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Abstract
GPGPU architectures have become the dominant platform for massively paral-
lel workloads, delivering high performance and energy efficiency for popular 
applications such as machine learning, computer vision or self-driving cars. How-
ever, irregular applications, such as graph processing, fail to fully exploit GPGPU 
resources due to their divergent memory accesses that saturate the memory hierar-
chy. To reduce the pressure on the memory subsystem for divergent memory-inten-
sive applications, programmers must take into account SIMT execution model and 
memory coalescing in GPGPUs, devoting significant efforts in complex optimiza-
tion techniques. Despite these efforts, we show that irregular graph processing still 
suffers from low GPGPU performance. We observe that in many irregular applica-
tions the mapping of data to threads can be safely changed. In other words, it is 
possible to relax the strict relationship between thread and data processed to reduce 
memory divergence. Based on this observation, we propose the Irregular accesses 
Reorder Unit (IRU), a novel hardware extension tightly integrated in the GPGPU 
pipeline. The IRU reorders data processed by the threads on irregular accesses to 
improve memory coalescing, i.e., it tries to assign data elements to threads as to 
produce coalesced accesses in SIMT groups. Furthermore, the IRU is capable of 
filtering and merging duplicated accesses, significantly reducing the workload. Pro-
grammers can easily utilize the IRU with a simple API, or let the compiler issue 
instructions from our extended ISA. We evaluate our proposal for state-of-the-art 
graph-based algorithms and a wide selection of applications. Results show that the 
IRU achieves a memory coalescing improvement of 1.32x and a 46% reduction in 
the overall traffic in the memory hierarchy, which results in 1.33x speedup and 13% 
energy savings on average, while incurring in a small 5.6% area overhead.
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1 Introduction

Since its popularization over the last decade, GPGPU architectures have enabled a 
broad domain of new applications by boosting linear algebra computations [1, 2], 
empowering Big Data analytics [3] and deploying Machine Learning [4] in numer-
ous fields such as speech recognition [5], image processing [6] and self-driving cars 
[7]. GPGPU architectures excel at processing highly parallel throughput oriented 
applications, which exhibit regular execution and memory access patterns. However, 
applications that show irregular memory accesses or branch divergence suffer from 
severe underutilization of GPGPU’s functional units [8]. Graph processing algo-
rithms are a popular example of irregular applications. Although graph-processing 
can potentially benefit from highly parallel architectures, they process unstructured 
and irregular data, which results in sparse and unpredictable memory access pat-
terns [9]. In addition, graph processing shows extremely low computation to mem-
ory access ratio [10], which further hinders GPGPU efficiency.

GPGPU programming models such as CUDA employ threads to exploit paral-
lelism, each thread processing its own set of data while synchronizing with the rest 
to perform complex behaviors determined by the algorithm. The GPGPU pipeline 
handles the execution of warps, i.e., groups of threads in lock-step execution. The 
number of threads and the ability to coalesce the memory accesses within a warp 
are some of the key factors that determine the utilization of the GPU resources. The 
simplest way to exploit parallelism is to instantiate as many threads as data elements 
to process and directly assign each element to a given thread, as seen in Fig. 1a. For 
a regular program, this assignment is highly effective at achieving high utilization of 
resources without inefficiencies (e.g., vector addition, where each thread processes 
consecutive data in memory achieving regular behavior). For programs exhibiting 
irregular memory accesses, this simple assignment might cause utilization degrada-
tion, as the GPU is unable to achieve high memory coalescing in a warp, resulting in 
poor data locality (e.g., graph processing, where each thread processes a given node 
of the graph and has to fetch its adjacent ones).

To mitigate the aforementioned problems, GPGPU algorithms have to care-
fully consider the underlying hardware and adapt the algorithm to minimize 

(a) Baseline GPU (b) GPU with IRU

Fig. 1  Memory Coalescing improvement achieved by employing the IRU  (b) to reorder data elements 
that generate irregular accesses versus a Baseline GPU (a) execution. Assuming warp size of four threads 
for the sake of simplicity
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branch divergence and improve memory coalescing, among other performance 
optimizations [11, 12]. Graph algorithms employ many such techniques, such 
as scan algorithms [13] which are leveraged for data compaction [14] that gath-
ers data to be accessed sparsely into a compacted data array, improving local-
ity and memory coalescing. These techniques shift programmers effort from the 
algorithm to a hardware conscious programming requiring sound knowledge of 
the microarchitecture, significantly increasing development time while hampering 
code portability. Another approach is to cleverly organize threads [15] in a thread 
block to collaborate among themselves with the processing of unbalanced data 
entries, which leads to reduced branch divergence and increased overall resources 
utilization. While these techniques ameliorate the shortcomings of graph process-
ing and irregular access applications on GPGPU architectures, they clearly shift 
the programmers effort from the algorithm to a hardware conscious programming 
requiring sound knowledge of it and hampering code portability.

We claim that GPGPU programming models impose restrictions that hinder 
full resource utilization of irregular applications for several reasons. First, irregu-
lar programs such as graph processing algorithms consist of sparse and irregu-
lar memory accesses which have poor data locality and result in low memory 
coalescing, producing intra-warp memory divergence and significantly reducing 
GPU efficiency. Second, these issues are hard to improve without significant pro-
grammer effort to modify algorithms and data structures in order to better utilize 
the underlying hardware, which in some cases may not even be feasible and thus 
effectively limit the achievable performance. Ultimately, the programmer has to 
take into consideration ways to rearrange the data or change the mapping of data 
elements to threads to achieve better memory coalescing and higher GPU utiliza-
tion, even if the relation of which threads process what data might not even be a 
restriction imposed by the algorithm, since the threads are primarily the means to 
expose parallelism. Since GPGPU architectures and programming models are not 
designed to efficiently support sparse irregular programs, we propose to extend 
the GPU architecture to improve these workloads with a set of new instructions 
and their corresponding hardware support. We call this hardware the Irregular 
accesses Reorder Unit (IRU). The IRU is a small unit tightly integrated in the 
GPU, that is accessible through a set of new ISA instructions which can be used 
by the compiler or the programmer through a simple high-level API.

Our key idea is to relax the strict relation between a thread and the data that 
it processes. This allows the IRU to reorder the data serviced to the threads, i.e., 
to decide at run-time the mapping between threads and data elements to largely 
improve memory coalescing. Figure 1 shows conceptually how the IRU assigns 
data to the threads and achieves an improvement in memory coalescing against 
the baseline GPU. The IRU mapping improves the effectiveness of the memory 
coalescing hardware and the L1 data cache, as it results in better coalescing and 
locality, with subsequent improvements in the entire memory hierarchy, result-
ing in higher GPU utilization for irregular applications. In addition, the IRU per-
forms simple preprocessing on the data (i.e., filtering repeated elements), which 
reduces workload and allows for better utilization and further performance and 
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energy improvements. In conclusion, the IRU optimizes irregular accesses requir-
ing minimal support from programmers.

This paper focuses on improving the performance of irregular applications, 
such as graph processing, on GPGPU architectures. Its main contributions are the 
following:

• We characterize the degree of memory coalescing and GPU utilization of mod-
ern graph-based applications. Our analysis shows that memory coalescing can be 
as high as 4 accesses per warp and GPU utilization as low as 13.5%.

• We propose the IRU, a novel hardware unit integrated in the GPGPU architecture 
enabling improved performance of irregular accesses by reordering data serviced 
to each thread. We further extend the IRU to filter repeated elements, largely 
reducing GPU redundant workload for graph applications.

• We propose an ISA extension and API showing how modern graph-based appli-
cations can easily leverage the IRU.

• The GPU architecture with our IRU improves memory coalescing by a factor of 
1.32x and reduces NoC traffic by 46%, which result in 1.33x speedup and 13% 
energy savings on average for a diverse set of graph-based applications. The IRU 
represents a small area overhead of 5.6%.

The remainder of this paper is organized as follows. Section 2 reviews the challenges 
of irregular graph processing on GPGPU architectures. Section 3 presents the archi-
tecture of the IRU, and Sect. 4 describes its API and usage for graph applications. 
Section 5 describes the methodology, and Sect. 6 presents the evaluation. Section 7 
reviews relevant related work, and, finally, Sect. 8 sums up the main conclusions.

2  Irregular applications on GPU architectures

GPGPU architectures are tailored for compute intensive applications that feature 
regular execution and regular memory access patterns. GPU’s high IPC is enabled 
by its Single-Instruction, Multiple-Threads (SIMT) pipeline, leveraging the advan-
tage of decoding a single instruction for multiple threads, each operating on differ-
ent data. The threads in a warp execute in a lock-step manner and, hence, to fully 
utilize the Execution Units (EU) applications must exhibit regular access patterns 
and control flow. Furthermore, to sustain high IPC, significant memory bandwidth 
is required which is accomplished with high Memory-Level Parallelism (MLP) lev-
eraging warp-level coalescing and concurrent execution of many threads, increasing 
memory bandwidth at the expenses of increased latency.

On the other hand, for applications that show irregular behavior with unpredict-
able memory access patterns, GPGPU architectures are unable to provide enough 
memory bandwidth due to a huge portion of the threads generating uncoalesced 
accesses, which further hampers performance and results in low utilization of the 
EUs due to increased stalls. In the worst case, a warp-level memory instruction 
requires 32 memory accesses (assuming warp size of 32 threads), as each thread 
may access a different cache line, whereas a perfectly coalesced warp-level memory 
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instruction only requires one memory request (i.e., in case all the threads access the 
same cache line1). Therefore, an irregular application may increase the requests to 
the memory subsystem by 32x compared to an application with regular access pat-
terns and perfect memory coalescing.

Not surprisingly, irregular applications increase the utilization of the LD/ST unit, 
the latency of memory instructions and the pressure on the L1 and the whole mem-
ory hierarchy. In addition, every warp instruction requires more resources to handle 
misses, such as miss status holding registers (MSHRs) and entries in the miss queue, 
a problem aggravated by GPUs small capacity ratio of cache lines per thread com-
pared to CPUs. All these factors significantly increase the contention and conflict/
capacity misses on the L1. Finally, the interconnection traffic also increases, L2 suf-
fers from similar problems to the L1, and main memory accesses increase as a con-
sequence of increased L2 misses.

Significant changes have to be applied to an algorithm and its data structures in 
order to reduce irregular accesses’ overheads, and improve GPU efficiency. Generic 
approaches include the use of the shared memory in the Streaming Multiprocessors 
(SM) of the GPU, providing reduced latency and banked accesses of uncoalesced 
requests. Other approaches favor merging kernels, avoiding redundant memory 
requests at the cost of higher register usage. Graph algorithms use techniques such as 
data compaction [14], which reduce sparse accesses and improve locality by gather-
ing sparse data in a compacted data array, as well as load balancing techniques [16] 
that leverage collaborating threads which reduce branch and memory divergence.

Overall, irregular applications benefit from the high performance delivered by 
the massive parallelism of GPU architectures, but the architecture has significant 
bottlenecks that result in low performance for irregular algorithms. Significant pro-
grammer effort, code complexity and underlying hardware knowledge are required 
to create efficient GPU code for irregular applications such as graph processing 
algorithms.

2.1  Graph processing on GPGPU architectures

Many problems in Machine Learning [17, 18] and Data Analytics [19] are modeled 
using graphs, which represent relationships between the elements on a set of data. 
GPGPU architectures enable fast parallel exploration and processing of the nodes 
and connections (i.e., edges) of a graph. Nonetheless, graph exploration is low-com-
putation intensive [10], unstructured and irregular [20, 21] with sparse, irregular and 
highly unpredictable access patterns due to the irregular nature of the relationships 
expressed in a graph.

A typical GPGPU graph processing algorithm starts in a given node and moves 
to adjacent nodes by traversing, or processing, that node edges. At this point, a new 
frontier (i.e., set of nodes or edges) is ready to be explored continuing this process 

1 If a sectored cache is used, perfect coalescing is only achieve if all the threads in a warp access the 
same sector. Note that if multiple sectors of a line are accessed, then multiple requests will be generated 
even if all the threads access the same cache line.
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iteratively until the whole connected graph is explored, or until the algorithm dic-
tates it. Figure  2 shows how this process unfolds in a given iteration; each ele-
ment of the edges frontier array (i.e., indices) points to the position to access in the 
nodes array to fetch for the next frontier data and continue the graph exploration. 
The pseudo-code shows the type of irregular access performed, which is an intrin-
sic part of graph exploration algorithms and a cause of the previously mentioned 
memory divergence. In this work, we focus on common graph algorithms, in par-
ticular Breadth-First Search (BFS) [15], Single-Source Shortest Paths (SSSP) [22] 
and PageRank (PR) [23].

GPGPU graph processing leverages many strategies to improve performance. 
First, data structures that efficiently represent the graph data in a compact man-
ner using the Compressed Sparse Row (CSR) [24] format. Second, to cut down 
on sparse accesses, stream compaction algorithms [14] are used to gather data in 
contiguous memory improving data locality and coalescing. Finally, load balanc-
ing techniques [15] are used to leverage the threads in warps and thread blocks to 
cooperatively process data from the more processing demanding nodes, since the 
irregular graph connectivity of the nodes leads to nodes that largely differ in the 
number of edges. Although these techniques improve GPGPU efficiency for graph 
processing, significant changes are required to implement these optimizations and 
reduce the GPGPU architecture bottlenecks for irregular applications. Despite all 
these efforts, we observe that modern graph applications experience significantly 
low memory coalescing of 4 accesses per warp, leading to a low 13.5% utilization of 
GPU resources. In the next section, we present a novel hardware unit that improves 
memory coalescing and GPU performance for irregular workloads, while requiring 
minimal changes in the applications.

3  Irregular accesses reorder unit

In this section, we introduce the Irregular accesses Reorder Unit (IRU), which 
improves performance of irregular workloads such as graph applications on GPGPU 
architectures. Low GPGPU performance for graph processing is mainly due to the 
uncoalesced memory accesses that result in large memory traffic and put significant 
pressure on the memory hierarchy. Our proposal improves GPGPU performance for 
graph-processing by assigning data elements (nodes/edges) that produce coalesced 

for i in range(0, N):
idx = edges_frontier[i]
out[i] = nodes_graph[idx]

Fig. 2  The graph edges frontier produces irregular memory requests when accessing the nodes data in 
the graph. In a GPGPU, each thread may process one of the N elements in the edges frontier, i.e., per-
form one iteration of the loop. In this case, the access to edges_frontier shows high memory coalescing, 
as consecutive threads access consecutive memory locations. However, the access to nodes_graph array 
may result in high memory divergence depending on the indices
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memory accesses to the threads in the same warp. This dynamic reordering of ele-
ments is done in hardware, and it can be easily used by programmers, that only have 
to indicate when it is safe to change the mapping of data elements to threads.

In this paper, we propose to extend the GPGPU with the IRU to reduce the over-
heads caused by irregular accesses. The IRU is a compact and efficient hardware 
unit integrated into the Memory Partition (MP) of the GPU architecture as shown 
in Fig. 4a, which incurs in very small energy and area overheads. The IRU leverages 

Fig. 3  Warp average normalized execution with and without IRU. The dark bar indicates execution time 
until the target load is serviced, and the light bar from service to finalization. Processing a load instruc-
tion with the IRU is slower as it has to reorder data elements to identify indices that target the same 
cache line. However, once the indices are sent to the SMs, the remaining execution is faster as subse-
quent memory accesses used the IRU-prepared indices that result in higher memory coalescing

(a) (b) (c)

(e)(d)

Fig. 4  IRU integration with the GPU at different levels: architectural (a), program model (b) and execu-
tion (c–e). The execution shows how the program (b) works on the Baseline and the IRU-enhanced GPU 
with two warps and data from Fig. 1
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the observation that GPU programs employ threads to convey parallelism; being in 
many cases independent of the data that they process. The main goal of the IRU 
is to process, reorder and redistribute the indices used to perform irregular mem-
ory accesses. The reordering collocates indices that access the same memory block 
and services them to a requesting warp, reducing the memory divergence of irregu-
lar accesses. In turn, the improved memory coalescing reduces congestion of the 
resources of the LD/ST unit, L1, interconnection, L2 and main memory, signifi-
cantly reducing the pressure on the memory subsystem. In addition, the reordering 
is performed across all the indices accessed by all the SMs, and hence, collocating 
irregular accesses potentially gathers data obtained by irregular accesses in a single 
or fewer SMs, thus further reducing interconnection traffic and L1 data thrashing.

Figure 3 shows the average normalized execution of a warp in a baseline GPU 
against one with the IRU. The dark bar indicates the execution time until the load 
processed and reordered by the IRU is serviced, while the light bar shows the nor-
malized time until finalization. As it can be seen, processing a load instruction 
through the IRU is slower as it has to reorder the data elements to identify indices 
that target the same cache line. Furthermore, it also identifies and filters duplicated 
elements. For this reason, the start-to-target-load time in Fig. 3 is larger with the 
IRU than in the baseline GPU. However, once the indices are reordered and sent to 
the warps, the remaining execution is significantly faster as memory coalescing is 
largely improved for the subsequent memory accesses. Therefore, the low overhead 
incurred by the IRU servicing the load is effectively offset by the performance gain 
achieved from the reduction in the overheads due to the memory divergence.

The IRU processes the indices of a target irregular instruction, with the objective 
to improve its coalescing. Additionally, the elements processed can contain more 
data than just the indices, as mandated by the API described in Sect. 4. While these 
data are not used for the IRU coalescing logic, it is responsible to fetch and send 
these additional data to the SM.

3.1  GPU integration

The IRU integration into the GPU is covered in Fig. 4, showing architectural 4a, pro-
gramming 4b and execution 4c–d integration. The execution shows how the Baseline 
and the IRU-modified GPU programs in Fig. 4b operate with the two warps and data 
from Fig. 1. The Baseline program performs a regular access ➁ to gather indices 
that are then used for an irregular access. The IRU-modified code performs the same 
operation but using the IRU hardware with the load_iru operation ➁, which is part 
of the IRU API presented in Sect. 4. The baseline code is executed by the GPU as 
follows. First, the two warps retrieve the indices performing regular accesses to the 
L1, i.e., consecutive threads in a warp access consecutive memory addresses. After-
ward, Fig. 4e shows how they perform irregular accesses to the L1 with the retrieved 
indices which, due to the high divergence, result in many memory requests ➂.

In contrast, the IRU program first introduces a configuration step performed on 
the host, shown in Fig. 4c, that provides data of the irregular accesses to optimize. 
The configuration required for this program consists of the base address and data 
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type of the irregular accessed data, and the indices array and total number of irregu-
lar accesses. Further, IRU capabilities are enabled and used with optional param-
eters employed on overloaded functions, reviewed in Sect. 4. Next, when the ker-
nel execution starts, the IRU triggers the prefetching of the indices from L2 and 
memory, which are then automatically reordered in the IRU hash. The IRU activity 
is overlapped with the execution of the kernel and disabled when all the data are 
processed. Furthermore, the IRU is disabled for kernels that do not require reorder-
ing indices.

Regular execution proceeds until encountering the load_iru operation, at which 
point the warps retrieve the indices performing requests directly to the IRU, bypass-
ing the L1 as seen in Fig. 4d. The IRU replies with reordered indices either instantly, 
if 32 indices that target the same cache line are available, or otherwise after a time-
out to avoid starvation. In case the timeout is triggered, the 32 indices will not be 
collocated to the same cache line, but the IRU will do the best attempt to provide 
indices that result in the lowest memory divergence with the available elements. 
Finally, the warps perform the irregular access that was the target of the optimiza-
tion ➃. This access is performed with the IRU reordered indices which achieves 
reduced divergence, performing less accesses than the baseline program, as depicted 
in Fig. 4e. Note that we assume a warp size of 4 threads in Fig. 4e for the sake of 
simplicity, but we use warp size of 32 for our experimental evaluation.

The IRU is first configured by the programmer with a host function, described in 
Sect. 4, that provides the IRU information about the data that has to be reordered. 
Once configured, the kernel is launched and the IRU begins its operation prefetch-
ing the required data and reordering the elements according to the configuration, 
with the aim of maximizing memory coalescing. IRU operation is autonomous, and 
no further programmer intervention is required to reorder the elements. The SM 
kernel retrieves the reordered indices used by the irregular accesses using the API 
described in Sect. 4, requiring minimal changes to the code.

3.2  Hardware overview and processing

The hardware architecture of the IRU is shown in Fig. 5a. The main purpose of the 
IRU, which is to reorder indices to improve memory coalescing, is accomplished 
with the use of a hash table located inside the Reordering Hash block. The IRU is 
integrated inside the memory partitions of the GPGPU architecture, i.e., together 
with the L2 cache partition, the atomic operations unit and the memory controller. 
GPUs include multiple memory partitions, in our proposal each partition will con-
tain an instance of the IRU. Instead of having multiple private hash tables, there is 
a single logical hash table partitioned among the IRUs. This motivates the inclusion 
of a ring interconnection between the IRUs to forward the data to the correspond-
ing partition of the logical hash table. We have observed that the degree of memory 
coalescing is significantly affected if each IRU hash table is private and separated; 
which would constrain IRUs reordering scope to data from a single memory par-
tition. Finally, requests are issued to the L2 to exploit data locality among kernel 



 A. Segura et al.

1 3

executions. Alternatively, requests can be configured to bypass L2, which could be 
beneficial for streaming kernels.

The overall internal processing of the IRU is shown in Fig. 5. The figure covers 
a general overview of the internal IRU architecture and the detailed step by step 
working of the most relevant components of the IRU covering: configuration and 
prefetching (5b), data and requests retrieval (5c), ring interconnection interaction 
(5d) and requests reply (5e).

3.2.1  Prefetching and data processing

The IRU Controller is initialized by the Host by executing the configure_iru func-
tion with the corresponding data ➊. Later the Prefetcher uses this data to determine 
the addresses to prefetch when the GPU kernel starts execution ➋. The Prefetcher 
issues a limited number of on-the-fly prefetch requests to avoid saturating memory 
bandwidth. Each IRU only prefetches information from its corresponding memory 
partition. In Fig. 5, the first four elements from main memory are fetched by IRU 0, 
while the next four by IRU 1. When a reply comes back, the retrieved data are stored 
in a FIFO queue to be later processed.

Afterward, the Classifier block processes the prefetched data ➌ by splitting it into 
smaller FIFO queues, with a throughput of one element per cycle on each queue. 
The smaller FIFO queues contain the elements that will be inserted in the hash or 
forwarded through the ring. A hashing function of the element is used to determine 
which hash table entry it is mapped to and, therefore, if it will access a local bank or 
must be sent through the ring. Finally, the Data Processing block retrieves elements 

(a)
(d) (e)

(b) (c)

Fig. 5  Architecture and the internal processing performed by the IRU. The indices in memory (from 
Fig. 1) are processed by two IRU partitions (IRU 0 shown), which are later replied to a request coming 
from Warp 0 in SM 0
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from both the smaller FIFO queues and the ring, prioritizing the latter, and forwards 
them to the ring or inserts them into the local hash table ➍. In Fig. 5e, the elements 
labeled A are inserted into the local hash table, as they are determined to access the 
same memory block.

Meanwhile, requests from the SMs can be received at any time which are then 
processed by the Data Replier ➎. This request originates directly from the SM (i.e., 
bypassing the L1) and are generated by the extended ISA load_iru operations, that 
are responsible to retrieve the IRU processed data. Their information is stored until 
enough data are available to satisfy the request or until a timeout is reached.

3.2.2  Ring and data reply

Due to the partition of the reordering hash table, the hash function of the elements 
fetched from a memory partition can require that element to be inserted in another 
IRU partition. The Ring Interconnection allows to receive and send elements to the 
neighbor partitions at every cycle. In Fig. 5d, the elements labeled B are determined 
to correspond to another IRU partition and so are inserted in the ring ➏. Meanwhile, 
data from the neighbor partition are received (indices A and C correspond to IRU 
0) ➐.

Lastly, the elements corresponding to this IRU partition are gathered from the 
ring and inserted into the reordering hash table. When the Data Replier detects a 
hash entry that is complete, or enough data are available to reply a request, the old-
est request is replied back to the SMs with that entry’s reordered elements ➑, and 
the data are evicted from the hash table. The data used for the reply (four A) are the 
indices used for the irregular access being optimized. Additionally, more data might 
be processed per element, requiring at most two replies to be issued, as some algo-
rithms require extra data associated with each index.

Additionally, a timeout is employed to avoid excessively delaying a request. Once 
the timeout is reached, it then fetches data from the hash table with the best coa-
lesced data entry present and sends the response once enough data to satisfy the 
request is retrieved, effectively trading-off worse coalescing for lower latency. Fur-
thermore, simple control logic is added to the SM and IRU partitions to handle 
balancing issues (i.e between request and entries ready). Each SM distributes the 
requests evenly across the different IRUs in the memory partitions, and requests can 
be replied by IRU partitions other than the original. Finally, when no more data are 
left to be inserted into the IRU, the Data Replier replies to the SM by intelligently 
merging the remaining hash entries.

3.3  Reordering hash

The Reordering Hash contains a physical partition of the global logical hash, which 
is direct mapped and multi-banked. Each entry holds up to 32 elements that are 
inserted into the entry in subsequent locations at every hash insertion, as depicted 
in Fig.  6. Furthermore, the hash function key that points to an entry is generated 
from the value being inserted into the hash table entry. The computation of the hash 
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function collocates in a single hash table entry the elements that will generate mem-
ory fetches that target the same memory block, which provides the memory coalesc-
ing improvement achieved with the IRU.

Unlike a regular hash table, an insertion allows to merge elements into a hash 
entry even if the tag does not match. The inherent drawback of this decision is 
that the elements that a hash table entry collocates might actually not access the 
same memory block, and thus, the memory coalescing that it can achieve will not 
be optimal. Nonetheless, this design decision largely reduces hardware complexity. 
Furthermore, a good dispersion hash function and properly sized hash tables limit 
the amount of conflicts and the effects on memory coalescing. Ultimately, when an 
entry is completely filled with 32 elements, no more data can be inserted to it. At 
this point, it has 32 collocated elements that potentially will access the same mem-
ory block when the program uses them to perform an irregular access, unless there 
were conflicts. Note that some of these conflicting elements might collocate among 
themselves, thus not severely impairing memory coalescing.

Some API operations described in Sect.  4 require additional comparators or 
adders to be used in a hash table insertion. The additional data that the elements 
might have are processed by this hardware, which effectively merges or filters an 
element present in the hash table with the one being inserted. Since these operations 
will filter out elements, some threads that requested data will not receive any ele-
ment, which is handled by the Data Replier and exposed to the programmer with the 
API.

4  IRU programmability

Ease of programmability is a crucial aspect to write efficient parallel programs, 
a reason for which toolkits such as CUDA are very successful. As described in 
Sect. 2, efficient irregular programs require complex optimization techniques. The 
IRU has been designed to be easily programmable, so existing codes can exploit 
this new hardware unit with minimal changes. The IRU extends the GPGPU ISA to 
support memory load operations that fetch data from the IRU, which require small 
changes to the pipeline to decode these instructions, in addition to minor changes to 
the LD/ST unit to route these requests to the IRU. To avoid directly using assembly 
instructions, we provide a simple API with functions that can be called from CUDA 
kernels. Furthermore, since the changes to the code are minimal, a compiler that 

Fig. 6  Hash table insertion 
diagram showcasing how the 
element is used for the hashing 
function and is stored in the 
hash table data
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supports the ISA extensions can issue the new instructions when appropriate, free-
ing the programmer from performing the optimization effort and delivering more 
code for irregular applications.

IRU’s main optimization is the reordering of indices fetched from memory that 
are later used for irregular accesses. This optimization is based on the premise that 
the assignment of data to the threads can be safely changed, i.e., each data element 
(e.g., node/edge in a graph application) can be processed by any thread. Conse-
quently, to be able to correctly utilize the IRU for this optimization, the program-
mer has to guarantee that the reordering can be applied correctly. The API provides 
additional functionality used to indicate when it is safe to replace a regular load by 
an IRU load instruction.

The baseline functionality provided by the API and IRU hardware supports reor-
dering of an array of 24-bit indices. Additionally, a secondary 32-bit array can be 
processed simultaneously, yet the reordering is based on the indices array as to 
improve the coalescing achieved when performing an irregular access. The data (i.e., 
index and entry in the secondary array) provided to the threads is reordered applying 
the same reordering to both indices and secondary array, maintaining the original 
pair of index and secondary data. Figure 7 shows how the input data, first two rows, 
are reordered in the output data, last two rows. The reordering is based on the array 
of indices, the edge frontier, and every edge is kept with its corresponding weight. 
This secondary array can be used to process attributes or extra data of the elements 
being processed. It might be the case that more than a single additional array has to 
be processed in some application. In this case, the reordering operation can return in 
which position in the original array the reordered element was located. This position 
can be used to fetch any additional attributes required from multiple arrays.

Graph-based algorithms process many nodes and edges in parallel. Since it is 
common that several edges lead to the same destination node, many duplicated nodes 
may appear in the node frontier, producing redundant work in subsequent iterations 
of the algorithm. This additional work is usually benign as the program implements 
filtering techniques, which are effective yet computationally costly due to synchroni-
zation requirements. To help the programmer remove this additional workload, the 
IRU is extended to provide filtering or merging of elements (i.e., pair of index and 
attribute). The IRU can easily detect duplicated indices that are processed simulta-
neously, and so it can remove them or might perform some operation to merge both 

Fig. 7  IRU processing of two 
arrays with filtering enabled. 
The edges frontier represents 
the array of indices, while the 
weight frontier is the secondary 
array. Filtering is an additional 
operation of the IRU that can be 
enabled to remove duplicated 
elements in order to reduce 
workload
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elements. The operations supported by the IRU are integer comparison and floating 
point addition. Figure 7 shows the merging of two indices into one on the output 
data by adding their attributes in the secondary array. Filtering out elements causes 
some threads to not receive any data, and so we extend the API to indicate if a given 
thread’s data have been filtered out. IRU groups the disabled threads in warps rather 
than distributing them across many warps, this approach allows to minimize branch 
divergence, remove redundant work and improve performance.

The IRU API, shown in Fig.  8, provides two main functions: configure_iru , 
used from the host to configure the IRU, and load_iru , used inside the CUDA ker-
nel to retrieve reordered data from the IRU. At the start of kernel execution, the 
configure_iru function is called to provide all the parameters of the data that will 
be processed. The required parameters are: target array base address and data type 
width, both parameters used to configure the offset to be applied to the indices as to 
compute the coalescing required; the indices array is required too, which is the main 
data reordered; and finally, the number of elements in the indices array. Optional 
parameters include the additional secondary array, reordered together with the indi-
ces array, and the optional filtering operation performed. The memory load opera-
tion replaces regular load instructions, retrieves the original position of the indices 
and indicates if a thread is disabled.

4.1  IRU enabled graph applications

The previously described API enables the instrumentation of state-of-the-art graph-
based algorithms such as BFS, SSSP and PR. Although we use push graph imple-
mentations, the IRU is not specifically targeting push or pull. The ease of use of 
our API allows very simple instrumentation an minimal code changes while provid-
ing efficient memory coalescing improvements. The following examples show how 
load_iru can be used within GPGPU kernels to easily replace existing code.

The basic functionality of the IRU is a good fit for the BFS algorithm as illus-
trated in Fig. 9. The indices found in the edge_frontier array are used to access the 
label array, resulting in irregular memory accesses and poor memory coalescing. 
The programmer can easily replace the previous instruction with the load_iru opera-
tion to obtain the indices in such a way that memory coalescing is improved and 
thus overall performance increases.

1 void configure_iru (
2 addr_t target_array ,
3 size_t target_array_data_type_size ,
4 addr_t indices_array , addr_t secondary_array ,
5 size_t number_elements , filter_op_t filter_op );
6

7 __device__ bool load_iru (
8 addr_t &indices_array , addr_t &secondary_array ,
9 uint32_t &position );

Fig. 8  IRU API function declarations
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The SSSP algorithm processes additional data per element; each edge has an 
associated weight value. Figure  10 shows how load_iru can handle the use of an 
additional array, while also retrieving the original position of the reordered element 
in the pos variable. Note that the algorithm requires the pos variable to be correctly 
updated with the reordered element in line 17, which is easily accomplished with 
our API extension.

Finally, the PageRank kernel shown in Fig.  11 performs additions of the ele-
ments’ weights into the label array. Utilizing the filtering/merge functionality of the 
IRU, an initial addition can be performed while the elements are being processed in 
the IRU, which allows to disable merged out threads. The load_iru function returns 
whether or not the thread has a valid element or if it has been merged out; the value 

1 __global__ void BFS_Contract (...) {
2 int pos = blockDim.x * blockIdx.x + threadIdx.x;
3 if (pos < number_elements) {
4 int edge;
5 #ifdef NOT_INSTRUMENTED
6 edge = edge_frontier[pos];
7 #elif USE_IRU
8 load_iru(edge);
9 #endif

10 label[edge] = distance;
11 }
12 }

Fig. 9  Instrumentation of a BFS Kernel using the IRU

1 __global__ void SSSP_Compaction (...) {
2 int pos = blockDim.x * blockIdx.x + threadIdx.x;
3 if (pos < number_elements) {
4 int edge , weight;
5 #ifdef NOT_INSTRUMENTED
6 edge = edge_frontier[pos];
7 weight = weight_frontier[pos];
8 #elif USE_IRU
9 load_iru(edge , weight , pos);

10 #endif
11 int old = atomicMin (& label[edge], weight);
12 if (old > weight)
13 lookup[edge] = pos;
14 }
15 }

Fig. 10  Instrumentation of an SSSP Kernel using the IRU
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in a retrieved element’s weight has the sum of those weight of the same edge. Note 
that the filtering is not complete as it merges only elements found concurrently on 
the IRU, yet it manages to filter a significant amount of duplicated elements. Over-
all, this extension allows reducing the workload of the kernel, in this case, reducing 
the number of atomicAdd required.

5  Evaluation methodology

We have implemented the IRU architecture in GPGPU-Sim 3.2 [25]. We extended 
the memory partitions in GPGPU-Sim to accurately model IRU’s hardware as 
shown in Fig. 5a. Furthermore, we extended the Streaming Multiprocessors (SMs) 
to support our new instructions.

Each partition of the IRU uses a 2 KB FIFO to buffer warp requests and 1.7 KB 
for the prefetching buffer (8 on-the-fly prefetches). A buffer of 1.2 KB is used for 
the Classifier block to determine the data destination. The ring requires a total of 2.8 
KB buffering. The main component of the IRU is the direct-mapped hash table with 
1024 sets, split in 4 physical partitions. Each partition is 2-way banked, holding 256 
sets, requiring 80 KB of total storage, significantly smaller than the 512 KB of the 
L2 partition. Table 1 summarizes the components of an IRU partition. Since the IRU 
is mostly comprised of SRAM elements without complex execution units, we model 
area and energy using CACTI [26] with a node technology of 32 nm.

GPGPU performance is modeled with GPGPU-Sim 3.2 [25], energy consumption 
and area with GPUWattch [27], both conform a state-of-the-art GPGPU simulator sys-
tem with validated performance and energy consumption against real GPU hardware. 
Both simulators configured with the parameters shown in Table 2 to model an NVIDIA 
GTX 980. To evaluate our proposal, we use state-of-the-art GPGPU implementations 

1 __global__ void PR_Contract (...) {
2 int pos = blockDim.x * blockIdx.x + threadIdx.x;
3 if (pos < number_elements) {
4 int edge; float weight;
5 bool active_thread = true;
6 #ifdef NOT_INSTRUMENTED
7 edge = edge_frontier[pos];
8 weight = weight_frontier[pos];
9 #elif USE_IRU

10 active_thread = load_iru(edge , weight);
11 #endif
12 if (active_thread)
13 atomicAdd (&label[edge], weight);
14 }
15 }

Fig. 11  Instrumentation of a PageRank Kernel using the IRU



1 3

Irregular accesses reorder unit: improving GPGPU memory…

of BFS [15], SSSP [22], and PageRank [23] graph algorithms. We run these graph pro-
cessing algorithms with datasets representative of different application domains with 
varied sizes, characteristics and degrees of connectivity, shown in Table 3 and collected 
from well-known repositories of research graph datasets [28, 29].

6  Experimental results

In this section, we evaluate the performance and energy efficiency of our IRU hard-
ware presented in Sect.  3. More specifically, we analyze how the memory hierar-
chy contention is reduced, the reduction in interconnection traffic, the improvement 

Table 1  IRU hardware 
requirements per partition

Component Require-
ments 
(KB)

Requests Buffer 2
Prefetcher Buffer 1.7
Classifier Buffer 1.2
Ring Buffer 2.8
Hash Data 80

Table 2  Parameters employed 
in the experiments to model a 
GTX 980 in GPGPU-Sim

Characteristic Configuration

GPU, Frequency NVIDIA GTX 980, 1.27GHz
Streaming Multiproc. 16 (2048 threads), Maxwell
SM Functional Units 128 EUs, 1 LD/ST per SM
SM Issue Schedulers 4 Warp Schedulers per SM
L1 data cache 32 KB, 4-assoc, 128 B lines
L2 data cache 2 MB, 8-assoc, 128 B lines
Memory Partitions 4 (4 channel GDDR5)
Main Memory 4 GB GDDR5, 224 GB/s

Table 3  Benchmark graph datasets

Graph name Description Nodes (103) Edges (106) Avg. degree

ca [28] California road network 710 3.48 9.8
cond [28] Collaboration network, arxiv.org 40 0.35 17.4
delaunay [29] Delaunay triangulation 524 3.4 12
human [28] Human gene regulatory network 22 24.6 2214
kron [29] Graph500, Synthetic Graph 262 21 156
msdoor [28] Mesh of 3D object 415 20.2 97.3
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on memory coalescing, the IRU filtering capabilities, and the overall speedup and 
energy savings of our proposed GPU+IRU with respect to the baseline GPU.

6.1  Memory pressure reduction

IRU’s main functionality is to reorder irregular accesses improving their memory 
coalescing thus reducing the overall contention in the memory hierarchy. Figure 12 
shows how the IRU consistently reduces accesses and contention on both L1 and L2 
across all graph algorithms and datasets. Accesses to L1 and L2 are reduced to as 
low as 35% and 36% for the cond benchmark on BFS and PR, respectively. Overall, 
accesses are reduced to 67% and 56% for L1 and L2 caches on average.

This important reduction comes from several factors. First, the IRU reordering 
of irregular accesses improves coalescing reducing the accesses to L1. Second, 
IRU reorders requests across SMs, so it collocates accesses of a particular memory 
block to a single SM, avoiding data replication across L1 data caches, improving hit 
ratios. Third, reduced accesses to L1 avoid capacity and conflict misses, improve 
data thrashing and consequently reduce L2 accesses. Finally, IRU filtering further 
reduces accesses by removing/merging duplicated elements, that avoids additional 
memory accesses.

L2 accesses reduction is greater than in L1 in some benchmarks for SSSP and PR 
graph algorithms. Many indices reordered by the IRU on SSSP and PR are used for 
irregular accesses performed by atomic instructions. In GPGPU-Sim atomic opera-
tions bypass the L1 and are handled at the memory partitions. IRU coalescing and 
filtering improvement for these operations reduces L2 accesses but not L1 accesses, 
explaining the larger reduction in L2 accesses compared to L1 for SSSP and PR. 
Note that atomic operations within a warp are coalesced as long as different threads 
access different parts of a cache line.

We have also analyzed the impact of the IRU in the Network-on-Chip (NoC) 
that interconnects the Streaming Multiprocessors (SM) with the Memory Partitions 
(MP). Figure 13 shows the normalized traffic in the NoC. As it can be seen, the IRU 
consistently reduces interconnection traffic across all graph algorithms and datasets. 
Traffic between SM and MP is reduced to as low as 23% for the human benchmark 
on PR, overall reducing NoC traffic to 54% of the original interconnection traffic. 

Fig. 12  Normalized accesses to L1 and L2 caches of the IRU enabled GPU system versus the Baseline 
GPU system (GTX 980 GPU with parameters shown in Table  2). Significant reductions are achieved 
across BFS, SSSP and PR graph algorithms and every dataset
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This reduction is due to several factors. First, the improved memory coalescing 
results in a more efficient use of the L1 data cache, significantly reducing the num-
ber of misses. Second, filtering also contributes to lower L2 accesses which reduces 
interconnection contention. Finally, the extended ISA instructions allow reduced 
traffic by issuing a single request to the IRU that receives two replies, whereas the 
baseline GPU would have issued two requests and two replies in order to gather data 
in different frontiers. Note that the IRU API allows to gather an index together with 
an extra attribute (e.g., weight of edge in a graph) with just one memory request as 
explained in Sect. 4.

Figure 14 shows the improvement in memory coalescing delivered by the IRU. A 
higher number indicates that more accesses are required to serve each warp memory 
request, with a maximum of 32 accesses per request, and a minimum of 1 access in 
the best scenario. The IRU improves the overall coalescing for every graph algo-
rithm from 4 to 3 accesses per memory requests on average. This improvement is 
significant given that the filtering schemes that some of the algorithms employ, 
combined with the filtering applied by the IRU, reduce the potential for coalescing 
memory requests, since filtering removes some duplicated elements whose accesses 
could be coalesced. Nonetheless, memory coalescing is significantly improved, 
reducing the pressure on the memory hierarchy.

Finally, main memory accesses are reduced by 4% due to reduced L2 misses as 
a result of reduced accesses. Overall, reordering and filtering techniques allow the 
IRU to deliver significant improvements in memory coalescing and reduce conten-
tion in multiple levels of the memory hierarchy.

Fig. 13  Normalized interconnection traffic between SM (Streaming Multiprocessors) and MP (Memory 
Partitions) for the IRU enabled GPU system over the Baseline GPU system (GTX 980 GPU with param-
eters shown in Table 2). Significant reductions are achieved across BFS, SSSP and PR graph algorithms 
and every dataset

Fig. 14  Improvement in memory coalescing achieved with the IRU over the Baseline GPU system (GTX 
980 GPU with parameters shown in Table 2). Vertical axis shows the number of memory requests sent to 
the L1 cache on average per each memory instruction
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6.2  Filtering effectiveness

The IRU hardware provides filtering capabilities without complex additional hard-
ware. Figure 15 shows the percentage of elements (i.e., indices with their adjacent 
data) processed by the IRU which are filtered out or merged. We apply the filtering 
to both SSSP and PR, achieving 23% and 79% workload filtering, respectively. On 
average, 48.5% of the elements are filtered out by the IRU. Note that this high per-
centage does not directly indicate that a similar amount of accesses to memory are 
avoided with respect to the baseline GPU, as state-of-the-art CUDA implementa-
tions of SSSP and PR include sophisticated mechanisms to filter our duplicated ele-
ments. However, in our proposed scheme the filtering is performed by the IRU hard-
ware, whereas in the baseline GPU this filtering process is done in software. Hence, 
our proposal is effective at filtering/merging duplicated elements by leveraging the 
IRU hardware that is already available for the reordering operation, avoiding costly 
software filtering schemes of graph algorithms.

6.3  Performance and energy evaluation

The IRU provides performance improvements across all algorithms and bench-
marks, as shown in Fig. 16. On average, the IRU achieves a speedup of 1.33x, with 
average speedups of 1.16x, 1.14x and 1.40x for BFS, SSSP and PR, respectively. 
PR exhibits higher speedups due to larger reduction in L2 accesses achieved by the 
filtering, which avoids costly atomic L2 accesses. SSSP achieves the lowest speedup 
due to lower filtering effectiveness. Overall, performance improvements come from 
two sources. First, the IRU improved memory coalescing by reordering of indices 
used for irregular accesses, which reduces contention on the memory hierarchy. 
Second, the IRU filtering and merging that enables further reduction in memory 
accesses and avoids wasted cycles in the functional units of the GPU due to process-
ing redundant elements.

Figure 16 also shows the energy savings achieved by the IRU, which are signifi-
cant across all graphs and datasets. On average, the IRU achieves an energy reduc-
tion of 13%, with reductions of 17%, 5% and 15% for BFS, SSSP and PR, respec-
tively. Energy savings are more limited than performance improvements since the 
IRU greatly reduces L1 and L2 accesses but achieves a more modest reduction in 
main memory accesses. Note that main memory represents a very significant por-
tion of the total energy consumed. The IRU energy overhead represents a small 0.5% 

Fig. 15  Percentage of elements 
that are filtered out in our IRU-
enabled GPU system
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of the final energy. Overall, energy savings are obtained from several sources. First, 
the reduced accesses to L1 and L2 and reduced contention in the memory hierar-
chy. Second, the reduced execution time cuts down on the static power and thus, 
the overall energy consumption of the GPU system. Third, the energy-efficient IRU 
which enables the reduction in accesses and contention and allows more efficient 
hardware-based filtering than the costly software-based mechanisms employed by 
graph applications. Finally, the IRU reordering leads to a reduction in main memory 
accesses which further reduces energy.

6.4  Area evaluation

Our evaluation of the IRU energy and area estimations indicates that the IRU 
requires a total of 23.9 mm2 when adding up all the 4 partitions of our GPU system 
with a GTX 980, each partition being 5.98 mm2 . The entire IRU represents 5.6% 
of the total GPU area. Overall, the IRU is a very compact and efficient hardware 
which manages to deliver significant performance and energy savings with small 
area requirements.

7  Related work

Irregular programs on GPGPU architectures face many challenges resulting in low 
GPU utilization and poor performance. Several previous works have thoroughly 
analyzed the causes of these inefficiencies, that boil down to control flow divergence 
and memory accesses irregularity [11, 12, 20, 21]. Nonetheless, if these issues are 
overcome, irregular applications can greatly benefit of the high parallelism that GPU 
architectures offer. Over the recent years, several works have approached the topic of 
efficient and improved irregular programs on GPGPU architectures.

Some solutions approach the branch divergence issue by providing load balancing 
solutions [15, 30] to improve utilization of execution units. Others provide thread 
remapping over warps to improve branch divergence [31]. Some memory divergence 
approaches propose modifying software data structures [9, 16, 32], whereas others 

Fig. 16  Normalized execution time and energy consumption reduction in the IRU enabled GPU with 
respect to the baseline GPU system (GTX 980 GPU with parameters shown in Table  2). Significant 
speedups and energy savings achieved across BFS, SSSP and PR graph algorithms and every dataset
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such as HALO [33] provide static reordering of a graph to improve data locality. 
Many specialized works have focused on GPU execution of irregular Sparse Matrix 
Vector Multiplication (SpMV) and Matrix Matrix Multiplication (GEMM) by pro-
posing software approaches that reorder the matrices dataset [34], and algorithms 
tailored for specific matrix data characteristics [35], and row reordering techniques 
[36] to improve data locality among processed rows. Finally, other works prove the 
NP-completeness of finding the data layouts through data repositioning that mini-
mize uncoalesced memory accesses and propose software algorithms to attain them 
[37]. These works propose methods requiring significant programming effort, as 
they require changing algorithms and data structures or profound hardware knowl-
edge. In contrast, our IRU solution requires very lightweight changes of the algo-
rithms and does not require profound knowledge of the inner working of the GPU 
memory hierarchy to improve memory coalescing and resolve contention issues.

Other approaches explore microarchitectural improvements transparent to the 
programmer, or with some minor involvement to achieve the desired result. Exten-
sive research has been done on flexible cache solutions [38–40] that adapt for fine-
grained and coarse-grained accesses while other works resort to cache bypassing 
mechanisms [41]. Works such as LAMAR [42] explore sizable GPU architecture 
and memory hierarchy modifications to detect and provide fine and coarse grained 
accesses throughout the memory system. Other works propose hybrid software and 
hardware approaches that enable data-dependent aware dynamic scheduling [43] or 
provide prefetching of irregular accesses [44] to registers to avoid early data evic-
tion. Finally, works such as D2MA [45] and Stash [46] set to provide mechanisms 
to manage global data allocation to shared memory, with the objective to increase 
capacity close to the cores and improve memory hierarchy and overall performance. 
The aforementioned works leverage hardware solutions that work around or amelio-
rate the consequences of low memory coalescing by providing mechanisms to lower 
memory contention. In contrast, our IRU provides tools to amend the cause, not the 
consequence, of the high memory contention, i.e., the poor memory coalescing. 
Intermediate approaches have explored extending the GPU architecture with custom 
purpose hardware units. SCU [8] proposes a programmable GPU hardware exten-
sion for graph processing that is tailored to stream compaction operations required 
for graph processing. Meanwhile, the GPU is employed to execute the graph pro-
cessing workload part that is most well suited for, achieving significant performance 
improvements. In comparison, the IRU is a more flexible extension, with a more 
generic and reusable API tailored to general irregular accesses patterns. Further-
more, the SCU requires significant changes in the application, since entire kernels 
are replaced by calls to the SCU, whereas other kernels must be adapted. Our solu-
tion requires minor changes to the application as described in Sect. 4.

Finally, many works propose to replace entirely the GPU with special purpose 
accelerators custom-made for graph processing, which set aside the GPU due to fun-
damental limitations and exploit deep knowledge of graphs data structures. Propos-
als include standalone approaches such as TuNao [47], Dram-based Graphicionado 
[48] or PIM-based GraphH [49]. In contrast, our IRU solution leverages the popular-
ity of GPU architectures and provides generic solutions that bring the performance 
and efficiency of GPU architectures for low performing irregular programs.
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8  Conclusions

In this paper, we propose the Irregular accesses Reorder Unit (IRU), a GPU exten-
sion that improves performance and energy efficiency of irregular applications. Effi-
cient execution of irregular applications on GPU architectures is challenging due 
to low utilization and poor memory coalescing, which force programmers to carry 
out complex code optimization techniques to achieve high performance. The IRU is 
a novel hardware unit that delivers improved performance of irregular applications 
by reordering data serviced to threads. This reordering is enabled by relaxing the 
strict relationship between threads and data processed. We further extend the IRU to 
filter out and merge repeated elements while performing the reordering, this results 
in increased performance by largely reducing redundant GPU workload. The IRU 
reordering and filtering schemes deliver 1.32x improved memory coalescing, while 
reducing the traffic in the memory hierarchy by 46%. Our IRU augmented GPU 
system achieves on average 1.33x speedup and 13% energy savings for a diverse 
set of graph-based applications and datasets, while incurring in a small 5.6% area 
overhead.
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