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Learn, don’t forget: constructive methods for effective continual

learning

Aitor GANUZA IZAGIRRE

Abstract

The hallmark of artificial intelligence lies in agents with capabilities to adapt to con-

tinuous streams of information and tasks. Continual Learning aims to address this

challenge. However, machine learning models accumulate knowledge in a manner dif-

ferent from humans, and learning new tasks leads to degradation in past ones, a phe-

nomenon aptly named catastrophic forgetting. Most continual learning methods either

penalize the change of parameters deemed important for past tasks (regularization-

based methods) or employ a small replay buffer (replay-based methods) that feeds the

model examples from past tasks in order to preserve performance. However, the role

and nature of the regularization and the other possible factors that make the contin-

ual learning process effective are not well understood. The project sheds light on these

questions and suggests ways to improve the performance of continual learning in vi-

sion tasks such as classification.

Key words: Continual Learning, Lifelong Learning, Online Learning, Artificial Intelli-

gence, Machine Learning

AMS Codes: 68T05 (Learning and adaptive systems in artificial intelligence), 68T07

(Artificial neural networks and deep learning), 68T30 (Knowledge representation).
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Aprender sin olvidar: métodos constructivos para un

aprendizaje continuo efectivo

Aitor GANUZA IZAGIRRE

Resumen

El objetivo distintivo de la inteligencia artificial reside en conseguir agentes con capaci-

dad para adaptarse a flujos continuos de información. El aprendizaje continuo pretende

dar respuesta a este reto. Sin embargo, los modelos de aprendizaje automático acumu-

lan el conocimiento de una manera diferente a la de los humanos, y el aprendizaje de

nuevas tareas conduce a la degradación de las pasadas, fenómeno denominado olvido
catastrófico. La mayoría de los métodos de aprendizaje continuo o bien penalizan el

cambio de los parámetros considerados importantes para las tareas pasadas (métodos

basados en la regularización) o bien emplean un pequeño búfer de repetición (métodos

basados en la repetición) que alimenta el modelo con ejemplos de tareas pasadas para

preservar el rendimiento. Sin embargo, el papel exacto que juega la regularización y los

demás posibles factores que hacen que el proceso de aprendizaje continuo sea eficaz no

se conocen bien. El proyecto arroja luz sobre estas cuestiones y sugiere formas de mejo-

rar el rendimiento del aprendizaje continuo en tareas de visión como la clasificación.

Palabras clave: Aprendizaje Continuo, Aprendizaje Permanente, Aprendizaje en Línea,

Inteligencia Artificial, Aprendizaje Automático

Códigos AMS: 68T05, 68T07, 68T30.
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Aprendre sense oblidar: mètodes constructius per a un

aprenentatge continu efectiu

Aitor GANUZA IZAGIRRE

Resum

L’objectiu distintiu de la intel·ligència artificial és aconseguir agents amb capacitat per

adaptar-se a fluxos continus d’informació. L’aprenentatge continu pretén donar re-

sposta a aquest repte. No obstant això, els models d’aprenentatge automàtic acumulen

el coneixement d’una manera diferent de la dels humans, i l’aprenentatge de noves

tasques condueix a la degradació de les passades, fenomen anomenat oblit catastròfic.

La majoria dels mètodes d’aprenentatge continu o penalitzen el canvi dels paràmetres

considerats importants per a les tasques passades (mètodes basats en la regularització)

o bé emprenen una petita memòria intermèdia de repetició (mètodes basats en la repeti-

ció) que alimenta el model amb exemples de tasques passades per preservar el rendi-

ment. Tot i això, el paper exacte que juga la regularització i els altres possibles factors

que fan que el procés d’aprenentatge continu sigui eficaç no es coneixen bé. El projecte

dóna llum sobre aquestes qüestions i suggereix maneres de millorar el rendiment de

l’aprenentatge continu en tasques de visió com la classificació.

Paraules clau: Aprenentatge Continu, Aprenentatge Permanent, Aprenentatge en Lí-

nia, Intel·ligència Artificial, Aprenentatge Automàtic

Codi AMS: 68T05, 68T07, 68T30.
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Chapter 1

Introduction

Humans and other animals have the ability to continually acquire, fine-tune, and trans-

fer knowledge without forgetting previously learned information through complex

neurocognitive mechanisms.

It is therefore of great interest to emulate on machines this way of learning, with the

ultimate goal of having intelligent agents adapted to the constantly changing world.

We define Continual Learning (CL) as the ability to learn continually from a stream of

data, building on what was learned previously, while being able to reapply, adapt and

generalize to new situations. In machine learning terms, this is also known as lifelong

learning, sequential learning, or incremental learning. A CL algorithm must be capable

of learning from a continuous stream of information, with such information becoming

progressively available over time and where the number of tasks to be learned, such as

membership classes in a classification task, are not predefined (Parisi et al., 2018).

In traditional learning, Figure 1.1 ((Cossu, Ziosi, and Lomonaco, 2021)), whenever a

model has finished learning, it remains unchanged when used in practice. It is there-

fore a static modeling of a continually changing world. The hypothesis of independent

and identically distributed distributions (i.i.d.) is necessary for these systems to work

properly. See section A.2 for details on this hypothesis. All data samples must come

from the same probability distribution, which is invariant over time. Data sets are usu-

ally huge and fixed, and the data must be sufficiently shuffled to ensure this condition.

A CL model is required to incrementally build and dynamically update internal rep-

resentations as the distribution of tasks dynamically changes across its lifetime. Ide-

ally, part of these internal representations will be general and invariant enough to be

reusable in similar tasks, while another part should preserve and encode task-specific

knowledge (W. ContinualAI, 2021).

The objective of the thesis is to analyze and compare existing CL methods and provide

information on how to learn effectively without forgetting. This thesis is structured as

follows.
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(A) Static system (B) Continual learning system

FIGURE 1.1: (Cossu, Ziosi, and Lomonaco, 2021). While offline learning
learns in a single phase from a static set of data, Continual Learning sys-

tems learn from a stream of non-stationary data.

• Chapter 2 introduces and details all the needed terms specific to the CL field.

It describes the main objectives, constraints, limitations, and tools of Continual

Learning. This chapter aims to make the reader understand the context of Con-

tinual Learning, and its situation w.r.t. the AI community.

• Chapter 3 explains some of the actual methods on Continual Learning. They

are divided into three main categories: regularization based methods, memory-

replay based methods, and parameter isolation based methods. The advantages

/ disadvantages, intuitive justifications, and mathematical derivations are pro-

vided. Some of these methods have been implemented as part of the thesis, and

they are used in the experiments.

• Chapter 4 describes the framework developed on Python to act as a Continual

Learning solver. It implements multiple methods and allows the user to modify

all settings and hyperparameters, with the objective of being as flexible as possible

for experiments.

• Chapter 5 describes the experiments made on Continual Learning. They have

been developed using the chapter 4 solver, modifying the algorithms, and ob-

serving possible improvements.

• Chapter 6 briefly summarizes and concludes the thesis, suggesting possible fu-

ture directions.
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Chapter 2

Background and general
introduction to Continual Learning

2.1 Desiderata

A possible solution to Continual Learning might be saving all data, shuffling them to

ensure i.i.d hypothesis (section A.2), and training it with a traditional learning setting.

However, this is neither always possible nor optimal. Typical constraints include lim-

ited memory that cannot store the data, privacy issues related to the storage of the

samples, or time considerations such as having to use the model while still learning. In

the following (nonexhaustive) settings, a Continual Learning approach is necessary:

• Having a pre-trained model, you want to update it with new different data, but

you do not have access to the original training data any longer. If the objective

was to simply learn the new incoming data without regard for preserving prior

knowledge, it would be a transfer learning problem (Zhuang et al., 2019). How-

ever, if we aim to perform well both on previous and current data distributions,

it is a Continual Learning problem.

• You want an agent to learn a different policy or task, but there is no information

on when or how the learning objective changes.

• You want to learn from a continuous stream of data, and you want to have your

model updated at any given time (so it is not possible to simply store all the data

and train it later), and the data might change over time.

To handle such settings, Continual learning is characterized in practice by a series of

desiderata (Cossu, Ziosi, and Lomonaco, 2021):

• No access to previously encountered data. However, this assumption is relaxed in

memory-replay based methods (section 3.3), where re-visiting old data is allowed

using a small fixed memory.
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• Efficiency. Constant computational and memory resources, even if the stream of

data and the number of different tasks increase over time. This forces the system

to use its resources intelligently.

• Scalability. Incremental development of ever more complex knowledge and skills.

• The learning agent should be able to transfer and adapt what it learned from

previous experience, data, or tasks to new situations, and make use of more recent

experience to improve performance on the capabilities learned earlier.

2.2 Sustainability of AI

Artificial Intelligence is becoming more and more present and important in our soci-

ety, and our awareness of the ethical issues related to the design and development of

AI systems raises at the same time (Cossu, Ziosi, and Lomonaco, 2021). The term AI

ethics refers to the study of ethical and societal issues facing developers, producers,

consumers, citizens, policymakers, and civil society organizations (Wynsberghe, 2021).

Most of the public debate on the ethics of AI is about concerns about the application of

AI techniques. They are expressed by values such as fairness, privacy, accountability,

transparency, etc. However, the focus on the importance of sustainability is something

that has not been addressed as much within the framework of AI ethics. Approaching

artificial intelligence through the Continual Learning perspective is definitely a way of

both addressing these values and promoting sustainability in the field. CL can provide

environmentally and financially sustainable solutions.

The advancements in both hardware (more powerful GPUs) and software (deep learn-

ing models, open-source frameworks and supporting libraries) have significantly im-

proved the accuracy and training time of Artificial Neural Networks. However, the

high speed and accuracy are at the cost of energy consumption. The more the size of

datasets grows, the more the energy demand for training such datasets increases. It

is highly desirable to design deep learning frameworks and algorithms that are both

accurate and energy efficient (D. Li et al., 2016).

There has been more effort to analyze the principles, ‘what’ of AI ethics, rather than on

practices, the ‘how’ (Morley et al., 2020). Continual Learning can be a suitable candidate

to convert current AI ethics principles to practices and to be more socially, financially

and environmentally sustainable.

Learning continually means not only being able to adapt to unpredictable circum-

stances not foreseen during the design of our AI systems, but also to build systems

that are efficient, scalable and easily amendable, or in other words, sustainable.
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The advantage in efficiency and scalability for Continual Learning with respect to of-

fline AI models increases with the non-stationary nature of the environment: in tradi-
tional learning, each new piece of information may require to retrain a model on both

new and previous data. However, most of the knowledge needed is already inside

the model. Continual learning, on the contrary, only requires training a model on the

new incoming samples, possibly exploiting temporal correlations between successive

patterns to improve performance.

2.3 Catastrophic forgetting

All natural cognitive systems gradually forget previously learned information. Plausi-

ble models of human cognition should therefore exhibit similar patterns of gradual for-

getting of old information as new information is acquired. Natural cognitive systems

do not, in general, forget catastrophically (all of a sudden). Unfortunately, this does not

happen in artificial neural networks (French, 1999). Due to the sequential nature of the

continual learning paradigm, catastrophic forgetting is the main issue to be addressed.

Catastrophic forgetting, also known as catastrophic interference, is the tendency of an

artificial neural network to completely and abruptly forget previously learned knowl-

edge when learning new information (McCloskey and Cohen, 1989).

This is a clear example of the stability-plasticity dilemma, also known as the sensitivity-
stability dilemma. Learning requires plasticity for the integration of new knowledge,

but also stability to prevent forgetting of previous information. Too much plasticity

leads to constantly forget previously encoded data, i.e., catastrophic forgetting. How-

ever, too much stability impedes the efficient coding of new data.

When working with labeled tasks, this phenomenon becomes evident, as in Figure 2.1

(Hong, Y. Li, and Shin, 2019), where an agent tries to sequentially learn five different

tasks and evaluates the performance on all the tasks learned so far. When learning a

new task starts, performance on previously learned tasks catastrophically drops.

In the concrete case of an artificial neural network trying to learn sequentially two dif-

ferent tasks with different distributions, a standard optimization algorithm such as

Stochastic Gradient Descent will first converge to a solution where the loss function

is low for the first task. Then, if we train this network with the second task, the weights

will change in order to minimize the loss in the second task. This could lead to leaving

the region where the loss is low for the first task, as shown in Figure 2.2 by Kirkpatrick

et al., 2016 in their Elastic Weight Consolidation (EWC) method, addressed in subsec-

tion 3.2.1.
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FIGURE 2.1: (Hong, Y. Li, and Shin, 2019). Catastrophic forgetting. The
accuracy on five different tasks (each with a different color) is plotted.
At the beginning (first iterations), task0 is learned. When the learning
for this task is complete, it starts for task1, causing the blue line to drop
suddenly and significantly. This happens whenever we start to train on

a new task.

FIGURE 2.2: (Kirkpatrick et al., 2016). EWC method ensures that task A is
remembered while training on task B. Training trajectories are illustrated
in a schematic parameter space, with parameter regions leading to good
performance on task A (gray) and on task B (cream color). After learning
the first task, the parameters are at a local optimum for task A, θ∗A . If
we take gradient steps according to task B alone (blue arrow), we will
minimize the loss of task B but destroy what we have learned for task
A (too much plasticity). On the other hand, if we constrain each weight
with the same coefficient (green arrow), the restriction imposed is too
severe and we can remember task A only at the expense of not learning
task B (too much stability). The objective would be to find a low-loss area

for task B without incurring a significant loss on task A (red arrow)
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2.4 Implications on main machine learning paradigms

In this section, the relationship of continual learning with the main machine learning

paradigms is discussed. Supervised learning, unsupervised learning, and reinforce-

ment learning are linked to continual learning in different ways.

2.4.1 Supervised Continual Learning

Supervised learning is the machine learning task of learning a function that maps an

input to an output based on examples of input-output pairs (Russell, 2010a). It infers a

function from labeled training data consisting of a set of training examples. In the CL

paradigm, each data sample from the streaming is a tuple ⟨xk, yk⟩ of input and target.

If tasks are labeled, the data sample is ⟨xk, yk, tk⟩, where tk is the task identifier.

Supervised continual learning is the easiest setup to obtain good performance in a prob-

lem. Here, relatively simple and easy to implement continual learning methods can be

applied and still obtain very revealing results. Most efforts in supervised continual

learning are not in the direction of solving state-of-the-art machine learning problems,

but rather to gain a better understanding of how continual learning algorithms work,

and to delve into the whys and wherefores of catastrophic forgetting and how the en-

coding of old and new data happens. In fact, this is the reason why this thesis is mainly

focused on supervised continual learning.

Classification problems are the most popular scenarios for delving into these phenom-

ena. In fact, image-classification benchmarks, discussed in section 2.9 are the main

baselines for this purpose.

2.4.2 Unsupervised Continual Learning

Unsupervised Learning is a paradigm that analyzes and clusters unlabeled datasets.

These algorithms are used to discover hidden patterns without the need for human

intervention (IBM, 2020), and without any labels or rewards to learn from. While learn-

ing, an unsupervised network tries to mimic or reproduce the given data and uses the

error in this generated output to correct its weights and biases.

In Unsupervised Continual Learning, the focus is on learning representations without

any knowledge about task identity, and exploring scenarios with both abrupt changes

between tasks and smooth transitions from one distribution to another (Rao et al., 2019).

That is, a very general task-agnostic approach to continual learning. It can be applied

to multiple fields of knowledge. For example, Hemati, Schreyer, and Borth, 2021 use

Continual Learning techniques for unsupervised anomaly detection in continuous au-

diting of financial accounting data. Allred and Roy, 2020 is a bioinspired continual

learning approach where they use CL techniques on Spike Neural Networks (SNN)
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(Maass, 1997) to adapt to novel information while protecting essential knowledge from

catastrophic forgetting.

This is a far more complex setting than supervised continual learning, and there is an in-

creasing interest in adapting and applying all the knowledge, methods, and algorithms

from supervised learning to this area. In fact, Artificial General Intelligence (Russell,

2010b) is a very general case of unsupervised continual learning.

2.4.3 Continual Reinforcement Learning

Reinforcement Learning (RL) is a machine learning paradigm in which the goal is to

train an agent to perform actions in a particular environment in order to maximize the

expected cumulative reward.

It is formalized as a Markov Decision Process (MDP) defined by a tuple ⟨S ,A, ps, r⟩,
where at time step t, the RL agent observes the state st ∈ S , takes an action at ∈ A,

which results in a reward r(st, at) and transition to next state st+1 with probability

ps(st+1|st, at). The objective of the agent is to find a policy defined by a probability

distribution over actions given the state π(at|st), that maximizes its expected sum of

future rewards:

π∗ = argmaxπ ∑
t

Eπ[r(st, at)]

where Eπ is the expectation under the reward distribution defined by policy π.

In traditional Reinforcement Learning, the objective is to learn an unknown station-

ary MDP, that is, fixed states and rewards. However, as real-world problems are non-

stationary, complex problems in Reinforcement Learning could be approached in a con-

tinual learning way. In fact, nowadays Reinforcement Learning and Continual Rein-

forcement Learning are often mixed. This is because in RL data are typically accumu-

lated online as the agent interacts with the environment, the distribution of experiences

is often non-stationary over the training of a single task, as well as across tasks, since

(i) experiences are correlated in time and (ii) the agent’s policy changes as it learns. In

Kaplanis, Shanahan, and Clopath, 2018, they propose a way to mitigate catastrophic

forgetting in the RL environment without the need of a replay database, and to be a bit

closer to how the brain achieves continual learning.

Even if most of the bibliography tests their Continual Learning algorithms in a super-

vised manner, there is also interest in trying reinforcement learning benchmarks, such

as the Atari games (Mnih et al., 2013), which for example were used by Kirkpatrick

et al., 2016.
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2.5 Definition and framework

Continual Learning is a very broad field, where the problem and the way to tackle it

completely change depending on the constraints of each case. Despite the growing

interest in CL in recent years (Parisi et al., 2018), very little effort has been devoted to a

common formalization of algorithms that learn continually in dynamic environments.

Therefore, every problem should be analyzed individually. One must clearly describe

(Lesort et al., 2019):

• Data availability. Are data distributions assumed i.i.d. at any point (clearly dis-

tinguished tasks)? Is each task encountered only once?

• Assumed prior knowledge. Is the algorithm agnostic with respect to the structure

(number of classes in a classification problem, number of tasks, etc.) of the data

stream? Is it necessary to start from a pre-trained model? If so, which is the al-

ready learned information, and which is the expected information to continually

learn?

• Memory and computation requirements. How much available memory is re-

quired while learning? Is there any computational overhead added over time? Is

the algorithm able to handle real-time situations where there is not enough time

to learn? In some cases, the agent is required to perform in a very short time since

the availability of the data.

• Type of supervision. In the case of multiple tasks, is the task label available to

the agent during training / evaluation?

A specific CL framework could vary from a general unsupervised learning problem

without the notion of tasks to a supervised classification problem where each data point

has a task-id. In order to help answer the proposed questions and formalize the frame-

work, we can formulate some definitions.

In the list below (Hsu, Y. Liu, and Kira, 2018), a non-exhaustive list of CL scenarios

(possible combinations of answers to some of these questions) is provided. For nota-

tion, X1 is the input set of the old task, where x1
k ∈ X1 are the input data samples, and

X2 is the input set of the new task. Similarly, Y1 and Y2 correspond to the target sets of

the old and new tasks, respectively.

• Domain Incremental Learning: The input space (domain) is incremental, which

means that P(X1) ̸= P(X2). However, the output space remains the same, Y1 =

Y2. Therefore, the task identifier is not needed. The model has to learn incremen-

tally the distributions of each task. As an example, we could have X1 = images of

cats/dogs in the garden, X2 = images of cats/dogs indoors, Y1 = Y2 = {cat, dog}.
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The objective remains distinguishing cats and dogs, but the distribution of the do-

main changes at the new task. However, the agent does not receive a task identi-

fier.

• Class Incremental Learning. This scenario relates to multiclass classification.

Here, P(X1) ̸= P(X2), but Y1 ∩ Y2 = ∅. This means that each task in the se-

quence contains an exclusive subset of classes in a dataset. As task identifiers are

not provided, the agent must be able to classify between all classes learned so far.

Continuing with the example of the previous scenario, here in the first task we

would have images of cats and dogs, whereas in the second task we have images

of cows and horses, and Y1 = {cat, dog}, and Y2 = {cow, horse}.

• Task Incremental Learning Here the setting is very similar to Class Incremental

Learning, but a task identifier t is provided. In this scenario, a multi-head archi-

tecture with one head for each task can be used to exploit the information about

task identifier. In the forward pass, only the head matching t is activated to make

predictions. For further details on multi-head classifiers, view section 2.10.

2.6 Formalization of a classical CL problem

In this section, a classic continual learning scenario is described. This thesis was devel-

oped under these assumptions. In a classification problem, which is a type of Super-

vised Continual Learning problem (subsection 2.4.1), a finite number of tasks is learned

from a sequence of experiences S = (e1, e2, . . . , en). Each experience is assumed to

have its data independent and identically distributed, and it is learned as an atomic

unit. Within the learning of an experience, it is usually allowed to revisit samples from

the experience and learn in multiple epochs. The setting where each experience cor-

responds to a unique labelled task is called task-incremental learning. In this case,

the number of tasks T = n. Data from each experience Di is split in the following

way: Di = Di
train ⊔ Di

val , usually around 80% for training and 20% for validation. The

datasets used in the experiments (chapter 5) come from predefined splits.

Each sample from Di is a tuple ⟨xi
k, yi

k, ti
k⟩. In our setting, the agent knows the task

identifier ti
k ∈ T (where T = 1, . . . , T) only in some experiments. In others, what

the agent "sees" is only ⟨xi
k, yi

k⟩. This distinction is crucial in terms of performance,

as having the task-id information allows the architecture to be multi-head, that is, to

activate a different decoder depending on the task.

The input space is X = X1 ⊔ X2,⊔ . . . ,⊔XT, and each xi
k ∈ Xti

k
. Note that, in general,

ti
k = i in task-incremental learning (this will always be the case in our setting).

The output space is Y . In class-incremental learning, which is an orthogonal term to

task-incremental learning, Y = Y1 ⊔Y2 ⊔ . . .⊔YT, which means that the output is task-

specific. If the agent knows the task identifier t beforehand, it will only have to classify
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among the classes in Yt instead of Y . If the learning is not class-incremental, the output

can be of any class despite the task-id.

A Continual Learning algorithmACL is a function with the following input and output

spaces (Carta et al., 2021):(
f CL
i−1, Di

train, Mi−1

)
−→

(
f CL
i , Mi

)
where f CL

i represents the model after having learned from experience i, and Mi is a

memory storing knowledge from previous experiences. This memory could be either

samples seen previously or other kind of processed information. Methods categorized

at section 3.3 use these memories in different ways, but the other methods haveMi =

∅ ∀i.

The objective of ACL is to minimize the total loss of the stream LS on the entire data set

⊔iDi
train. In section 2.7 some useful metrics are described.

LS( f CL
i , n) =

1
n

n

∑
i=1
Lexp( f CL

i ,Di
val),

where

Lexp( f CL
i ,Di

val) =
1
|Di

val |
∑

j∈Di
val

L( f CL
i (xi

j), yi
j)

Note that depending on the experiment, we might have a different objective. For ex-

ample, Lexp could also be task-specific: Li
exp, but in this case we are considering classi-

fication for all tasks, Li
exp = Lexp∀i ∈ {1, . . . , n}.

The loss L( f CL
i (xi

j), yi
j) is computed on a single sample, usually using cross-entropy

loss for classification tasks. For a detailed explanation of the cross-entropy loss, see

section A.1.

2.7 Metrics

In order to compare different algorithms, it is essential to have the correct metrics. Mea-

suring the performance and accuracy of algorithms with intelligent metrics can be a

determining factor when having to decide which approach is better among many. Dif-

ferent ways of measuring can tell completely different things about an experiment, so

it is crucial to understand which metrics are more informative at each case.

As the nature of a Continual Learning setting is different from the classical machine

learning problems, it is particularly interesting to define specific metrics for measuring

the performance of a CL algorithm. CL is a more human-like approach to artificial in-

telligence, so it is useful to have defined ways to measure concepts like forgetting or

knowledge transfer.
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Lopez-Paz and Ranzato, 2017 were the first to take this into account and propose some

metrics related to this knowledge transfer among tasks.

For a principled evaluation, let’s consider the set of tasks T = {1, . . . , T}. After the

agent finishes learning task t, we evaluate its validation performance on all T tasks. In

this way, we construct a matrix R ∈ RT×T, where Ri,j is the classification accuracy of

the model after observing the last sample from task i and evaluating it on task j. Note

that a high Rii means good learning ability or plasticity, and a high Rij of i > j means

good retention ability or stability. For i < j, the evaluation is made in a task that has not

been learned yet. In general it is not very interesting, except for some specific metrics

such as Forward Transfer, explained below.

For normalization purposes, we also consider bi the accuracy for task i at random ini-

tialization of the model. We define the following metrics:

Average Accuracy: ACC =
1
T

T

∑
i=1

RT,i

Average Backward Transfer: BWT =
1

T − 1

T−1

∑
i=1

RT,i − Ri,i

Average Forward Transfer: FWT =
1

T − 1

T

∑
i=1

Ri,i+1 − bi+1

We can also refer to the Backward Transfer between tasks i < j as Rj,i − Ri,i, and For-

ward Transfer of task i ∈ {1, . . . , T − 1} as Ri,i+1 − bi+1.

The larger these metrics, the better the model. Depending on the specific purpose, we

might want to focus more on one metric or another.

Average Accuracy is the most basic metric of a CL algorithm. It shows the mean perfor-

mance evaluating on all tasks after having finished to learn all experiences. In general,

it is the most informative metric.

Average Backward Transfer or forgetting. It measures the performance of the fully

trained model in comparison to how accurate the model was on each task just after

having learned it. If this metric is close to zero, it means that the algorithm does not
forget how to solve past tasks. If it is negative, it means that forgetting is happening.

This metric can also be positive. In this ideal case, the algorithm at the end performs

even better on task i than when having trained that task. This could happen when

different tasks are related.

Average Forward Transfer measures if the model has any kind of skill to solve next task

before starting to train on it. This is why it compares the accuracy on a future task with
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accuracy having a random initialization. The interest of this metric is to see if previous

experiences are beneficial in solving future tasks. Note that having Forward Transfer

−→ new task is related to previous tasks, but the opposite implication is not true. It can

happen, for instance, in Domain Incremental settings, where even if P(X1) ̸= P(X2),

knowing the P(X1) distribution helps to solve the task 2. However, in class-incremental

scenarios it is unlikely to have this metric and thus it might be not of great interest.

Serrà et al., 2018 propose a different measure called forgetting ratio to compare be-

tween different task accuracies. This also takes into account a comparison of the CL

accuracy with the accuracy that we would get when jointly training in a multitask way

(explained in section 2.8).

ρj≤i =
Ri,j − Ai

Ji,j − Ai
− 1,

where Ji,j is the accuracy measured on task i after jointly learning j tasks in a multitask

fashion. Ai is the accuracy of a random stratified classifier using the class information

of task i. A stratified classifier generates random predictions by respecting the class dis-

tribution of the training data. Note that ρ ≈ −1 and ρ ≈ 0 correspond to performances

close to those of the random and multitask classifiers, respectively. For having a single

metric after learning i tasks, we take the average ρ≤i = 1
i ∑i

j=1 ρj≤i.

Hayes et al., 2018 they describe a metric used to evaluate plasticity of the CL algorithm

in comparison to multi-task learning:

Ω =
1
T

T

∑
i=1

Ri,i

Ji,i

Note that in multi-task learning, the effort made to minimize the loss of all tasks is the

same. This means that if the difficulty of the tasks is similar, Ji,i and Jj,i should be similar

for all j < i. This is not true in the case of R, where if plasticity is high enough, a major

part of the network’s capacity could be used for specific knowledge about task i. Thus,

if the network capacity is not high enough to have a good joint average accuracy, it

could happen that Ω > 1. This may suggest that a larger architecture should be used.

2.8 Baselines

In order to understand metric reports (explained in the previous section) it is conve-

nient to have some baseline experiments to compare with. These baselines can be used

for having a notion of lower and upper bounds. In fact, in the previous section, some of

the metrics used the results of these baselines to be more understandable without the

context of the experiment.
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• Naive learning or fine-tuning. It is simply doing backpropagation, usually by

Stochastic Gradient Descent. The only goal when having a new task is to converge

to its minimum loss without paying attention to what happens with previous

tasks and with no countermeasures to preserve past performance. It is interesting

to have this as a baseline to:

– See when and how catastrophic forgetting occurs. Depending on choices

such as the architecture, the way the network forgets with fine-tuning can

vary a lot, as explained in section 2.10. Fine-tuning could be a lower bound

for the accuracy on previous tasks.

– Evaluate the maximum plasticity of the network. Note that this is not an

upper bound for accuracy in a new task. A way to illustrate this could be the

following setting: a network that is already able to solve 2 tasks might have

some advantage when finding a better minimum on the loss of a third task

(if the third task is very similar to the first but different to the second) than a

fine-tuned network which is only able to solve the second task.

• Cumulative or joint training. For every experience, all data is accumulated, shuf-

fled and re-trained from scratch until convergence. In this way, all the inconve-

niences that Continual Learning algorithms face disappear. Cumulative training

could be colloquially described as the best you can do with all the data until experience
i starting from scratch. Therefore, it is an upper bound on the CL algorithms. Joint

training on the last experience, that is, training with all data at the same time, is

also known as multitask learning.

2.9 Common Datasets and Benchmarks

When conducting Continual Learning experiments, it is crucial to design an appropri-

ate scenario to evaluate the techniques. Also, agreeing in the community to standardize

some benchmarks is very useful to easily compare models. Each of these canonical CL

benchmarks has its own properties, hence understanding how and when to use them

is interesting to extract as much information as possible about the behavior of the algo-

rithms.

In contrast to traditional ML benchmarks, in the Continual Learning paradigm one must

not confuse dataset and benchmark.

• A Continual Learning dataset is the same as a traditional ML dataset. It is a collec-

tion of data that can be treated as a single unit for analytical purposes.

• A Continual Learning benchmark consists of a dataset plus the definition of how

to learn from a dataset. This includes how to split the data in different learning

experiences, what transformations to apply to the data at each of the experiences,
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Domain
Incremental

Class
Incremental

Task
Incremental

Split MNIST
with or without

task-ids

Permuted MNIST without task-ids with task-ids

Rotated MNIST without task-ids with task-ids

CIFAR
iCIFAR with or
without task-ids

ImageNet
Non-stationary
MiniImagenet

CORe50
Was designed for

this scenario

TABLE 2.1: Summary of the typical use cases of some continual learning
benchmarks.

the number of learning tasks, etc. However, in the bibliography multiple different

experiments are commonly called by the same name, even if the scenario defined

in section 2.5 is not exactly the same. Therefore, it is crucial to read all the spec-

ifications of the definition of the benchmark at each paper, as the nature of the

experiment might change a lot.

Some of the most used and most interesting benchmarks for image classification are

detailed below. Table 2.1 summarizes the information on the scenarios in which these

benchmarks can be applied.

2.9.1 Variants of MNIST dataset

The MNIST database (Lecun, 1998) of handwritten digits has a training set of 60,000

examples and a test set of 10,000 examples of size 28x28 grayscale pixels. The ten digits

(0 to 9) have been size-normalized and centered in a fixed-size image. This database is

often chosen to develop learning techniques and pattern recognition methods on real-

world data while putting minimal effort into preprocessing and formatting.

Split MNIST

This benchmark was initially introduced in a multiheaded form, where the ten digits

are split into five two-class classification tasks (Hsu, Y. Liu, and Kira, 2018): (D1, . . . ,D5) =

({Zeros and ones}, . . . , {eights and nines}). Here, the model has five output heads, one

for each task, and the task-id is usually known by the model. This constitutes a task-

incremental learning (section 2.5) scenario. This dataset was explored in the Synaptic

Intelligence paper by Zenke, Poole, and Ganguli, 2017, explained in subsection 3.2.2.

Note that the variant of not having task-ids, which is not addressed in our experiments,

makes the problem class-incremental.
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FIGURE 2.3: Split MNIST (C. ContinualAI, 2021)

This scenario is considerably easy to solve, since the selection of the output head is

given by the task-id. Another possible scenario of the split MNIST is the single-headed

version, proposed by Farquhar and Gal, 2018. In this case, the model is not provided

with task-id information (class-incremental learning), therefore it is more challenging.

Permuted MNIST

This benchmark was introduced by Goodfellow et al., 2015. First, a model is trained on

MNIST asD1. The nextDi for i > 1 are constructed from the MNIST images, with fixed

random permutations on the pixels of the images and applying the same permutation

to images of the same class (Figure 2.4). After training on a new task (new permuta-

tion), the evaluation is performed on all tasks. Following the definitions on different

scenarios, this would be domain-incremental learning.

FIGURE 2.4: 5 different permutations of the same image. These permu-
tations are used to create 5 different tasks.

Although it has become a mainstay for continual learning evaluation, this benchmark

has been criticized for being too unrealistic. An image with randomly permuted pixels

is unrecognizable for humans, as the actual world is not structured like this. In the per-

muted setting, no example from Dt looks remotely like an example from Dt−1. Hence,

there are no correlations between tasks, and concepts like Forward Transfer cannot be

studied.

Rotated MNIST

This experiment is a simpler and more realistic version of domain-incremental learning

with the MNIST handwritten digits dataset. Each new task consists of a fixed angle

rotation of the image. Thus, forward transfer is possible, as tasks are not that different
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one from another. This could ideally enable an angle-invariant internal representation

of the classes.

FIGURE 2.5: Images from MNIST dataset rotated at different angles.
Each rotation angle corresponds to a different task.

2.9.2 Incremental or Split CIFAR

This is a more complex version of the experiment described in Split MNIST. In the bibli-

ography, they also refer to this benchmark as iCIFAR (Maltoni and Lomonaco, 2019). It

can also be used in a task-incremental or class-incremental scenario. CIFAR-10 dataset

consists of 32x32 color images in 10 classes. CIFAR-100 dataset is similar to CIFAR-10,

except it has 100 classes (Krizhevsky, 2009). These 100 classes are divided into 20 su-

perclasses of 5 classes each. Each image comes with a "fine" label (the class to which it

belongs) and a "coarse" label (the superclass to which it belongs).

With these datasets, the following set-ups are the most common: iCIFAR-10 divides the

10 classes into 5 experiences of 2 classes each. iCIFAR-100 usually divides the CIFAR-

100 dataset into 20 tasks of 5 classes each, where the classes of each task are randomly

chosen without taking into account the superclasses. For example, this is used at Lopez-

Paz and Ranzato, 2017.

Another possible benchmark is iCIFAR-110, which consists of using CIFAR-10 images

as first task, and splitting CIFAR-100 by classes in 10 datasets, having images from

10 classes each. This way, D1 has CIFAR-10 images and D2, . . .D11 is conformed by

CIFAR-100 images. CIFAR-10 dataset has more images per class than CIFAR-100, so

one has to bear in mind that the number of samples of every task should be the same.

This benchmark is used at Zenke, Poole, and Ganguli, 2017.

2.9.3 ImageNet

Split MiniImageNet splits MiniImageNet dataset, which is a subset of ImageNet (Deng

et al., 2009) with 100 classes split into 20 disjoint tasks. Each class has 500 colored 84x84

images for training and 100 images for testing. Due to the size of the images, it is an

even more complex scenario than split CIFAR, but with very similar characteristics.

Tiny ImageNet is another similar subset of the dataset in the famous ImageNet Large

Scale Visual Recognition Challenge (ILSVRC). The dataset contains 100,000 images of

200 classes (500 for each class) downsized to 64×64 colored images. The split TinyIma-

geNet benchmark used in chapter 5 contains 10 classes per task and 20 tasks by default.
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FIGURE 2.6: (Mai et al., 2021). NonStationary-MiniImagenet

NonStationary-MiniImagenet

This benchmark, proposed by Mai et al., 2021, aims to evaluate the domain-incremental

setting in a more practical scenario. The reason is that most popular domain-incremental

benchmarks are still based on the MNIST dataset, which might be too simple in some

cases.

Three non-stationary transformations are applied to the images: noise, blur and occlu-

sion. The strength or difficulty added increases over time, as shown in Figure 2.6 (Mai

et al., 2021). This way, the agent learns more complex and difficult versions of the same
skill, and this is one of the objectives of Continual Learning.

2.9.4 CORe50

CORe50 (Lomonaco and Maltoni, 2017), specifically designed for (C)ontinuous (O)bject

(Re)cognition, is a collection of 50 domestic objects belonging to 10 categories: plug

adapters, mobile phones, scissors, light bulbs, cans, glasses, balls, markers, cups, and

remote controls. Objects are hand held in the images, and object occlusions are often

produced by the hand itself. Every object is recorded in both outdoors and indoor en-

vironments, thus creating a domain-incremental scenario. The images are colored and

sized 128x128, so this dataset is the most complex and close to real-world environment

described so far.

2.10 Architectures

Most of the research in Continual Learning and the catastrophic forgetting phenomenon

have addressed the problem from an algorithmic perspective, with almost no attention

dedicated to the architecture used in the experiments. These algorithms are designed

to be as robust as possible to the typical distribution shifts in continual learning. The



Chapter 2. Background and general introduction to Continual Learning 19

results of the experiments are usually shown using a single architecture, and the reason

for choosing that architecture is rarely explained. Architectural decisions such as num-

ber of neurons at each layer is usually justified as the one having better results without
compromising too much the efficiency, or the same architecture as used by X other method in
order to make fair comparisons. It is not usual to provide further description about the

chosen architecture in CL papers, not even in the ones having dynamic architectures

for avoiding catastrophic inference.

However, Seyed-Iman Mirzadeh, Chaudhry, et al., 2022 show that the performance

of such algorithms is architecture-dependent. A simple example that they provide is

Figure 2.7 (Seyed-Iman Mirzadeh, Chaudhry, et al., 2022), where they show that with

a fixed architecture, Continual Learning algorithms improve over naive fine-tuning,

but with a simple modification in the architecture, such as removing global average

pooling, naive fine-tuning turns out to be better. This shows that architectural choices

play a key role in Continual Learning.

A relevant finding of S. I. Mirzadeh et al., 2021 is that for Continual Learning, wide net-

works work far better than narrow networks. Overly deep networks are more prone

to catastrophic forgetting than networks overparameterized with more neurons at each

layer (and fewer layers). They provide an intuition for this, based on kernel meth-

ods: For overparameterized networks, the ℓ2 distance that the model parameters move

during SGD training can be small. In papers connecting learning in NNs to kernel

methods, they show that kernels behave like layers of infinite width (Jacot, Gabriel,

and Hongler, 2018), and at this limit the kernel does not change throughout the train-

ing. Furthermore, Chizat, Oyallon, and Bach, 2018 show that these networks operate in

a lazy regime where the norm of the difference between the optimal weights after train-

ing at task i and task i− 1, ||w∗i −w∗i−1||2, is very small. Since wider networks are closer

to the infinite width limit, the moving distance may be smaller for wider networks, and

thus forgetting is less severe.

The current state of the art on machine learning is held by very deep models, as they

are capable of finding very complex patterns due to multiple layers. Therefore, it is

a challenge for the future of continual learning to be able to construct deeper models

without forgetting. An experiment made on this idea is explained at section 5.2

A multilayer perceptron (MLP-N) represents a fully-connected class of feedforward

neural network with layers of width N. Being fully-connected means that each node in

one layer connects with a certain weight wij to every node in the following layer. An

MLP consists of at least three layers: an input layer, one or more hidden layers, and an

output layer. This architecture is sometimes referred to as vanilla network when having

a single hidden layer. Most of the architectures used for simple benchmarks such as

MNIST experiments are MLPs with fewer than three hidden layers.
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FIGURE 2.7: (Seyed-Iman Mirzadeh, Chaudhry, et al., 2022). While com-
pared to naive fine-tuning, continual learning algorithms such as Elastic
Weight Consolidation (Kirkpatrick et al., 2016) and Experience Replay
(Riemer et al., 2018) improve the performance, a simple modification to
the architecture such as removing the global average pooling (GAP) layer

can match the performance of ER with a replay size of 1000 examples.

Convolutional Neural Networks (CNN) are required for more complex tasks of im-

agery. These networks are based on convolution filters that slide along input fea-

tures, providing translation equivariant responses known as feature maps. Most sim-

ple CNNs, the ones considered in this section, have only convolutional layers with a

stride (number of pixels that the kernel moves on each iteration) of 2 and a single fully-

connected final layer for classification. These networks often have pooling layers with

the objective of down-sampling in order to reduce the number of parameters.

Residual Neural Networks (ResNet) (He et al., 2015) are deep feedforward neural net-

works with skip connections used to jump over some layers. Typical ResNet models are

implemented with double or triple layer skips with non-linearities like Rectified Linear

Units (ReLU) and batch normalization (re-scaling inputs at a layer) in between.

In feedforward neural networks (where connections between nodes do not form a cy-

cle), it is meaningful to define the concepts of encoder and decoder, even if they are de-

fined in loose terms. An encoder is formed by the first layers of the network, it takes the

non-fixed size input (although in our experiments the input size is fixed for simplifica-

tion) and transforms it to a fixed-size state. This state is the input of the decoder, which

is formed by the last layer(s) of the network. In most of the architectures described in

the experiments, a single fully-connected classification layer is used as a decoder.

However, in a task-incremental learning scenario, the decoder can be designed to be

task-specific, also known as multi-head decoder. This means that the classifier layer

(or last few layers), which is known as head, is not shared among all tasks. There is one

head per task, and the task-id indicates to the agent which head to activate with each

sample.
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This way, catastrophic forgetting is partially alleviated since ideally the most task-

specific knowledge is coded in the heads and the common features are stored in the

shared layers. The opposed concept, single-head decoder, is used when no task-id is

provided, that is, class-incremental learning.

2.11 Optimizers

Optimizers are algorithms used to minimize the loss function, and depending on pa-

rameters like the learning rate or momentum, they decide the optimization step, that is,

the values that the learnable parameters will have after each update. They are depen-

dent on the model’s parameters and are orthogonal to the Continual Learning method

that we are using. In this section, we explain the optimizers that have been used in the

experiments.

2.11.1 Vanilla Gradient Descent

Gradient descent is a way to minimize an objective function L(θ) parameterized by

a model’s parameters θ by updating the parameters in the opposite direction of the

gradient of the objective function ∇θL(θ) w.r.t. to the parameters (Ruder, 2016). The

learning rate γ determines the size of the steps we take to reach a (local) minimum. In

other words, we follow the direction of the slope of the surface created by the objective

function downhill until we reach a valley. Vanilla gradient descent computes the gradi-

ent of the loss function with regard to θ for the entire training dataset (entire experience

in CL terms):

θnew = θold − γ · ∇θL(θ)

As it is needed to calculate the gradients for a whole dataset to perform only one update,

this optimization technique can be intractably slow. Furthermore, the lack of fluctuation

in the trajectory causes the method to explore only one local valley, making it very

difficult to reach better minimums.

2.11.2 Stochastic Gradient Descent

Stochastic gradient descent (SGD) in contrast to vanilla GD performs a parameter up-

date for each mini-batch. SGD performs frequent updates with a high variance that

cause the objective function to fluctuate heavily, which is beneficial for jumping be-

tween different valleys and therefore finding a global minimum. It is the most common

optimizer used in the bibliography. The pseudocode is at alg. 1.

In the pseudocode, gt refer to the gradients at time step t, and bt indicates the new

direction of the gradient taking into account the momentum.
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Procedure 1 SGD algorithm from PyTorch (SGD PyTorch 2019)

Inputs:
γ (learning rate), θ0 (parameters), f (θ) (objective), λ (weight
decay), µ (momentum)

for t = 1→ . . . do
gt ← ∇θ ft(θt−1)
if λ ̸= 0 then

gt ← gt + λθt−1 ▷ L2 penalty for shrinking weights and avoiding overfitting
end if
if µ ̸= 0 then ▷ previous update direction is retained to simulate inertia

if t > 1 then
bt ← µbt−1 + gt

else
bt ← gt

end if
gt ← bt

end if
θt ← θt−1 − µgt

end for

Output:
θt

2.11.3 Adam optimizer

Adam (Adaptive Moment Estimation) (Kingma and Ba, 2014) optimizer is a method

that computes adaptive learning rates for each parameter. Adam is more locally sta-

ble than SGD and is less likely to converge to the minima at the flat or asymmetric

basins/valleys, which often have better generalization performance over other type

minima. Zhou et al., 2020 show in their results that SGD has a better generalization

performance over Adam. However, Adam converges faster and Choi et al., 2019 em-

pirically prove that the additional and expensive tuning of the three hyperparameters

significantly improves Adam. It inherits properties from Adagrad (Adaptive Gradient

Descent) (Duchi, Hazan, and Singer, 2011) and RMS Prop (Root Mean Square) (Hinton,

2012) optimizers, not covered in this thesis. It is computationally efficient and has little

memory requirements. The pseudocode provided by the PyTorch implementation is at

alg. 2.

The betas are coefficients used for computing running averages of the gradient and its

square, which is intended to act similarly to the momentum.



Chapter 2. Background and general introduction to Continual Learning 23

Procedure 2 Adam algorithm from PyTorch (Adam PyTorch 2019)

Inputs:
γ (learning rate), β1, β2 (betas), θ0 (parameters), f (θ) (objective), λ
(weight decay)

Initialize:
m0 ← 0 (first moment), v0 ← 0 (second moment), v̂0

max ← 0

for t = 1→ . . . do
gt ← ∇θ ft(θt−1)
if λ ̸= 0 then

gt ← gt + λθt−1 ▷ L2 penalty for shrinking weights and avoiding overfitting
end if
mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1 + (1− β2)g2

t
m̂t ← mt/(1− βt

1)
v̂t ← vt/(1− βt

2)
θt ← θt−1 − m̂t/(

√
v̂t + ε)

end for

Output:
θt
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Chapter 3

Algorithms

3.1 A categorization of CL methods

In this section, different CL perspectives and multiple methods for each approach are

described, compared, and discussed. Conceptually, they can be divided into (i) meth-

ods that train the network while regularizing to prevent catastrophic forgetting with

previously learned tasks, (ii) methods that complement the model with a memory stor-

ing previous information, for example, by using memory replay to consolidate internal

representations, and (iii) methods that selectively train the network and expand it if

necessary to represent new tasks. Some methods use both a regularization term in the

loss as in (i) and a small episodic memory as in (ii). They are often known as hybrid

methods.

3.2 Regularization based methods

Regularization based methods are usually inspired by neuroscience findings suggest-

ing that consolidated knowledge can be secured from forgetting through synapses.

From a computational perspective, an extra parameter (apart from the weight) is asso-

ciated to each weight with the importance of the corresponding weight. These parame-

ters explain how plastic a connection is. These methods alleviate catastrophic forgetting

by adding a regularization term in the loss function, which depends on the importance

measure of each parameter. The aim of this term is to protect important weights hold-

ing previous knowledge from being modified.

Prior-focused regularization methods are the main interest within regularization-based

methods. These methods are based on Bayesian inference. The model retains a distribu-

tion over the parameters that indicates the plausibility of the parameters of the model

given the observed data (posterior probability distribution). When new data are avail-

able, the previous posterior distribution is combined with the likelihood of the new

data given the previous model. Multiplying and normalizing these terms yields to the

new posterior, and this can be repeated recursively with each new experience, where
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posterior becomes prior. The previous posterior constrains parameters that strongly

influence prediction. The parameters are noted as θ, and Di denotes the dataset for

experience i.

Pr(θ|Di,Di−1, . . . ,D1) =
Pr(Di|θ) · Pr(θ|Di−1, . . . ,D1)

Pr(Di)

By taking the logarithms,

log(Pr(θ|Di,Di−1, . . . ,D1))︸ ︷︷ ︸
posterior

= log(Pr(Di|θ))︸ ︷︷ ︸
log-likelihood

+ log(Pr(θ|Di−1, . . . ,D1))︸ ︷︷ ︸
previous posterior (=prior)

− log(Pr(Di))

Note that the log-likelihood log(Pr(Di|θ)) is the negative of the cross-entropy loss func-

tion L explained in section 2.6. Therefore, minimizing loss is equal to maximizing the

posterior. The term on the right log(Pr(Di)) is not θ-dependent, so it is not useful for

updating the model.

The left-hand side of the formula describes the posterior given the entire dataset seen

so far, and the right-hand depends only on the loss function for task i. This means

that all the information about the importance of the parameters for previous tasks must

be captured in the previous posterior. However, this previous posterior is intractable

and an approximation is required, even when forming the first posterior Pr(θ|D1) ≈
q1(θ) = proj(Pr(θ)Pr(D1|θ)). Here q(θ) = proj(p∗(θ)) denotes a projection opera-

tion that takes the intractable un-normalized distribution and returns a tractable nor-

malized approximation q(θ). Having approximated the first posterior by q1(θ), sub-

sequent approximations can be calculated recursively by combining the previous ap-

proximate posterior distribution qi−1 with the likelihood Pr(Di|θ) and projecting, that

is, Pr(θ|Di, . . . ,D1) ≈ qi(θ) = proj(qi−1(θ)Pr(Di|θ)). Different strategies are used to

find appropriate approximations. Even though some of the methods below are not

originally defined from this Bayesian perspective, they all can be interpreted this way.

3.2.1 Elastic Weight Consolidation (EWC)

This work was published by Kirkpatrick et al., 2016. It was the first Continual Learning

paper to approach the problem from a Bayesian perspective, and it is one of the most

known papers in the field, often taken as a baseline.

The previous posterior is approximated by a Gaussian distribution with mean given by

the parameters θ after having trained on task i− 1, and a diagonal precision given by

the diagonal of the Fisher information matrix F, Pr(θ|Di−1, . . . ,D1) ≈ N (θ∗i−1, [F]−1),

where θ∗i−1 indicates the optimal parameters after the completion of learning task i− 1.
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This is justified with the second order Taylor approximation of the loss function:

L(θ) ≈ L(θ∗i−1) +
∂L(θ)

∂θ

∣∣∣∣∣
θ=θ∗i−1︸ ︷︷ ︸

=0

+
1
2
(θ− θ∗i−1)

⊤ ∂2L(θ)
∂θ2

∣∣∣∣∣
θ=θ∗i−1

(θ− θ∗i−1)

The first-order term is assumed to be equal to zero, as it is evaluated at the optimum

parameters for task i− 1, so it is a local minimum. If the loss function is cross-entropy

loss (section A.1), then L(θ) = − log Pr(θ|Di−1). By replacing the loss by the posterior,

log Pr(θ|Di−1) = log Pr(θ∗i−1|Di−1) +
1
2
(θ− θ∗i−1)

⊤ ∂2 log Pr(θ|Di−1)

∂θ2

∣∣∣∣∣
θ=θ∗i−1

(θ− θ∗i−1)

Therefore, removing the logarithm we have the following result:

Pr(θ|Di−1) = Pr(θ∗i−1|Di−1)︸ ︷︷ ︸
normalizing constant

· exp

(
1
2
(θ− θ∗i−1)

⊤ ∂2 log Pr(θ|Di−1)

∂θ2

∣∣∣∣∣
θ=θ∗i−1

(θ− θ∗i−1)

)

∼ N
(

θ∗i−1,
(
− ∂2 log Pr(θ|Di−1)

∂θ2

∣∣∣∣∣
θ=θ∗i−1

)−1
)

Note that

F := E

[(
∂

∂θ
log f (X; θ)

)2
∣∣∣∣∣θ
]
= −E

[
∂2 log f (X; θ)

∂θ2

∣∣∣∣∣θ
]

This equality holds since

∂2

∂θ2 log f (X; θ) =
∂2

∂θ2 f (X; θ)

f (X; θ)
−
(

∂
∂θ f (X; θ)

f (X; θ)

)2

=
∂2

∂θ2 f (X; θ)

f (X; θ)
−
(

∂

∂θ
log f (X; θ)

)2

and

E

 ∂2

∂θ2 f (X; θ)

f (X; θ)

∣∣∣∣∣ θ

 =
∂2

∂θ2

∫
f (x; θ) dx = 0

Here, log f (X; θ) is the logarithm of the output of the model after training on task i− 1

and with the training samples of task i − 1. This is calculated at the end of the learn-

ing of a task, and next task cannot begin until F is totally calculated. This matrix has

multiple key properties. As shown, it is equivalent to the second derivative (Hessian



Chapter 3. Algorithms 27

matrix) of the loss near a minimum, and it can be computed from first-order deriva-

tives, and therefore it is easy to calculate even for large models. Furthermore, it is pos-

itive semidefinite, which ensures that unimportant weights will never have a negative

importance, so the regularization constraint is always a non-negative penalty.

Given this approximation, the loss function that is minimized in EWC is

L(θ) = LDi(θ) +
λ

2 ∑
j

Fj · (θj − θ∗j,Di−1
)2

where LDi(θ) is the loss for task i, j indicates the index of each of the parameters in θ,

and θ∗j,Di−1
indicates the optimal parameters after finishing to learn task i− 1.

3.2.2 Synaptic Intelligence (SI)

This work was published by Zenke, Poole, and Ganguli, 2017. The accuracy results are

similar to EWC on the permuted MNIST benchmark. Its main algorithmic improve-

ment with respect to EWC is that the new task importance weights are no longer com-

puted in a separate consolidation phase after training on a task.

The loss function they use is

L(θ) = LDi(θ) +
λ

2 ∑
k

Ωi
k · (θk − θ∗k,Di−1

)2

Here the regularization strength parameter is also λ
2 , and the importance of each param-

eter is given by Ωi
k.

To calculate the importance of each parameter in an online manner (at each training step

instead of in the consolidation phase at the end of the epoch), they maintain an online

importance measure ωi
k. This measures how each parameter affects the change in loss

over the trajectory in the learning phase.

Let θ(t) be the trajectory in the parameter space during training. To compute the change

in loss over an entire trajectory through parameter space, we have to compute the path

integral of the gradient vector field along the parameter trajectory from the initial point

(at time ti−1) to the final point (at time ti).

L(ti)−L(ti−1) =
∫

C
g(θ(t))dθ =

∫ ti

ti−1

g(θ(t)) · θ′(t)dt = ∑
k

∫ ti

ti−1

gk(t)θ′k(t)dt︸ ︷︷ ︸
parameter specific

≡ −∑
k

ωi
k

The first equality is due to the gradient being a conservative field, where the value

of the integral is equal to the difference in loss between the end point and the start

point, regardless of the trajectory taken. The ωi
k has now the intuitive interpretation of
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parameter specific contribution to changes in total loss. In practice, it is computed as

the product of the k-th component of the gradient gk = ∂L
∂θk

and the parameter update

θ′k(t).

The per-parameter regularization strength is computed as following:

ωi
k =

i

∑
j=1

ω
j
k

(θk(tj)− θk(tj−1))2 + ξ

with ξ being a damping parameter to avoid divisions by zero.

3.2.3 Memory Aware Synapses (MAS)

This work was published by Aljundi et al., 2018. In this case, as in Synaptic Intelli-

gence, the importance weights approximate the sensitivity of the learned function to a

parameter change rather than a measure of the (inverse of) parameter uncertainty.

This approach does not depend on the ground truth labels, that is, it calculates the

importance weights in an unsupervised manner. For a given data point xj, the output

of the network is f (xj; θ). A small perturbation δ in the parameters θ results in a change

in the output that using first-order Taylor approximation,

f (xj : θ + δ)− f (xj : θ) ≈∑
k

gk(xj)δk

where gk =
∂( f (xj;θ))

∂θk
is the gradient. Assuming a small constant change δk, we can

measure the importance of a parameter by the magnitude of the gradient gk. The im-

portance weight Ωk for parameter θk is calculated as follows:

Ωi
k =

1
Ni

Ni

∑
j=1
||gk(xj)||

In this way, Ωi
k is updated in an online fashion at each new data point xj. Ni is the

number of data points available in the current task i. || · || refers to the ℓ2-norm. The

loss function used is the same as EWC and SI:

L(θ) = LDi(θ) +
λ

2 ∑
k

Ωi
k · (θk − θ∗k,Di−1

)2

3.2.4 Kronecker factored online Laplace approximation (KFA)

This work was published by Ritter, Botev, and Barber, 2018. The approach is very

similar to EWC in the sense that they calculate an approximation to the Hessian matrix

after learning a task.
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EWC does not take into account interactions between parameters, since only the di-

agonal of the matrix is calculated. The main improvement compared to EWC is that

the Hessian is approximated by diagonal blocks instead of a diagonal matrix. These

blocks correspond to interactions within each layer, therefore making the matrix block-

diagonal. In order to reduce computations, this blocks happen to be Kronecker-factored

(product of two smaller matrices). Intuitively, more importance parameters are used

than in other regularization methods, so the Hessian approximation is more accurate.

Furthermore, calculating the Kronecker factors requires the same calculations as a for-

ward and backward pass through the network plus two additional matrix-matrix prod-

ucts. The overall cost is roughly equivalent to that of an additional training epoch com-

pared to the other regularization methods explained so far.

In this method, we denote a NN as taking input a0 = x and producing output hL.

This input is passed through layers 1, . . . , L as the linear pre-activations hl = Wlal−1

for l ∈ 1, . . . , L, with Wl being the weights’ matrix of the layer, and al = fl(hl). fl is a

non-linear elementwise function, typically a ReLU. The outputs then parametrize the

log-likelihood log p(D|hL) of the data. Using the chain rule, we write the Hessian with

regard to the weights of layer l as:

Hl =
∂2logp(D|hL)

∂ vec(Wl)∂ vec(WL)
= QlHl

where Hl is the Hessian matrix of a layer l, vec(Wl) is the weight matrix of layer l
stacked into a vector. Then, if we define Ql = al−1a⊤l−1 andHl =

∂2 log p(D|θ)
∂hl∂hl

.

Even if this method still makes some independence assumptions about the weights,

interactions within the same layer are accounted for. The results on Permuted MNIST

benchmark are better than those of EWC or SI methods.

3.3 Memory-replay based algorithms

Memory-replay based methods have a memory where they store samples in raw for-

mat or generate pseudo-samples with a generative model. The latter approach is not

addressed in this work.

The stored samples from previous tasks are replayed while learning a new task to al-

leviate forgetting. They can be used as inputs for rehearsal, or to constrain fine-tuning

of the new task loss to prevent previous task forgetting, similarly as in regularization-

based methods.

The main drawback of replay methods that require preserving samples from all previ-

ous experiences is limited scalability, which requires additional computation and stor-

age of raw input samples. Although fixing the memory size limits memory consump-

tion, this also deteriorates the ability of exemplar sets from memory to represent the
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original distribution. Additionally, the storage of raw input samples may also cause

privacy issues.

3.3.1 Incremental Classifier and Representation Learning (iCaRL)

This work was published by Rebuffi, Kolesnikov, and Lampert, 2016. It is a pure re-

hearsal method, which means that it explicitly retrains on a subset of stored samples in

a fixed-size memory while training on new tasks.

Note that following the CL objective of efficiency (section 2.1), the memory (of size K)

cannot increase while learning new tasks. If no task is privileged in terms of memory

allocation, at task t, K
t memory can be allocated to samples from each task.

iCaRL uses a nearest-mean-of-exemplars classification strategy. When learning a new task

i, it computes the average feature vector of all exemplars for a class y. Let Py be the

subset of Di such that if (x′, y′) ∈ Py, then y′ = y. µy = 1
|Py| ∑(x,y)∈Py

φ(x). Here, φ(x)
is the feature vector of the model (typically the layer before the classifier) when having

x as input. Then, the stored samples for task i are the (x, y) that have the smallest

difference on their features with the average feature vector: ||φ(x) − µy||. Note that

this method does not need a task-id, thus it is useful to apply it in class-incremental

settings.

This average feature vector changes every time a learning step is made. Therefore, the

memory allocation must be done dynamically. At each step of the iteration, one more

example of the current training set is added to the exemplar set, namely the one that

causes the average feature vector over all exemplars to best approximate the average

feature vector over all training examples. Thus, the exemplar "set" is really a prioritized

list. The order of its elements matters, with exemplars earlier in the list being more

important. This prioritized construction was introduced by Welling, 2009 to create a

representative set of samples from a distribution. In this way, when having to remove

exemplars from a task, the last samples from the list are simply removed.

However, the main drawbacks are that it could overfit to the exemplar memory, it does

not allow positive backward transfer, and when the number of tasks increases, each

task is assigned less memory, hence the scalability over the number of tasks is very

limited.

3.3.2 Gradient Episodic Memory (GEM)

This work was published by Lopez-Paz and Ranzato, 2017. It is a constrained rehearsal

method, which uses the samples from memory for regularization purposes.

The key idea is to only constrain new task updates to not interfere with previous tasks.

This is achieved by projecting the estimated direction of the gradient in the region out-

lined by previous task gradients in order to reach positive backward transfer.
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When observing a tuple (x, y, t), the problem they solve is to find the parameters that

minimize loss on current sample, subject to the fact that for every previous task, the loss

on the set of samples from the memory must not increase compared to the loss of the

previous model (after finishing learning previous task) on the same set. More formally,

min
θ
L( fθ(x, t), y)

subject to L( fθ ,Mk) ≤ L( f t−1
θ̃

,Mk) ∀k < t,
(3.1)

where f t−1
θ̃

is the predictor after learning task t− 1.

To solve this, they used the fact that it is not necessary to store f t−1
θ if the loss in previous

tasks does not increase after a parameter update g. They also assume that the function

is locally linear and that memory is representative enough for gradients of previous

tasks:

⟨g, gk⟩ :=
〈

∂L( fθ(x, t), y)
∂θ

,
∂L( fθ ,Mk)

∂θ

〉
≥ 0, ∀k < t.

If all t− 1 constraints are satisfied, then the proposed g is unlikely to increase the loss

at previous tasks. However, if violations occur, the projection of g to the closest in ℓ2

norm is calculated by solving

min
g̃
||g− g̃||22

subject to ⟨g̃, gk⟩ ≥ 0, ∀k < t.
(3.2)

The projection is made on a gradient, which has the dimension of the number of pa-

rameters of the model, making it intractable for finding a minimum. There are only

t− 1 restrictions; therefore, by formulating the dual of the Quadratic Program, it can be

solved on only t− 1 variables.

3.3.3 Averaged Gradient Episodic Memory (A-GEM)

This work was published by Chaudhry et al., 2018, heavily inspired in GEM method

(subsection 3.3.2). It is an improved version of GEM, which enjoys the similar perfor-

mance as GEM, while being almost as computationally and memory efficient as EWC

(subsection 3.2.1) and other regularization-based methods.

GEM method is hardly scalable. In fact, at each training step, GEM computes all the

gradients gk, ∀k < t using all samples from the episodic memory, and it also needs

to solve the Quadratic Program. This becomes prohibitive when the size of M and

the number of tasks is large. To alleviate this computational burden, Chaudhry et al.,

2018 propose Averaged GEM. In this case, as opposed to Equation 3.1, there is only one

average episodic memory:
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(A) First, ŵ1 is learned on task 1. Then, we either
reach ŵ2 by fine-tuning second task or w∗2 by training

jointly on both tasks.

(B) Linear connectivity between w∗2 and ŵ1 and be-
tween w∗2 and ŵ2

FIGURE 3.1: (Seyed-Iman Mirzadeh, Farajtabar, Görür, et al., 2020).
While offline learning learns in a single phase from a static set of data,
Continual Learning systems learn from a stream of non-stationary data.

min
θ
L( fθ(x, t), y)

subject to L( fθ ,M) ≤ L( f t−1
θ̃

,M) whereM =
⋃
k<t

Mk,

The optimization problem in Equation 3.2 now has only one constraint,

min
g̃
||g− g̃||22

subject to ⟨g̃, gre f ⟩ ≥ 0,

where gre f is a gradient computed using a a batch randomly sampled from the episodic

memory of all the past tasks. Therefore, this constrained optimization problem can now

be solved very quickly. When g violates the constraint, it is projected as:

g̃ = g−
⟨g, gre f ⟩
⟨gre f , gre f ⟩

gre f

This improves GEM in the following ways: computationally, fewer gradients are calcu-

lated and it saves the calculation of the QP. Furthermore, less violations will happen as

there is only one constraint instead of the number of past tasks. This will be particularly

noticeable when the number of tasks is large.

3.3.4 Linear Mode Connectivity

This work was published by Seyed-Iman Mirzadeh, Farajtabar, Görür, et al., 2020. It

was motivated by the question what property does multitask or joint learning have that a
continual algorithm does not? Can we reverse engineering this process? Multitask learning
(section 2.8) is claimed to be an upper bound for continual learning, so these questions arise
naturally when trying to come closer to this bound.
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After learning the first task, w∗1 is learned. Then, if naive training (fine-tuning) is used

for learning task 2, the learned weights are noted as ŵ2. However, if the model is re-

trained on both tasks (joint or multitask training), we refer as w∗2 to the optimal weights.

The goal is to compare w∗2 and ŵ2 to find any relationship between these minimums.

They reach the conclusion that comparing Euclidean Distance in the parameters does

not provide relevant information in this case, and neither does comparing representa-

tions (on the latent layer) through Centered Kernel Alignment (Kornblith et al., 2019).

The need to find another metric to compare these weights inspires the mode connec-

tivity concept. The hypothesis is that optima of loss functions are connected by simple

curves over which training and test accuracy are nearly constant (low loss over the

curve). Linear mode connectivity is the particular case where these curves are linear.

Seyed-Iman Mirzadeh, Farajtabar, Görür, et al., 2020 show that the multitask solution

to tasks 1 and 2 is linearly connected with continual solutions, but ŵ1 and ŵ2 are not

(Figure 3.1b, from Seyed-Iman Mirzadeh, Farajtabar, Görür, et al., 2020).

The idea of the method is to regularize the loss function to find minima that are linearly

connected to previous minima, s.t. from ŵ1 we can move to w∗2 instead of moving to

ŵ2. Therefore, the proposed minimization problem is

w̄ = argminw

∫
0≤α≤1

[L1(ŵ1 + α(w− ŵ1))︸ ︷︷ ︸
connected to task 1 solution

+L2(ŵ2 + α(w− ŵ2))︸ ︷︷ ︸
connected to task 2 solution

]dα

This equation is approximated in the following way when implemented (for task t):

w̄t = argminw ∑
α

[Lt−1( ¯wt−1 + α(w− ¯wt−1)) + Lt(ŵt + α(w− ŵt))]dα

Here, α is sampled uniformly from [0, 1]. Note that following Continual Learning

desiderata section 2.1, there should be no access to previous experiences. Thus, a mem-

ory is needed for connecting the solutions of the previous and the current task. This

way, even if it is a replay method, it only stores samples from task t − 1, needed for

the calculation of Lt−1. Consequently, there are no memory problems when increasing

number of tasks.

3.3.5 Subspace Connectivity

Although the Subspace Connectivity algorithm (Doan et al., 2022) is not an ensemble
method, it is heavily motivated by this concept. Ensemble methods in artificial neural net-

works combine the predictions made by independently trained multiple base models

in order to produce an optimal predictive model.

Doan et al., 2022 adapt the concept of ensemble models to Continual Learning scenarios.

Given n independent models, a set of weights {wi}n
i=1, a task-id t, and a data batch
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(x, y), the total loss aimed to optimize is 1
n ∑n

i=1 Lt( fwi(x), y), where Lt is the total loss

after learning task t, and fwi is the predictor of the i-th model. This is the average

between the losses of every model, and the average prediction is used as the output of

the model, that is, 1
n ∑n

i=1 fwi(·). Therefore, the training differs only in the initialization

of the weights of each model. This implies that the training cost increases linearly with

the number of models n.

The proposed way to reduce this training cost is through subspace models, as in Worts-

man et al., 2021. Here, the number of models is still n, and the set of learnable param-

eters is {wi}n
i=1. Learning a subspace of dimension n consists in training the predictor

fw̄ with w̄ = ∑n
i=1 αiwi, α ∈ ∆n. In Doan et al., 2022 the α’s are sampled randomly

following a uniform distribution over the simplex, α ∼ U (∆n).

Unlike the ensemble method, subspace methods have a slightly similar computation

cost as single models. Backpropagation is made only with respect to w̄ (instead to all

the wi’s as in the ensemble method), and the update with regard to each wi is, assuming

a standard Stochastic Gradient Descent optimizer,

∂L
∂wi

=
∂L
∂w̄
· ∂w̄

∂wi
= αi ·

∂L
∂w̄

, ∀i ∈ {1, . . . , n}

However, by this subspace connectivity method, forgetting still occurs. This is because

even if a flat low-loss region is found throughout the learning experience, there is no

connectivity between the solutions at the end of each experience. As the subspace

method is motivated by the mode connectivity, the proposed approach by Doan et al.,

2022 is to connect the subspaces throughout the learning.

First, the algorithm learns a subspace solution for the incoming task t. The solution

Ŵt = {ŵt,i}n
i=1 fine-tuning is obtained by optimizing

Ŵt = {ŵt,i}n
i=1 = argmin

W
= Eα∼U (∆n)[Lt(WTα)]

Then, mB samples are stored per task in a buffer memory B. These samples are used to

connect linearly solutions of two subspaces in the following way:

As the midpoint of the simplex gives the best performance (explained in section 5.1),

ŵ∗t,mid = 1
n ∑n

i=1 ŵt,i is taken as the most performing solution of Ŵt. Then, ŵ∗t,mid and

ŵ∗t−1,mid are connected via a low-loss path. The loss over the connecting path acts as a

regularizer term in the following way:

{w∗t,i}n
i=1 = argmin

W
Eᾱ∼U (∆n+1)[Lt(WTα + αn+1ŵt,mid) +

t−1

∑
j=1
Lj(WTα + αn+1w∗t−1,mid)]
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where α ∈ Rn and ᾱ = (α, αn+1) ∈ Rn+1, and where Lj is the loss on task j calculated

using the samples from the buffer B. The idea of this regularization technique is to

create a low-loss linear path between the subsequent solutions w∗t−1,mid and w∗t,mid.

An intuitive justification for this approach is that the subspace method binds the models

within a single task, while the mode connectivity regularization binds the subspaces

together. In order to delve more into the properties of this method, some experiments

are proposed at chapter 5.

3.4 Parameter isolation based algorithms

This approach dedicates different model parameters to each task in order to prevent for-

getting (Mallya and Lazebnik, 2017; Serrà et al., 2018; Rusu et al., 2016; Ke, B. Liu, and

Huang, 2021). It could be seen as taking regularization-based methods to the extreme.

When architecture size is not constrained, it is possible to add new branches to the

network to solve new tasks and freeze previous task parameters.

If the architecture remains static, the neural network is divided into different fixed parts

that are allocated to each task. Therefore, they usually require a task oracle, so the only

possible scenario is task-incremental, possibly in a multi-head setup. In fact, multi-

head architectures are inherently parameter isolation experiments, even if the main

algorithm is not categorized as it.

This category can be seen from the regularization perspective as adding infinite penalty

to some parameters for some tasks. This design choice potentially results in no deteri-

oration of performance, but inherently limits the amount of tasks that can be fitted in

a single network. Furthermore, the interaction among past and new tasks is limited or

non-existent and, as such, the conditions where catastrophic forgetting occurs are not

illuminated. For this reason, the thesis does not focus on such algorithms.
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Chapter 4

Continual Learning Framework

4.1 Overview

One of the main objectives of the thesis has been to reproduce the results of the most

influential papers on Continual Learning. For this purpose, a CL framework has been

designed in order to implement these papers and to be able to easily run different ex-

periments choosing the settings (architecture, benchmark, CL method, optimizer, hy-

perparameters, etc.). à la carte, that is, with freedom to try multiple configurations. This

framework aims to separate the engineering and research code to help both the de-

velopment and usability of the framework. For example, algorithmic logic should not

occur in the same place as parsing of arguments or logging. The architecture should

also follow the open-closed principle of object-oriented programming: software entities

(classes, algorithms, functions, etc.) should be open for extension but closed for mod-

ification (Meyer, 1997). For instance, an algorithm can allow building upon it without

modifying its source code and its internal abstractions.

Various full-featured libraries with this purpose already exist in this field. They facil-

itate both research and development, as having all algorithms written with different

frameworks over isolated repositories is a current challenge that hinders research. The

most well known libraries are avalanche (Lomonaco, Pellegrini, et al., 2021), CL-Gym (S.

Mirzadeh and H. Ghasemzadeh, 2021), and Sequoia (Normandin et al., 2021). However,

in order to deeply understand Continual Learning algorithms, methods, and imple-

mentations, we considered it more appropriate to implement our own solver without

using any library. Nevertheless, the framework is inspired by these libraries, which are

described below.

CL-Gym mostly focuses on the supervised continual learning (2.4.1), and our CL frame-

work is heavily inspired in the design and components of this library. Avalanche is the

most known library and it is very similar to CL-Gym. They share most of the compo-

nents with CL-Gym and with this framework, but the main differences are that they im-

plement evaluation and logging as main components, and their benchmarks are more
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computer vision oriented instead of toy-datasets as in here. Sequoia focuses on re-

inforcement learning methods for CL (2.4.3), and even if it supports some supervised

learning methods, it mixes research and engineering code in a single place, which in-

creases the complexity and clarity of the code.

4.2 Components

In this section, the components and mechanisms of the framework are explained. CL-

framework contains four main components: algorithms, backbones, benchmarks and

callbacks.

4.2.1 Benchmarks

The benchmark component includes some standard continual learning benchmarks (2.9).

Currently, the supported benchmarks are Split MNIST, Rotated MNIST, Permuted MNIST,

Split CIFAR-10, Split CIFAR-100 and Split TinyImageNet. They are all vision bench-

marks with different difficulties.

All benchmarks must inherit the base Benchmark class, which contains the following

methods:

• prepare_datasets: loads in memory the dataset, following the customized logic

of each benchmark. Each experience should have its own train and test datasets.

• load_memory (task): This applies only to methods requiring episodic memory.

The method provides episodic memory loaders.

• load_joint (task): it provides data loaders for joint training 2.8. For task t, all

data from task 1 to t is loaded together.

• load_memory_joint (task): it loads the episodic memory for all previous tasks

instead of a single task.

• load_augmented_with_memory (task): it returns a data loader containing both

the memory samples from tasks 1 to t and the current experience samples. It is

useful for rehearsal methods such as iCaRL (3.3.1).

If necessary, each benchmark should implement these methods. In addition to the

methods, the benchmark component handles all the logic related to the necessary trans-

forms in the datasets.

4.2.2 Backbones

The Backbone component refers to neural network architectures (2.10). The supported

encoders are Convolutional Neural Networks (CNN), MultiLayer Perceptrons (MLP),
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and Residual Neural Networks. The choice of these backbones is due to their pop-

ularity in the bibliography. Easy-to-solve toy benchmarks, such as MNIST variants,

are usually used with MLPs, while more difficult tasks require the more complex en-

coders. The supported classifiers are both the single-head and multi-head classifiers

(supporting task-incremental, and task-incremental scenarios). The task_router mod-

ule handles the activations of the different heads depending on the labels.

Backbone inherits from the PyTorch nn.Module class and therefore supports all the fea-

tures it provides. The algorithm module has complete access to the backbone and can

manipulate gradients.

4.2.3 Algorithms

The Algorithms component is the most important element of the framework. It is re-

sponsible for the majority of the research code. The following diagram schematically

describes the run method of the BaseAlgorithm:



Chapter 4. Continual Learning Framework 39

run



run_setup



on_before_setup

on_before_setup_cb

setup

on_after_setup

on_after_setup_cb

run_fit



on_before_fit

on_before_fit_cb

fit for each task−−−−−−−−−−−−−→



on_before_train_task

on_before_train_task_cb

train_task
for each epoch−−−−−−−−−−−−−−→

on_after_train_task

on_after_train_task_cb

on_after_fit

on_after_fit_cb

run_teardown



on_before_teardown

on_before_teardown_cb

teardown

on_after_teardown

on_after_teardown_cb
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4.2.3
for each epoch−−−−−−−→



on_before_train_epoch

on_before_train_epoch_cb

train_epoch for each batch−−−−−−−−→



on_before_train_step

on_before_train_step_cb

train_step

on_after_train_step

on_after_train_step_cb

on_after_train_epoch

on_after_train_epoch_cb

on_before_val_all_tasks

on_before_val_all_tasks_cb

val_all_tasks

on_after_val_all_tasks

on_after_val_all_tasks_cb

Note that the diagram is nonexhaustive w.r.t. all the functions of the base algorithm,

as its purpose is to provide intuition on the structure of the code. In the diagram,

the method run contains run_setup, run_fit and run_teardown, which are executed

sequentially. Each of them have their respectives on_before, on_before_cb, on_after,

on_after_cb routines. In the base algorithm most of these functions are empty and

only constitute an skeleton such that the CL algorithms can inherit them according to

the requirements of each algorithm. The purpose of having such a fine-grained set of

functions is that as many CL methods as possible can be implemented following the

open-closed principle. fit function is almost the only one with code, and it holds all the

logic related to the training and validation, that is, data-loaders initialization, calling

the configuration routine of the optimizer at each training task, forward and backward

passes, and calling the compute_loss function.

The cb stands for callbacks, which are sets of functions to be applied at given stages

of the training procedure. An algorithm can have multiple callbacks, and the intention

of having both the on_before and on_after and the on_before_cb and on_after_cb is that all

the code to be added into a method that is not related to the algorithm itself should

go in the callbacks. However, the code strictly related to the algorithm should inherit

the on_before and on_after functions. For instance, the ωi
k parameters of the SI algorithm

(3.2.2) are calculated on_after_training_step, and the Fisher diagonal of the EWC

method (3.2.1) is on_after_training_task.
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Algorithm Details

Naive training (finetuning) Baseline, upper bound for forgetting (2.8)

Joint training (multitask) Baseline, upper bound for accuracy (2.8)

Elastic Weight Consolidation (EWC) Regularization (3.2.1)

Synaptic Intelligence (SI) Regularization (3.2.2)

Memory Aware Synapses (MAS) Regularization (3.2.3)

Kronecker Factored Laplace Approxima-
tion (KFA)

Regularization (3.2.4)

Incremental Classifier and Representa-
tion Learning (iCaRL)

Memory-replay, Rehearsal (3.3.1)

Averaged Gradient Episodic Memory (A-
GEM)

Memory-replay, Gradient projection
(3.3.3)

Mode Connectivity - Stochastic Gradient
Descent (MC-SGD)

Memory-replay + Regularization (Hy-
brid method) (3.3.4)

Subspace Connectivity Memory-replay + Regularization (Hy-
brid method) (3.3.5)

TABLE 4.1: Supported algorithms

The algorithms currently supported by the framework are listed in Table 4.1.

4.3 Callbacks

This section overviews the currently implemented callbacks of the framework: MetricCallback

and MemoryCallback.

MetricCallback computes, updates and stores the metrics (2.7) of the experiment. It

also reports them to the weights & biases (https://wandb.ai/) platform. It is an exper-

iment tracking tool for machine learning. It facilitates to keep track of experiments,

compare different runs, visualize metrics and results, and share them.

MemoryCallback is an alternative implementation of the memory mechanism described

in the methods of the benchmarks at 4.2.1.

https://wandb.ai/
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Chapter 5

Experiments

Having the objective of understanding more deeply both the methods reviewed dur-

ing the previous chapters and the properties of continual learning in general, some

experiments have been developed. Experiment in section 5.1 explores a more general

alternative to the Subspace Connectivity method (subsection 3.3.5). section 5.2 com-

pares different architectures and methods and studies the importance of the width of

the neural network in the performance of a CL solution. section 5.3 makes an obser-

vation on multiple benchmarks and compares the nature of forgetting with different

settings and conditions. Finally, experiment section 5.4, which is heavily inspired in

Seyed-Iman Mirzadeh, Farajtabar, and Hassan Ghasemzadeh, 2020, analyzes how with

a wisely chosen set of hyperparameters and architectures, adding a dropout probabil-

ity to the NN can be as effective as a regularization method in preventing catastrophic

forgetting.

Some figures in the following experiments show only the average accuracy of the first

five tasks, although being trained on 10 or 20 tasks. The reason for this is that plasticity
is always maintained throughout the learning process, and forgetting can be mostly

appreciated on the tasks that the agent has not seen in a long time. Therefore, even if

the graphs might seem incomplete for this reason, the newer tasks do not provide much

information and are not shown in order to avoid overly cluttered figures.

5.1 Improving Subspace Connectivity using the Dirichlet dis-

tribution

In Doan et al., 2022, detailed at subsection 3.3.5, they claim that "although one can learn

a distribution over the α’s, we consider the standard case as in Wortsman et al., 2021

where we sample it uniformly in the simplex ∆n". The idea behind sampling uniformly

is that there is not any region where we could lose connectivity around the simplex

because of having less probability.

They also reached the conclusion that the subspace midpoint gets the best accuracy.
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FIGURE 5.1: Image from S. Liu, 2019. Dirichlet distribution for n = 3
(two-simplex or equilateral triangle) for different values of β.

Therefore, it is not clear whether the uniform distribution over alphas is the best for

sampling w̄, as it might be more beneficial not to give equal importance to the center

and the vertices. As the Dirichlet distribution, also known as multivariate beta distri-

bution, is defined over an n− 1-simplex, and the uniform distribution is a special case

of it where all the parameters are equal to 1, it is an appropriate distribution for our

experiment.

Dirichlet distribution, Dir(β), follows this probability density function:

f (α1, . . . , αn; β1, . . . , βn) =
1

B(β)∏n
i=1 α

βi−1
i

where {αi}n
i=1 ∈ ∆n, or in other words, ∑n

i=1 αi = 1, and αi ≥ 0∀i ∈ {1, . . . , n}. The

normalizing constant is the multivariate beta function, which can be expressed in terms

of the gamma function:

B(β) =
∏n

i=1 Γ(βi)

Γ(∑n
i=1 βi)

All the vertices in the simplex have the same meaning since they are just different ini-

tializations of the weights. Hence, it makes no sense to prioritize one vertex over oth-

ers. We will force the distribution to give the same importance to all vertices, which

means having β = (β1, . . . , β1). So, the mean is E[αi] =
1
n , and the distribution has

one single parameter. The covariance, which in this case is equal to the variance, is

cov[αi, αj] =
n−1

n3β+n2 . If β1 > 1, the variance decreases (more probability in the center),

if β1 < 1 the vertices have higher probability than the center, and if β1 = 1 we have

the uniform distribution over the simplex. This can be visualized in Figure 5.1 (S. Liu,

2019).

The objective of the experiment is to find a value for β that leads to a better performance

of the Subspace Connectivity method than with β = 1 used in the paper. As it is an

optimization problem on R+. We know that for β → 0, the probability distribution
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β Avg. accuracy

limit to 0 61.8

0.5 58.3

1 (uniform) 63.8

2 67.6

5 71.0

10 69.4

20 69.6

limit to ∞ (always midpoint as in evaluation) 68.3

TABLE 5.1: Caption

becomes discrete and uniform in the vertices, and for β → ∞, Pr(αi = 1
n ) = 1∀i ∈

{1, . . . , n}. By doing a grid-search, the found accuracies on iCIFAR-100 benchmark are

shown in Table 5.1. The experiment was made with three models on a Res-Net18 and

training for 50 epochs per task.

As a possible future improvement and following the suggestion from Doan et al., 2022,

this distribution could be learned over time and therefore have a β that is continually

adapting.

5.2 Importance of layer width

As introduced in section 2.10, Continual Learning strategies usually need wider net-

works than in other ML paradigms. Therefore, it is interesting to find methods that

perform well in networks that are not very wide. The goal of this experiment is to com-

pare how width affects performance of different methods and scenarios and to draw

conclusions about which settings are best suited for avoiding catastrophic forgetting

on narrow networks.

5.2.1 Experiment on Split MNIST

The architecture chosen for this experiment is the one most papers use for MNIST-based

benchmarks. It is a multilayer perceptron with two fully-connected hidden layers, and

a multi-headed architecture, where task-ids are provided both in training and valida-

tion steps. The goal is to compare the behavior of multiple methods w.r.t. the change of

the width.

In Table 5.2.1, the accuracy of the model depending on the width of the backbone is

shown in the Split MNIST dataset for different methods. With 40 or more neurons per

layer, the network performs well for the different methods, but for fewer neurons the

capacity to accurately solve the continual learning problem drops. We would like to

study the reason for this drop, under what conditions and in what way it occurs. For
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width # params Split MNIST # params Perm. MNIST

5 4,806 5,046

10 8,866 9,306

20 17,136 17,976

40 34,276 35,916

60 52,216 54,656

100 90,496 94,536

150 142,846 148,886

250 262,546 272,586

400 479,596 495,636

TABLE 5.2: An important observation is that in this experiment, the in-
put layer is 28× 28, the hidden layers have w neurons each and each of
the 5 heads of the classifier have |Yt| outputs. Therefore, the number of
parameters (taking into account the bias) is (28 · 28 + 1) · (w + 1) + (w +
1) · (w+ 1)+ 5 · (w+ 1) · |Yt| ∈ O(w2). The number of parameters grows
quadratically in the number of neurons per layer. However, most of the
neurons are at the first fully-connected layer, so in practice for w ≤ 400,

the growth is almost linear.

5, 10, and 20 neurons, Table 5.2.1 shows the average of multiple runs with different

random initializations of the weights, as it differs a lot between different runs. For ≥
40 neurons, the accuracy is stable.

Note that multi-task or joint-training has been used as a baseline (black line on Ta-

ble 5.2.1), and accuracy does not drop for this non continual learning approach, even if

the number of units per hidden layer is only 5.

Table 5.2 shows the number of parameters of the network for different layer widths.

Following the notation of the table, |Yt| = 2 for this Split MNIST experiment.
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(A) Task 3 is not learned (B) Good accuracy in all tasks

FIGURE 5.2: Two different executions of the same experiment with EWC
on Split MNIST. The backbone is an MLP with two hidden layers of 10

neurons each
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In Figure 5.2, two runtimes with exactly the same setup are shown. In Figure 5.2a,

the average accuracy at the end of the training is worse than in Figure 5.2b, where all

tasks are learned. This means that the learning is initialization-dependent for backbones
(architectures) without enough width. However, Split MNIST might be a too simple

benchmark for accurately measuring which algorithm is the least width-dependent.

5.2.2 Experiment on Permuted MNIST

A similar experiment is conducted with the Permuted MNIST benchmark for 5 dif-

ferent permutations, using the same architecture. This benchmark is more difficult to

solve than Split MNIST, and it is expected to need a slightly bigger network to solve

the problem. For a permuted MNIST experiment with 5 tasks, also with a multi-head
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FIGURE 5.3: Accuracy depending on the width (Permuted MNIST)

setting, the number of parameters is bigger than on Split MNIST due to the classifiers

at each head (|Yt| = 10 for every task t) (Table 5.2). The results are shown in Figure 5.3.

In this case, joint training has also a minimal drop of accuracy in narrow networks.

This confirms the hypothesis of the need of wide networks for regularization methods

is true. Also, the results on the three chosen classical regularization methods are very

similar, and the beginning of the drop is on approximately at 60 units.

5.2.3 Experiment on Split CIFAR-100 with CNNs

As explained in section 2.9, Split CIFAR-100 is a much more complex benchmark that

requires the use of more sophisticated networks. Therefore, it is a suitable benchmark to

test how the width of the network affects convolutional neural networks (section 2.10).

The chosen variation of Split CIFAR-100 splits the CIFAR-100 dataset (without adding

CIFAR-10) into 20 disjoint datasets of 5 tasks each. The number of tasks is 10, so in total

the algorithm must learn 50 classes.

The backbone encoder is a CNN with 3 layers, having {4, 8, 16} ·m channels, where m
is a multiplier to make the network wider. The kernel size of the convolution filters is 3,

as the images in this dataset are relatively small. The activation function is the rectified

linear unit (ReLU), and the stride is 2. Table 5.3 shows the number of parameters of the

model for each multiplier.
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m = 1 m = 2 m = 4 m = 8 m = 16

Encoder first layer 112 224 448 896 1,792

Encoder second layer 296 1,168 4,640 18,496 73,856

Encoder third layer 1,168 4,640 18,496 73,856 295,168

Decoder 1,285 2,565 5,125 10,245 20,485

Total 2,861 8,597 28,709 103,493 391,301

TABLE 5.3: Number of parameters of the CNN depending on the multi-
plier m
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FIGURE 5.4: Experiments on regularization-based (left) and memory-
replay-based (right) methods. m (there are m · [4, 8, 16] channels)

The results are shown in Figure 5.4 on the left.

Figure 5.4 on the right shows the results with the same settings in memory replay-

based methods. One might expect to have better results than with regularization based

methods. However, in this experiment regularization methods do not have almost any

forgetting, as shown in Figure 5.7. Therefore, it makes sense that other methods that

focus on having good stability such as A-GEM or iCaRL do not improve over the others

in this case.

5.3 Gradual forgetting on regularization methods

Regularization methods have been shown to be a useful way to avoid forgetting. How-

ever, we would like to study the way a network behaves when it does not have enough

capacity to store the information for all the tasks. This experiment intends to find how

regularization-based methods avoid forgetting in comparison to naive fine-tuning on

the same architecture. The results show that a regularization based method, in particu-

lar Synaptic Intelligence (the results were very similar with other regularization-based
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FIGURE 5.5: A regularization method is used to prevent catastrophic for-
getting in a NN with not enough capacity, in an experiment with 20 tasks.

The evaluation accuracy of the first 5 tasks is shown.

methods), forgets gradually and linearly when the network capacity is too small to store

that information.

This is shown in Figure 5.5. The experiment has been conducted on Permuted MNIST

with 20 permutations on an MLP of two hidden layers of 20 neurons each. This is a

very small network, and forgetting was expected.

The blue line, corresponding to the first task, forgets almost linearly during the train-

ing of the rest of the tasks. It also happens in some cases that when learning a new

task, some accuracies drop catastrophically. This is a clear example of how regulariza-

tion methods try to maintain previous knowledge. The linear gradual forgetting finishes

over training step 50k, where the graph becomes more horizontal for all tasks. This

suggests that at this point the network does not hold much task-specific information.

The performance being better than random guess (0.1 accuracy) could be due to the

shared representations of different tasks. However, as discussed in section 2.9.1, the

permuted MNIST experiment is a very unrealistic benchmark where there are nearly

no correlations between tasks. This leads to the belief that the only reason for accuracy

to be above 10% is the task-specific multi-head classifier, which consists of a single fully

connected layer per task.

The network in this experiment is extremely small, as it has been designed for forcing

forgetting. The same experiment has been conducted with a wider network, consisting

of 250 neurons per hidden layer instead of 20. All the other parameters are the same.

The results in Figure 5.6 indicate that the network still forgets linearly, with a smaller

slope than in the narrow network.

However, this linear forgetting, which might seem to be due to the regularization penalty,

also appears when performing naive fine-tuning. Furthermore, with the appropriate

hyperparameters, the results are even better than in Figure 5.6. Would this happen in
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FIGURE 5.6: Same experiment of Figure 5.5 but with a wider network of
width 250 per hidden layer. The evaluation accuracy of the first 5 tasks

is shown.

FIGURE 5.7: EWC method on split CIFAR-100 with the settings of sub-
section 5.2.3 does not forget.

more complex settings? is a question that naturally arises with these results. To answer

this question, it has been observed how regularization acts on the accuracy of the first

tasks with the same CL scenario as in the previous experiment with the CIFAR-100

dataset (subsection 5.2.3). Figure 5.7 shows the result. Although varying the multiplier

m for the number of channels, forgetting does not occur with these settings.

The same experiment is made without regularization methods (Figure 5.8), and al-

though the accuracies are slightly worse and there is a bit more of forgetting over time,

the results are very similar to the ones obtained with regularization, and the average

backward transfer is close to zero.

A conclusion of this experiment is that even if CL algorithms are effective to face catas-

trophic forgetting, it is often not enough, and proper architectures and hyperparameters

must be taken for continual learning to be effective.
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FIGURE 5.8: Naive fine-tuning on split CIFAR-100 with the settings from
subsection 5.2.3.

5.4 Effectiveness of dropout as a regularization method

In a setting without memory-replay, Stability-plasticity dillema is usually faced with reg-

ularization methods. However, Seyed-Iman Mirzadeh, Farajtabar, and Hassan Ghasemzadeh,

2020 investigate this relationship and show that a stable network with dropout learns

a gating mechanism such that for different tasks, different paths of the network are

active.

In the following experiment, we ran naive fine-tuning on the MLP with two hidden lay-

ers of 100 units each, as in the other experiments with MLP. The architecture is single-

head in order to have more forgetting. Therefore, the scenario is domain-incremental,

as task-ids are not provided. The benchmark is Permuted MNIST, and the learning rate

is fixed to 0.1. The results are in Figure 5.9 left and right. In the experiment, there are 10

tasks, but only the accuracy when evaluating on tasks 1 to 5 is shown. Although hav-

ing dropout reduces forgetting at tasks 2, 3, and 4, the improvement is not clear. In fact,

as has been shown in other experiments, in Continual Learning the correct selection of

hyperparameters is game-changing, and it can make a method either have very good

results or (in case of a bad selection) completely fail.

Following observations made by Seyed-Iman Mirzadeh, Farajtabar, and Hassan Ghasemzadeh,

2020, the hyperparameter that affects mainly accuracy and forgetting is the learning

rate. Dropout is shown to be more effective with lower learning rate, but if the learning

rate is too small, the plasticity of the network might not be enough. Therefore, applying

dropout and reducing the learning rate at each task, and learning with 5 epochs per

task, the following results were obtained:

As results show in Figure 5.10 left, the low plasticity problem is solved by having more

training epochs per task. Stability is really good until learning experience 6, where all

tasks start to experience catastrophic forgetting. However, performance is clearly better
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Dropout BWT Average acc.

No Dropout -11.11 81.77

0.25 -9.60 84.69

0.4 -10.27 83.82

0.5 -8.03 88.13

0.6 -6.99 86.09

0.75 -10.05 84.28

TABLE 5.4: Average Backward Transfer of naive fine-tuning depending
on the dropout probability

than without adjusting the learning rate. A reason for this loss from task 6 could be due

to the network capacity. To test it, the same experiment with a wider network (with 400

units per hidden layer) has been carried out (Figure 5.10 right). The results improve

slightly. Comparing first and last graphs of this section, we can conclude that (in simple

scenarios) CL can be done just with naive learning, without an explicit algorithmic

method to avoid catastrophic forgetting.

Additionally, Table 5.4 shows the Average Backward Transfer (explained at section 2.7)

varying only the dropout, with the settings of Figure 5.10 right. This graph shows the

dropout probability of 0.5, which has the best performance, as shown in the table.
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Chapter 6

Conclusion & future directions

This thesis has mostly focused on understanding more deeply the nature of Continual

Learning and providing insight on its phenomena. One of the main objectives is that

someone who reads this thesis without any prior knowledge on CL can understand its

context, current limitations, and most interesting research directions; thus being fully

trained to contribute in the field. The experiments show that even if a big focus on

CL is done on the algorithms, there is still a lot of research to do in the analysis of the

architectures and optimizers, as they heavily affect Continual Learning. The results

of the experiments published in the articles are often the best they have been able to

achieve after investing a lot of effort in fine-tuning the experiment so that the outcomes

are as favourable as possible. When other papers compare results with their own im-

plementations or executions of the program, it is very common for there to be major

disagreements about which methods are preferable. As an example, figure 6.1 shows

the top-performance of A-GEM against other methods such as EWC. However, figure

6.2 shows that EWC has a better accuracy than A-GEM. Furthermore, A-GEM is shown

to be the method with the worst performance in the table.

It is common to find in bibliography comparisons like these where results are very

different from one another, even with simple benchmarks like permuted MNIST. This

FIGURE 6.1: Figure from Chaudhry et al., 2018, which introduces Av-
eraged GEM method. They compare multiple methods on permuted
MNIST benchmark, and their method is top-performing, very close to

the upper bound of multitask learning.
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FIGURE 6.2: Figure from Seyed-Iman Mirzadeh, Farajtabar, Görür, et al.,
2020, which introduces Mode Connectivity - Stochastic Gradient Descent
method. They compare in a table multiple methods on permuted MNIST
benchmark, and A-GEM is the worst method, very far from multitask

learning.

highlights the fact that further research is needed in order to find better ways of com-

paring results. A good library with tools and facilities to easily compare methods is

needed, and improving the current framework of chapter 4 by adding new metrics and

more recent methods is a good direction to continue. Currently, the library provides

high flexibility to tune parameters and easily compare different models, but it still lacks

of the implementation of some metrics explained at section 2.7. Additionally, the results

on experiment at section 5.1 open up a new line of research on subspace connectivity.
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Appendix A

Further background

A.1 Cross-entropy loss

Cross-entropy is a measure from the field of Information Theory. It is a measure of the

difference between two probability distributions.

Cross-entropy loss, also called log loss, between the true probability function P∗ and

the predicted probability function P conditioned to the input sample xi ∈ X is

H(P∗|P) = − ∑
y∈Y

P∗(y|xi) log P(y|xi, θ)

where θ corresponds to the network’s parameters. Therefore if the correct output for xi

is yi,

P∗(y) =

0 y ̸= yi

1 y = yi

and thus H(P∗|P) = − log P(yi|xi, θ). Note that in the case where the agent has infor-

mation about the task-id, H(P∗|P) = − log P(yi|xi, ti, θ). Minimizing the cross-entropy

loss is equivalent to minimizing the Kullback–Leibler divergence DKL(P∗||P) between

the two distributions. For more insight on KL divergence, visit https://en.wikipedia.

org/wiki/Kullback%E2%80%93Leibler_divergence

A.2 I.i.d. hypothesis

In probability, a set of random variables, the input samples in our case, are independent

and identically distributed if they are sampled from the same probability distribution,

and all are mutually independent.

Identically Distributed means that there are no overall trends. The distribution does

not fluctuate and all items are taken from the same probability distribution. This does

not happen in Continual Learning, as each task has its own distribution.

https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
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Independent means that the items are all independent events. In other words, they are

not connected to each other in any way. Knowledge of the value of one variable (one

input image) gives no information about the value of the other and vice versa.
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