
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-022-04621-1

1 3

Irregular accesses reorder unit: improving GPGPU memory
coalescing for graph‑based workloads

Albert Segura1 · Jose Maria Arnau1 · Antonio Gonzalez1

Accepted: 27 April 2022
© The Author(s) 2022

Abstract
GPGPU architectures have become the dominant platform for massively paral-
lel workloads, delivering high performance and energy efficiency for popular
applications such as machine learning, computer vision or self-driving cars. How-
ever, irregular applications, such as graph processing, fail to fully exploit GPGPU
resources due to their divergent memory accesses that saturate the memory hierar-
chy. To reduce the pressure on the memory subsystem for divergent memory-inten-
sive applications, programmers must take into account SIMT execution model and
memory coalescing in GPGPUs, devoting significant efforts in complex optimiza-
tion techniques. Despite these efforts, we show that irregular graph processing still
suffers from low GPGPU performance. We observe that in many irregular applica-
tions the mapping of data to threads can be safely changed. In other words, it is
possible to relax the strict relationship between thread and data processed to reduce
memory divergence. Based on this observation, we propose the Irregular accesses
Reorder Unit (IRU), a novel hardware extension tightly integrated in the GPGPU
pipeline. The IRU reorders data processed by the threads on irregular accesses to
improve memory coalescing, i.e., it tries to assign data elements to threads as to
produce coalesced accesses in SIMT groups. Furthermore, the IRU is capable of
filtering and merging duplicated accesses, significantly reducing the workload. Pro-
grammers can easily utilize the IRU with a simple API, or let the compiler issue
instructions from our extended ISA. We evaluate our proposal for state-of-the-art
graph-based algorithms and a wide selection of applications. Results show that the
IRU achieves a memory coalescing improvement of 1.32x and a 46% reduction in
the overall traffic in the memory hierarchy, which results in 1.33x speedup and 13%
energy savings on average, while incurring in a small 5.6% area overhead.

Keywords GPGPU · Graph processing · Parallel architectures · Computer
architecture

 * Albert Segura
 asegura@ac.upc.edu

Extended author information available on the last page of the article

http://orcid.org/0000-0001-5084-9246
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04621-1&domain=pdf

 A. Segura et al.

1 3

1 Introduction

Since its popularization over the last decade, GPGPU architectures have enabled a
broad domain of new applications by boosting linear algebra computations [1, 2],
empowering Big Data analytics [3] and deploying Machine Learning [4] in numer-
ous fields such as speech recognition [5], image processing [6] and self-driving cars
[7]. GPGPU architectures excel at processing highly parallel throughput oriented
applications, which exhibit regular execution and memory access patterns. However,
applications that show irregular memory accesses or branch divergence suffer from
severe underutilization of GPGPU’s functional units [8]. Graph processing algo-
rithms are a popular example of irregular applications. Although graph-processing
can potentially benefit from highly parallel architectures, they process unstructured
and irregular data, which results in sparse and unpredictable memory access pat-
terns [9]. In addition, graph processing shows extremely low computation to mem-
ory access ratio [10], which further hinders GPGPU efficiency.

GPGPU programming models such as CUDA employ threads to exploit paral-
lelism, each thread processing its own set of data while synchronizing with the rest
to perform complex behaviors determined by the algorithm. The GPGPU pipeline
handles the execution of warps, i.e., groups of threads in lock-step execution. The
number of threads and the ability to coalesce the memory accesses within a warp
are some of the key factors that determine the utilization of the GPU resources. The
simplest way to exploit parallelism is to instantiate as many threads as data elements
to process and directly assign each element to a given thread, as seen in Fig. 1a. For
a regular program, this assignment is highly effective at achieving high utilization of
resources without inefficiencies (e.g., vector addition, where each thread processes
consecutive data in memory achieving regular behavior). For programs exhibiting
irregular memory accesses, this simple assignment might cause utilization degrada-
tion, as the GPU is unable to achieve high memory coalescing in a warp, resulting in
poor data locality (e.g., graph processing, where each thread processes a given node
of the graph and has to fetch its adjacent ones).

To mitigate the aforementioned problems, GPGPU algorithms have to care-
fully consider the underlying hardware and adapt the algorithm to minimize

(a) Baseline GPU (b) GPU with IRU

Fig. 1 Memory Coalescing improvement achieved by employing the IRU (b) to reorder data elements
that generate irregular accesses versus a Baseline GPU (a) execution. Assuming warp size of four threads
for the sake of simplicity

1 3

Irregular accesses reorder unit: improving GPGPU memory…

branch divergence and improve memory coalescing, among other performance
optimizations [11, 12]. Graph algorithms employ many such techniques, such
as scan algorithms [13] which are leveraged for data compaction [14] that gath-
ers data to be accessed sparsely into a compacted data array, improving local-
ity and memory coalescing. These techniques shift programmers effort from the
algorithm to a hardware conscious programming requiring sound knowledge of
the microarchitecture, significantly increasing development time while hampering
code portability. Another approach is to cleverly organize threads [15] in a thread
block to collaborate among themselves with the processing of unbalanced data
entries, which leads to reduced branch divergence and increased overall resources
utilization. While these techniques ameliorate the shortcomings of graph process-
ing and irregular access applications on GPGPU architectures, they clearly shift
the programmers effort from the algorithm to a hardware conscious programming
requiring sound knowledge of it and hampering code portability.

We claim that GPGPU programming models impose restrictions that hinder
full resource utilization of irregular applications for several reasons. First, irregu-
lar programs such as graph processing algorithms consist of sparse and irregu-
lar memory accesses which have poor data locality and result in low memory
coalescing, producing intra-warp memory divergence and significantly reducing
GPU efficiency. Second, these issues are hard to improve without significant pro-
grammer effort to modify algorithms and data structures in order to better utilize
the underlying hardware, which in some cases may not even be feasible and thus
effectively limit the achievable performance. Ultimately, the programmer has to
take into consideration ways to rearrange the data or change the mapping of data
elements to threads to achieve better memory coalescing and higher GPU utiliza-
tion, even if the relation of which threads process what data might not even be a
restriction imposed by the algorithm, since the threads are primarily the means to
expose parallelism. Since GPGPU architectures and programming models are not
designed to efficiently support sparse irregular programs, we propose to extend
the GPU architecture to improve these workloads with a set of new instructions
and their corresponding hardware support. We call this hardware the Irregular
accesses Reorder Unit (IRU). The IRU is a small unit tightly integrated in the
GPU, that is accessible through a set of new ISA instructions which can be used
by the compiler or the programmer through a simple high-level API.

Our key idea is to relax the strict relation between a thread and the data that
it processes. This allows the IRU to reorder the data serviced to the threads, i.e.,
to decide at run-time the mapping between threads and data elements to largely
improve memory coalescing. Figure 1 shows conceptually how the IRU assigns
data to the threads and achieves an improvement in memory coalescing against
the baseline GPU. The IRU mapping improves the effectiveness of the memory
coalescing hardware and the L1 data cache, as it results in better coalescing and
locality, with subsequent improvements in the entire memory hierarchy, result-
ing in higher GPU utilization for irregular applications. In addition, the IRU per-
forms simple preprocessing on the data (i.e., filtering repeated elements), which
reduces workload and allows for better utilization and further performance and

 A. Segura et al.

1 3

energy improvements. In conclusion, the IRU optimizes irregular accesses requir-
ing minimal support from programmers.

This paper focuses on improving the performance of irregular applications,
such as graph processing, on GPGPU architectures. Its main contributions are the
following:

• We characterize the degree of memory coalescing and GPU utilization of mod-
ern graph-based applications. Our analysis shows that memory coalescing can be
as high as 4 accesses per warp and GPU utilization as low as 13.5%.

• We propose the IRU, a novel hardware unit integrated in the GPGPU architecture
enabling improved performance of irregular accesses by reordering data serviced
to each thread. We further extend the IRU to filter repeated elements, largely
reducing GPU redundant workload for graph applications.

• We propose an ISA extension and API showing how modern graph-based appli-
cations can easily leverage the IRU.

• The GPU architecture with our IRU improves memory coalescing by a factor of
1.32x and reduces NoC traffic by 46%, which result in 1.33x speedup and 13%
energy savings on average for a diverse set of graph-based applications. The IRU
represents a small area overhead of 5.6%.

The remainder of this paper is organized as follows. Section 2 reviews the challenges
of irregular graph processing on GPGPU architectures. Section 3 presents the archi-
tecture of the IRU, and Sect. 4 describes its API and usage for graph applications.
Section 5 describes the methodology, and Sect. 6 presents the evaluation. Section 7
reviews relevant related work, and, finally, Sect. 8 sums up the main conclusions.

2 Irregular applications on GPU architectures

GPGPU architectures are tailored for compute intensive applications that feature
regular execution and regular memory access patterns. GPU’s high IPC is enabled
by its Single-Instruction, Multiple-Threads (SIMT) pipeline, leveraging the advan-
tage of decoding a single instruction for multiple threads, each operating on differ-
ent data. The threads in a warp execute in a lock-step manner and, hence, to fully
utilize the Execution Units (EU) applications must exhibit regular access patterns
and control flow. Furthermore, to sustain high IPC, significant memory bandwidth
is required which is accomplished with high Memory-Level Parallelism (MLP) lev-
eraging warp-level coalescing and concurrent execution of many threads, increasing
memory bandwidth at the expenses of increased latency.

On the other hand, for applications that show irregular behavior with unpredict-
able memory access patterns, GPGPU architectures are unable to provide enough
memory bandwidth due to a huge portion of the threads generating uncoalesced
accesses, which further hampers performance and results in low utilization of the
EUs due to increased stalls. In the worst case, a warp-level memory instruction
requires 32 memory accesses (assuming warp size of 32 threads), as each thread
may access a different cache line, whereas a perfectly coalesced warp-level memory

1 3

Irregular accesses reorder unit: improving GPGPU memory…

instruction only requires one memory request (i.e., in case all the threads access the
same cache line1). Therefore, an irregular application may increase the requests to
the memory subsystem by 32x compared to an application with regular access pat-
terns and perfect memory coalescing.

Not surprisingly, irregular applications increase the utilization of the LD/ST unit,
the latency of memory instructions and the pressure on the L1 and the whole mem-
ory hierarchy. In addition, every warp instruction requires more resources to handle
misses, such as miss status holding registers (MSHRs) and entries in the miss queue,
a problem aggravated by GPUs small capacity ratio of cache lines per thread com-
pared to CPUs. All these factors significantly increase the contention and conflict/
capacity misses on the L1. Finally, the interconnection traffic also increases, L2 suf-
fers from similar problems to the L1, and main memory accesses increase as a con-
sequence of increased L2 misses.

Significant changes have to be applied to an algorithm and its data structures in
order to reduce irregular accesses’ overheads, and improve GPU efficiency. Generic
approaches include the use of the shared memory in the Streaming Multiprocessors
(SM) of the GPU, providing reduced latency and banked accesses of uncoalesced
requests. Other approaches favor merging kernels, avoiding redundant memory
requests at the cost of higher register usage. Graph algorithms use techniques such as
data compaction [14], which reduce sparse accesses and improve locality by gather-
ing sparse data in a compacted data array, as well as load balancing techniques [16]
that leverage collaborating threads which reduce branch and memory divergence.

Overall, irregular applications benefit from the high performance delivered by
the massive parallelism of GPU architectures, but the architecture has significant
bottlenecks that result in low performance for irregular algorithms. Significant pro-
grammer effort, code complexity and underlying hardware knowledge are required
to create efficient GPU code for irregular applications such as graph processing
algorithms.

2.1 Graph processing on GPGPU architectures

Many problems in Machine Learning [17, 18] and Data Analytics [19] are modeled
using graphs, which represent relationships between the elements on a set of data.
GPGPU architectures enable fast parallel exploration and processing of the nodes
and connections (i.e., edges) of a graph. Nonetheless, graph exploration is low-com-
putation intensive [10], unstructured and irregular [20, 21] with sparse, irregular and
highly unpredictable access patterns due to the irregular nature of the relationships
expressed in a graph.

A typical GPGPU graph processing algorithm starts in a given node and moves
to adjacent nodes by traversing, or processing, that node edges. At this point, a new
frontier (i.e., set of nodes or edges) is ready to be explored continuing this process

1 If a sectored cache is used, perfect coalescing is only achieve if all the threads in a warp access the
same sector. Note that if multiple sectors of a line are accessed, then multiple requests will be generated
even if all the threads access the same cache line.

 A. Segura et al.

1 3

iteratively until the whole connected graph is explored, or until the algorithm dic-
tates it. Figure 2 shows how this process unfolds in a given iteration; each ele-
ment of the edges frontier array (i.e., indices) points to the position to access in the
nodes array to fetch for the next frontier data and continue the graph exploration.
The pseudo-code shows the type of irregular access performed, which is an intrin-
sic part of graph exploration algorithms and a cause of the previously mentioned
memory divergence. In this work, we focus on common graph algorithms, in par-
ticular Breadth-First Search (BFS) [15], Single-Source Shortest Paths (SSSP) [22]
and PageRank (PR) [23].

GPGPU graph processing leverages many strategies to improve performance.
First, data structures that efficiently represent the graph data in a compact man-
ner using the Compressed Sparse Row (CSR) [24] format. Second, to cut down
on sparse accesses, stream compaction algorithms [14] are used to gather data in
contiguous memory improving data locality and coalescing. Finally, load balanc-
ing techniques [15] are used to leverage the threads in warps and thread blocks to
cooperatively process data from the more processing demanding nodes, since the
irregular graph connectivity of the nodes leads to nodes that largely differ in the
number of edges. Although these techniques improve GPGPU efficiency for graph
processing, significant changes are required to implement these optimizations and
reduce the GPGPU architecture bottlenecks for irregular applications. Despite all
these efforts, we observe that modern graph applications experience significantly
low memory coalescing of 4 accesses per warp, leading to a low 13.5% utilization of
GPU resources. In the next section, we present a novel hardware unit that improves
memory coalescing and GPU performance for irregular workloads, while requiring
minimal changes in the applications.

3 Irregular accesses reorder unit

In this section, we introduce the Irregular accesses Reorder Unit (IRU), which
improves performance of irregular workloads such as graph applications on GPGPU
architectures. Low GPGPU performance for graph processing is mainly due to the
uncoalesced memory accesses that result in large memory traffic and put significant
pressure on the memory hierarchy. Our proposal improves GPGPU performance for
graph-processing by assigning data elements (nodes/edges) that produce coalesced

for i in range(0, N):
idx = edges_frontier[i]
out[i] = nodes_graph[idx]

Fig. 2 The graph edges frontier produces irregular memory requests when accessing the nodes data in
the graph. In a GPGPU, each thread may process one of the N elements in the edges frontier, i.e., per-
form one iteration of the loop. In this case, the access to edges_frontier shows high memory coalescing,
as consecutive threads access consecutive memory locations. However, the access to nodes_graph array
may result in high memory divergence depending on the indices

1 3

Irregular accesses reorder unit: improving GPGPU memory…

memory accesses to the threads in the same warp. This dynamic reordering of ele-
ments is done in hardware, and it can be easily used by programmers, that only have
to indicate when it is safe to change the mapping of data elements to threads.

In this paper, we propose to extend the GPGPU with the IRU to reduce the over-
heads caused by irregular accesses. The IRU is a compact and efficient hardware
unit integrated into the Memory Partition (MP) of the GPU architecture as shown
in Fig. 4a, which incurs in very small energy and area overheads. The IRU leverages

Fig. 3 Warp average normalized execution with and without IRU. The dark bar indicates execution time
until the target load is serviced, and the light bar from service to finalization. Processing a load instruc-
tion with the IRU is slower as it has to reorder data elements to identify indices that target the same
cache line. However, once the indices are sent to the SMs, the remaining execution is faster as subse-
quent memory accesses used the IRU-prepared indices that result in higher memory coalescing

(a) (b) (c)

(e)(d)

Fig. 4 IRU integration with the GPU at different levels: architectural (a), program model (b) and execu-
tion (c–e). The execution shows how the program (b) works on the Baseline and the IRU-enhanced GPU
with two warps and data from Fig. 1

 A. Segura et al.

1 3

the observation that GPU programs employ threads to convey parallelism; being in
many cases independent of the data that they process. The main goal of the IRU
is to process, reorder and redistribute the indices used to perform irregular mem-
ory accesses. The reordering collocates indices that access the same memory block
and services them to a requesting warp, reducing the memory divergence of irregu-
lar accesses. In turn, the improved memory coalescing reduces congestion of the
resources of the LD/ST unit, L1, interconnection, L2 and main memory, signifi-
cantly reducing the pressure on the memory subsystem. In addition, the reordering
is performed across all the indices accessed by all the SMs, and hence, collocating
irregular accesses potentially gathers data obtained by irregular accesses in a single
or fewer SMs, thus further reducing interconnection traffic and L1 data thrashing.

Figure 3 shows the average normalized execution of a warp in a baseline GPU
against one with the IRU. The dark bar indicates the execution time until the load
processed and reordered by the IRU is serviced, while the light bar shows the nor-
malized time until finalization. As it can be seen, processing a load instruction
through the IRU is slower as it has to reorder the data elements to identify indices
that target the same cache line. Furthermore, it also identifies and filters duplicated
elements. For this reason, the start-to-target-load time in Fig. 3 is larger with the
IRU than in the baseline GPU. However, once the indices are reordered and sent to
the warps, the remaining execution is significantly faster as memory coalescing is
largely improved for the subsequent memory accesses. Therefore, the low overhead
incurred by the IRU servicing the load is effectively offset by the performance gain
achieved from the reduction in the overheads due to the memory divergence.

The IRU processes the indices of a target irregular instruction, with the objective
to improve its coalescing. Additionally, the elements processed can contain more
data than just the indices, as mandated by the API described in Sect. 4. While these
data are not used for the IRU coalescing logic, it is responsible to fetch and send
these additional data to the SM.

3.1 GPU integration

The IRU integration into the GPU is covered in Fig. 4, showing architectural 4a, pro-
gramming 4b and execution 4c–d integration. The execution shows how the Baseline
and the IRU-modified GPU programs in Fig. 4b operate with the two warps and data
from Fig. 1. The Baseline program performs a regular access ➁ to gather indices
that are then used for an irregular access. The IRU-modified code performs the same
operation but using the IRU hardware with the load_iru operation ➁, which is part
of the IRU API presented in Sect. 4. The baseline code is executed by the GPU as
follows. First, the two warps retrieve the indices performing regular accesses to the
L1, i.e., consecutive threads in a warp access consecutive memory addresses. After-
ward, Fig. 4e shows how they perform irregular accesses to the L1 with the retrieved
indices which, due to the high divergence, result in many memory requests ➂.

In contrast, the IRU program first introduces a configuration step performed on
the host, shown in Fig. 4c, that provides data of the irregular accesses to optimize.
The configuration required for this program consists of the base address and data

1 3

Irregular accesses reorder unit: improving GPGPU memory…

type of the irregular accessed data, and the indices array and total number of irregu-
lar accesses. Further, IRU capabilities are enabled and used with optional param-
eters employed on overloaded functions, reviewed in Sect. 4. Next, when the ker-
nel execution starts, the IRU triggers the prefetching of the indices from L2 and
memory, which are then automatically reordered in the IRU hash. The IRU activity
is overlapped with the execution of the kernel and disabled when all the data are
processed. Furthermore, the IRU is disabled for kernels that do not require reorder-
ing indices.

Regular execution proceeds until encountering the load_iru operation, at which
point the warps retrieve the indices performing requests directly to the IRU, bypass-
ing the L1 as seen in Fig. 4d. The IRU replies with reordered indices either instantly,
if 32 indices that target the same cache line are available, or otherwise after a time-
out to avoid starvation. In case the timeout is triggered, the 32 indices will not be
collocated to the same cache line, but the IRU will do the best attempt to provide
indices that result in the lowest memory divergence with the available elements.
Finally, the warps perform the irregular access that was the target of the optimiza-
tion ➃. This access is performed with the IRU reordered indices which achieves
reduced divergence, performing less accesses than the baseline program, as depicted
in Fig. 4e. Note that we assume a warp size of 4 threads in Fig. 4e for the sake of
simplicity, but we use warp size of 32 for our experimental evaluation.

The IRU is first configured by the programmer with a host function, described in
Sect. 4, that provides the IRU information about the data that has to be reordered.
Once configured, the kernel is launched and the IRU begins its operation prefetch-
ing the required data and reordering the elements according to the configuration,
with the aim of maximizing memory coalescing. IRU operation is autonomous, and
no further programmer intervention is required to reorder the elements. The SM
kernel retrieves the reordered indices used by the irregular accesses using the API
described in Sect. 4, requiring minimal changes to the code.

3.2 Hardware overview and processing

The hardware architecture of the IRU is shown in Fig. 5a. The main purpose of the
IRU, which is to reorder indices to improve memory coalescing, is accomplished
with the use of a hash table located inside the Reordering Hash block. The IRU is
integrated inside the memory partitions of the GPGPU architecture, i.e., together
with the L2 cache partition, the atomic operations unit and the memory controller.
GPUs include multiple memory partitions, in our proposal each partition will con-
tain an instance of the IRU. Instead of having multiple private hash tables, there is
a single logical hash table partitioned among the IRUs. This motivates the inclusion
of a ring interconnection between the IRUs to forward the data to the correspond-
ing partition of the logical hash table. We have observed that the degree of memory
coalescing is significantly affected if each IRU hash table is private and separated;
which would constrain IRUs reordering scope to data from a single memory par-
tition. Finally, requests are issued to the L2 to exploit data locality among kernel

 A. Segura et al.

1 3

executions. Alternatively, requests can be configured to bypass L2, which could be
beneficial for streaming kernels.

The overall internal processing of the IRU is shown in Fig. 5. The figure covers
a general overview of the internal IRU architecture and the detailed step by step
working of the most relevant components of the IRU covering: configuration and
prefetching (5b), data and requests retrieval (5c), ring interconnection interaction
(5d) and requests reply (5e).

3.2.1 Prefetching and data processing

The IRU Controller is initialized by the Host by executing the configure_iru func-
tion with the corresponding data ➊. Later the Prefetcher uses this data to determine
the addresses to prefetch when the GPU kernel starts execution ➋. The Prefetcher
issues a limited number of on-the-fly prefetch requests to avoid saturating memory
bandwidth. Each IRU only prefetches information from its corresponding memory
partition. In Fig. 5, the first four elements from main memory are fetched by IRU 0,
while the next four by IRU 1. When a reply comes back, the retrieved data are stored
in a FIFO queue to be later processed.

Afterward, the Classifier block processes the prefetched data ➌ by splitting it into
smaller FIFO queues, with a throughput of one element per cycle on each queue.
The smaller FIFO queues contain the elements that will be inserted in the hash or
forwarded through the ring. A hashing function of the element is used to determine
which hash table entry it is mapped to and, therefore, if it will access a local bank or
must be sent through the ring. Finally, the Data Processing block retrieves elements

(a)
(d) (e)

(b) (c)

Fig. 5 Architecture and the internal processing performed by the IRU. The indices in memory (from
Fig. 1) are processed by two IRU partitions (IRU 0 shown), which are later replied to a request coming
from Warp 0 in SM 0

1 3

Irregular accesses reorder unit: improving GPGPU memory…

from both the smaller FIFO queues and the ring, prioritizing the latter, and forwards
them to the ring or inserts them into the local hash table ➍. In Fig. 5e, the elements
labeled A are inserted into the local hash table, as they are determined to access the
same memory block.

Meanwhile, requests from the SMs can be received at any time which are then
processed by the Data Replier ➎. This request originates directly from the SM (i.e.,
bypassing the L1) and are generated by the extended ISA load_iru operations, that
are responsible to retrieve the IRU processed data. Their information is stored until
enough data are available to satisfy the request or until a timeout is reached.

3.2.2 Ring and data reply

Due to the partition of the reordering hash table, the hash function of the elements
fetched from a memory partition can require that element to be inserted in another
IRU partition. The Ring Interconnection allows to receive and send elements to the
neighbor partitions at every cycle. In Fig. 5d, the elements labeled B are determined
to correspond to another IRU partition and so are inserted in the ring ➏. Meanwhile,
data from the neighbor partition are received (indices A and C correspond to IRU
0) ➐.

Lastly, the elements corresponding to this IRU partition are gathered from the
ring and inserted into the reordering hash table. When the Data Replier detects a
hash entry that is complete, or enough data are available to reply a request, the old-
est request is replied back to the SMs with that entry’s reordered elements ➑, and
the data are evicted from the hash table. The data used for the reply (four A) are the
indices used for the irregular access being optimized. Additionally, more data might
be processed per element, requiring at most two replies to be issued, as some algo-
rithms require extra data associated with each index.

Additionally, a timeout is employed to avoid excessively delaying a request. Once
the timeout is reached, it then fetches data from the hash table with the best coa-
lesced data entry present and sends the response once enough data to satisfy the
request is retrieved, effectively trading-off worse coalescing for lower latency. Fur-
thermore, simple control logic is added to the SM and IRU partitions to handle
balancing issues (i.e between request and entries ready). Each SM distributes the
requests evenly across the different IRUs in the memory partitions, and requests can
be replied by IRU partitions other than the original. Finally, when no more data are
left to be inserted into the IRU, the Data Replier replies to the SM by intelligently
merging the remaining hash entries.

3.3 Reordering hash

The Reordering Hash contains a physical partition of the global logical hash, which
is direct mapped and multi-banked. Each entry holds up to 32 elements that are
inserted into the entry in subsequent locations at every hash insertion, as depicted
in Fig. 6. Furthermore, the hash function key that points to an entry is generated
from the value being inserted into the hash table entry. The computation of the hash

 A. Segura et al.

1 3

function collocates in a single hash table entry the elements that will generate mem-
ory fetches that target the same memory block, which provides the memory coalesc-
ing improvement achieved with the IRU.

Unlike a regular hash table, an insertion allows to merge elements into a hash
entry even if the tag does not match. The inherent drawback of this decision is
that the elements that a hash table entry collocates might actually not access the
same memory block, and thus, the memory coalescing that it can achieve will not
be optimal. Nonetheless, this design decision largely reduces hardware complexity.
Furthermore, a good dispersion hash function and properly sized hash tables limit
the amount of conflicts and the effects on memory coalescing. Ultimately, when an
entry is completely filled with 32 elements, no more data can be inserted to it. At
this point, it has 32 collocated elements that potentially will access the same mem-
ory block when the program uses them to perform an irregular access, unless there
were conflicts. Note that some of these conflicting elements might collocate among
themselves, thus not severely impairing memory coalescing.

Some API operations described in Sect. 4 require additional comparators or
adders to be used in a hash table insertion. The additional data that the elements
might have are processed by this hardware, which effectively merges or filters an
element present in the hash table with the one being inserted. Since these operations
will filter out elements, some threads that requested data will not receive any ele-
ment, which is handled by the Data Replier and exposed to the programmer with the
API.

4 IRU programmability

Ease of programmability is a crucial aspect to write efficient parallel programs,
a reason for which toolkits such as CUDA are very successful. As described in
Sect. 2, efficient irregular programs require complex optimization techniques. The
IRU has been designed to be easily programmable, so existing codes can exploit
this new hardware unit with minimal changes. The IRU extends the GPGPU ISA to
support memory load operations that fetch data from the IRU, which require small
changes to the pipeline to decode these instructions, in addition to minor changes to
the LD/ST unit to route these requests to the IRU. To avoid directly using assembly
instructions, we provide a simple API with functions that can be called from CUDA
kernels. Furthermore, since the changes to the code are minimal, a compiler that

Fig. 6 Hash table insertion
diagram showcasing how the
element is used for the hashing
function and is stored in the
hash table data

1 3

Irregular accesses reorder unit: improving GPGPU memory…

supports the ISA extensions can issue the new instructions when appropriate, free-
ing the programmer from performing the optimization effort and delivering more
code for irregular applications.

IRU’s main optimization is the reordering of indices fetched from memory that
are later used for irregular accesses. This optimization is based on the premise that
the assignment of data to the threads can be safely changed, i.e., each data element
(e.g., node/edge in a graph application) can be processed by any thread. Conse-
quently, to be able to correctly utilize the IRU for this optimization, the program-
mer has to guarantee that the reordering can be applied correctly. The API provides
additional functionality used to indicate when it is safe to replace a regular load by
an IRU load instruction.

The baseline functionality provided by the API and IRU hardware supports reor-
dering of an array of 24-bit indices. Additionally, a secondary 32-bit array can be
processed simultaneously, yet the reordering is based on the indices array as to
improve the coalescing achieved when performing an irregular access. The data (i.e.,
index and entry in the secondary array) provided to the threads is reordered applying
the same reordering to both indices and secondary array, maintaining the original
pair of index and secondary data. Figure 7 shows how the input data, first two rows,
are reordered in the output data, last two rows. The reordering is based on the array
of indices, the edge frontier, and every edge is kept with its corresponding weight.
This secondary array can be used to process attributes or extra data of the elements
being processed. It might be the case that more than a single additional array has to
be processed in some application. In this case, the reordering operation can return in
which position in the original array the reordered element was located. This position
can be used to fetch any additional attributes required from multiple arrays.

Graph-based algorithms process many nodes and edges in parallel. Since it is
common that several edges lead to the same destination node, many duplicated nodes
may appear in the node frontier, producing redundant work in subsequent iterations
of the algorithm. This additional work is usually benign as the program implements
filtering techniques, which are effective yet computationally costly due to synchroni-
zation requirements. To help the programmer remove this additional workload, the
IRU is extended to provide filtering or merging of elements (i.e., pair of index and
attribute). The IRU can easily detect duplicated indices that are processed simulta-
neously, and so it can remove them or might perform some operation to merge both

Fig. 7 IRU processing of two
arrays with filtering enabled.
The edges frontier represents
the array of indices, while the
weight frontier is the secondary
array. Filtering is an additional
operation of the IRU that can be
enabled to remove duplicated
elements in order to reduce
workload

 A. Segura et al.

1 3

elements. The operations supported by the IRU are integer comparison and floating
point addition. Figure 7 shows the merging of two indices into one on the output
data by adding their attributes in the secondary array. Filtering out elements causes
some threads to not receive any data, and so we extend the API to indicate if a given
thread’s data have been filtered out. IRU groups the disabled threads in warps rather
than distributing them across many warps, this approach allows to minimize branch
divergence, remove redundant work and improve performance.

The IRU API, shown in Fig. 8, provides two main functions: configure_iru ,
used from the host to configure the IRU, and load_iru , used inside the CUDA ker-
nel to retrieve reordered data from the IRU. At the start of kernel execution, the
configure_iru function is called to provide all the parameters of the data that will
be processed. The required parameters are: target array base address and data type
width, both parameters used to configure the offset to be applied to the indices as to
compute the coalescing required; the indices array is required too, which is the main
data reordered; and finally, the number of elements in the indices array. Optional
parameters include the additional secondary array, reordered together with the indi-
ces array, and the optional filtering operation performed. The memory load opera-
tion replaces regular load instructions, retrieves the original position of the indices
and indicates if a thread is disabled.

4.1 IRU enabled graph applications

The previously described API enables the instrumentation of state-of-the-art graph-
based algorithms such as BFS, SSSP and PR. Although we use push graph imple-
mentations, the IRU is not specifically targeting push or pull. The ease of use of
our API allows very simple instrumentation an minimal code changes while provid-
ing efficient memory coalescing improvements. The following examples show how
load_iru can be used within GPGPU kernels to easily replace existing code.

The basic functionality of the IRU is a good fit for the BFS algorithm as illus-
trated in Fig. 9. The indices found in the edge_frontier array are used to access the
label array, resulting in irregular memory accesses and poor memory coalescing.
The programmer can easily replace the previous instruction with the load_iru opera-
tion to obtain the indices in such a way that memory coalescing is improved and
thus overall performance increases.

1 void configure_iru (
2 addr_t target_array ,
3 size_t target_array_data_type_size ,
4 addr_t indices_array , addr_t secondary_array ,
5 size_t number_elements , filter_op_t filter_op);
6

7 __device__ bool load_iru (
8 addr_t &indices_array , addr_t &secondary_array ,
9 uint32_t &position);

Fig. 8 IRU API function declarations

1 3

Irregular accesses reorder unit: improving GPGPU memory…

The SSSP algorithm processes additional data per element; each edge has an
associated weight value. Figure 10 shows how load_iru can handle the use of an
additional array, while also retrieving the original position of the reordered element
in the pos variable. Note that the algorithm requires the pos variable to be correctly
updated with the reordered element in line 17, which is easily accomplished with
our API extension.

Finally, the PageRank kernel shown in Fig. 11 performs additions of the ele-
ments’ weights into the label array. Utilizing the filtering/merge functionality of the
IRU, an initial addition can be performed while the elements are being processed in
the IRU, which allows to disable merged out threads. The load_iru function returns
whether or not the thread has a valid element or if it has been merged out; the value

1 __global__ void BFS_Contract (...) {
2 int pos = blockDim.x * blockIdx.x + threadIdx.x;
3 if (pos < number_elements) {
4 int edge;
5 #ifdef NOT_INSTRUMENTED
6 edge = edge_frontier[pos];
7 #elif USE_IRU
8 load_iru(edge);
9 #endif

10 label[edge] = distance;
11 }
12 }

Fig. 9 Instrumentation of a BFS Kernel using the IRU

1 __global__ void SSSP_Compaction (...) {
2 int pos = blockDim.x * blockIdx.x + threadIdx.x;
3 if (pos < number_elements) {
4 int edge , weight;
5 #ifdef NOT_INSTRUMENTED
6 edge = edge_frontier[pos];
7 weight = weight_frontier[pos];
8 #elif USE_IRU
9 load_iru(edge , weight , pos);

10 #endif
11 int old = atomicMin (& label[edge], weight);
12 if (old > weight)
13 lookup[edge] = pos;
14 }
15 }

Fig. 10 Instrumentation of an SSSP Kernel using the IRU

 A. Segura et al.

1 3

in a retrieved element’s weight has the sum of those weight of the same edge. Note
that the filtering is not complete as it merges only elements found concurrently on
the IRU, yet it manages to filter a significant amount of duplicated elements. Over-
all, this extension allows reducing the workload of the kernel, in this case, reducing
the number of atomicAdd required.

5 Evaluation methodology

We have implemented the IRU architecture in GPGPU-Sim 3.2 [25]. We extended
the memory partitions in GPGPU-Sim to accurately model IRU’s hardware as
shown in Fig. 5a. Furthermore, we extended the Streaming Multiprocessors (SMs)
to support our new instructions.

Each partition of the IRU uses a 2 KB FIFO to buffer warp requests and 1.7 KB
for the prefetching buffer (8 on-the-fly prefetches). A buffer of 1.2 KB is used for
the Classifier block to determine the data destination. The ring requires a total of 2.8
KB buffering. The main component of the IRU is the direct-mapped hash table with
1024 sets, split in 4 physical partitions. Each partition is 2-way banked, holding 256
sets, requiring 80 KB of total storage, significantly smaller than the 512 KB of the
L2 partition. Table 1 summarizes the components of an IRU partition. Since the IRU
is mostly comprised of SRAM elements without complex execution units, we model
area and energy using CACTI [26] with a node technology of 32 nm.

GPGPU performance is modeled with GPGPU-Sim 3.2 [25], energy consumption
and area with GPUWattch [27], both conform a state-of-the-art GPGPU simulator sys-
tem with validated performance and energy consumption against real GPU hardware.
Both simulators configured with the parameters shown in Table 2 to model an NVIDIA
GTX 980. To evaluate our proposal, we use state-of-the-art GPGPU implementations

1 __global__ void PR_Contract (...) {
2 int pos = blockDim.x * blockIdx.x + threadIdx.x;
3 if (pos < number_elements) {
4 int edge; float weight;
5 bool active_thread = true;
6 #ifdef NOT_INSTRUMENTED
7 edge = edge_frontier[pos];
8 weight = weight_frontier[pos];
9 #elif USE_IRU

10 active_thread = load_iru(edge , weight);
11 #endif
12 if (active_thread)
13 atomicAdd (&label[edge], weight);
14 }
15 }

Fig. 11 Instrumentation of a PageRank Kernel using the IRU

1 3

Irregular accesses reorder unit: improving GPGPU memory…

of BFS [15], SSSP [22], and PageRank [23] graph algorithms. We run these graph pro-
cessing algorithms with datasets representative of different application domains with
varied sizes, characteristics and degrees of connectivity, shown in Table 3 and collected
from well-known repositories of research graph datasets [28, 29].

6 Experimental results

In this section, we evaluate the performance and energy efficiency of our IRU hard-
ware presented in Sect. 3. More specifically, we analyze how the memory hierar-
chy contention is reduced, the reduction in interconnection traffic, the improvement

Table 1 IRU hardware
requirements per partition

Component Require-
ments
(KB)

Requests Buffer 2
Prefetcher Buffer 1.7
Classifier Buffer 1.2
Ring Buffer 2.8
Hash Data 80

Table 2 Parameters employed
in the experiments to model a
GTX 980 in GPGPU-Sim

Characteristic Configuration

GPU, Frequency NVIDIA GTX 980, 1.27GHz
Streaming Multiproc. 16 (2048 threads), Maxwell
SM Functional Units 128 EUs, 1 LD/ST per SM
SM Issue Schedulers 4 Warp Schedulers per SM
L1 data cache 32 KB, 4-assoc, 128 B lines
L2 data cache 2 MB, 8-assoc, 128 B lines
Memory Partitions 4 (4 channel GDDR5)
Main Memory 4 GB GDDR5, 224 GB/s

Table 3 Benchmark graph datasets

Graph name Description Nodes (103) Edges (106) Avg. degree

ca [28] California road network 710 3.48 9.8
cond [28] Collaboration network, arxiv.org 40 0.35 17.4
delaunay [29] Delaunay triangulation 524 3.4 12
human [28] Human gene regulatory network 22 24.6 2214
kron [29] Graph500, Synthetic Graph 262 21 156
msdoor [28] Mesh of 3D object 415 20.2 97.3

 A. Segura et al.

1 3

on memory coalescing, the IRU filtering capabilities, and the overall speedup and
energy savings of our proposed GPU+IRU with respect to the baseline GPU.

6.1 Memory pressure reduction

IRU’s main functionality is to reorder irregular accesses improving their memory
coalescing thus reducing the overall contention in the memory hierarchy. Figure 12
shows how the IRU consistently reduces accesses and contention on both L1 and L2
across all graph algorithms and datasets. Accesses to L1 and L2 are reduced to as
low as 35% and 36% for the cond benchmark on BFS and PR, respectively. Overall,
accesses are reduced to 67% and 56% for L1 and L2 caches on average.

This important reduction comes from several factors. First, the IRU reordering
of irregular accesses improves coalescing reducing the accesses to L1. Second,
IRU reorders requests across SMs, so it collocates accesses of a particular memory
block to a single SM, avoiding data replication across L1 data caches, improving hit
ratios. Third, reduced accesses to L1 avoid capacity and conflict misses, improve
data thrashing and consequently reduce L2 accesses. Finally, IRU filtering further
reduces accesses by removing/merging duplicated elements, that avoids additional
memory accesses.

L2 accesses reduction is greater than in L1 in some benchmarks for SSSP and PR
graph algorithms. Many indices reordered by the IRU on SSSP and PR are used for
irregular accesses performed by atomic instructions. In GPGPU-Sim atomic opera-
tions bypass the L1 and are handled at the memory partitions. IRU coalescing and
filtering improvement for these operations reduces L2 accesses but not L1 accesses,
explaining the larger reduction in L2 accesses compared to L1 for SSSP and PR.
Note that atomic operations within a warp are coalesced as long as different threads
access different parts of a cache line.

We have also analyzed the impact of the IRU in the Network-on-Chip (NoC)
that interconnects the Streaming Multiprocessors (SM) with the Memory Partitions
(MP). Figure 13 shows the normalized traffic in the NoC. As it can be seen, the IRU
consistently reduces interconnection traffic across all graph algorithms and datasets.
Traffic between SM and MP is reduced to as low as 23% for the human benchmark
on PR, overall reducing NoC traffic to 54% of the original interconnection traffic.

Fig. 12 Normalized accesses to L1 and L2 caches of the IRU enabled GPU system versus the Baseline
GPU system (GTX 980 GPU with parameters shown in Table 2). Significant reductions are achieved
across BFS, SSSP and PR graph algorithms and every dataset

1 3

Irregular accesses reorder unit: improving GPGPU memory…

This reduction is due to several factors. First, the improved memory coalescing
results in a more efficient use of the L1 data cache, significantly reducing the num-
ber of misses. Second, filtering also contributes to lower L2 accesses which reduces
interconnection contention. Finally, the extended ISA instructions allow reduced
traffic by issuing a single request to the IRU that receives two replies, whereas the
baseline GPU would have issued two requests and two replies in order to gather data
in different frontiers. Note that the IRU API allows to gather an index together with
an extra attribute (e.g., weight of edge in a graph) with just one memory request as
explained in Sect. 4.

Figure 14 shows the improvement in memory coalescing delivered by the IRU. A
higher number indicates that more accesses are required to serve each warp memory
request, with a maximum of 32 accesses per request, and a minimum of 1 access in
the best scenario. The IRU improves the overall coalescing for every graph algo-
rithm from 4 to 3 accesses per memory requests on average. This improvement is
significant given that the filtering schemes that some of the algorithms employ,
combined with the filtering applied by the IRU, reduce the potential for coalescing
memory requests, since filtering removes some duplicated elements whose accesses
could be coalesced. Nonetheless, memory coalescing is significantly improved,
reducing the pressure on the memory hierarchy.

Finally, main memory accesses are reduced by 4% due to reduced L2 misses as
a result of reduced accesses. Overall, reordering and filtering techniques allow the
IRU to deliver significant improvements in memory coalescing and reduce conten-
tion in multiple levels of the memory hierarchy.

Fig. 13 Normalized interconnection traffic between SM (Streaming Multiprocessors) and MP (Memory
Partitions) for the IRU enabled GPU system over the Baseline GPU system (GTX 980 GPU with param-
eters shown in Table 2). Significant reductions are achieved across BFS, SSSP and PR graph algorithms
and every dataset

Fig. 14 Improvement in memory coalescing achieved with the IRU over the Baseline GPU system (GTX
980 GPU with parameters shown in Table 2). Vertical axis shows the number of memory requests sent to
the L1 cache on average per each memory instruction

 A. Segura et al.

1 3

6.2 Filtering effectiveness

The IRU hardware provides filtering capabilities without complex additional hard-
ware. Figure 15 shows the percentage of elements (i.e., indices with their adjacent
data) processed by the IRU which are filtered out or merged. We apply the filtering
to both SSSP and PR, achieving 23% and 79% workload filtering, respectively. On
average, 48.5% of the elements are filtered out by the IRU. Note that this high per-
centage does not directly indicate that a similar amount of accesses to memory are
avoided with respect to the baseline GPU, as state-of-the-art CUDA implementa-
tions of SSSP and PR include sophisticated mechanisms to filter our duplicated ele-
ments. However, in our proposed scheme the filtering is performed by the IRU hard-
ware, whereas in the baseline GPU this filtering process is done in software. Hence,
our proposal is effective at filtering/merging duplicated elements by leveraging the
IRU hardware that is already available for the reordering operation, avoiding costly
software filtering schemes of graph algorithms.

6.3 Performance and energy evaluation

The IRU provides performance improvements across all algorithms and bench-
marks, as shown in Fig. 16. On average, the IRU achieves a speedup of 1.33x, with
average speedups of 1.16x, 1.14x and 1.40x for BFS, SSSP and PR, respectively.
PR exhibits higher speedups due to larger reduction in L2 accesses achieved by the
filtering, which avoids costly atomic L2 accesses. SSSP achieves the lowest speedup
due to lower filtering effectiveness. Overall, performance improvements come from
two sources. First, the IRU improved memory coalescing by reordering of indices
used for irregular accesses, which reduces contention on the memory hierarchy.
Second, the IRU filtering and merging that enables further reduction in memory
accesses and avoids wasted cycles in the functional units of the GPU due to process-
ing redundant elements.

Figure 16 also shows the energy savings achieved by the IRU, which are signifi-
cant across all graphs and datasets. On average, the IRU achieves an energy reduc-
tion of 13%, with reductions of 17%, 5% and 15% for BFS, SSSP and PR, respec-
tively. Energy savings are more limited than performance improvements since the
IRU greatly reduces L1 and L2 accesses but achieves a more modest reduction in
main memory accesses. Note that main memory represents a very significant por-
tion of the total energy consumed. The IRU energy overhead represents a small 0.5%

Fig. 15 Percentage of elements
that are filtered out in our IRU-
enabled GPU system

1 3

Irregular accesses reorder unit: improving GPGPU memory…

of the final energy. Overall, energy savings are obtained from several sources. First,
the reduced accesses to L1 and L2 and reduced contention in the memory hierar-
chy. Second, the reduced execution time cuts down on the static power and thus,
the overall energy consumption of the GPU system. Third, the energy-efficient IRU
which enables the reduction in accesses and contention and allows more efficient
hardware-based filtering than the costly software-based mechanisms employed by
graph applications. Finally, the IRU reordering leads to a reduction in main memory
accesses which further reduces energy.

6.4 Area evaluation

Our evaluation of the IRU energy and area estimations indicates that the IRU
requires a total of 23.9 mm2 when adding up all the 4 partitions of our GPU system
with a GTX 980, each partition being 5.98 mm2 . The entire IRU represents 5.6%
of the total GPU area. Overall, the IRU is a very compact and efficient hardware
which manages to deliver significant performance and energy savings with small
area requirements.

7 Related work

Irregular programs on GPGPU architectures face many challenges resulting in low
GPU utilization and poor performance. Several previous works have thoroughly
analyzed the causes of these inefficiencies, that boil down to control flow divergence
and memory accesses irregularity [11, 12, 20, 21]. Nonetheless, if these issues are
overcome, irregular applications can greatly benefit of the high parallelism that GPU
architectures offer. Over the recent years, several works have approached the topic of
efficient and improved irregular programs on GPGPU architectures.

Some solutions approach the branch divergence issue by providing load balancing
solutions [15, 30] to improve utilization of execution units. Others provide thread
remapping over warps to improve branch divergence [31]. Some memory divergence
approaches propose modifying software data structures [9, 16, 32], whereas others

Fig. 16 Normalized execution time and energy consumption reduction in the IRU enabled GPU with
respect to the baseline GPU system (GTX 980 GPU with parameters shown in Table 2). Significant
speedups and energy savings achieved across BFS, SSSP and PR graph algorithms and every dataset

 A. Segura et al.

1 3

such as HALO [33] provide static reordering of a graph to improve data locality.
Many specialized works have focused on GPU execution of irregular Sparse Matrix
Vector Multiplication (SpMV) and Matrix Matrix Multiplication (GEMM) by pro-
posing software approaches that reorder the matrices dataset [34], and algorithms
tailored for specific matrix data characteristics [35], and row reordering techniques
[36] to improve data locality among processed rows. Finally, other works prove the
NP-completeness of finding the data layouts through data repositioning that mini-
mize uncoalesced memory accesses and propose software algorithms to attain them
[37]. These works propose methods requiring significant programming effort, as
they require changing algorithms and data structures or profound hardware knowl-
edge. In contrast, our IRU solution requires very lightweight changes of the algo-
rithms and does not require profound knowledge of the inner working of the GPU
memory hierarchy to improve memory coalescing and resolve contention issues.

Other approaches explore microarchitectural improvements transparent to the
programmer, or with some minor involvement to achieve the desired result. Exten-
sive research has been done on flexible cache solutions [38–40] that adapt for fine-
grained and coarse-grained accesses while other works resort to cache bypassing
mechanisms [41]. Works such as LAMAR [42] explore sizable GPU architecture
and memory hierarchy modifications to detect and provide fine and coarse grained
accesses throughout the memory system. Other works propose hybrid software and
hardware approaches that enable data-dependent aware dynamic scheduling [43] or
provide prefetching of irregular accesses [44] to registers to avoid early data evic-
tion. Finally, works such as D2MA [45] and Stash [46] set to provide mechanisms
to manage global data allocation to shared memory, with the objective to increase
capacity close to the cores and improve memory hierarchy and overall performance.
The aforementioned works leverage hardware solutions that work around or amelio-
rate the consequences of low memory coalescing by providing mechanisms to lower
memory contention. In contrast, our IRU provides tools to amend the cause, not the
consequence, of the high memory contention, i.e., the poor memory coalescing.
Intermediate approaches have explored extending the GPU architecture with custom
purpose hardware units. SCU [8] proposes a programmable GPU hardware exten-
sion for graph processing that is tailored to stream compaction operations required
for graph processing. Meanwhile, the GPU is employed to execute the graph pro-
cessing workload part that is most well suited for, achieving significant performance
improvements. In comparison, the IRU is a more flexible extension, with a more
generic and reusable API tailored to general irregular accesses patterns. Further-
more, the SCU requires significant changes in the application, since entire kernels
are replaced by calls to the SCU, whereas other kernels must be adapted. Our solu-
tion requires minor changes to the application as described in Sect. 4.

Finally, many works propose to replace entirely the GPU with special purpose
accelerators custom-made for graph processing, which set aside the GPU due to fun-
damental limitations and exploit deep knowledge of graphs data structures. Propos-
als include standalone approaches such as TuNao [47], Dram-based Graphicionado
[48] or PIM-based GraphH [49]. In contrast, our IRU solution leverages the popular-
ity of GPU architectures and provides generic solutions that bring the performance
and efficiency of GPU architectures for low performing irregular programs.

1 3

Irregular accesses reorder unit: improving GPGPU memory…

8 Conclusions

In this paper, we propose the Irregular accesses Reorder Unit (IRU), a GPU exten-
sion that improves performance and energy efficiency of irregular applications. Effi-
cient execution of irregular applications on GPU architectures is challenging due
to low utilization and poor memory coalescing, which force programmers to carry
out complex code optimization techniques to achieve high performance. The IRU is
a novel hardware unit that delivers improved performance of irregular applications
by reordering data serviced to threads. This reordering is enabled by relaxing the
strict relationship between threads and data processed. We further extend the IRU to
filter out and merge repeated elements while performing the reordering, this results
in increased performance by largely reducing redundant GPU workload. The IRU
reordering and filtering schemes deliver 1.32x improved memory coalescing, while
reducing the traffic in the memory hierarchy by 46%. Our IRU augmented GPU
system achieves on average 1.33x speedup and 13% energy savings for a diverse
set of graph-based applications and datasets, while incurring in a small 5.6% area
overhead.

Acknowledgements This work has been supported by the CoCoUnit ERC Advanced Grant of the EU’s
Horizon 2020 program (grant No 833057), the Spanish State Research Agency (MCIN/AEI) under grant
PID2020-113172RB-I00 and the ICREA Academia program.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Data availability The datasets generated during the current study are available from the corresponding
author on reasonable request.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

 1. Bell N, Garland M (2008) Efficient sparse matrix-vector multiplication on cuda. Technical report,
Nvidia Technical Report NVR-2008-004, Nvidia Corporation

 2. Li J, Ranka S, Sahni S (2011) Strassen’s matrix multiplication on gpus. In: 2011 IEEE 17th Interna-
tional Conference on Parallel and Distributed Systems, pp 157–164. IEEE

 3. Root C, Mostak T (2016) MAPD: a GPU-powered big data analytics and visualization platform. In:
ACM SIGGRAPH 2016 Talks, pp 1–2

 4. Yan M, Chen Z, Deng L, Ye X, Zhang Z, Fan D, Xie Y (2020) Characterizing and understanding
GCNs on GPU. IEEE Comput Archit Lett 19(1):22–25

 5. Chong J, Gonina E, Keutzer K (2011) Efficient automatic speech recognition on the GPU. In: GPU
Computing Gems Emerald Edition, pp 601–618

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

 A. Segura et al.

1 3

 6. Krizhevsky A, Sutskever I, Hinton G.E (2012) Imagenet classification with deep convolutional neu-
ral networks. In: Advances in Neural Information Processing Systems, pp 1097–1105

 7. Kato S, Tokunaga S, Maruyama Y, Maeda S, Hirabayashi M, Kitsukawa Y, Monrroy A, Ando T,
Fujii Y, Azumi T (2018) Autoware on board: enabling autonomous vehicles with embedded sys-
tems. In: 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS), pp
287–296 . IEEE

 8. Segura A, Arnau J.-M, González A (2019) SCU: a GPU stream compaction unit for graph process-
ing. In: Proceedings of the 46th International Symposium on Computer Architecture, pp 424–435

 9. Nodehi Sabet AH, Qiu J, Zhao Z (2018) TIGR: Transforming irregular graphs for GPU-friendly
graph processing. ACM SIGPLAN Notices 53(2):622–636

 10. Beamer S (2016) Understanding and improving graph algorithm performance. Ph.D. thesis, UC
Berkeley

 11. Burtscher M, Nasre R, Pingali K (2012) A quantitative study of irregular programs on GPUs. In:
2012 IEEE International Symposium on Workload Characterization (IISWC), pp 141–151. IEEE

 12. O’Neil MA, Burtscher M (2014) Microarchitectural performance characterization of irregular GPU
kernels. In: 2014 IEEE International Symposium on Workload Characterization (IISWC), pp 130–
139 . IEEE

 13. Sengupta S, Harris M, Garland M (2008) Efficient parallel scan algorithms for GPUs. NVIDIA,
Santa Clara,CA, Tech. Rep. NVR-2008-003 1(1):1–17

 14. Billeter M, Olsson O, Assarsson U (2009) Efficient stream compaction on wide SIMD many-core
architectures. In: Proceedings of the Conference on High Performance Graphics 2009, pp 159–166

 15. Merrill D, Garland M, Grimshaw A (2015) High-performance and scalable GPU graph traversal.
ACM Trans Parallel Comput (TOPC) 1(2):1–30

 16. Wang Y, Davidson A, Pan Y, Wu Y, Riffel A, Owens JD (2016) Gunrock: a high-performance graph
processing library on the GPU. In: Proceedings of the 21st ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, pp 1–12

 17. Low Y, Gonzalez JE, Kyrola A, Bickson D, Guestrin CE, Hellerstein J (2014) Graphlab: a new
framework for parallel machine learning. arXiv preprint arXiv: 1408. 2041

 18. Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G (2008) The graph neural network
model. IEEE Trans Neural Netw 20(1):61–80

 19. Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave A, Meng X, Rosen J, Venkataraman
S, Franklin MJ (2016) Apache spark: a unified engine for big data processing. Commun ACM
59(11):56–65

 20. Lumsdaine A, Gregor D, Hendrickson B, Berry J (2007) Challenges in parallel graph processing.
Parallel Process Lett 17(01):5–20

 21. Xu Q, Jeon H, Annavaram M (2014) Graph processing on GPUs: Where are the bottlenecks? In:
2014 IEEE International Symposium on Workload Characterization (IISWC), pp 140–149 . IEEE

 22. Davidson A, Baxter S, Garland M, Owens JD(2014) Work-efficient parallel GPU methods for sin-
gle-source shortest paths. In: 2014 IEEE 28th International Conference on Parallel and Distributed
Processing Symposium, pp 349–359. IEEE

 23. Geil A, Wang Y, Owens JD (2014) WTF, GPU! computing Twitter’s who-to-follow on the GPU. In:
Proceedings of the Second ACM Conference on Online Social Networks, pp 63–68. ACM

 24. Bell N, Garland M (2009) Implementing sparse matrix-vector multiplication on throughput-oriented
processors. In: Proceedings of the Conference on High Performance Computing Networking, Stor-
age and Analysis, p 18. ACM

 25. Bakhoda A, Yuan GL, Fung W.W, Wong H, Aamodt TM (2009) Analyzing CUDA workloads using
a detailed GPU simulator. In: IEEE International Symposium On Performance Analysis of Systems
and Software, 2009. ISPASS 2009, pp 163–174. IEEE

 26. Li S, Ahn JH, Strong RD, Brockman JB, Tullsen DM, Jouppi NP (2009) MCPAT: an integrated
power, area, and timing modeling framework for multicore and manycore architectures. In: 42nd
Annual IEEE/ACM International Symposium On Microarchitecture, 2009. MICRO-42, pp 469–
480. IEEE

 27. Leng J, Hetherington T, ElTantawy A, Gilani S, Kim NS, Aamodt TM, Reddi VJ (2013) Gpuwattch:
enabling energy optimizations in gpgpus. In: ACM SIGARCH Computer Architecture News, vol.
41, pp 487–498. ACM

 28. Davis TA, Hu Y (2011) The university of florida sparse matrix collection. ACM Trans Math Softw
(TOMS) 38(1):1

http://arxiv.org/abs/1408.2041

1 3

Irregular accesses reorder unit: improving GPGPU memory…

 29. DIMACS: 10th DIMACS Implementation Challenge—Graph Partitioning and Graph Clustering
(2010). https:// www. cc. gatech. edu/ dimac s10/

 30. Khorasani F, Gupta R, Bhuyan LN (2015) Scalable SIMD-efficient graph processing on GPUs. In:
2015 International Conference on Parallel Architecture and Compilation (PACT), pp 39–50. IEEE

 31. Fung WW, Sham I, Yuan G, Aamodt TM (2007) Dynamic warp formation and scheduling for effi-
cient GPU control flow. In: 40th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO 2007), pp 407–420. IEEE

 32. Gharaibeh A, Reza T, Santos-Neto E, Costa LB, Sallinen S, Ripeanu M (2013) Efficient large-scale
graph processing on hybrid CPU and GPU systems. arXiv preprint arXiv: 1312. 3018

 33. Gera P, Kim H, Sao P, Kim H, Bader D (2020) Traversing large graphs on GPUs with unified mem-
ory. Proc VLDB Endow 13(7):1119–1133

 34. Pichel JC, Rivera FF, Fernández M, Rodríguez A (2012) Optimization of sparse matrix-vector mul-
tiplication using reordering techniques on GPUs. Microprocess Microsyst 36(2):65–77

 35. Rivera C, Chen J, Xiong N, Song SL, Tao D (2020) Ism2: optimizing irregular-shaped matrix-
matrix multiplication on GPUs. arXiv preprint arXiv: 2002. 03258

 36. Jiang P, Hong C, Agrawal G (2020) A novel data transformation and execution strategy for acceler-
ating sparse matrix multiplication on GPUs. In: Proceedings of the 25th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, pp 376–388

 37. Wu B, Zhao Z, Zhang EZ, Jiang Y, Shen X (2013) Complexity analysis and algorithm design for
reorganizing data to minimize non-coalesced memory accesses on GPU. ACM SIGPLAN Notices
48(8):57–68

 38. Kumar S, Zhao H, Shriraman A, Matthews E, Dwarkadas S, Shannon L (2012) Amoeba-cache:
adaptive blocks for eliminating waste in the memory hierarchy. In: 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture, pp 376–388. IEEE

 39. Li B, Sun J, Annavaram M, Kim NS (2017) Elastic-cache: GPU cache architecture for efficient fine-
and coarse-grained cache-line management. In: 2017 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pp 82–91. IEEE

 40. Guo H, Huang L, Lü Y, Ma S, Wang Z (2018) Dycache: dynamic multi-grain cache management for
irregular memory accesses on GPU. IEEE Access 6:38881–38891

 41. Chen X, Chang L-W, Rodrigues CI, Lv J, Wang Z, Hwu W-M (2014) Adaptive cache management
for energy-efficient GPU computing. In: 2014 47th Annual IEEE/ACM International Symposium on
Microarchitecture, pp 343–355. IEEE

 42. Rhu M, Sullivan M, Leng J, Erez M (2013) A locality-aware memory hierarchy for energy-efficient
GPU architectures. In: 2013 46th Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pp 86–98. IEEE

 43. Yan M, Hu X, Li S, Basak A, Li H, Ma X, Akgun I, Feng Y, Gu P, Deng L, Xiaochun Y, Zhimin Z,
Dongrui F, Yuan X (2019) Alleviating irregularity in graph analytics acceleration: a hardware/soft-
ware co-design approach. In: Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, pp 615–628

 44. Lakshminarayana NB, Kim H (2014) Spare register aware prefetching for graph algorithms on
GPUs. In: 2014 IEEE 20th International Symposium on High Performance Computer Architecture
(HPCA), pp 614–625 . IEEE

 45. Jamshidi DA, Samadi M, Mahlke S (2014) D2ma: accelerating coarse-grained data transfer for
GPUs. In: Proceedings of the 23rd International Conference on Parallel Architectures and Compila-
tion, pp 431–442

 46. Komuravelli R, Sinclair MD, Alsop J, Huzaifa M, Kotsifakou M, Srivastava P, Adve SV, Adve
VS (2015) Stash: have your scratchpad and cache it too. ACM SIGARCH Comput Arch News
43(3S):707–719

 47. Zhou J, Liu S, Guo Q, Zhou X, Zhi T, Liu D, Wang C, Zhou X, Chen Y, Chen T (2017) TUNAO:
a high-performance and energy-efficient reconfigurable accelerator for graph processing. In: 2017
17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), pp
731–734. IEEE

 48. Ham T.J, Wu L, Sundaram N, Satish N, Martonosi M (2016) Graphicionado: a high-performance
and energy-efficient accelerator for graph analytics. In: 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pp 1–13. IEEE

 49. Dai G, Huang T, Chi Y, Zhao J, Sun G, Liu Y, Wang Y, Xie Y, Yang H (2018) Graphh: a process-
ing-in-memory architecture for large-scale graph processing. IEEE Trans Comput Aided Des Integr
Circuits Syst 38(4):640–653

https://www.cc.gatech.edu/dimacs10/
http://arxiv.org/abs/1312.3018
http://arxiv.org/abs/2002.03258

 A. Segura et al.

1 3

Authors and Affiliations

Albert Segura1 · Jose Maria Arnau1 · Antonio Gonzalez1

 Jose Maria Arnau
 jarnau@ac.upc.edu

 Antonio Gonzalez
 antonio@ac.upc.edu

1 Departament d’Arquitectura de Computadors, Universitat Politècnica de Catalunya (UPC),
Campus Nord, Jordi Girona 1-3, 08034 Barcelona, Spain

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://orcid.org/0000-0001-5084-9246

	Irregular accesses reorder unit: improving GPGPU memory coalescing for graph-based workloads
	Abstract
	1 Introduction
	2 Irregular applications on GPU architectures
	2.1 Graph processing on GPGPU architectures

	3 Irregular accesses reorder unit
	3.1 GPU integration
	3.2 Hardware overview and processing
	3.2.1 Prefetching and data processing
	3.2.2 Ring and data reply

	3.3 Reordering hash

	4 IRU programmability
	4.1 IRU enabled graph applications

	5 Evaluation methodology
	6 Experimental results
	6.1 Memory pressure reduction
	6.2 Filtering effectiveness
	6.3 Performance and energy evaluation
	6.4 Area evaluation

	7 Related work
	8 Conclusions
	Acknowledgements
	References

