
roots and φ ̸= π/2, then

|αi|2

|αj |2
=
aji

aij
.

Theorem B.5.9 Given a reduced root system R with polarization
R = R+ ⊔R− and Π = {α1, . . . , αr} the set of simple roots, then:

▶ The simple reflections ri := rαi generate W.
▶ The simple roots generate the root system by action of the Weyl

group: W(Π) = R. That is, every root α ∈ R can be expressed
as w(αi) for some w ∈ W and αi ∈ Π.

One can then define a length on the elements w of the Weyl group and
show that it coincides with the number ℓ of elements in a reduced
expression w = ri1 · · · riℓ in terms of simple reflections. The length
then defines an order on the elements of the Weyl group and one can
show that there is a maximal element w0, which is called the longest
element in the Weyl group W.

Dynkin diagrams

One then realizes with the previous results that the classification of
root systems is equivalent to that of possible sets of simple roots.
In order to procede with the latter, one further notices that given
two root systems R1 ⊂ E1 and R2 ⊂ E2, a larger root system R1 ⊔
R2 ⊂ E1 ⊕ E2 can be defined with the inner product on E1 ⊕ E2

defined so that E1 ⊥ E2. Thus, root systems may be decomposed into
smaller ones, with corresponding smaller sets of simple roots to be then
classified.

Definition B.5.4 A root system is said to be reducible if it can be
decomposed as R1 ⊔R2 with R1 ⊥ R2 root systems, and is said to be
irreducible otherwise.

A lemma then states that given a reducible root system R = R1 ⊔R2

with a given polarization, the set of simple roots can be decomposed as
Π = Π1⊔Π2 with Πi := Π∩Ri the set of simple roots for each Ri. And
conversely, if Π = Π1⊔Π2 with Π1 ⊥ Π2, then R = R1⊔R2 defines a root
system, where Ri is the root system generated by each Πi. This extends
to show that any root system R can be decomposed as R1 ⊔ · · · ⊔Rn
with Ri all mutually orthogonal irreducible root systems, and thus it
suffices to study the simple roots Π = {α1, . . . , αr} corresponding to
irreducible root systems only. To begin with, an efficient and compact
way to describe the relative position of the simple roots is through the
so-called Cartan matrix.

Definition B.5.5 Given a set of simple roots Π ⊂ R, the Cartan
matrix A is the r × r matrix with entries

aij =
2(αi, αj)

(αi, αi)
.

Notice that aij = nαjαi
as defined previously. One can show that

aii = 2 on the diagonal and aij ∈ Z, aij ≤ 0, non-positive integers on
the off-diagonal.23 Further, the Cartan matrix contains information
about the lengths of simple roots.24 All this information encapsulated
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Figure B.3: Complete classification
of finite-dimensional complex semisim-
ple Lie algebras in terms of Dynkin
diagrams: the four classical Lie alge-
bra series An for n ≥ 1, Bn for n ≥ 2,
Cn for n ≥ 3, Dn for n ≥ 4, plus the
diagrams E6, E7, E8, F4 and G2.

in the Cartan matrix can be presented in a graphical way by means of
the well-known Dynkin diagram, obtained as follows.

Definition B.5.6 Given a set of simple roots Π of a root system R,
the Dynkin diagram of Π is the graph

▶ with a vertex vi for each simple root αi,
▶ with edges between them for each pair αi ̸= αj and drawn with

0, 1, 2, 3 lines depending on whether the angle between αi and
αj is φ = π/2, 2π/3, 3π/4, 5π/6, respectively,

▶ and oriented for each pair of non-orthogonal distinct simple
roots with |αi| ≠ |αj | by drawing the corresponding edge with
an arrow pointing towards the shorter root.

This diagrams satisfy:

Theorem B.5.10 Given a set of simple roots Π of a reduced root
system R, the following properties hold:

(1) The Dynkin diagram of Π is a connected graph iff R is irre-
ducible.

(2) The Dynkin diagram uniquely determines the Cartan matrix.
(3) The root system R is uniquely determined by the Dynkin dia-

gram, up to isomorphism.

Any reduced irreducible root system has a Dynkin diagram isomorphic
to one of Figure B.3. This classification extends to the one for complex
semisimple Lie algebras.

B.6 Classification of complex semisimple Lie
algebras

Theorem B.6.1 Consider a semisimple complex Lie algebra g with
root system R ⊂ h∗ equipped with a non-degenerate invariant sym-
metric bilinear form ( , ). Choose a polarization R = R+ ⊔ R− of
R and let Π = {α1, . . . , αr} be the corresponding set of simple roots.
Then:

1) The Lie algebra decomposes as a vector space in

g = n− ⊕ h⊕ n+

with n± ⊂ g being the subalgebras

n± =
⊕
α∈R±

gα.

2) Choose ei ∈ gαi
and fi ∈ g−αi

such that (ei, fi) = 2
(αi,αi)

and let hi := hαi
∈ h. Then, e1, . . . , er generate n+, f1, . . . , fr

generate n− and h1, . . . , hr form a basis of h. All together,
{ei, fi, hi}i=1,...,r generate g.
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3) The elements ei, fi and hi satisfy the so-called Serre relations

[hi, hj ] = 0 [hi, ej ] = aijej (adei)
1−aijej = 0

[ei, fj ] = δij [hi, fj ] = −aijfj (adfi)
1−aijfj = 0

where aij are the entries of the Cartan matrix.

These relations completely define the Lie algebra.

Theorem B.6.2 Consider a reduced irreducible root system with
polarization R = R+ ⊔R− and simple roots Π = {α1, . . . , α}. Then,
the complex Lie algebra given by generators ei, fi, hi and the Serre
relations is a finite-dimensional semisimple Lie algebra with root
system R, denoted g(R).

As a corollary, any semisimple Lie algebra g with root system R is
isomorphic to the one given by Serre’s presentation, i.e. g ∼= g(R).
Further, there is a natural bijection between the set of isomorphism
classes of reduced root systems and the set of isomorphism classes of
finite-dimensional complex semisimple Lie algebras, and in particular
the Lie algebra is simple iff the root system is irreducible. This finally
leads to the desired result.

Theorem B.6.3 All simple finite-dimensional complex Lie algebras
are classified by the Dynkin diagrams in Figure B.3.





Figure C.1: A simplicial 3-complex as
an example of a CW-complex, where
dots, edges and faces correspond to 1-
cells, 2-cells and 3-cells respectively.

C
Homology and Cohomology Theory

Homology theory first arouse as a rigorous method to mathematically
define holes in a manifold, and is in general a way of relating sequences
of algebraic objects with other mathematical objects of different kind.

We give here a brief review on Homology and Cohomology Theory,
following [Sav12]. We start by introducing the structure of a CW-
complex, which plays a role in the definition of homology groups. Then,
after defining the concept of homology theory and presenting the Mayer-
Vietoris exact sequence, we move on to cellular homology as one of the
most common examples of homology theories. We end by defining the
corresponding concept of cohomology theory.

C.1 CW-complexes

First, as mentioned, we define the notion of a CW-complex.

Definition C.1.1 We call a topological space X a CW-complex if
it can be written as a union

X =

∞⋃
q=0

X(q)

where the 0-skeleton X(0) is a countable (maybe finite) discrete set of
points, and inductively each (q + 1)-skeleton X(q+1) is obtained from
the q-skeleton X(q) by attaching (q + 1)-cells. To be more precise,
for every q there is a set {ej | j ∈ Jq+1} where:

(1) Each ej is a subset of X(q+1) such that if e′j = ej ∩X(q), then
ej\e′j is disjoint from ei\e′i for all j, i ∈ Jq+1 with j ̸= i.

(2) For each j ∈ Jq+1, there exists a characteristic map

gj : (D
q+1, ∂Dq+1) −→ (X(q+1), X(q))

such that gj is a quotient map from Dq+1 to ej mapping
Dq+1\∂Dq+1 homeomorphically onto ej\e′j.

(3) A subset of X is closed iff its intersection with each skeleton
X(q) is closed.

The ej\e′j are called (q + 1)-cells. We say that the CW-complex is
regular when all characteristic maps gj are embeddings.

See Figure C.1 for an intuitively view of a CW-complex, although the
general notion is more abstract.
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1: Remark: For a fixed ring R, all
the standard ways to define homology
groups yield the same results when X
is a simplicial or a CW-complex and A
is a subcomplex. We will work with cel-
lular homology (defined below), which
along with singular and simplicial ho-
mologies constitute the most common
homology theories.

C.2 Homology Theory

We turn now to the abstract definition of a homology theory. This
notion enables the distinction of mathematical objects by examining
their different “kinds of holes”, an obstruction to shrinking an object
(cycles or loops, for instance) within a space which is measured by the
corresponding homology groups.

Definition C.2.1 Given a commutative ring with unit, R, we refer
to a homology theory as a functor from the category consisting of
pairs of spaces (objects) and continuous maps (homomorphisms) to the
category of graded R-modules and graded homomorphisms. In other
words, for each pair (X,A) with A ⊂ X, we have an R-module

H∗(X,A;R) =

∞⊕
q=0

Hq(X,A;R)

and for each map f : (X,A) → (Y,B) we have homomorphisms
f∗ : Hq(X,A;R)→ Hq(Y,B;R) for every q, satisfying the condition
(f ◦g)∗ = f∗ ◦g∗. One often simplifies notation and denotes Hq(X,A)

for Hq(X,A;R) and Hq(X) for Hq(X, ∅), the ring R being clear from
the context. Further, the so-called Eilenberg-Steenrod axioms must
be met:

(1) If f, g : (X,A)→ (Y,B) are homotopic then f∗ = g∗.
(2) For each pair (X,A) and each q there exist (boundary) homo-

morphisms ∂ : Hq(X,A)→ Hq−1(A) fitting into a long exact
sequence

· · · → Hq(A)
i∗−→ Hq(X)

j∗−→ Hq(X,A)
∂−→ Hq−1(A)→ · · · → H0(X,A)→ 0,

with i : A→ X and j : (X, ∅)→ (X,A) the inclussion maps.
(3) For a given open subspace U of X with closure contained in

the interior of A, the inclusion map j : (X\U,A\U)→ (X,A)

induces maps j∗ : Hq(X\U,A\U) → Hq(X,A) which are iso-
morphisms for all q.

(4) If P is a space consisting of one point, then H0(P ) = R and
Hq(P ) = 0 for q ≥ 1.

These can be stated as “homotopy invariance”, “long exact sequence”,
“excision” and “coefficient module” axioms, respectively.

According to the fourth axiom, we call R the coefficient ring for the
homology theory. The Hq(X,A) are often called homology groups,
although they actually are modules. However, one commonly has R = Z
orR = Z/nZ, and the corresponding homology modules are thus abelian
groups.1

The Eilenberg-Steenrod axioms appearing in the definition of a homol-
ogy theory yield implicitly a powerful tool for homology computations:
the Mayer-Vietoris exact sequence. Let us introduce it for CW-
complexes. Given A and B subcomplexes of a CW-complex X, such
that X = A∪B, there exist homomorphisms ∂ : Hq(X)→ Hq−1(A∩B)
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2: By compactness, the preimage of zk
is empty for all but finitely many k.

Figure C.2: The torus T2 has cycles
which cannot be continuously deformed
into each other. For example, none of
the cycles a, b or c can be deformed
into one another. The two first ones
cannot be shrunk to a point whereas
cycle c can; it is homologous to zero.

fitting into a long exact sequence

· · · → Hq(A ∩B)
(i∗,−j∗)−−−−−→ Hq(A)⊕Hq(B)

I∗+J∗−−−−→ Hq(X)
∂−→ Hq−1(A ∩B)→ . . .

being i : A ∩ B → A, j : A ∩ B → B, I : A → X and J : B → X the
corresponding inclusion maps.

One important consequence following from the Mayer-Vietoris sequence
and the homology axioms is that given a CW-complex K and a sub-
complex L (possibly empty) such that the dimension of the cell K\L
is less than or equal to n, then the homology groups Hq(K,L) vanish
for all q > n. Also, for q = 0 one has H0(K) =

⊕p
i=1R, with p the

number of path components of K.

As we will see, a cohomology theory is defined in a similar way, with
cohomological analogues of the Eilenberg-Steenrod axioms and the
Mayer-Vietoris exact sequence.

C.3 Cellular Homology

Let us give now an example of homology theory in detail.

Start with a CW-complex X and a commutative ring with unit R.
For each q, denote Cq(X,R) the free R-module with basis the q-
cells. Proceed then and define the boundary homomorphism ∂q+1 :

Cq+1(X,R)→ Cq(X,R) as follows. To begin with, fix an orientation on
Dq+1, determining thus as well an orientation on the q-sphere ∂Dq+1.
Given then a (q+1)-cell c ∈ Cq+1(X,R), look at how the characteristic
map g of c takes ∂Dq+1 to X(q). Now, for each ek ∈ X(q) fix a point
zk in ck = ek\e′k. It turns out that g is homotopic to a map such that
for each k, the preimage of zk is a finite set of points pk,1, . . . , pk,nk

.
Further, one can also show that g takes a neighborhood of each pk,j
homeomorphically to a neighborhood of zk.2 Define now ϵk,j = ±1
for each j with q ≤ j ≤ nk corresponding to whether g restricted to
the neighborhood of pk,j is orientation preserving or reversing, and
denote

ϵk =

nk∑
j=1

ϵk,j to write ∂q+1(c) =

∞∑
k=1

ϵkck

where only finitely many ϵk are non-zero. This defines the boundary map
c 7→ ∂q+1(c) on the generators. Extending to the whole free R-module
Cq+1(X,R) by linearity, one obtains ∂q+1 as desired.

There is an alternative way to describe the numbers ϵk by considering
the quotient space X(q)/X(q−1), which is homeomorphic to union of
q-dimensional spheres at a common point (one for each q-cell ck = ek\e′k).
Then, given a (q+1)-cell c, its characteristic map g : (Dq+1, ∂Dq+1)→
(X(q+1), X(q)) induces the maps

φk : ∂Dq+1 −→ X(q) −→ X(q)/X(q−1) −→ Sq,

where for the defining k the last arrow sends the sphere Sq corresponding
to the cell ck identically to itself, while contracting all other spheres
to a point. The degree of φk is ϵk. This way of describing ϵk ensures
that ∂q+1(c) is well-defined.
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Figure C.3: An example of a cellu-
lar subdivision with homology groups
H0

∼= H1
∼= Z and Hi ∼= 0 for i ≥ 2.

Some examples are given by the 1-cycle
A+B since ∂(A+B) = D−E+E−D =
0 and the 1-boundary B−C = ∂F . Fur-
ther, A+B and A+C are homologous
1-chains since A + B = A + C + ∂F .
Last, D and A+ C are generators for
H0 and H1, respectively.

Next, it can be shown that the special property ∂q∂q+1 = 0 holds. The
reason comes from the fact that, algebraically, the q-sphere ∂Dq+1 acts
as if it were a regular CW-complex with a q-cell for each preimage point
of a zk. Being ∂Dq+1 a manifold, the boundaries of these q-cells form
a set of (q − 1)-cells, each of which appearing as part of the boundary
of two q-cells with opposite orientations. In this way, when applying
∂q to ∂q+1(c) adding up the images of the boundaries of the q-cells in
Cq−1(X,R), all pairs with opposite signs cancel out yielding 0.

With this property at hand, one can define the homology groups as
follows. Denote any element of Cq(X,R) as a formal finite sum

∑
rkck

(each ck being a q-cell), called a q-chain, and then form a sequence of
R-modules

· · · → Cq+1(X,R)
∂q+1−−−→ Cq(X,R)

∂q−→ Cq−1(X,R) · · · → C0(X,R)→ 0,

called a chain complex for having ∂q∂q+1 = 0 for all q. By this very
same property, the image of ∂q+1 is clearly contained in the kernel of ∂q
for each q. It is when the image of ∂q+1 equals the kernel of ∂q for each
q that the sequence is called exact. However, in general it is not, and
the measure of its deviation from exactness is given by the cellular
homology groups

Hq(X;R) := ker(∂q)/im(∂q+1).

The standard terminology is to call elements of ker(∂q) as cycles
and elements of im(∂q+1) as boundaries. Explicitly, an element of
Hq(X;R) is then a coset aq +∂q+1(Cq+1(X,R)) with ∂qaq = 0, usually
denoted [aq]. Notice that [aq] = [a′q] if and only if aq = a′q + ∂q+1(bq+1),
i.e. differ by a boundary of some (q + 1)-chain bq+1.

Finally, to complete the definition of H∗ as a homology theory one
defines the morphisms f∗ associated by the functor to every continuous
map f : X → Y . This is done by first defining Cq(f) : Cq(X,R) →
Cq(Y,R). The Cellular Approximation Theorem allows us to change f
within its homology class in order to have f(X(q)) ⊂ Y (q) for all q. In
this way, Cq(f)(c) ∈ Cq(Y,R) can be defined similarly to how it was
done above for ∂q(c). The morphism f∗ is then defined by sending the
homology classes to one another: f∗([c]) = [Cq(f)(c)].

It can be proven that this is well-defined, that it satisfies the Eilenberg-
Steenrod axioms and that H∗(X;R) does not depend on the choice of
CW-complex structure for X.

For the case of a subcomplex A of X, one can define relative homol-
ogy groups Hq(X,A;R) by setting Cq(X,A;R) = Cq(X;R)/Cq(A;R)
and observing that ∂q induces a corresponding boundary map ∂q :

Cq(X,A;R)→ Cq−1(X,A;R), producing a chain complex C∗(X,A;R).
The homology of such chain complex defines then the homology groups
Hq(X,A;R), whose elements can be represented each by a q-chain whose
boundary lies in A. The long exact sequence of the second Eilenberg-
Steenrod axiom turns out to be a purely algebraic consequence of the
existence of short exact sequences

0→ Cq(A;R)→ Cq(X;R)→ Cq(X,A;R)→ 0.
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Figure C.4: Example given by a vec-
tor field that corresponds to a closed
but not exact differential form on the
punctured plane, the De Rham coho-
mology of this space hence being non-
trivial.

C.4 Cohomology of Spaces

Once a cellular (or simplicial or singular) homology is defined, coho-
mology can be defined algebraically.

Definition C.4.1 Let A and B be R-modules. Then, for every
R-module homomorphism φ : A→ B, there is another one

φ∗ : Hom(B,R) −→ Hom(A,R)

given by φ∗(α) = α◦φ. Being clear that (φ◦ψ)∗ = ψ∗◦φ∗, one defines
the coboundary homomorphism by δq := ∂∗q so that δq+1δq =

∂∗q+1∂
∗
q = (∂q∂q+1)

∗ = 0∗ = 0. Thus, using Cq(X;R) to denote
Hom(Cq(X), R) for short, one has a cochain complex

0→ C0(X;R)→ · · · → Cq−1(X;R)
δq−→ Cq(X;R)

δq+1−−−→ Cq+1(X;R)→ . . .

whose deviation from exactness is measured by the cohomology
groups

Hq(X;R) = ker(δq+1)/im(δq).

In this setting, every continuous map f : X → Y induces a homomor-
phism f∗ : Hq(Y ;R)→ Hq(X;R) with the property (f ◦g)∗ = g∗◦f∗.
Moreover, there are as well corresponding versions of the Eilenberg-
Steenrod axioms and the Mayer-Vietoris exact sequence for cohomol-
ogy.

When R = F is a field, it can be proven that Hom(Hq(X;F),F) ∼=
Hq(X;F), the dual vector space of Hq(X;F). This means that Hq(X;F)
and Hq(X;F) are vector spaces of the same rank, yet not existing any
natural isomorphism between them.

C.5 De Rham Cohomology

As an example, we present here the well-known De Rham cohomology
appearing in algebraic topology.

Recall first that given a smooth m-manifold M , a differential p-form
on M may be compactly expressed in local coordinates as∑

I′

fI dxI ,

where I = (i1, . . . , ip), fI = fi1,...,ip are C∞-functions, dxI = dxi1 ∧
· · · ∧ dxip and the summation is carried out over the I such that
1 ≤ i1 ≤ · · · ≤ ip ≤ m. The R-vector space of differential p-forms on
M is then denoted Ωp(M) and the direct sum

Ω(M) =

m⊕
p=0

Ωp(M)

is the space of differential forms on M . As coboundary map one has
the exterior derivative d : Ω→ Ω, defined to be the unique R-linear
map sending p-forms to (p+ 1)-forms (antiderivation) and satisfying:
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3: For example, the space R3 \ {0}
clearly has some sort of hole in it, but it
is simply connected. One may then call
it a 2-hole instead of a 1-hole, since it
prevents some 2-dimensional surfaces
from being deformed into one another
(think for instance of the upper and
lower hemispheres of the unit sphere
sitting in this punctured space).

4: In this definition, the dimension of
the cohomology group Hp(M) may
then be regarded as the number of “p-
holes” in M .

▶ At the level of smooth functions f ∈ Ω0(M), it is given by

df =

m∑
k=1

∂f

∂xk
dxk.

▶ It satisfies the property d ◦ d = 0.
▶ Inductively, given a p-form α and any differential form β in Ω(M),

their exterior product α ∧ β satisfies

d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ.

Moreover, there is a cochain complex

0→ Ω0(M)
d−−→ Ω1(M)

d−−→ · · · d−−→ Ωm(M)→ 0.

Recalling that a differential p-form ω is closed if dω = 0 and that it
is exact if there exists a differential (p− 1)-form η such that ω = dη,
notice that all exact forms are closed but not vice versa. It is the study
of this “vice versa” what is called De Rham Cohomology, after the
inventor of differential forms.

Recall that closed 1-forms on a manifold are automatically exact if
certain topological conditions hold, for instance that the manifold
be simply connected [BM94]. Intuitively, if a manifold is not simply
connected, it has some sort of “holes” in it (e.g. the punctured plane
R2 \ {0}). One might call these 1-holes because they impede closed
1-forms wrapping around them from being exact. Further, they prevent
certain 1-dimensional objects —paths namely— from being homotopic.
There are, however, various sorts of holes besides the 1-holes.3 In some
sense, Cohomology is thus the study of holes by algebraic methods. De
Rham cohomology groups can be described as4

Definition C.5.1 Let Zp(M) be the vector space of closed p-forms
on M and Bp(M) ⊆ Zp(M) the vector subspace of exact p-forms.
Then, a measure of the amount of existing closed forms that are not
exact is given by the quotient space

Hp(M) := Zp(M)/Bp(M),

called the p-th de Rham cohomology group of M .

An element of Hp(M) is thus an equivalence class of closed p-forms,
where two closed forms ω and ω′ are equivalent —cohomologous— if
they differ by an exact p-form. Each equivalence or cohomology class is
then denoted

[ω] := {ω′ | ∃η ∈ Ωp(M) st ω − ω′ = dη}.

One can show that the pullback of a closed form is closed and, similarly,
that the pullback of an exact form is exact. Last to mention, a classical
theorem by De Rham asserts that singular and De Rham cohomologies
are actually isomorphic.



D
Mathematica code

D.1 Large Color R-matrix in action

We gather here some lines of the Mathematica code for the implemen-
tation of the colored Jones polynomial and the FK(x, q) invariant for
the right-handed Trefoil. In the former case, an extra overall factor of
q−i appears from setting x = qi.

1 (* Define R-matrix function and its inverse *)

2

3 RMat[x_, q_, i1_, j1_, i2_, j2_] :=

4 DiscreteDelta[i1 + j1 - i2 - j2] x^(-((j1 + j2)/2)) q^(j1*j2)

5 (QPochhammer[q, q, i1] QPochhammer[x^-1 q^j1, q, i1 - j2])

6 /(QPochhammer[q, q, j2] QPochhammer[q, q, i1 - j2]);

7 RMatinv[x_, q_, i1_, j1_, i2_, j2_] :=

8 DiscreteDelta[i1 + j1 - i2 - j2] x^((i1 + i2)/2) q^(-i1*i2)

9 (QPochhammer[q^-1, q^-1, j1] QPochhammer[x q^-i1, q^-1, j1-i2])

10 /(QPochhammer[q^-1, q^-1, i2] QPochhammer[q^-1, q^-1, j1-i2]);

11

12 (* Compute the i-th colored Jones polynomial (x=q^i) *)

13 Do[Print[q^-i (Sum[ q^{-m} RMat[q^i, q, 0, m, m, 0] RMat[q^i, q, m

, 0, m, 0] RMat[q^i, q, m, 0, 0, m], {m, 0, i}] //

FunctionExpand) // Simplify // Expand], {i, 0, 4}]

14

15 (* Check it agrees with the expected result: *)

16 Do[Print[ColouredJones[Knot[3, 1], n][q]], {n, 0, 4}]

17

18 (* Compute FK (x,q) up to order O(x^6) *)

19 Collect[(Sum[ q^{-m} RMat[x, q, 0, m, m, 0] RMat[x, q, m, 0, m, 0]

RMat[x, q, m, 0, 0, m], {m, 0, 5}] /. x -> q^-2 x^-1 //

FunctionExpand) + O[x]^6, x, Simplify]

D.2 Finding suitable generators for so8

He give here some of the lines of code used to obtain the new set of
generators for so8.

1 (* Define general element of so(8,C) and the hk’s*)

2 (testelem = {{0, a12, a13, a14, a15, a16, a17, a18}, {-a12, 0, a23

, a24, a25, a26, a27, a28}, {-a13, -a23, 0, a34, a35, a36,

a37, a38}, {-a14, -a24, -a34, 0, a45, a46, a47, a48}, {-a15,

-a25, -a35, -a45, 0, a56, a57, a58}, {-a16, -a26, -a36, -a46,

-a56, 0, a67, a68}, {-a17, -a27, -a37, -a47, -a57, -a67, 0,

a78}, {-a18, -a28, -a38, -a48, -a58, -a68, -a78, 0}}) //

MatrixForm
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3

4 (h1 = {{0, 1, 0, 0, 0, 0, 0, 0}, {-1, 0, 0, 0, 0, 0, 0, 0}, {0, 0,

0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0,

0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0,

0}, {0, 0, 0, 0, 0, 0, 0, 0}}) // MatrixForm;

5 (h2 = {{0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0}, {0, 0,

0, 1, 0, 0, 0, 0}, {0, 0, -1, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0,

0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0,

0}, {0, 0, 0, 0, 0, 0, 0, 0}}) // MatrixForm;

6 (h3 = {{0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0}, {0, 0,

0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0,

1, 0, 0}, {0, 0, 0, 0, -1, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0,

0}, {0, 0, 0, 0, 0, 0, 0, 0}}) // MatrixForm;

7 (h4 = {{0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0}, {0, 0,

0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0,

0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 1},

{0, 0, 0, 0, 0, 0, -1, 0}}) // MatrixForm;

8

9 (* Apply change of basis *)

10 (changebasis = Transpose[{{i, 1, 0, 0, 0, 0, 0, 0}, {-i, 1, 0, 0,

0, 0, 0, 0}, {0, 0, i, 1, 0, 0, 0, 0}, {0, 0, -i, 1, 0, 0, 0,

0}, {0, 0, 0, 0, i, 1, 0, 0}, {0, 0, 0, 0, -i, 1, 0, 0}, {0,

0, 0, 0, 0, 0, i, 1}, {0, 0, 0, 0, 0, 0, -i, 1}}]) //

MatrixForm;

11

12 (testmat = 2 Inverse[changebasis].testelem.changebasis) //

13 Expand // MatrixForm

The factor of two here is to ease the identification of corresponding
pairs. These are guessed by inspection and checked with lines like the
following one, giving true whenever the matching is correct.

1 testmat[[1, 3]] == -testmat[[4, 2]] // Simplify;

The new general element in this basis is then defined (test2), along
with the new H generators (HC) whose linear combinations end up
giving the Cartan subalgebra generators.

1 (* Define general element test2 and HCk’s *)

2 (test2 = {{H1, 0, X1, X2, X5, X6, X9, X10}, {0, -H1, X3, X4, X7,

X8, X11, X12}, {-X4, -X2, H2, 0, X13, X14, X17, X18}, {-X3, -

X1, 0, -H2, X15, X16, X19, X20}, {-X8, -X6, -X16, -X14, H3,

0, X21, X22}, {-X7, -X5, -X15, -X13, 0, -H3, X23, X24}, {-X12

, -X10, -X20, -X18, -X24, -X22, H4, 0}, {-X11, -X9, -X19, -

X17, -X23, -X21, 0, -H4}}) // MatrixForm

3

4 (HC1 = {{1, 0, 0, 0, 0, 0, 0, 0}, {0, -1, 0, 0, 0, 0, 0, 0}, {0,

0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0,

0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0,

0}, {0, 0, 0, 0, 0, 0, 0, 0}}) // MatrixForm;

5 (HC2 = {{0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0}, {0, 0,

1, 0, 0, 0, 0, 0}, {0, 0, 0, -1, 0, 0, 0, 0}, {0, 0, 0, 0,

0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0,

0}, {0, 0, 0, 0, 0, 0, 0, 0}}) // MatrixForm;

6 (HC3 = {{0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0}, {0, 0,

0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 1,

0, 0, 0}, {0, 0, 0, 0, 0, -1, 0, 0}, {0, 0, 0, 0, 0, 0, 0,

0}, {0, 0, 0, 0, 0, 0, 0, 0}}) // MatrixForm;

7 (HC4 = {{0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0}, {0, 0,
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1: The notation Ek, Fk instead of
Xk, Yk for the generators has been used
here.

0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0,

0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 1,

0}, {0, 0, 0, 0, 0, 0, 0, -1}}) // MatrixForm;

We then obtain a general matrix giving the commutator of linear
combinations of HC’s with the general elements test2. By inspection,
one finds the suitable coefficients and the generators Ek and Fk.1

1 (* General comutator *)

2 (lincomb = (g1*HC1 + g2*HC2 + g3*HC3 + g4*HC4).test2 - test2.(g1*
HC1 + g2*HC2 + g3*HC3 + g4*HC4)) // MatrixForm // Simplify

3

4 (lincomb /. {g1 -> 1, g2 -> -1, g3 -> 0, g4 -> 0}) // MatrixForm;

5 (lincomb /. {g1 -> 0, g2 -> 1, g3 -> -1, g4 -> 0}) // MatrixForm;

6 (lincomb /. {g1 -> 0, g2 -> 0, g3 -> 1, g4 -> -1}) // MatrixForm;

7 (lincomb /. {g1 -> 0, g2 -> 0, g3 -> 1, g4 -> +1}) // MatrixForm;

8

9 (* Lie algebra generators *)

10 HH1 = (HC1 - HC2); HH2 = (HC2 - HC3); HH3 = (HC3 - HC4);

HH4 = (HC3 + HC4);

11 E1 = I (test2 - (test2 /. {X1 -> 0})) /. {X1 -> 1};

12 F1 = I (test2 - (test2 /. {X4 -> 0})) /. {X4 -> 1};

13 E2 = I (test2 - (test2 /. {X13 -> 0})) /. {X13 -> 1};

14 F2 = I (test2 - (test2 /. {X16 -> 0})) /. {X16 -> 1};

15 E3 = I (test2 - (test2 /. {X21 -> 0})) /. {X21 -> 1};

16 F3 = I (test2 - (test2 /. {X24 -> 0})) /. {X24 -> 1};

17 E4 = I (test2 - (test2 /. {X22 -> 0})) /. {X22 -> 1};

18 F4 = I (test2 - (test2 /. {X23 -> 0})) /. {X23 -> 1};

One finally checks all Serre relations for these matrix generators with
true or false booleans, like in the following examples:

1 (* Check commutation relations [Hi, Hj] = 0 *)

2 HH1.HH2 - HH2.HH1 == Zero // Simplify;

3

4 (* Check commutation relations [Hi,Ej] = Aij Ej *)

5 HH2.E3 - E3.HH2 == -E3 // Simplify;

6

7 (* Check commutation relations [Hi,Fj] = -Aij Fj *)

8 HH4.F3 - F3.HH4 == Zero // Simplify;

9

10 (* Check commutation relations [Ei,Fj] = delta_ij H_j *)

11 E1.F4 - F4.E1 == Zero // Simplify;

D.3 Polynomial representation

Here we check that the obtained polynomial representation in the
chosen ai basis indeed satisfies each and every Serre relation defining
the so8 Lie algebra.

We first define the generators through the following functions acting
on the basis vectors implemented as lists

{f, lst} := {f, {r, a1, a2, a3, a4, a5, a6, a7}}

where the extra parameter f in front allows dealing with different
coefficients when composing different generators.
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2: Notice that we are using again the
notation Ek, Fk instead of Xk, Yk.

1 E1 := Function[{f, lst}, {{i f (lst[[1]] - lst[[3]]), lst + Table[

Boole[j == 3], {j, 1, 8}]}, {-i f(lst[[4]] - lst[[2]]), lst

+ Table[Boole[j == 2], {j, 1, 8}]}}]

and similar for the remaining Ek’s and all the Fk’s.2 The Hk’s are
simpler. For example:

1 H1 := Function[{f, lst}, {f (2 lst[[2]] + 2 lst[[3]] - lst[[4]] -

lst[[5]] - lst[[1]]), lst}]

Then, all of the commutation relations are checked one by one. For
example, to check

E2E
2
1 − 2E1E2E1 + E2

1E2 = 0,

the following line has been implemented.

1 DeleteCases[

2 condense[

3 Join[

4 Flatten[

5 E2 @@@ Flatten[

6 E1 @@@ E1 @@ {1, {r, a1, a2, a3, a4, a5, a6, a7}}, 1],

7 1],

8 Flatten[

9 E1 @@@ Flatten[

10 E2 @@@ E1 @@ {-2, {r, a1, a2, a3, a4, a5, a6, a7}}, 1],

11 1],

12 Flatten[

13 E1 @@@ Flatten[

14 E1 @@@ E2 @@ {1, {r, a1, a2, a3, a4, a5, a6, a7}}, 1],

15 1]

16 ]

17 ] // Simplify, x_ /; x[[1]] == 0] === {};

Here the extra function condense has been defined in order to group to-
gether contributions coming from different generators but corresponding
to the same basis vector.

1 condense[lst_] := (

2 conds = {};

3 For[j = 1; t = False, j <= Length[lst], j++,

4 For[k = 1; aux = 0, k <= Length[conds], k++,

5 t = (lst[[j, 2]] === conds[[k, 2]]);

6 If[t, conds[[k, 1]] = conds[[k, 1]] + lst[[j, 1]] ];

7 If[t, Break[]]

8 ];

9 If[t, t =! t, conds = Join[conds, {lst[[i]]}]]

10 ];

11 conds)

D.4 Quantum representation

Concerning the search for the quantum representation, we give here
some of the lines that have been used. While the condense function
remains the same as in the previous section, the quantum integer
function qint must be defined. This is done through either of the
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following two functions, which are useful to define together to allow
their use indistinctly.

1 qint[n_, q_] := ( (q^{n} - q^{-n})/(q^{1} - q^{-1}) )

2 qint[n_] := ( (q^{n} - q^{-n})/(q^{1} - q^{-1}) )

Then, some quantum modifications of the generators in the previous
section are implemented. For example:

1 E1 := Function[{f, lst}, {{i f q^{lst[[4]] + 3 lst[[2]]} qint[lst

[[1]] - lst[[3]]], lst + Table[ Boole[j == 3], {j, 1, 8}]},

{-i f q^{lst[[5]] + lst[[3]]} qint[lst[[4]] - lst[[2]]], lst

+ Table[Boole[j == 2], {j, 1, 8}]}}]

Also, we have the qHi generators, such as:

1 qH1 := Function[{f, lst}, {q^(f (2 lst[[2]] - lst[[4]])) + q^(f (2

lst[[3]] - lst[[5]] - lst[[1]])), lst}]

Then, Serre’s commutation relations are analyzed to study where they
fail to be fulfilled. For instance, for

[E1, F1] =
qH1 − q−H1

q − q−1

we have

1 Expand[Flatten[

2 DeleteCases[

3 condense[

4 Join[

5 Flatten[E1 @@@ F1 @@ {1, {r, a1, a2, a3, a4, a5, a6, a7}}, 1],

6 Flatten[F1 @@@ E1 @@ {-1, {r, a1, a2, a3, a4, a5, a6, a7}},1]

7 ]

8 ],

9 x_ /; x[[1]] == 0], 1] [[1 ;; 1]]

10 == ((qH1 @@ {1, {r, a1, a2, a3, a4, a5, a6, a7}})[[1 ;; 1]]

11 - (qH1 @@ {-1, {r, a1, a2, a3, a4, a5, a6, a7}})[[1 ;; 1]])

12 /(q - q^(-1))

13 ] // Simplify;

and for
E2E

2
1 −

(
q + q−1

)
E1E2E1 + E2

1E2 = 0,

we have

1 DeleteCases[

2 condense[Join[

3 Flatten[E2 @@@

4 Flatten[E1 @@@

5 E1 @@ {1, {r, a1, a2, a3, a4, a5, a6, a7}}, 1], 1],

6 Flatten[E1 @@@

7 Flatten[E2 @@@

8 E1 @@ {-(q + q^{-1}), {r, a1, a2, a3, a4, a5, a6, a7}},

9 1], 1],

10 Flatten[E1 @@@

11 Flatten[E1 @@@

12 E2 @@ {1, {r, a1, a2, a3, a4, a5, a6, a7}}, 1], 1]]

13 ] //Simplify, x_ /; x[[1]] == {0}

14 ]
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