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Cerebral blood flow (CBF) reflects the rate of delivery of arterial blood to the

brain. Since no nutrients, oxygen or water can be stored in the cranial cavity due

to space and pressure restrictions, a continuous perfusion of the brain is critical

for survival. Anesthetic procedures are known to affect cerebral

hemodynamics, but CBF is only monitored in critical patients due, among

others, to the lack of a continuous and affordable bedside monitor for this

purpose. A potential solution through bioelectrical impedance technology, also

known as rheoencephalography (REG), is proposed, that could fill the existing

gap for a low-cost and effective CBF monitoring tool. The underlying

hypothesis is that REG signals carry information on CBF that might be

recovered by means of the application of advanced signal processing

techniques, allowing to track CBF alterations during anesthetic procedures.

The analysis of REG signals was based on geometric features extracted from the

time domain in the first place, since this is the standard processing strategy for

this type of physiological data. Geometric features were tested to distinguish

between different anesthetic depths, and they proved to be capable of tracking

cerebral hemodynamic changes during anesthesia. Furthermore, an approach

based on Poincaré plot features was proposed, where the reconstructed

attractors form REG signals showed significant differences between different

anesthetic states. This was a key finding, providing an alternative to standard

processing of REG signals and supporting the hypothesis that REG signals do

carry CBF information. Furthermore, the analysis of cerebral hemodynamics

during anesthetic procedures was performed by means of studying causal

relationships between global hemodynamics, cerebral hemodynamics and

electroencephalogram (EEG) based-parameters. Interactions were detected

during anesthetic drug infusion and patient positioning (Trendelenburg

positioning and passive leg raise), providing evidence of the causal coupling

between hemodynamics and brain activity. The provided alternative of REG

signal processing confirmed the hypothesis that REG signals carry information

on CBF. The simplicity of the technology, together with its low cost and easily

interpretable outcomes, should provide a new opportunity for REG to reach
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standard clinical practice. Moreover, causal relationships among the

hemodynamic physiological signals and brain activity were assessed,

suggesting that the inclusion of REG information in depth of anesthesia

monitors could be of valuable use to prevent unwanted CBF alterations

during anesthetic procedures.

KEYWORDS

general anesthesia, cerebral blood flow, electroencephalography,
rheoencephalography, Poincaré plot descriptors, Granger causality

1 Introduction

In the last decades, medical devices have flooded operating

theaters to provide healthcare professionals updated and reliable

information on patient vital signs, as well as advanced algorithms

aiming at improving patient care. Nonetheless, certain clinical

signs are not included in standard patient monitoring during

surgeries under general anesthesia, such as cerebral blood flow

(CBF). Even though CBF is monitored in critical patients, it is not

part of the standard of care since it is invasive or extremely

unwieldy and expensive.

General anesthetics are known to affect brain

hemodynamics, provoking changes in CBF that might

interfere in the transit times of the anesthetics towards the

target organ, the brain. The main research hypothesis of this

research (Slupe and Kirsch, 2018; Tauber et al., 2021; Porta et al.,

2022) suggests that CBF plays an important role in anesthesia

andmight be useful to enhance current algorithms used for depth

of anesthesia monitoring. Moreover, to be accepted for standard

clinical practice, a CBFmonitor to be used for anesthesia titration

should be easy to use, non-invasive and cost-effective, provide

real time information and guarantee that it does not cause

alterations in blood flow during its use.

Rheoencephalography (REG) is an explorative method of

cerebral circulation that measures electrical impedance which

allows a continuous observation of the blood flow in different

cerebral regions. The principle of this method is that blood is a

good electrical conductor, therefore any increase in blood volume

will lead to a reduction of the brain electrical resistance, and this

will be reflected in a decrease of REG pulse amplitude given a

constant current. Therefore, REG would comply with the

requirements of low-cost and effective CBF monitoring tool

(Bodo, 2010; Moskalenko, 2015). REG signals have

traditionally been analyzed by assessing the geometrical

properties of the blood pulse waves in the time domain

(Montgomery et al., 1995; Bodo et al., 2004), such as the

duration of the anacrotic phase of the pulse, the maximum

and minimum amplitudes, the slope and the area under the

curve.

The closest technology to REG is impedance cardiography

(ICG), since both share the same working principle based on the

electrical bioimpedance. ICG measures the electrical impedance

of the thoracic cavity and allows the assessment of several

hemodynamic variables, such as cardiac output (CO), stroke

volume (SV), left ventricular ejection time (LVET) and systemic

vascular resistance (SVR), among others (Siedlecka et al., 2015).

Due to the similarities between REG and ICG, and the positive

clinical outcome of the use of ICG, the rationale behind the

analysis of ICG waves will be applied to REG recordings for CBF

estimation.

Within the field of time series nonlinear analysis, many

features have been developed for signals characterization, such

as the Lyapunov exponents, fractal dimension, Poincaré plot

analysis or entropy. Even though none of those algorithms has

been applied to REG signals, some authors have studied their

performance in processing similar data, such as intracranial

pressure (ICP) recordings. For instance (Lu et al., 2012), used

multiscale entropy applied to ICP recordings to study their

complexity in brain injured patients, concluding that

multiscale entropy was a good predictor of mortality and

favorable outcome in those patients. Another metric entropy,

approximate entropy (ApEn) was selected by (Hornero et al.,

2006) to analyze ICP signals in the pediatric population,

providing evidence that decreased complexity in ICP was

related to events of intracranial hypertension. However,

entropy calculations are often cumbersome for real time

applications; they could be a powerful tool for post hoc

analysis but are not the optimal solution for patient bedside

monitoring. In contrast, within the set of nonlinear algorithms

applied to biomedical signals, Poincaré plot analysis has shorter

computation times and has also been extensively used in

physiological signal processing, namely in heart rate variability

(HRV) analysis (Khandoker et al., 2013), hence being a suitable

tool for REG analysis.

Related to Poincaré plot analysis (Dimitriev et al., 2016),

analyzed by means of nonlinear dynamics based on Poincaré

plots how the state of anxiety affected heart rate variability. Voss

et al. have previously published on the effects of age and gender in

short-term heart rate variability analyzed with Poincaré plots

among other features (Voss et al., 2015). Other biological signals

have been studied by means of Poincaré plots. Hayashi et al.

related the delayed coordinates map to changes provoked by

anesthesia in the electroencephalogram (EEG) (Hayashi et al.,

2015). Hoshi et al. used standard features of Poincaré plot

analysis to distinguish between healthy subjects and patients

suffering coronary disease, concluding that the SD1/SD2 index
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provided useful information for that purpose (Hoshi et al., 2013).

Even though some features extracted from Poincaré plots are

known to be highly correlated to linear time domain information,

some others reflect nonlinear behaviors, complementing the

diagnosis capabilities of heart rate variability signals, such as

the SD1/SD2 parameter or the Complex Correlation Measure

(Karmakar et al., 2011).

The causality analysis of different physiological signals has

gained popularity in the last decade. Most of the causality studies

of biomedical signals have been published on the analyses of

causal relationships between heart period, systolic arterial

pressure (SAP) and respiration (Faes et al., 2011; Porta et al.,

2014). Relevant clinical results have arisen such as the work from

(Rield et al., 2010) exploring short-term couplings between

respiration, systolic and diastolic blood pressure and heart

rate, in order to have a deeper understanding on pre-

eclampsia, which is responsible for significant neonatal and

maternal mortality. Additionally, Porta et al. studied the

causal interactions between heart period, respiration and

systolic arterial pressure at rest and after the administration of

different drugs, concluding that Granger causality is a suitable

tool to describe cardiovascular control and the effects of the

administered drugs (Porta et al., 2013). Schulz et al. studied

cardiorespiratory causality couplings involved in the processes of

an autonomic dysfunction present in patients suffering from

schizophrenia (Schulz et al., 2020).

Besides interactions in the hemodynamics system, several

publications have focused on the application of Granger

Causality on EEG signals. For instance (Juan et al., 2017),

studied the connectivity across EEG frequency bands in

patients with Alzheimer’s disease, detecting increments of

connectivity in the δ band, together with decrement

connectivity in other EEG frequency bands. They concluded

that Granger Causality (GC) was suitable for Alzheimer

diagnosis, since the disconnection among different brain

regions is a well-known effect of the disease. Another

application of GC in EEG signals was presented by (Coben

and Mohammad-Rezazadeh. 2015), who analyzed pre and

post-ictal periods of epileptic seizures to study the

connectivity between brain regions in epileptic patients.

The GC principles have also been applied to EEG signals

during anesthesia. Nicolaou et al., developed a system capable of

classifying EEG signals as belonging to awake or anesthetized

patients with a 96% accuracy, using as inputs the interactions

between EEG signals from different brain areas (Nicolaou and

Georgiou, 2014). Moreover, in (Nicolaou et al., 2012) an accuracy

of 98% was obtained for loss of consciousness detection,

suggesting that GC could be used as an awareness detection

system. Barrett et al. analyzed steady state EEG signals during

propofol induced anesthesia recorded from the anterior and

posterior brain areas, detecting a bilateral increase in GC for

the power spectral density in the β and γ bands during loss of

consciousness (Barrett et al., 2012).

The interactions between the brain and the hemodynamic

system have also been the target of many research projects.

Duggento et al. analyzed functional magnetic resonance

imaging data, respiration and heartbeat recordings, concluding

that GC is a suitable tool to assess causality among brain and

heart activity (Duggento et al., 2016). In (Greco et al., 2019), it

was studied the causality between hemodynamics and EEG

activity during the exposure to pleasant or unpleasant visual

stimulation, to relate the reaction to emotions with the changes at

the cardiovascular and brain level. Pleasant images increased the

coupling from the left hemisphere to the heart, while unpleasant

images increased the coupling with the right one, when

compared to GC indices at rest. An analysis of brain,

cardiovascular and respiratory dynamics was conducted by

(Zanetti et al., 2019) combining information-theoretic

measures with network physiology during different levels of

mental stress. Results indicated that a characterization of these

networks is possible in terms of the amount of information

transferred within and between the brain and peripheral

subnetworks. Faes et al. analyzed causal relationships brain-

heart and brain-brain during sleep and concluded that both

kinds of interactions were effectively taking place (Faes et al.,

2015). Moreover, brain-heart interactions were also studied by

(Won et al., 2019) for different sedation levels in anesthetic

procedures. EEG spectral power and heart rate signals were

analyzed, showing a higher connectivity from brain to heart

when compared with the opposite direction for all sedation levels,

finding as well a higher coupling in deeper sedation states.

Therefore, the aim of this study is to track cerebral blood flow

(CBF) changes during anesthesia by means of

rheoencephalography (REG) signals. Thus, REG signals are

analyzed using a traditional approach based on the extraction

of geometrical properties in the time domain as well as non-linear

features extraction by Poincaré plot analysis. Those analyses are

applied to different anesthesia scenarios. Moreover, interactions

between depth of anesthesia monitoring, REG signal based

features and other clinical variables recorded during general

anesthesia procedures, such as EEG, infused drugs, heart rate

and mean arterial pressure are analyzed by means of causal

Granger analysis. This last step aims at detecting cause-effect

relationships taking place during general anesthesia procedures,

involving interactions between different physiological systems to

better characterize the effect of anesthetics on brain

hemodynamics.

2 Materials and methods

2.1 Data acquisition

The analyzed database is composed of 88 female patients

enrolled for elective gynecological surgeries under total

intravenous anesthesia (TIVA) with propofol and
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remifentanil. Exclusion criteria considered were cardiac or

neurosurgeries, as well as traumatic brain injuries.

Summarized demographic data, the set of drugs used for

anesthesia management, control of hemodynamics and the

occurrence of administration of each drug are specified in

Table 1.

The initial dosage of propofol at anesthesia induction was

5.8 μg/ml (ranging from 4.8 to 7 μg/ml) and was administered

together with remifentanil targeted at 3.8 ng/ml (ranging from

2 to 6.2 ng/ml). After induction, those target dosages for

propofol and remifentanil were reduced to 3.4 μg/ml (from

2.5 to 4.3 μg/ml) and to 3.4 ng/ml (from 2.3 to 4.5 ng/ml),

respectively. From the 88 patients suitable for analysis, 22 were

intubated through laryngoscopy while in the remaining 66 a

Laryngeal Mask Airway (LMA) was used. Patient positioning

was also considered in this work, two different positions were

assessed besides the standard supine position in steady state

anesthesia: 24 patients (27.3%) were kept in the horizontal

plane for the whole procedure, while passive leg raising took

place in 51 cases (57.9%) and 13 participants (14.8%) were

placed in Trendelenburg position (surgical position where the

subject lies supine, or flat on their back, with their feet raised

higher than their head).

All patients were monitored from 3 min prior to the

anesthesia induction until 3 min after extubating. Patient

monitoring consisted on the use of a Depth of Anesthesia

device, the Conox (Fresenius Kabi, Bad Homburg, Germany)

providing the electroencephalogram (EEG) signal and the qCON

index that evaluates the hypnotic effects in the brain, as well the

qCO (Quantium Medical, Barcelona, Spain) device, an electrical

bioimpedance monitor for rheoencephalography (REG) data

collection, and a Dräger (Dräger, Lübeck, Germany)

hemodynamic monitor for the heart rate (HR in bpm,

1 value/s), systolic blood pressure (SBP, mmHg), diastolic

blood pressure (DBP, mmHg) and mean arterial pressure

(MAP in mmHg, 1 value/s). Data from the qCO monitor

were continuously collected at a sampling frequency of 250 Hz

and EEG from Conox with a sampling rate of 1024 Hz, and a

resolution of 3 bytes in the range of ± 374 mV.

Data from those monitors, as well as data from the TCI

pumps were recorded through the RugloopII software (Demed,

Belgium). Moreover, annotation of relevant events during the

surgical procedure was performed through the same software, to

make sure the occurrence of those events was synchronized with

all other clinical data.

The clinical trial followed the principles of the Declaration of

Helsinki for human subjects. All participants were informed

about the study and gave their written consent prior to

participation.

Recorded signals were classified in 5 different categories

depending on the clinical state of the patients during general

anesthesia:

− Awake, corresponding to the data recorded prior to

anesthesia induction.

− Loss of consciousness (LOC), data recorded right after LOC

is detected and while intubation is being prepared.

− Steady state anesthesia (Anes), data recorded during

anesthesia, without burst suppression episodes (EEG

pattern with continuous alternation between high-voltage

slow waves or even sharp waves and depressed or even

suppressed electrographic activity) and after intubation and

patient positioned for surgery.

− Burst suppression rate (BSR), data belonging to periods in

which the Conox BSR index provides values higher than 10.

The burst suppression rate (BSR), is defined as the fraction of

EEG spent in suppression per epoch, is the standard

quantitative measure used to characterize burst suppression.

− Recovery of consciousness (ROC), data belonging to the end

of the procedure, once drug infusion has been stopped and

patient is ready to be extubated.

2.2 Signal preprocessing

An automatic artefact rejection algorithm was applied to the

recorded EEG signals, in order to avoid processing noisy data

resulting from patient movements or the use of other devices,

mainly the surgical knife. The traditional frequency band analysis

(δ, θ, α, ß) was performed on EEG signals filtered between 0.1 and

50 Hz with a second-order Butterworth filter resampled at

256 Hz. Subsequently, time series were processed in moving

time windows of 2 s with 1 s overlap, thus providing new

results every second.

REG data were screened for artefact rejection and processed

with linear filters. A high-pass filter was applied to REG signals

using a fourth-order Chebyshev type II, with 0.1 Hz stop band

frequency to eliminate DC fluctuations, followed by a

TABLE 1 General anesthesia dataset.

Patients demographic data

Age (years) 49.5 ± 16.4

Height (cm) 161.3 ± 7.0

Weight (kg) 68.1 ± 13.9

BMI (kg/m2) 26.2 ± 5.2

Drugs administered during surgical procedures

Propofol 88/88 (100%)

Remifentanil 88/88 (100%)

Rocuronium 43/88 (48.9%)

Atropine 16/88 (18.2%)

Ephedrine 7/88 (7.9%)

Methadone 16/88 (18.2%)

Demographic data values are presented by mean value ± standard deviation.

BMI: body mass index.
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Butterworth second-order low-pass filter with a cut-off frequency

at 4 Hz. Subsequent calculations of REG data were applied to

sliding windows of 8 s, resulting in a new value every second.

Finally, once time series were preprocessed, they were

synchronized with all other data collected during the surgical

procedures, such as hemodynamic variables, drug infusion

dosages and events recorded during surgery.

2.2.1 Geometric features of
rheoencephalography signals

The classical methods used to assess REG signals rely on the

analysis of the geometry of the pulse waves (González et al.,

2018). In this way, for REG recordings, the minimum and

maximum values of each pulse wave and their respective

derivatives were automatically detected, and the following

features were calculated: amplitude range of the pulse

(Range), time between two consecutive maximums (Δtmax,

samples), time between two consecutive minimums (Δtmin,

samples), time between each minimum and the following

maximum (Δtmin-max, samples), the slope (α, a.u.) of the

pulse during Δtmin-max interval, the area under the pulse

wave (Area, Ω s), the systolic area (AreaSyst, Ω s) that is

calculated as the area of a pulse wave delimited by a

minimum and its consecutive maximum, the maximum

derivative (δmax, Ω s−1) and the range of the derivative

(δrange, Ω s−1). In addition, blood volume and blood flow

estimations were also considered. The relative cerebral blood

volume (CBVrel, Ω) was calculated as:

CBVrel � δmax LVET (1)

where the left ventricular ejection time (LVET, ms) was

considered as a function of HRREG (bpm), LVET =

416–1.56 HRREG (Willems et al., 1970), computing HRREG

from the difference between two consecutive maximums of

the REG curve. The cerebral blood estimation (CBFest, Ω s−1)

was calculated as:

CBFest � CBVrel HRREG/60 (2)

2.2.2 Poincaré plot analysis of
rheoencephalography signals

Two-dimensional Poincaré plot was constructed from REG

sequences, with REG(t) at x-axis and REG (t+τ) at y-axis, where t
moves from 1 to N-τ samples, being N the length of the series.

The choice of the time lag τ is critical, since very low values would

not allow the attractor to expand, with a majority of points laying

on the diagonal line (Chen at al., 2007), while very large values of

τ would cause deformations of the attractor due to the fact that

pairs of samples would be uncorrelated (Fraser and Swinney,

1986; King et al., 1987). Since no previous work has been done on

the analysis of REG attractors during general anesthesia, a wide

range of τ values was analyzed (from 1 to 20 samples) in order to

provide a τ value able to give the maximum possible information

related to the dynamics hidden in REG signals. Figure 1 shows a

rheoencephalography (REG) signal trend and its related Poincaré

plot reconstruction of a patient.

To generate quantitative information on the distribution of

REG signals in the Poincaré plots, several features were extracted

from the reconstructed attractor:

− SD1 and SD2 which respectively are the standard deviation

(SD) of REG(t) dispersion perpendicular to the diagonal line (the

identity line) and the SD of the REG(t) dispersion along the diagonal

line. They are computed following Eq. 3 where var is the variance.

SD1 �
�����������������������
var(REG(t) − REG(t + τ)�

2
√ )√

SD2 �
�����������������������
var(REG(t) + REG(t + τ)�

2
√ )√ (3)

FIGURE 1
(A) Rheoencephalography (REG) signal trend and (B) Poincaré plot reconstruction of a REG signal with time lag τ = 5 samples.
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− Area of the ellipse (SDarea), calculated as SDarea = π

SD1 SD2

− Ratio SDratio, defined as SD1/SD2

− Correlation R, measured between REG(t) and REG (t+τ)
signals.

− Complex correlation measure (CCM) (Karmakar et al.,

2009), identifies all possible sets of three consecutive

attractor points of the Poincaré plot and the area of the

triangle they define is calculated (González, et al., 2018). In

cases where all three points are aligned, the area is considered

to be zero. CCM is computed as indicated in Eq. 4:

CCM(τ) � 1
SDarea (N − 2) ∑N−2

i�1
‖M(i)‖ (4)

where M(i) is the matrix including the coordinates of the three

points from each subset whose determinant is the area of the

triangle formed by them and SDarea is the normalizing

constant and represents the area of the fitted ellipse over

Poincaré plot.

2.2.3 Granger causality analysis
Granger Causality (GC) has been applied to the collected

signals to assess causality between pairs of time series. It relies on

a hypothesis test in which the null hypothesis is that, given two

time series x1(t) and x2(t), x2(t) does not cause x1(t). In order to

assess the causality between the signals, autoregressive models

(AR) are built, the restricted and the unrestricted model. The

restricted model (univariate AR model) uses only past values

from the signal x1(t) to predict its future values, while the

unrestricted model (bivariate ARX model) uses past values

from both x1(t) and x2(t) to predict values of x1(t). The

restricted model is defined as:

x1(t) � a1 +∑L
i�1
a1,i x1(t − i) + ε1r(t) (5)

x2(t) � a2 +∑L
i�1
a2,i x2(t − i) + ε2r(t) (6)

while the unrestricted model are represented by:

x1(t) � b1 +∑L
i�1
b1,i x1(t − i) + ∑L

i�1
c1,i x2(t − i) + ε1u(t) (7)

x2(t) � b2 +∑L
i�1
b2,i x2(t − i) + ∑L

i�1
c2,i x1(t − i) + ε2u(t) (8)

where aji, bji and cji are the estimated coefficients of the models of

order L, being j = {1,2} and the residuals (prediction errors) of the

models are εjr(t) and εju(t).
The Schwartz’s Bayesian Information Criterion (BIC)

(Schwartz 1978) was selected to fit the order L of the model,

since it has been published to be more consistent (Zhang, 1993)

and demonstrated (Nicolau and Georgiou, 2013) to provide

reliable values for EEG models under general anesthesia. The

optimal order L was a priori tested from 1 to 10 samples

(i.e. 10 s).

To decide if the null hypothesis is rejected, an analysis of

variance test was carried out. In this context, F-statistic is

computed as:

F � SSR/dn
SSE/dd (9)

where SSR is the sum of squares explained by the regression, SSE

is the sum of squares errors, dn equals the number of independent

variables and the degrees of freedom of the SSE are dd = N - dn -1.

If the statistic is found significant at level p-value<0.05, the null
hypothesis is rejected and causality from the time series x2(t) to

x1(t) is considered to take place. Following a similar procedure,

the causality from times series x1(t) to x2(t) is evaluated. The

magnitude of the causality from x1(t) to x2(t) and x2(t) to x1(t)

was measured respectively as function of the model error

variances:

Cx1→x2 � ln
var(ε2r)
var(ε2u)

Cx2→x1 � ln
var(ε1r)
var(ε1u)

(10)

2.2.4 Data analysis and statistical analysis
The features extracted from each constructed two-

dimensional Poincaré plot on REG(t) signals were SD1, SD2,

SDratio, SDarea, R and CCM. A statistical analysis was

performed to select the τ value from 1 to 20 samples (based

on González et al., 2018) that allows those features to statistically

distinguish the clinical states of a general anesthesia (Awake,

LOC, Anes, BSR, ROC).

Furthermore, a statistical analysis was applied on REG

geometric features (Range, Δtmax, Δtmin, Δtmin-max,

Slope α, Area, AreaSyst, δmax, δrange, CBVrel and

CBFest), REG Poincaré plot descriptors (SD1, SD2,

SDratio, SDarea, CCM and R), global hemodynamics

(HR, MAP), the effect site concentrations of propofol and

remifentanil (CePropo, CeRemi) and EEG based-

parameters related to depth of anesthesia (qCON and the

EEGδ, EEGθ, EEGα and EEGß energy bands) in order to

statistically study their performance in discriminating

between the consecutive clinical states of the patients

during general anesthesia.

For each patient, all these descriptors were calculated on each

time-varying 8-s sliding-window at each state and their averaged

value calculated. ANOVA for repeated measures for normal

distributions and Friedman test for non-normal distributions

verified by the Kolmogorov–Smirnov test were applied. This

analysis was followed by the post hoc non-parametric paired

samples Wilcoxon test. A significant level p-value<0.01
(Bonferroni correction) was considered.
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Causality analysis was applied among pairs of simultaneous

feature values, calculated on each time-varying 8-s sliding-

window obtained from each patient undergoing general

anesthesia. All windows of all data were synchronized. The

features taken into account were those REG(t) geometric

descriptors (named as CBF lin), REG(t) Poincaré plot

descriptors (named as CBF PP), global hemodynamics

features (HR and MAP), the effect site concentrations of

propofol (CePropo) and remifentanil (CeRemi) and EEG

based-parameters. The coupling strength between those

families of features were analyzed under different general

anesthesia events:

a) Steady state anesthesia (n = 84 segments): 400s periods in

which effect site concentrations of propofol and remifentanil

were constant, and no surgical events took place.

b) Propofol infusion (n = 29 segments): periods from 200s

before to 200s after the change of the target effect site

concentration of propofol, while remifentanil was kept

constant.

c) Remifentanil infusion (n = 16 segments) periods from 200s

before to 200s after the change of the target effect site

concentration of remifentanil, while propofol was kept

constant.

d) Atropine infusion (n = 16 segments): periods from 200s

before to 200s after the administration of atropine.

e) Ephedrine infusion (n = 7 segments): periods from 200s

before to 200s after the administration of ephedrine.

f) Trendelenburg position (n = 12 segments): periods from 200s

before to 200s after the positioning of the patient from the

horizontal supine position to the Trendelenburg position.

g) Passive leg raising (n = 48 segments) periods from 200s before

to 200s after the elevation of patient legs in preparation for

surgery.

Among the set of clinical events in which causality was

studied, the periods of steady state anesthesia were used as

reference, thus the results from the other events, such as

atropine infusion or Threndelenburg positioning were

compared to those obtained during stable anesthesia.

Given a pair of variables x1(t) and x2(t), causality indices

Cx1→x2 and Cx2→x1 were compared through statistical hypothesis

testing. Normality of the data was assessed by means of a

Kolmogorov-Smirnov test and subsequently, t-student test was

applied. This analysis was followed by the post hoc non-

parametric U Mann-Whitney test. Statistical significance level

p-value < 0.005 was considered.

Causality diagrams are drawn for each general anesthesia

event. Whenever causality indices were higher in one-way, with

statistical significance, this direction of causality is considered

and represented in the causality diagrams with a single arrow.

The occurrence of the interactions between two groups was

computed as the number of patients presenting at least one

statistically significant causal relationship between any pair of

features belonging to the two groups under analysis.

Moreover, for each event, Spearman correlations (ρ) between
the causality indices and patient demographics were calculated and

considered as confounding factors for p-value <0.01, due to the large
number of correlations being analyzed simultaneously. Only

correlations reaching absolute values above 0.5 were included for

analysis. Those relations that presented a correlation higher than 0.5,

a regression analysis based on one variable was constructed for

analyzing the influence of patient demographics on causality indices.

3 Results

3.1 Estimating Poincaré plot time-lag on
rheoencephalography signals

To determine the time lag τ of the Poincaré plot of REG

sequences able to provide the maximum possible information

related to the dynamics hidden in REG signals, a wide range of τ

values is studied (τ = {1, . . ., 20} samples).

The evolution of each Poincaré plot descriptor as a function

of the time lag τ for each anesthesia phase is depicted in Figure 2.

SD1 increases as τ increases in all states, reaching higher values

for awake and LOC, which are also characterized by a wider

interquartile range. In contrast, SD2 remains stable for all τ

values, providing a higher score during Awake and LOC states.

Subsequently, their ratio (SDratio) increases as τ increases, with

similar interquartile ranges among the various anesthesia stages,

while the ellipse area (SDarea) shows higher values for Awake

and LOC, with a higher dispersion in those two states as τ

increases compared with dispersions of Anes, BSR and ROC

states. The behavior of the correlation R decreases for increasing

τ values in all anesthesia phases, and showing similar

interquartile ranges across states. Finally, CCM is the only

feature showing a local maximum, identified in low τ values

(τ ≤ 5) and providing its highest values in Anes state.

All the extracted features (SD1, SD2, SDratio, SDarea, CCM

and R) present differences between the targeted set of anesthetic

states. The statistical significance of those differences is assessed in

Figure 3, SD1 and SD2 showed the ability to differentiate between

LOC and Anes (p-value <0.01) for all τ values, while they failed in
reflecting differences among all other transitions between

consecutive states. Regarding SDratio, significant differences

were detected in both transitions Awake vs LOC and LOC vs

Anes. Nonetheless, the τ range in which p-values were under the

significance threshold (p-value <0.01) was reduced to the intervals
8 to 20 samples and 12 to 20 samples, respectively.

The correlation R provided a similar performance but with

narrower τ ranges for significance: 10 to 20 samples for the

transition between Awake and LOC and 17 to 20 samples for

LOC and Anes. The ability of SDarea to distinguish between

consecutive states was limited to the transition between LOC and
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Anes, preserving the statistical significance for all τ values tested.

CCM is the only feature that does not distinguish between LOC

and Anes, but it provides statistical significant results

(p-value <0.01) in the transition between Anes and BSR for τ

from 18 to 20 samples. Moreover, it also reflects differences

between Awake and LOC states for τ > 10 samples.

Considering the selection of the optimal τ values to assess

differences between consecutive anesthesia states (Awake vs

LOC, LOC vs Anes, Anes vs BSR and BSR vs ROC) using the

set of features extracted from the Poincaré plot, low τ values have

proved to fail in reflecting changes while the highest range of the

tested interval showed a better performance considering all

features and anesthesia states (Figure 3). Therefore, the value

τ = 20 samples was chosen to be appropriate to detect changes in

anesthesia states.

3.2 Analysis of the behaviors of the
anesthesia state descriptors

Figure 4 includes a set of data recorded from one subject

participating in the clinical trial. The anesthesia induction started

at t = 500s approximately, with the infusion of remifentanil and

propofol (Figure 4C). A decrease in qCON (Figure 4A) took place

as a consequence of the effect of the drugs, resulting in the

transition from the awake state to anesthesia around t = 700s.

Different events can be observed, steady state anesthesia

(Figure 4A) begins right after the drug concentrations of

propofol and remifentanil are lowered and stabilized at t =

1000s and lasts for 1000s (Figure 4C). Immediately afterwards,

the remifentanil effect site concentration was increased,

originating the new clinical event that seems to be followed by

FIGURE 2
Evolution of SD1, SD2, SDratio, SDarea, CCM and R as a function of τ for the set of anesthesia states under analysis: Awake, LOC, Anes, BSR and
LOC. Median values are graphed, together with the 25th and 75th quartiles represented with dashed lines.
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EEGδ(t), EEGθ(t), EEGα(t), EEGß(t) energies (Figure 4B), HR

(Figure 4D) and δmax (Figure 4E).

The mean and standard deviation values of REG geometric

features calculated on each anesthesia state are depicted in

Table 2. Statistical significance level obtained comparing each

two consecutive states (Awake vs LOC, LOC vs Anes, Anes vs

BSR and BSR vs ROC) are also indicated. Values of REG Range,

δmax, δrange, CBVrel and CBFest were higher at LOC state and

minima at Anes, p-value < 0.005. Regarding the systolic area

(AreaSyst), its value increased from BSR to ROC state, p-value =

0.006. No statistical differences were presented between the

remainder consecutive states.

Results concerning to Poincaré plot features of REG

segments for τ = 20 samples are reported in Table 2.

SD1 presented similar values, in average, in Awake vs LOC,

decreasing during anesthesia (LOC, m ± std = 0.015 ± 0.009;

Anes, m ± std = 0.009 ± 0.003; p-value = 0.00005) and slightly

increasing for BSR and ROC, but without recovering the initial

values at Awake and LOC. Descriptor SD2 had a similar

performance, except for the transition between Awake and

LOC, where SD1 showed similar values while SD2 increased.

Since SDarea is proportional to the product of SD1 and SD2, it

followed similar behavior described for those two features

comparing LOC vs Anes (p-value = 0.00007). Regarding

SDratio and R descriptors, they presented opposite trends, as

expected, with similar variances for all patient states: SDratio

showed an absolute minimum for LOC, while R had its

maximum in this same state. Both descriptors were able to

statistically differentiate Awake vs LOC (p-value = 0.0053 and

p-value = 0.0065, respectively) and LOC vs Anes (p-value =

0.0076 and p-value = 0.00873, respectively), as it is indicated in

Table 2. Finally, CCM presented a maximum for the Awake state

and a minimum for LOC state (p-value = 0.0095), presenting

similar values for all states except for LOC.

FIGURE 3
Statistical significance (p-values) obtained for the comparison of the median values of each Poincaré feature (SD1, SD2, SDratio, SDarea, CCM
and R) among consecutive anesthesia states. The post hoc non-parametric paired samples Wilcoxon test was applied. Grey areas represent intervals
in which the graphed parameter shows statistical significance of p-value<0.01.

Frontiers in Network Physiology frontiersin.org09

González et al. 10.3389/fnetp.2022.912733

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2022.912733


The trends of all extracted features present changes along the

anesthetic procedure for τ = 20 samples, mainly during LOC.

However, only some of those changes are statistically significant.

All the features except CCM were able to detect changes in the

transition between LOC and Anes states. Regarding the

differences between the Awake and LOC states, SDratio, CCM

and R provided statistically significant results while none of the

features led to positive results for the transitions among other

anesthesia states.

The evolution of the EEG energy, qCON, HR and MAP

across the identified anesthesia states is presented in Table 2.

It is observed that qCON index statistically differentiates

(p-value < 0.01) Awake to LOC, Anes to BSR and BSR to ROC

state transitions, showing decreasing values from Awake to

BSR but increasing at the recovery of consciousness (ROC)

state (qCON (m ± std): Awake, 95.9 ± 8.04; LOC, 47.0 ± 13.6;

Anes, 40.1 ± 9.4; BSR, 24.2 ± 8,7; ROC, 71.1 ± 15.0). The MAP

could statistically differentiate LOC vs Anes (MAP (m ± std):

LOC, 89.2 ± 20.6; Anes, 76.7 ± 15.4; p-value = 0.008), while

HR was not able to differentiate any transition. Regarding to

EEG frequency bands, a similar trend was observed in EEGα
and EEGß with high statistical differences when comparing

Awake vs LOC and BSR vs ROC. Both EEGδ and

EEGθ energies only statistically differentiated BSR vs ROC

states.

3.3 Causality analysis at different
anesthesia events

For every general anesthesia event (steady state anesthesia,

propofol infusion, remifentanil infusion, atropine infusion,

ephedrine infusion, Trendelenburg position and passive leg

raising) all couplings between pairs of variables (CBF lin, CBF

PP, HR, MAP, EEG based-parameters, CePropo, CeRemi) are

presented through Granger causality, with the aim of studying

FIGURE 4
Clinical data recorded during anesthetic procedure: (A) qCON index, (B) EEG frequency bands, (C) propofol and remifentanil effect site
concentrations (CePropo and CeRemi, respectively), (D) heart rate (HR) and mean arterial pressure (MAP) and (E) δmax and SDratio REG features.
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the causality between different physiological systems. For this

reason, causalities among pairs of REG features are not

considered as well as the causal links between pairs of EEG-

based parameters.

3.3.1 Steady state anesthesia
The main interactions between the physiological variables

(HR, MAP, EEG based-parameters, CBF lin and CBF PP

features) during steady state anesthesia are presented in

TABLE 2 Averaged values of the rheoencephalography REG(t) signal features, electroencephalogram EEG(t) features, and the clinical variables such as
heart rate andmean arterial pressure, recorded during general anesthesia. The differences between consecutive anesthetic states (Awake vs LOC,
LOC vs Anes, Anes vs BSR, BSR vs ROC) are indicated by means of the statistical significance level.

Index Awake LOC Anes BSR ROC Awake LOC Anes BSR

LOC Anes BSR ROC

Cerebral hemodynamic features

CBF lin

Range 0.103 ± 0.061 0.130 ± 0.094 0.062 ± 0.025 0.071 ± 0.031 0.082 ± 0.049 n.s *** n.s n.s

Δtmax 379.2 ± 222.2 361.4 ± 154.4 277.0 ± 93.3 272.9 ± 45.8 357.5 ± 179.9 n.s • n.s n.s

Δtmin 383.0 ± 227.0 352.1 ± 150.2 275.4 ± 80.5 285.8 ± 69.4 359.0 ± 186.0 n.s n.s n.s n.s

Δtmin-max 182.7 ± 145.0 162.7 ± 107.1 197.4 ± 74.8 114.6 ± 36.3 179.5 ± 133.0 n.s • n.s n.s

Slope(α) 9E-4 ± 6E-4 11E-4 ± 9E-4 8E-4 ± 3E-4 8E-4 ± 4E-4 7E-4 ± 4E-4 n.s • n.s n.s

Area 417.6 ± 257.8 393.9 ± 184.4 287.8 ± 83.2 301.0 ± 72.0 387.6 ± 210.1 n.s • n.s •
AreaSyst 198.7 ± 159.8 181.5 ± 123.3 112.2 ± 77.7 120.7 ± 37.6 194.8 ± 150.1 n.s n.s n.s *

δmax 19E-4 ± 12E-4 23E-4 ± 17E-4 12E-4 ± 4E-4 13E-4 ± 6E-4 14E-4 ± 8E-4 n.s *** n.s n.s

δrange 30E-4 ± 20E-4 33E-4 ± 22E-4 18E-4 ± 6E-4 20E-4 ± 9E-4 22E-4 ± 12E-4 n.s *** n.s n.s

CBVrel 1.015 ± 0.669 1.128 ± 0.822 0.593 ± 0.194 0.660 ± 0.295 0.747 ± 0.412 n.s *** n.s n.s

CBFest 51.91 ± 40.34 48.76 ± 31.14 33.99 ± 12.42 37.51 ± 18.86 34.87 ± 19.90 n.s ** n.s n.s

CBF PP

SD1 0.015 ± 0.009 0.015 ± 0.009 0.009 ± 0.003 0.010 ± 0.004 0.011 ± 0.006 n.s *** n.s n.s

SD2 0.045 ± 0.027 0.058 ± 0.043 0.027 ± 0.011 0.031 ± 0.014 0.036 ± 0.022 n.s *** n.s n.s

SDratio 0.339 ± 0.074 0.295 ± 0.074 0.345 ± 0.054 0.329 ± 0.053 0.316 ± 0.060 * * n.s n.s

SDarea 9E-4 ± 11E-4 12E-4 ± 16E-4 3E-4 ± 2E-4 4E-4 ± 3E-4 5E-4 ± 6E-4 n.s *** n.s n.s

CCM 3E-5 ± 2E-5 3E-5 ± 3E-5 3E-5 ± 1E-5 3E-5 ± 1E-5 3E-5 ± 2E-5 * n.s n.s n.s

R 0.789 ± 0.084 0.834 ± 0.073 0.785 ± 0.059 0.802 ± 0.056 0.814 ± 0.063 * * n.s n.s

Global hemodynamics

HR 69.8 ± 13.8 64.9 ± 10.3 61.4 ± 9.6 60.1 ± 10.2 66.1 ± 14.0 n.s n.s n.s n.s

MAP 99.1 ± 12.6 89.2 ± 20.6 76.7 ± 15.4 76.2 ± 16.0 81.4 ± 16.3 • * n.s n.s

EEG based-parameters

qCON 95.9 ± 8.04 47.0 ± 13.6 40.1 ± 9.4 24.2 ± 8.7 71.1 ± 15.0 *** • *** ***

EEGδ −0.153 ± 0.095 −0.173 ± 0.100 −0.238 ± 0.152 −0.207 ± 0.117 −0.595 ± 0.298 n.s n.s n.s ***

EEGθ −3.374 ± 0.627 −3.616 ± 0.616 −3.561 ± 0.618 −3.459 ± 0.670 −2.943 ± 0.540 n.s n.s n.s ***

EEGα −4.387 ± 0.714 −3.360 ± 0.801 −2.954 ± 0.771 −3.245 ± 0.584 −2.278 ± 0.849 *** n.s n.s ***

EEGß −5.250 ± 0.905 −4.411 ± 0.654 −4.368 ± 0.640 −4.320 ± 0.634 −2.951 ± 0.800 *** n.s n.s ***

Significant levels (p-value): n.s not significant; • < 0.05; * < 0.01; ** < 0.005; *** < 0.0005.

Value of the descriptor is expressed by mean ± standard deviation.
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Figure 5. Up to 99% of the analyzed patients showed a bilateral

causal relationship between CBF lin and CBF PP parameters,

since both sets of variables come from the same time series.

Regarding the interactions between HR and CBF features,

causalities from CBF to HR were more frequent than in the

opposite direction, with the linear CBF (CBF lin) features

showing a stronger role over the nonlinear ones (CBF PP).

This relevance of the linear features is preserved in the

causality study from and to MAP, even though in this case

the causalities from MAP to the CBF features are more frequent

than the opposite ones.

Both global (HR and MAP) and cerebral hemodynamics

(CBF lin and CBF PP) presented causal relationships with EEG

activity. EEG based-parameters had a similar occurrence of

causality (5% of patients) towards HR and MAP, while HR

presented a higher rate of causality towards EEG (29% of

patients) than MAP (24% of patients). Regarding cerebral

hemodynamics, the most relevant results rely on the 65% of

causality from the CBF lin features to the EEG variables, which

is one of the highest occurrences of interactions of the full

system considered and therefore strongly suggests a

modulation of EEG activity as a result of changes in the

REG signals represented by their linear features. The

Poincaré extracted features (CBF PP) showed a lower

occurrence of causality (54% of patients) on EEG variables,

but still higher than the ones provided by global

hemodynamics HR and MAP of 29% and 24% of patients,

respectively. Finally, the causality from EEG to CBF features

was also higher for the linear features (CBF lin) when

compared to the nonlinear parameters (CBF PP) extracted

from REG signals, with 64% and 50% of patients, respectively.

No correlations were found between the causality indices and

patient demographics and neither influences due to age, height,

weight or BMI based on regression analysis.

3.3.2 Propofol infusion event
The propofol effect site concentration, CePropo, was added to the

analysis since it is not constant in general anesthesia scenario. However,

FIGURE 5
Main interactions between global hemodynamics (HR and
MAP), EEG based-parameters, REG geometric features (CBF lin)
and REG Poincaré plot (CBF PP) parameters during steady state
anesthesia. The post hoc non-parametric U Mann-Whitney
test and statistical significance level p-value < 0.005 were
considered.

FIGURE 6
Causal interactions from (A) CePropo to: (A1) EEG based-
parameters (δ, θ, α, ß) and global hemodynamics (HR, MAP), (A2)
REG geometric features and (A3) REG Poincaré plot features. (B)
Causal interactions between global hemodynamics, EEG
based-parameters, REG geometric features (CBF lin) and REG
Poincaré plot (CBF PP) parameters in propofol concentration. The
post hoc non-parametric U Mann-Whitney test and statistical
significance level p-value < 0.005 were considered.
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it should only be considered as a causing variable, since it is collected

from infusionpumps, resulting from the calculationof pharmacokinetic

models and is not influenced by other physiological systems.

The interactions from the propofol effect site concentration

(CePropo) towards all the collected physiological data are

represented in Figure 6A. Causality in the opposite direction

was not assessed since it does not have any clinical interpretation

as previously stated. Among all the EEG bands (Figure 6A1),

CePropo has the highest interaction with α (28% of patients),

with similar results for its causality towards the qCON index

(24% of patients). This indicates that the changes in propofol

dosages are mainly affecting the α band and therefore projected

in the overall depth of anesthesia assessment represented by the

qCON index. The influence of CePropo in HR was detected in

21% of the patients, while causal relationships with MAP were

limited to one patient. Regarding the effects of CePropo in the

linear features extracted from REG signals (Figure 6A2), the

causal relationships with higher occurrence were those towards

Δtmin-max and AreaSyst, identified in 34% of the patients,

followed by a 31% occurrence of causalities towards CBVrel,

δmax and δrange. The less frequent interactions took place from
CePropo to Δtmax and Δtmin. The Poincaré plot features

(Figure 6A3) showed smaller occurrences, the higher ones

associated to SD1, SDratio and R with 28% of patients,

suggesting that CePropo is affecting the short-term variability

of REG signals rather than the long-term one.

Besides the direct effects of propofol concentration changes

in all the physiological variables under study, the causal

relationships among hemodynamics and EEG might also be

affected by the administration of the hypnotic drug. Figure 6B

shows an overview of the existing causal interactions between

global hemodynamics (HR, MAP), cerebral hemodynamics (CBF

lin and CBF PP) and EEG related variables. Even though the

detected interactions are similar to those during steady state

anesthesia, several differences can be appreciated. For instance,

the occurrence of causal interactions from HR and MAP towards

CBF PP, CBF lin and EEG are higher, suggesting that changes in

HR caused by propofol are projected in CBF and EEG.

Additionally, causal effects from CBF lin to HR (76% of

patients) and EEG (76% of patients) are also more frequent

under propofol infusion, while the interactions between MAP

and HR have a lower occurrence. Overall, changing the propofol

effect site concentration elicits a higher number of interactions

from both cerebral and global hemodynamics towards EEG.

The causality indices and patient demographics showed

statistically significant correlations during changes in propofol

effect site concentration (Table 3). Age proved to be correlated to

the causality indices computed from REG features towards MAP,

with correlations obtained for the REG slope (α), δrange, CBFest,
SDratio and R. Among those, the linear parameters (REG slope

(α), δrange and CBFest) presented increasing relations for

increasing ages, while for the Poincaré based features (SDratio

and R) the opposite behavior was detected. Moreover, qCON

towards the REG slope (α) positively correlated with age. The

influence of patient’s height in the causality indices was only

relevant for the causal links from SDratio and R to MAP, with

taller patients related to higher values of the causality indices. In

contrast, weight showed a more determinant role, patients with

higher weight presented lower causality indices from CePropo to

MAP, from Δtmin to MAP and from CBFest to the EEGα band.

Nonetheless, the highest correlations were detected for the

causality links from the EEGθ band to Δtmin and AreaSyst,

with a positive correlation. Finally, BMI demonstrated to be

relevant in the interactions between REG features and EEG. BMI

was positively correlated with the causality relation form the

EEGθ to Δtmin-max relation and AreaSyst, while it presented a

negative correlation with the indices calculated from Δtmin-max

TABLE 3 Spearman correlation (ρ) between the causality indices and
patient demographic.

From To Demographic ρ

During changes of propofol effect site concentration

CBFest MAP age↑ 0.573

Slope (α) MAP age↑ 0.523

δrange MAP age↑ 0.548

qCON Slope (α) age↑ 0.574

R MAP age↓ −0.535

SDratio MAP age↓ −0.553

R MAP height↑ 0.543

SDratio MAP height↑ 0.537

EEGθ AreaSyst weight↑ 0.618

EEGθ Δtmin weight↑ 0.621

CBFest EEGα weight↓ −0.537

Δtmin MAP weight↓ −0.577

EEGθ AreaSyst BMI↑ 0.504

EEGθ Δtmin-max BMI↑ 0.518

AreaSyst EEGδ BMI↓ −0.569

Δtmin-max EEGδ BMI↓ −0.524

During changes of remifentanil effect site concentration

CCM MAP age↑ 0.668

HR EEGθ weight↑ 0.672

HR SD1 weight↑ 0.646

EEGß δmax weight↑ 0.640

EEGα Δtmax weight↑ 0.752

AreaSyst HR weight↓ −0.673

Δtmin-max HR weight↓ −0.707

CBVrel qCON weight↓ −0.698

EEGδ R weight↓ −0.639

EEGθ Slope (α) weight↓ −0.643

EEGß δmax BMI↑ 0.637

EEGδ R BMI↓ −0.695

EEGδ SDratio BMI↓ −0.658

Increasing causality is denoted by ↑
Statistical significance p-value < 0.01.
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and AreaSyst to EEGδ. Influence of BMI was found in these

causality indices on the level of adjusted R2 = 0.7. However, no

influences in causality indices due to age, height or weight based

on regression analysis could be found.

3.3.3 Remifentanil infusion event
Causalities from CeRemi towards other variables should be

taken into account since, as discussed for CePropo, CeRemi data

are the result of the calculation of pharmacokinetic models and

are not affected in any way by other physiological data, only

depend on patient demographics.

Causal interactions from CeRemi towards EEG based-

parameters, global hemodynamics (HR and MAP), linear

features (CBF lin) and nonlinear features (CBF PP) are

depicted in Figure 7A. The effects of CeRemi on EEG

variables (Figure 7A1) have occurrences up to 25%, almost

inexistent towards the qCON index, but slightly higher for α,
θ and δ bands. However, causal relationships between CeRemi

and global hemodynamics represented by HR and MAP were

more frequent, reaching an incidence of 31% and 38%,

respectively. Regarding the causal effects of CeRemi towards

the linear features of CBF (Figure 7A2), the highest occurrences

took place in the causality from CeRemi to CBVrel (up to 50%),

followed by δrange and δmax (44% of patients). The weakest

causality was detected towards Δtmin-max and AreaSyst, and

this is one of the main differences when comparing causal effects

elicited by CePropo and CeRemi. Finally, for the REG Poincaré

plot features, the most frequent interaction was from CeRemi to

SD1 (31% of patients), as detected as well in the CePropo

analysis, suggesting that changes in remifentanil infusion did

also affect short-term variability of REG signals.

The occurrence of causal interactions between HR, MAP,

EEG and CBF linear and nonlinear parameters is presented in

Figure 7B. When compared to steady state anesthesia, the

causal effects of HR on EEG and CBF lin features are

enhanced, as well as the effects of CBF PP on EEG. On the

contrary, causal relationships of CBF lin features on EEG have

lower occurrence. Moreover, when comparing CeRemi

changes to CePropo changes, causality from HR to EEG is

much more frequent under CeRemi analysis (44% of patients),

while causality from MAP to EEG decreases, allowing to

consider that CePropo modulates EEG changes through

MAP while CeRemi influences EEG by means of HR. With

respect to other significant differences, it should also be

mentioned that CBF linear and nonlinear features have less

frequent causal links with EEG variables, when compared to

the analysis of CePropo changes. This finding is consistent

with the fact that CePropo is acting at a cerebral level,

reducing brain metabolism, while CeRemi has a less

pronounced influence in EEG signals.

The causality indices obtained for several pairs of variables

were highly correlated with patient demographics as summarized

in Table 3, during changes in remifentanil effect site

concentration. Age presented a positive correlation with the

causality indices from CCM towards MAP, hence indicating

that older patients presented higher causality indices between

those two physiological parameters. Nonetheless, patient weight

was the demographic variable showing more correlation value in

the causal interactions detected under remifentanil dosage

changes. For instance, the causality indices from Δtmin-max

and AreaSyst towards HR showed a negative correlation with

weight, suggesting that causality from REG to HR is enhanced in

patients with lower weight (regressive analysis with adjusted R2 =

0.6). A negative correlation was also obtained for the causal link

fromCBVrel to qCON, from EEGθ band to the slope of REG, and
from the EEGδ band to the Poincaré descriptor R, while positive

FIGURE 7
Causal interactions from (A) CeRemi to: (A1) EEG based-
parameters (δ, θ, α, ß) and global hemodynamics (HR, MAP), (A2)
REG geometric features and (A3) REG Poincaré plot features. (B)
Causal interactions between global hemodynamics, EEG
based-parameters, REG geometric features (CBF lin) and REG
Poincaré plot (CBF PP) parameters in remifentanil concentration.
The post hoc non-parametric U Mann-Whitney test and statistical
significance level p-value < 0.005 were considered.
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correlations were found for the interactions from EEGα to

Δtmax, from EEGβ to δmax, from HR to SD1 and from HR

to the EEGθ band. Some of those results were replicated for the

BMI analysis, namely the causality from EEGβ to δmax and from

EEGδ to R. Additionally, BMI presented a negative correlation

from EEGδ to SDratio. Those correlations suggest that links

between general hemodynamics, EEG activity and REG features

under changes of remifentanil dosage are sensitive to the main

characteristics of the patients being monitored, with weight being

the key factor that influences causality from REG to EEG and HR

to REG features, with a regression relation with adjusted R2 = 0.6.

3.3.4 Atropine infusion event
Figure 8A presents the interactions between EEG

parameters, HR, MAP and CBF extracted features.

Causalities emerging from HR were lower towards MAP

and CBF lin when compared to steady state anesthesia, but

higher towards CBF PP and EEG. Regarding MAP, the causal

link towards CBF PP (44% of patients) showed a higher

occurrence for atropine infusion, while all other links were

detected with a lower frequency. Finally, the analysis of the

interactions between EEG and REG features was enhanced

during the administration of atropine (CBF lin with 81% and

CBF PP with 88% of patients), suggesting that this drug

affects the electrical brain activity.

Several correlations between the causality indices and the

demographic data of the patients were identified as significant

(Table 4). Age presented a negative correlation with the causality

indices from qCON to δrange and from MAP to SD1, and a

FIGURE 8
Causal interactions between global hemodynamics, EEG based-parameters, REG geometric features (CBF lin) and REG Poincaré plot (CBF PP)
parameters (A) in atropine infusion and (B) in ephedrine infusion. The post hoc non-parametric UMann-Whitney test and statistical significance level
p-value < 0.005 were considered.

TABLE 4 Spearman correlation (ρ) between the causality indices and
patient demographic.

From To Demographic ρ

During atropine infusion

SD2 EEGß age↑ 0.694

Δtmax EEGß age↑ 0.780

Δtmin EEGß age↑ 0.689

MAP SD1 age↓ −0.736

qCON δrange age↓ −0.638

HR EEGθ height↑ 0.664

EEGθ SD1 height↑ 0.693

EEGθ SDarea height↑ 0.664

EEGß δrange height↑ 0.715

EEGα Δtmax height↓ −0.748

CBVrel EEGδ weight↑ 0.679

CBFest EEGδ BMI↑ 0.723

CBVrel EEGδ BMI↑ 0.749

SDarea EEGδ BMI↑ 0.688

δmax EEGδ BMI↑ 0.798

Δtmax EEGß BMI↑ 0.692

During ephedrine infusion

CCM EEGα height↓ −0.906

EEGδ Range weight↓ −0.955

EEGδ Slope (α) weight↓ −0.901

EEGδ Range BMI↓ −0.955

EEGδ Slope (α) BMI↓ −0.901

Increasing causality is denoted by ↑
Statistical significance p-value < 0.01.
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positive one from the REG features Δtmax, Δtmin and

SD2 towards the EEGβ band. Furthermore, regression analysis

indicated that older patients present causal links from REG to

EEG (R2 = 0.6). Several correlations between height and the

analyzed set of causal links were also found to be significant. For

instance, the causality from the EEGα band to Δtmax had a

negative correlation with height, while positive correlations were

obtained from EEGβ to δrange, from EEGθ to SD1, from θ to

SDarea and from HR to EEGθ. Therefore, the links between EEG

and CBF features during atropine infusion seem to be dependent

on patient height (also with regression analysis adjustment of

R2 = 0.6). Finally, weight was positively correlated with the

causality index computed from CBVrel to the EEGδ band, as

well as BMI. Additionally, BMI showed positive correlations

from δmax, CBFest and SDarea towards the EEGδ band, and

from Δtmax towards EEGβ. Increased BMI is hence related to

enhanced causality from REG features towards electrical brain

activity, with a regression analysis with adjusted R2 = 0.6.

3.3.5 Ephedrine infusion event
As with the previous clinical scenarios analyzed, the

interactions between the main sets of physiological variables

were analyzed to assess the relationship between

hemodynamics and brain activity (Figure 8B). One of the

most relevant changes when compared to steady state

anesthesia was the occurrence of the EEG causality towards

CBF parameters, as well as the one from CBF lin to EEG

(43% of patients) and all causal links emerging from HR and

MAP, suggesting that the cardiovascular effects of ephedrine are

also projected in brain activity. Some of those effects were also

detected during the infusion of another vasoactive drug, atropine,

even though in that case the causalities emerging from MAP and

HR were in general lower, while those from EEG to CBF PP and

from CBF lin to both MAP and EEG were enhanced.

Table 4 reflects the correlations between the causality indices

and patient demographics. Age was not a relevant factor during

ephedrine infusion. Decreasing height is correlated to increased

causality between CCM and the EEGα band and also it is detected
an influence to these causality indices from a regression with

adjusted R2 = 0.8. The highest correlation was detected between

weight and the causality index from the EEGδ band towards the

REG slope (ρ = −0.955, R2 = 0.783), followed by the one from the

EEGδ band towards the REG range (ρ = −0.901, R2 = 0.804). Both

correlations were also detected for BMI, suggesting that lower

weight and BMI are associated to higher causality from EEG

towards CBF features.

3.3.6 Trendelenburg positioning
The transition of anesthetized patients from a supine

position to Trendelenburg was assessed for causality.

Considering the interactions between hemodynamics and

brain activity signals (Figure 9A), HR showed less influence

in MAP when compared to steady state anesthesia, but higher

causal effects on CBF features, up to 83% for the linear ones.

On the contrary, MAP caused lower interactions than in

steady state, except for CBF PP, which were significantly

higher. Moreover, while causal links between EEG and CBF

PP were enhanced during Trendelenburg positioning when

compared to stable anesthesia, links between EEG and CBF lin

features showed lower occurrence.

Regarding the influence of demographic characteristics of the

patients in the causal relationships previously analyzed (Table 5),

age showed a high negative correlation with the causality indices

from HR to AreaSyst and Δtmin-max, indicating that the

younger the patients the higher the causality from HR

towards REG features (with regression adjusted R2 = 0.8). The

causality index from the depth of anesthesia index, qCON,

towards Δtmin-max and AreaSyst was negatively correlated

with height, as well as the causality index from CCM to the

EEGα band and from HR to EEGβ (with a regression analysis

with adjusted R2 = 0.5), suggesting that taller patients presented

weaker causal links among those pairs of variables. The role of

weight was limited to two statistically significant correlations: one

from δmax to qCON, presenting higher causality in patients with

less weight, and a second one from MAP to SD2, in which taller

patients had higher causality index associated (with a regression

analysis with adjusted R2 = 0.5). Finally, lower BMI was

associated to an enhanced causality from several REG features

(δmax, δrange and CBVrel) to the qCON index while higher BMI

resulted in a stronger causality (with regression analysis with

adjusted R2 = 0.8) from EEGδ to Range, from MAP to SD2 and

from SD1 to EEGθ.

3.3.7 Passive leg raise
Interactions among the physiological systems under study is

presented in Figure 9B. Besides the bidirectional link between

linear and nonlinear CBF features, the most frequent causality

during passive leg raising takes place from CBF linear parameters

towards EEG (77% of patients), suggesting that changes in

cerebral hemodynamics are projected in brain activity. When

compared to steady state anesthesia, higher causalities are

detected, mainly from HR to CBF PP and EEG, from MAP to

CBF features and, bilaterally, between CBF features and EEG.

Additionally, causality from EEG to CBF PP is increased during

patient positioning.

Since both Trendelenburg and passive leg raise provoke

hemodynamic changes, it is worth comparing the causal

interactions between both situations. Causalities emerging

from MAP have higher occurrence under passive leg raising,

as well as the interactions from CBF features to brain activity

variables, and from EEG to CBF lin. However, causality from

EEG to CBF PP is decreased, as well as from HR to CBF

parameters. Furthermore, no statistically significant

correlations were found between the causality indices and

patient demographics, suggesting that the detected interactions

were not dependent on patient characteristics.
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4 Discussion and conclusions

The geometric features extracted from REG waves collected

during general anesthesia have provided statistically significant

results. Several geometric features were able to detect differences

between LOC and Anes states: Range, δmax, δrange, CBVrel and
CBFest. The evolution of those values suggests a generally

decreased CBF and instantaneous blood flow velocity during

anesthesia, as previously reported by (Conti et al., 2006; Fodale

et al., 2007). CBFest and CBVrel decreased during general

anesthesia. This phenomenon has been related with the

vasoconstriction associated to the propofol administration

(Rasmussen et al., 2010). It should be noted that values for

those two features are not recovered after extubation. This is

probably caused by the effects of propofol in hemodynamics,

since at the time of extubation it has not been eliminated from the

body (Morgan et al., 1990). The reduction of CBF and related

parameters in the anesthetic state might seem inconsistent with

the slight increases detected during BSR. Intuitively, the lower the

anesthetic depth, the lower the brain metabolism is, CBV and

CBF. However, it has been proved in rats that hemodynamic

fluctuations at the brain level occur during general anesthesia:

cortical electrical activity is accompanied by oscillations in

cerebral hemodynamics (Liu et al., 2010). This might explain

the small and non-significant increase of the CBF related

parameters during BSR.

The Poincaré plot features were computed for a range of τ

values from 1 to 20 samples, after the preprocessing stage of the

general anesthesia dataset. Statistical differences were found

between Awake-LOC and LOC-Anes transitions, with a wide

range of parameters showing statistically significant differences:

SDratio, CCM and R in the Awake-LOC transition and all

features but CCM in the LOC-Anes transition, however CCM

presented statistical differences between Anes and BSR. Within

the 1 to 20 samples interval of τ tested, the upper values

concentrated the highest amount of statistically significant

differences among anesthetic states. It is therefore stated that

a value of τ = 20 samples (0.08 s) is the most appropriate one for

FIGURE 9
Causal interactions between global hemodynamics, EEG based-parameters, REG geometric features (CBF lin) and REG Poincaré plot (CBF PP)
parameters (A) during Trendelenburg positioning and (B) during passive leg raising. The post hoc non-parametric UMann-Whitney test and statistical
significance level p-value < 0.005 were considered.

TABLE 5 Spearman correlation (ρ) between the causality indices and
patient demographic during Trendelenburg positioning.

From To Demographic ρ

HR AreaSyst age↓ −0.894

HR Δtmin-max age↓ −0.866

CCM EEGα height↓ −0.732

qCON AreaSyst height↓ −0.789

HR EEGß height↓ −0.732

qCON Δtmin-max height↓ −0.789

MAP SD2 weight↑ 0.872

δmax qCON weight↓ −0.746

SD1 EEGθ BMI↑ 0.769

EEGδ Range BMI↑ 0.734

MAP SD2 BMI↑ 0.782

CBVrel qCON BMI↓ −0.769

δmax qCON BMI↓ −0.825

δrange qCON BMI↓ −0.769

Increasing causality is denoted by ↑
Statistical significance p-value < 0.01.
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the analysis of REG signals during anesthesia. The performance of

those parameters is dependent on the time lag τ used to reconstruct

the signal attractor. Considering all results previously discussed from

the information extracted of the REG signal features under

anesthesia, REG analysis might be able to reflect CBF changes in

REG waves. Concerning to global hemodynamics and EEG related

parameters, qCON index differentiated across the different

anesthesia states, but MAP just from LOC to Anes

(p-value<0.01). Related to energies on the frontal EEG frequency

bands, statistical differences were found between Awake vs LOC and

BSR vs ROC. Similar results were found by (Sanjari et al., 2021) that

applied transfer entropy on EEG signal for depth of anesthesia

estimation, obtaining statistical differences between awake vs

unconscious and unconscious vs. recovery EEG frequency bands.

Causal interaction analysis was applied to interpret how EEG,

general hemodynamics and CBF evolve during general

anesthesia under propofol and remifentanil. These interactions

have been studied during steady state anesthesia, as well as during

certain events occurring during surgery, such as anesthetic

concentration changes, the administration of vasoactive drugs

and patient positioning.

Even though literature on causal interactions involving REG

signals is not available, several studies on brain activity and

general hemodynamics describing heart-brain interactions have

been published during both natural sleep and anesthesia. For

instance (Faes et al., 2014), analyzed causal relationships among

HRV and EEG during a full night sleep of subjects, observing a

strong link between nonlinear beat-to-beat analysis and the

power spectrum of the EEGδ band. Analogously, this EEGδ
band was the one found in this study having a more frequent

coupling with CBF measurements. Moreover, other studies do

also support this link between hemodynamics and brain

networks (Jurysta et al., 2003; Jurysta et al., 2006).

A brain-heart causality study during propofol anesthesia was

published by (Won et al., 2019), concluding that causalities increased

with depth of anesthesia and were stronger in the brain-heart

direction than from the heart to the brain. Results obtained for

the analysis herein presented suggest in fact that the most frequent

interactions took place from cerebral hemodynamics to the EEG

spectral densities (rather than in the opposite direction), that HR and

MAP had closed loop relationships with cerebral hemodynamics and

the depth of anesthesia index presented bilateral causal links with

cerebral hemodynamics. Even though a larger physiological system

was considered in this work, the obtained results are not consistent

with those presented by (Won et al., 2019). Some differences exist in

the study design, mainly based on the lowest age of the patients

enrolled in Won’s study, with a majority of males and receiving

midazolam drug. Further data should be collected under the same

circumstances to figure out the root cause of the differences between

both studies, since patient demographics have shown to play an

important role both in the occurrence of causality and its strength.

Overall, the analysis of causal interactions during steady state

anesthesia showed that hemodynamics and EEG activity are

closely linked, often under closed loop interactions, and even

though there is no consensus on the direction and strength of

those links, their existence has been published by several research

groups and has turned neurocardiology into a relevant topic

under analysis (Chen et al., 2017; Scherbakov and Doehner,

2018). Besides the study of causal interactions among heart and

brain hemodynamics and EEG activity during stable anesthesia

periods, changes in the concentration of propofol were also

analyzed to assess its influence in these causal links. The

effects of propofol on hemodynamics are well-known,

characterized by a MAP and HR depression, cerebral

vasoconstriction and reduced CBF while preserving

autoregulation (Dagal and Lam. 2009). However, until now no

information exists regarding the causality between

hemodynamics and EEG during its infusion. The study

performed in our work reveals that during a change in

propofol dosage, the number of interactions between

hemodynamics and brain activity increases. Changes in HR

and MAP provoked changes in CBF and EEG, with CBF

linear and nonlinear features causing EEG modulation.

Moreover, one of the strongest links was found between the

propofol effect site concentration and the EEGα band, which is

consistent with the fact that propofol provokes a shift of the EEG

energy towards this band (Schwilden et al., 1989). Additionally, a

causal link between the propofol concentration and the qCON

index was detected, as expected, since changes in hypnotic

dosages should translate into changes in depth of anesthesia.

Several propofol pharmacokinetic-pharmacodynamic models

are used in routine clinical practice for induction and

maintenance of propofol anesthesia. The parameters used in those

models are exclusively based on patient demographics but do not

take into account hemodynamics. Given the causal relationships

between brain activity and hemodynamics, the inclusion ofHR,MAP

or CBF data in the models would probably make themmore patient-

specific and improve their accuracies. Several studies have been

published on this topic. Sahinovic et al. (Sahinovic et al., 2017)

raised a concern on the use of propofol models in patients with brain

tumours, since those might alter propofol kinetics and dynamics and

loose accuracy. Furthermore, a new set of models called

Physiologically-Based PK Models (PBPK) have been developed to

account for the effects of hemodynamics in the currently used

compartments models (Jones and Rowland, 2013), since

hemodynamic variables such as cardiac output have shown to be

determinant for predicting the effects of propofol infusion (Adachi

et al., 2013). The results for propofol infusion in this work support the

hypothesis that those new models should be key for anesthesia

personalization, thus enhancing the accuracy of target-controlled

infusion (TCI).

Similar conclusions can be drawn from the analysis of

remifentanil concentration changes. The use of remifentanil is

associated to depressed hemodynamics, preserving cerebral

autoregulation but lowering CBF (Dagal and Lam. 2009), and its

administration together with propofol is known to produce some

Frontiers in Network Physiology frontiersin.org18

González et al. 10.3389/fnetp.2022.912733

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2022.912733


synergies in the modulation of the EEG waves and resulting depth of

anesthesia index (Copot et al., 2015). The causal interactions between

CeRemi and EEG related parameters revealed that the highest

causality took place from CeRemi to EEGδ frequency band,

followed by EEGα, EEGθ and EEGβ, but was almost inexistent

with the qCON index. Those results are consistent with the EEG

spectral analysis under remifentanil infusion published by

Kortelainen et al. (Kortelainen et al., 2009), that highlighted the

influence of remifentanil in the EEG spectrogram rather than to limit

its effects to synergies with propofol. Hence, remifentanil modified

the spectral content of the EEG of the patients under study while the

qCON index remained unaffected. The causal relationships detected

during CeRemi changes suggest that its causal effects in EEG, either

directly or through hemodynamics, are less pronounced than those

obtained for propofol, which is consistent with the fact that propofol

is a hypnotic drug while remifentanil is an analgesic. Moreover, HR

seems to be the link between CeRemi infusion and brain activity,

while MAP played a more relevant role in propofol infusion.

Together with the effects of propofol and remifentanil in the EEG

activity, the causal relationships induced by vasoactive drugs such as

atropine and ephedrine were also studied in order to find out to

which extent those drugs could affect brain activity and depth of

anesthesia. Both drugs are often administered during anesthesia to

compensate bradycardia and/or hypotension provoked by hypnotics

and analgesics, and are therefore producing HR and MAP increases

to achieve hemodynamic stability.

Furthermore, the presented results provided information

supporting the hypothesis that effects of atropine and ephedrine

in EEG activity take place through the causal links between MAP,

HR and CBF features towards EEG parameters, and vice versa. In a

recently published case study (Jo et al., 2018), atropine was

administered to a patient presenting very low depth of anesthesia

values, including EEG suppression and a bradycardia episode. After

the atropine infusion, hemodynamic stability was recovered

together with recommended depth of anesthesia values. The

authors related this episode to cerebral hypoperfusion, therefore

suggesting that causal interactions exist between hemodynamics

and brain activity, and that those are modulated through CBF.

Patient positioning was also considered as a potential factor

influencing causal relationships between hemodynamics and EEG

activity. Two different positions were assessed besides the standard

supine position in steady state anesthesia: Trendelenburg and passive

leg raising. Both positioning strategies are known to provoke changes

in general hemodynamics, mainly in MAP (Fakhari et al., 2018), but

information on their influence in EEG is scarce.Mallick et al. reported

the dependence between the depth of anesthesia index and the

steepness of the Trendelenburg position, establishing a relationship

between both variables (Mallick et al., 2015). Considering the causal

occurrences calculated in this work, HR and MAP do not seem to

modulate directly EEG changes, but through alterations in CBF

features that are further projected into EEG activity.

As part of the causality analysis, the role of patient demographics

was assessed through correlation and hypothesis testing. Patient

characteristics such as age, height, weight and BMI should be taken

into account since those might enhance or prevent the existence of

causal relationships and the intensity of the existing causal effects. For

instance, during steady state anesthesia, lower ages were associated to a

higher occurrence of causal links from CBF to EEG, as well as lower

weight and BMI. However, the size of the database under study

impaired a more detailed analysis of patient demographics in heart-

brain links during anesthesia, being one of the limitations of this study.

Other limitations that should be noted are the low number of

recordings for some of the analyzed events, such as atropine or

ephedrine infusions, and the concomitant effects of different factors,

as for instance patient positioning taking place before or after a drug

dosage change or the administration of a vasoactive drug.

During the causality study, linear and nonlinear CBF features

have been independently considered in order to assess their individual

performance. Even though they showed a 100% of causal effects

among them in the majority of events under test, they revealed

different occurrences of causal relationships with brain activity and

global hemodynamics. During propofol infusion, bilateral causality

between linear CBF features and HR was much more frequent than

between Poincaré plot features of REG signals and HR, while those

showed similar values during steady state anesthesia. In contrast,

during atropine infusion, effects of MAP on CBF parameters were

more frequent towards the Poincaré features. The use of a larger

dataset would allow to further compare the performance of both

algorithms, but results herein presented suggest that they are closely

related to each other but the integration of the information contained

in both sets of features improves the assessment of causality.

As a conclusion, results from this study confirm the hypothesis

that during general anesthesia causal interactions among global

hemodynamics, cerebral hemodynamics and EEG neural activity

take place. And, as a consequence, clinical decisions made to

achieve hemodynamical stability have effects at a neural level,

as well as changes in anesthetic dosages would interfere both

in global and brain hemodynamics. REG signals provided an

assessment of brain hemodynamics, with both linear and

nonlinear features contributing to the heart-brain interactions,

revealing its potential as a monitoring tool for anesthesia

management. Finally, CBF estimators demonstrated to contain

information allowing to understand the coupling between

hemodynamics and neural activity, and should therefore be

integrated in routine clinical care, mainly in patients in which

causal relationships might be impaired or altered due to

pathological or intrinsic conditions.
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