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Abstract
In this paper, we prove that the solutions to the problem determined by an elastic
material with n2 coupling dissipative mechanisms decay in an exponential way for
every (bounded) geometry of the body, where n is the dimension of the domain, and
whenever the coupling coefficients satisfy a suitable condition. We also give several
examples where the solutions do not decay when the rank of the matrix of the coupling
mechanisms is less than n2 (2 in dimension 2 and 6 in dimension 3).
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1 Introduction

The decay of system solutions of thermoelasticity with respect to time has received
much attention over the years. This system proposes the coupling of a conservative
mechanism (elasticity) with a dissipative mechanism (temperature) and some ques-
tions as the dissipative mechanism controls the conservative one causing the decay of
solutions. We may recall that Dafermos [2] proved the decay of solutions in the one-
dimensional case, as well as the impossibility of decay for certain two-dimensional
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geometries, providing examples of undamped and isothermal mechanical oscillations.
Considerable progress has been made in this direction in recent years. Currently, it is
known the exponential decay of the solutions in the one-dimensional case and that,
for dimension greater than one, we can obtain temporary decay for many geometries
(see [5, 6, 9, 12]). In fact, many results for alternative theories of heat have also been
obtained [10, 11].

Since we cannot expect the exponential decay of the solutions for the classical the-
ories of thermoelasticity, we can ask ourselves about the adequate number of coupled
dissipation mechanisms that we must impose to guarantee the exponential decay of
the solutions. To our knowledge, this question has not still been considered in the
scientific literature and therefore, we do not know the answer to this question. In this
work, we will show that, if we introduce a number of dissipation mechanisms equal
to the square of the dimension of the solid geometry, and the rank of the coupling
matrix is maximum, then we can guarantee the exponential decay of the solutions.
This imposition will imply the anisotropy of the coupling coefficients since, in the
isotropic case, the condition of the range of the coupling coefficients will not be satis-
fied. Extensions of this result can be obtained immediately for other dimensions, but
we prefer to work with the simplest case to highlight the method. It is worth noting
that our method follows the usual arguments for proving the exponential decay in the
one-dimensional case. We will also provide examples of problems with undamped
solutions in the case where the rank of the coupling matrix is less than n2. To be
precise, we will give examples in the case that the matrix of the coupling coefficients
has rank 2 (in dimension 2) or rank 6 (in dimension 3). In conclusion, it will be enough
to impose dissipative mechanisms by determining a matrix of rank n2 to guarantee
the exponential decay for any domain, but the question remains whether this same
conclusion can be applied to the rank 3 (of the coupling matrix) in dimension 2: or for
range 7 or 8 in dimension 3.

In the next section, we propose a two-dimensional problem where four coupled
dissipative mechanisms are imposed. The existence and uniqueness of solution is also
proved. Then, in the third section, we assume that the rank of the matrix of coupling
coefficients is maximum and we will obtain that the decay is exponential for every
geometry. Finally, we consider a two-dimensional case where the rank of the coupling
coefficientmatrix is less than four, andweprove the existence of undampedmechanical
solutions. The generalization for dimension three is also pointed out.

2 Preliminaries

In this section, we define the thermomechanical problem and we recall some basic
results.

Let us consider a two-dimensional bounded domain B with a sufficiently smooth
boundary which is made of an elastic material coupled with four dissipative mecha-
nisms. From a physical point of view, we can think that the dissipative mechanisms
are determined by two temperatures and two mass diffusion processes. In order to
propose a simpler system, we assume that the material is homogeneous and isotropic
in the mechanical and thermal parts, but we do not impose this requirement on the
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coupling coefficients. Our system is written as follows (see [3]):

ρüi = μ�ui + (λ + μ)u j, j i + Al
ikθl,k,

mlp θ̇p = klp�θp + Al
ik u̇i,k + ξ lpq(θp − θq), (1)

where i, j, k = 1, 2 and l, q, p = 1, . . . , 4.
Here, ui denotes the displacement, θ1, θ2 are the two temperatures, θ3, θ4 are the

other two dissipative variables, ρ is the mass density, λ,μ are the Lamé constants,
ki j are related with the thermal and diffusive conductivity, mi j are related with the
thermal and diffusive capacity, Al

i j are the coupling terms for which we do not impose

any condition yet, and ξ lk j corresponds to the coefficients associated to the relative
temperatures (or concentrations). As we commented it before, we consider the case
of two temperatures and two concentrations. Therefore, it is natural to assume that
ξ212 = −ξ112 = l1, ξ234 = −ξ134 = l2, ξ412 = −ξ312 = l2, ξ434 = −ξ334 = l3 and the other
combinations of ξ

q
lp = 0. In this work, we also follow this choice.

From now on, we will assume that

(i) ρ > 0, μ > 0, λ + μ > 0.
(ii) The matrices (mi j ), (ki j ) are symmetric1, that is, mi j = m ji and ki j = k ji for

i, j = 1, . . . , 4.
(iii) The matrices (mi j ), (ki j ) and (li ) are positive definite, that is, there exist three

positive constants C1, C2 and C3 such that

mi jξiξ j ≥ C1ξiξi for i, j = 1, . . . 4,

ki jξiξ j ≥ C2ξiξi for i, j = 1, . . . 4,

l1ξ
2
1 + 2l2ξ1ξ2 + l3ξ

2
2 ≥ C3(ξ

2
1 + ξ22 ).

Remark 1 The interpretation of condition (i) is clear.Wemean that the natural assump-
tion is that the mass density is positive. The conditions on the Lamé constants are
proposed toguarantee that the elasticities are positive definite (see [4, page19]) because
we are working in dimension two. The assumption on the term (mi j ) is natural if we
take into account the study proposed in [5]. As we have pointed out in a previous
footnote, the symmetry of the tensor ki j is proposed to simplify the analysis, but it is
not needed “a priori”. Moreover, it is natural to assume that mi j is positive definite
to guarantee that the energy defined by the thermal and concentrate components is
positive. The conditions on (ki j ) and (li ) are related with the well-known property
of a heat (mass diffusion) conductor. These conditions on the Lamé constants do not
come from the axioms of thermomechanics but it is usual to consider them when we
deal with the elastic stability.

To define a well posed problem, we need to prescribe the initial conditions, for a.e.
x ∈ B,

ui (x, 0) = u0i (x), u̇i (x, 0) = v0i (x), θ j (x, 0) = θ0j (x), (2)

1 We assume that the matrix ki j is symmetric to simplify the problem, but we must recall that this is not a
consequence of the basic axioms of thermomechanics.
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where i = 1, 2 and j = 1, . . . , 4, and the boundary conditions, for a.e. x ∈ ∂B and
t > 0,

ui (x, t) = 0, θk, j (x, t)n j (x) = 0, i, j = 1, 2, k = 1, . . . , 4, (3)

where n j ( j = 1, 2) is the normal vector to the boundary of the domain B.
We note that the solutions to problem (1)-(3) satisfy the equality:

E(t) + 2
∫ t

0
D(s) ds = E(0),

where

E(t) =
∫
B

(
ρvivi + 2μei j ei j + λeii e j j + mlkθlθk

)
da,

and

D(t) =
∫
B

(
klk∇θl∇θk + l1(θ1 − θ2)

2 + 2l2(θ1 − θ2)(θ3 − θ4) + l3(θ3 − θ4)
2
)
da,

where i, j = 1, 2, l, k = 1, . . . , 4, and ei j is the strain tensor given by

ei j = 1

2
(ui, j + u j,i ). (4)

In view of the assumptions (i)-(iii) we can guarantee the stability of solutions. We will
see that, under suitable conditions, we will obtain the exponential decay.

The existence and uniqueness of the solutions to problem (1)-(3) can be obtained
by means of the semigroup of linear operators theory. So, we define the Hilbert space

H = [W 1,2
0 (B)]2 × [L2(B)]2 ×

[
L2∗(B)

]4
,

where W 1,2
0 (B) and L2(B) are the usual Sobolev spaces and

L2∗(B) = { f ∈ L2(B),

∫
B
f da = 0}, W 1,2∗ (B) = W 1,2(B) ∩ L2∗(B).

We can consider the elements U = (ui , vi , θl) and U∗ = (u∗
i , v

∗
i , θ

∗
l ) in this space

and, inspired in the energy equation, we define the inner product:

< U ,U∗ >=
∫
B

(
ρvi v̄

∗
i + mklθk θ̄

∗
l + 2μei j ē

∗
i j + λeii ē

∗
j j

)
da,

where a superposed bar means the conjugated complex and we continue using the
expression of ei j as in (4).
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In view of the previous assumptions and taking into account the comments of the
book byMarsden and Hughes [8, p. 345], we can conclude that this is an inner product
with a norm which is equivalent to the usual one in the Hilbert space H.

Now, our problem can be written as

dU

dt
= AU , U (0) = (u0, v0, θ0), (5)

where we have the operator

A
⎛
⎝ui

vi
θd

⎞
⎠ =

⎛
⎝ vi

ρ−1(μ�ui + (λ + μ)u j, j i + Ap
ikθp,k)

ndl(klp�θp + Al
ikvi,k + ξ lpq(θp − θq))

⎞
⎠ .

Here, ndlmlp = δdp, with δdp being the delta of Kronecker.
We note that the domain of the operator A, denoted by dom(A), is given by the

elements of the Hilbert space H such that vi ∈ W 1,2
0 (B), ui ∈ W 2,2(B) and θi ∈

W 2,2(B) ∩ L2∗(B) and so, it is a dense subspace of the Hilbert space.
We now give a couple of lemmata which will be used later.

Lemma 1 For every U ∈ dom(A) , we have that

Re < AU ,U >≤ 0.

Proof In view of the field equations, the boundary conditions and the use of the diver-
gence theorem, we obtain

Re < AU ,U >= −
∫
B

(
ki jθi,mθ j,m + l1(θ1 − θ2)(θ1 − θ2) + l3(θ3 − θ4)(θ3 − θ4)

+ l2[(θ1 − θ2)(θ3 − θ4) + (θ3 − θ4)(θ1 − θ2)]
)
da.

Keeping in mind the assumptions on the coefficients ki j and li we see that the lemma
is proved. �	
Lemma 2 Zero belongs to the resolvent of the operator A.

Proof Let us consider F = ( f1, f2, f3, f4, g1, g2, g3, g4) an element of the Hilbert
space H. We should prove the existence of an element U ∈ dom(A) such that

AU = F . (6)

We can write:

vi = fi ,
μ�ui + (λ + μ)u j, j i + Al

ikθl,k = ρ f2+i ,

klp�θp + Al
ikvi,k + ξ lpq(θp − θq) = mlpgp.
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Here, i, j, k = 1, 2 and p, q, l = 1, . . . , 4.
The first two equations imply that

klp�θp + ξ lpq(θp − θq) = mlpgp − Al
ik fi,k . (7)

If we denote Gl = mlpgp − Al
ik fi,k we see that G : [W 1,2∗ (B)]4 → C defined by

G(θl) =< Gl , θl >L2(B) is a linear bounded operator.
At the same time, the form

B(θp, ϑk) =
∫
B
klp∇θp∇ϑ̄l da −

∫
B

ξ lpq(θp − θq)ϑ̄l da

defines a coercive and bounded bilinear form in [W 1,2∗ (B)]4. Thus, Lax-Milgram
lemma implies that system (7) admits a solution belonging to [W 2,2(B)∩W 1,2∗ (B)]4.
If we now substitute θi in the remaining equations, it follows that

μ�ui + (λ + μ)u j, j i = ρ f2+i − Al
ikθl,k .

Again, we can check that we can apply the Lax-Milgram lemma to obtain a solution
(u1, u2). Furthermore, we can see that

‖U‖ ≤ K‖F‖,

where K is a constant independent of F and so, the lemma is proved. �	
In view of the previous lemmata, we can apply the Lumer-Phillips corollary to the

Hille-Yosida theorem (see [7, p.3]) to obtain the following result.

Theorem 1 The operator A generates a C0-semigroup of contractions.

3 Exponential decay

In this section, we show the exponential decay of the solutions generated by the
semigroup obtained in the previous section. However, in order to prove this result we
need to harden the assumptions on the coupling coefficients. In fact, in this section we
assume that the matrix: ⎛

⎜⎜⎜⎜⎝

A1
11 A1

12 A2
21 A2

22

A2
11 A2

12 A2
21 A2

22

A3
11 A3

12 A3
21 A3

22

A4
11 A4

12 A4
21 A4

22

⎞
⎟⎟⎟⎟⎠

has rank 4.
To prove the exponential decay result, we recall that it is enough to show that the

imaginary axis is contained in the resolvent of the operator and that the asymptotic
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condition

lim sup
|β|→∞

||(iβ I − A)−1|| < ∞

holds (see [7, p. 4]).

Theorem 2 The solutions to problem (5) decay in an exponential way. That is, there
exist two positive constants M and c such that for every U (0) in the domain of the
operator A:

||U (t)|| ≤ M ||U (0)|| exp(−ct) for t ≥ 0. (8)

Proof We can prove the conditions stated above following a similar argument. It can
be obtained by assuming that it does not hold and arriving to a contradiction. Let us
assume that there exists an element of the imaginary axis contained in the spectrum. By
using a standard argument (see [7, p.25]), there will exist a sequence of real numbers
ωn → ω 
= 0 and a sequence of unit norm vectors Un in the domain of the operator
such that

||(iωn I − A)Un|| → 0. (9)

This is equivalent to assume that

iωnu jn − v jn → 0 in W 1,2(B),

iωnρv jn − (μ�u jn + (λ + μ)
∂2ukn
∂xk∂x j

+ Al
jkθln,k) → 0 in L2(B),

iωnm pqθqn − (kpq�θqn + ξ
p
rs(θr − θs) + Ap

mlvmn,l) → 0 in L2(B).

From the dissipation inequality, we can obtain that ∇θin → 0 as n tends to infinite
for i = 1, . . . , 4. Therefore, if we consider the last four convergences and we divide
by ωn , we obtain that

ω−1
n k jl�θln + i A j

pqu pn,q → 0 in L2(B).

We now multiply by A j
pqu pn,q the jth-convergence, and we take into account that

< ω−1
n �θin, A

j
pqu pn,q >= − < ∇θin, ω

−1
n ∇(A j

pqu pn,q) > .

We note that, in view of the assumptions on the Lamé constants, the operator defining
the elastic part is positive definite. Then, we have that ω−1

n uin is bounded inW 2,2(B).
It then follows that

Ai
pqu pn,q → 0 in L2(B) for i = 1, . . . , 4 and p, q = 1, 2.

In view of the assumptions on the coefficients Ai
pq , we obtain that uin tends to zero

in W 1,2(B) for i = 1, 2. Then, we also find that vin (i = 1, 2) tends to zero in L2(B)

and we arrive to a contradiction.

123



J. R. Fernández, R. Quintanilla

Now, let us to assume that the asymptotic condition does not hold. Therefore, there
exist a sequence of ωn → ∞ and a sequence of Un in the domain of the operator,
with unit norm, such that condition (9) holds. In this case, we can repeat the previous
argument to arrive to a contradiction and the asymptotic condition is proved. �	

It is worth noting that the assumption on the coefficients Ai
pq does not hold in

the case that we assume that the coupling terms are also isotropic. In this case, we
can recall the example proposed by Dafermos [2] to obtain undamped mechanical
solutions. In fact, if we assume that the domain satisfies the following condition:

ConditionD. There exists a nonzero field φi ∈ [W 1,2
0 (B)]n such that φi, j j +γ 2φ =

0 and φi,i = 0, where γ 
= 0,
then, there exist undamped isothermal mechanical solutions.
We note that, in dimension one, there are not intervals satisfying ConditionD. How-

ever, in dimension greater than one, this condition is satisfied for several symmetric
domains. For instance, if the domain is a ball: there is an infinite number of eigenvalues
γ satisfying this condition (see [1]).

The arguments proposed here can be extended without difficulty to the three-
dimensional case. It is clear that, in this situation, we would need nine coupling
dissipativemechanisms. Furthermore, the analysis can be adapted straightforwardly to
the case where the elastic and dissipative parts are anisotropic, whenever the elasticity
tensor defines a positive definite operator and the dissipative part is positive definite.

4 Some counterexamples

In the previous section, we have proved that, when the matrix of the coupling coeffi-
cients has the maximum rank, we have that the solutions decay in an exponential way
for all the systems and for every geometry. Now, the natural question is if we can relax
this condition on the rank of the matrix of the coupling coefficients and to continue
having this property for every system and every geometry2. It does not seem to be easy
to answer this question, but it is possible to find examples where there are undamped
isothermal solutions for several systems and for every geometry when the rank of the
matrix is lower than n2. As we have pointed out in the previous section, the isotropic
case for the coupling terms leads to a matrix of rank one and the undamped solution
proposed by Dafermos [2] only applies for certain particular geometries.

We will give now examples where the rank of the matrix of coefficients is greater
than one. They correspond to the case that λ+μ = 0 and so, we consider the system:

ρü1 = μ�u1 + A11θ1,1 + A22θ2,2,

ρü2 = μ�u2 − A11θ1,1 − A22θ2,2,

m1θ̇1 = k1�θ1 − l1(θ1 − θ2) − l2(θ3 − θ4) + A11u̇1,1 − A11u̇2,1,

m2θ̇2 = k2�θ2 + l1(θ1 − θ2) + l2(θ3 − θ4) + A22u̇1,2 − A22u̇2,2,

m3θ̇3 = k3�θ3 − l2(θ1 − θ2) − l3(θ3 − θ4),

m4θ̇4 = k4�θ4 + l2(θ1 − θ2) + l3(θ3 − θ4).

2 We note that this condition can be seen equivalent to determine the number of dissipative mechanisms.
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In the case that we assume that coefficients A11 and A22 are different from zero, our
matrix has rank two. Therefore, if we consider the problem determined by the initial
conditions:

u1(x, 0) = u2(x, 0) = u0(x), u̇1(x, 0) = u̇2(x, 0) = v0(x),

θi (x, 0) = 0 for i = 1, . . . , 4,

we obtain isothermal undamped mechanical solutions. We note that this kind of solu-
tions is also found for every two-dimensional domain independently of the geometry.

These examples can be generalized to the three-dimensional case, where we note
that the rank of the matrix of coefficients should be nine to guarantee the exponential
decay for every system and every geometry using the argument of the previous section.
Moreover, if the matrix of the coupling coefficients takes the form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 −1 0 0 0 0 0
0 1 0 0 −1 0 0 0 0
0 0 1 0 0 −1 0 0 0
0 0 0 1 0 0 −1 0 0
0 0 0 0 1 0 0 −1 0
0 0 0 0 0 1 0 0 −1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

we can also obtain isothermal undamped solutions whenever we assume initial con-
ditions of the type

ui (x, 0) = u0i (x), u̇i (x, 0) = v0i (x) for i = 1, 2, 3,

θi (x, 0) = 0 for i = 1, . . . , 9.

In short, we have seen that, in dimension two, there are problems where there is no
decay of some solutions when the rank of the matrix is two, and the same conclusion
has been obtained for the dimension three when the rank of the matrix is six.

5 Conclusion

In this paper, we have considered the case of thermoelastic homogeneous materials.
Though we have considered the isotropic case for both the elastic and thermal parts,
we allow the anisotropy for the coupling terms.

We recall now the main results obtained in this work:

1. We have proved that, with n2 dissipation mechanisms and when the rank of the
matrix defining the coupling coefficients is maximum, the solutions decay in an
exponential way for every (bounded) geometry of the solid.
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2. We have provided an example when the matrix of coupling terms has rank 2 (in
dimension 2) or rank 6 (in dimension 3) such that there are undamped isothermal
mechanical oscillations.

3. The cases when the matrix of coupling terms has rank 3 in dimension 2 (7 or 8
in dimension 3) are still open and we do not know if the decay is exponential for
every domain and every system or there are examples with slower decay.

Another issue to be considered in the near future is to see if the introduction of new
dissipative mechanisms can produce a faster rate of decay of the solutions for some
particular cases.
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