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Abstract: This work proposes an economic model predictive control (EMPC) strategy in the linear
parameter varying (LPV) framework for the control of dissolved oxygen concentrations in the aerated
reactors of a wastewater treatment plant (WWTP). A reduced model of the complex nonlinear plant
is represented in a quasi-linear parameter varying (qLPV) form to reduce computational burden,
enabling the real-time operation. To facilitate the formulation of the time-varying parameters which
are functions of system states, as well as for feedback control purposes, a moving horizon estimator
(MHE) that uses the qLPV WWTP model is proposed. The control strategy is investigated and
evaluated based on the ASM1 simulation benchmark for performance assessment. The obtained
results applying the EMPC strategy for the control of the aeration system in the WWTP of Girona
(Spain) show its effectiveness.

Keywords: economic model predictive control; linear parameter varying modelling; wastewater
treatment process

1. Introduction

Biological wastewater treatment plants (WWTPs) are complex nonlinear systems with
large variations in their flow rates and feed concentrations. These plants have to be operated
continuously taking care of strict environmental regulations. Thus, the use of advanced
control strategies becomes necessary to make them more efficient.

The most widely used biological wastewater treatment is the activated sludge process
(ASP). In the ASP, microorganisms are mixed with wastewater. The pollutants of the
wastewater constitute the nutrient of the microorganisms. As the organisms feed on the
organic pollutants in the wastewater, the pollutants are converted to more organisms,
biomass, and some by-products. Following an adequate amount of treatment time, the
mixture of microorganisms and wastewater, the mixed liquor flows from the aeration tank
to a clarifier or settler where the sludge is separated from the treated water. Some of the
settled sludge is continuously recirculated from the clarifier to the aeration tank to ensure
the maintenance of adequate amounts of microorganisms in this tank. The microorganisms
are again mixed with incoming wastewater where they are reactivated to consume organic
nutrients. There are five major groups of microorganisms generally found in the aeration
basin of the activated sludge process: (i) aerobic bacteria responsible for removing the
organic nutrients, (ii) protozoa to remove and digest dispersed bacteria and suspended
particles, (iii) metazoa to dominate longer age systems and clarify effluent, (iv) filamentous
bacteria or bulking sludge, which are present when operating conditions change, (v) algae
and fungi, which are photosynthetic organisms that are present with pH changes and
older sludge.
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The majority of the culture is mixed and reused with inlet wastewater to keep high
reaction rates and sludge age characteristics. In particular, nitrogen is eliminated as follows:
First, ammonium is oxidized producing nitrate under nitrification in the aerobic step.
The nitrate that is produced is then converted into nitrogen gas by means of denitrification
in the anoxic step. Thus, the control of aeration is very important because a low amount of
dissolved oxygen can cause the biomass death. On the other hand, an excess of dissolved
oxygen could cause the sludge to settle insufficiently. Moreover, because 60% to 80% of the
global energy consumption is due to aeration and the operating costs of a WWTP [1], an
excessive aeration is not desirable regarding economic efficiency.

The models that are usually considered for characterizing the WWTP processes are
the ones developed by the International Association on Water Quality (IAWQ) known as
Activated Sludge Models (ASMs) [2].

In this paper, optimal economic operation of the aeration system is considered to
improve the efficiency and reliability of an ASP with intermittent aeration, which is used
for the removal of nitrogen from domestic wastewater. The objective of the control is
to design an aeration strategy (air-on and air-off periods) which minimizes the energy
dissipated by the aeration system, with adherence to the limits of the effluent requirements
and the operating constraints. The implementation of optimal operation strategies is
therefore interesting because WWTPs face the challenge of treating water properly albeit
ensuring the minimization of operational costs. This has been the driving force for the
active research in the development of advanced control techniques and hierarchical control
schemes to improve the operation of the WWTPs, see for example [3,4].

Model predictive control (MPC) has been the most successful advanced control ap-
proach applied to control WWTPs. This is due to the fact that MPC controllers allow in a
straightforward manner the different operational requirements, the multivariate nature
of the control problem (that could even include delay) and directly handling constraints
on the control inputs, system outputs and/or internal states [5]. It can also include dis-
turbance prediction, allowing to anticipate the appropriate control actions (feedforward)
to achieve optimal performance according to defined criteria in the cost function, which
can include different quality criteria and operational costs. Adjusting the MPC control
strategy is carried out by suitable manipulating prioritization of different objectives of the
performance index that could also include the use of soft constraints. In this way, MPC has
become an attractive control strategy for a considerable number of WWTP applications in
the last few years. Some examples of MPC control of WWTP can be found in [6,7]. In [6], a
benchmarking of different hierarchical control structures for WWTPs that combines static
and dynamic real-time optimization (RTO) and nonlinear model predictive control (NMPC)
is presented. In [8], a procedure to find the best controlled variables in an economic sense
for the activated sludge process in a wastewater treatment plant, despite the large load
disturbances, is introduced.

Classical MPC formulation considers pre-established set points, and the objective
functions related with error and energy effort have quadratic forms [5]. However, the
determination of optimal and reachable reference set points in real time is not an easy task
because of the existence of disturbances, set-point changes, time-varying parameters and
model uncertainties, among others. This constitutes one of the main limitations of classical
MPC. To remedy this issue, real-time optimizers (RTO) or steady-state target optimizers
(SSTO) are used to pre-compute the reference set- points at a supervisory layer in the
control hierarchy. Then, these pre-computed set points are sent to the lower layer, where a
classical MPC behaves as a regulatory controller, forcing the process to follow the desired
set points. However, in spite of the use of an RTO, not reachable trajectories might be
generated because of the appearance of unexpected disturbances or set points variations,
among others. Moreover, there is a delay between the different layers, because the lower
layer receives the reference set points determined from the upper layer before its execution.
These problems can be avoided by using economic MPC (EMPC) that optimizes process
performance directly (e.g., by means of economic objective functions), eliminating the need
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of generating reachable reference set points [9]. The first results of the application of EMPC
to DO concentration control in WWTPs have been presented in a previous work from
the authors [10] considering the nonlinear model of the plant. However, this leads to a
nonlinear optimization problem.

Alternatively, this paper proposes an EMPC strategy using the linear parameter-
varying (LPV) framework to optimize the effluent quality and minimize the operational
cost of a WWTP under operating and physical constraints. The objective is to minimize
the energy used by the aeration system with the control of the dissolved oxygen (DO)
concentrations in the aerated reactors and maintain the effluent concentration under the
required limits. The proposed approach is based on real-time dynamic optimization
methods. Optimization in MPC with nonlinear models presents a non-convex problem
which is computationally demanding, especially when dealing with large-scale plants with
complex dynamics such as the WWTP. Thus, the LPV framework allows the embedding
of these nonlinearities in scheduling variables, which are functions of system states (i.e.,
qLPV). This allows obtaining a pseudo-linear model which is linear in state space but
nonlinear in the parameter space and deriving a less demanding convex MPC optimization
problem, since convex quadratic optimization tools can be applied. The stability and
recursive feasibility of MPC with LPV models has been studied (see [11] for a review of the
recent results). The application of dynamic optimization methods requires a sufficiently
accurate mathematical model describing the wastewater treatment process. The present
work uses the Activated Sludge Model No. 2 (ASM2) [12]. To illustrate the proposed
approach a WWTP located in Girona (Spain) is considered as a case study.

In Section 2, the WWTP is described and modeled using a reduced ASM2 model,
which is then represented in a qLPV form. The proposed EMPC strategy is introduced and
described in Section 3, while the proposed MHE approach is presented in Section 4. The
results are presented in Section 5, with simulation scenarios obtained from the application
of the EMPC strategy on the Girona WWTP. Finally, some conclusions are given in Section 6.

2. WWTP Description and Modeling
2.1. WWTP Description

The Girona WWTP is a biological treatment plant designed to treat the wastewater
generated by 200,000 inhabitant equivalents with a medium daily inflow of 35,000 m3/d.
The processes of the plant can be divided into two main treatment lines: water and sludge
(see Figure 1). The water line is separated into three phases: pre-treatment, primary
treatment and secondary treatment. The secondary treatment is designed to convert
biodegradable, organic wastewater constituents and certain inorganic fractions into new
cell mass and by-products. The plant uses an activated sludge system and has three
lines composed of three main reactors that are divided into various compartments and
three clarifiers. Each line is made of two anoxic reactors located at the beginning, three
aerated tanks and an anoxic tank followed by an aerated one. With this configuration, the
plant can nitrify and denitrify with great efficiency. The anoxic and aerobic tanks have
volumes of 1335, 4554, 1929, and 1929 m3 for anoxic and 1929, 1276, and 1409 m3 for aerobic,
respectively. Oxygen is supplied to aerated tanks by the aeration system, which delivers air
to each of the aeration tanks. The wastewater and activated sludge are separated into three
parallel secondary settlers. The volume of each secondary settler is approximately 5024 m3.
The activated sludge is internally recirculated from the last aerobic zone to the anoxic tank
(210% of influent waste). Additionally, the wastewater is recirculated from the secondary
settlers to the anoxic tank (45 to 100% of influent waste).

Figure 2 shows a standard WWTP technological layout. The wastewater flow enters
into the biological part after the mechanical treatment. The nutrient removal takes place
in the activated sludge reactor through the biological treatment. The first zone in this
treatment is anaerobic, where phosphorus is released. The mixed liquor internal recir-
culation originates from the anoxic zone. The denitrification occurs in the second zone.
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The activated sludge returned from the clarifiers bottom, and the internal recirculation
from the aerobic zones end is directed toward the anoxic zone.

2.2. WWTP Modeling

The Benchmark Simulation Model (BSM1), developed within the framework of COST
Actions 624 and 682 [2], has been adapted to represent the Girona WWTP (see Figure 1).

Figure 1. Girona Wastewater Treatment Plant.

The Activated Sludge Model No. 1 (ASM1) describes the biological phenomena that
takes place in the biological reactors, and it is supposed that no biological reactions take
place in the settlers. Due to the complexity of the nonlinear model describing the different
complex processes in the plant, various reduced models have been proposed in the litera-
ture [13–15] to aid in the online implementation of certain modern control schemes (e.g.,
MPC), which would have otherwise presented ill-conditioned or stiff numerical problems
due to slow and fast dynamic interactions. In [15,16], one can see some successful imple-
mentations using reduced WWTP models in various areas of control applied to WWTPs.
The reduced model as suggested in [14], which primarily involves certain simplification cri-
teria for a reduced order of the rigorous high dimensional WWTP model, has been adapted
to conditions representing the Girona WWTP. This basically involves the derivation of
the reactor model based on mass balances of the wastewater species, which are generally
expressed as follows:

Accumulation = In f low−Out f low + Reaction

Validation of the reduced model considering data from the ASM1 and the reduced
model has been undertaken in [14]. In simplifying the complex model, a systematic
reduction process of the high-dimensional model considers some assumptions, with the
principal conditions given as follows:

• The soluble (SS) and particulate (XS) organic compounds are aggregated as a single
variable XCOD, the chemical oxigen demand (COD).

• Through reduction by time scale from the theory of singular pertubation, the slow
dynamics of the variables XI , XBH and XBA together with the soluble inert organic
compounds (SI) are excluded.

• Finally, simplification of complicated kinetic process, assumption of no alkalinity and
separation of aerobic and anoxic conditions are considered.

Under these conditions, the resultant state variables of the reduced model are there-
fore the chemical oxygen demand (XCOD), the dissolved oxygen concentration, (SO), het-
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erotrophic biomass, XBH , ammonia concentration (SNH), nitrate concentration (SNO) and
autotrophic biomass (XBA). The control of oxygen concentration (S0) in the aerobic tanks is
via the manipulation of the control input, the oxygen transfer coefficient KLa(t).

The states and input vectors are thus given as:

x(t) =
[

XCOD(t), SO(t), XBH(t), SNH(t), SNO(t), XBA(t)
]T

u(t) = KLa(t)

The WWTP process is therefore described by the following dynamic equations of the
reduced model:

ẊCOD(t) =
1

Yh

[
θ1(t) + θ2(t)

]
+

(
1− fp

)(
θ4(t) + θ5(t)

)
+ ϑ1(t), (1)

ṠO(t) =
Yh − 1

Yh
θ1(t) +

Ya − 4.57
Ya

θ3(t) + ϑ2(t), (2)

ṠNH(t) = −ixb

[
θ1(t) + θ2(t)

]
−
[

ixb +
1

Ya

]
θ3(t) +

(
ixb − fpixp

)[
θ4(t) + θ5(t)

]
+ ϑ3(t), (3)

ṠNO(t) =
Yh − 1
2.86Yh

θ2(t) +
1

Ya
θ3(t) + ϑ4(t), (4)

ẊBH(t) = θ1(t) + θ2(t)− θ4(t) + ϑ5(t), (5)

ẊBA(t) = θ3(t)− θ5(t) + ϑ6(t). (6)

where

θ1(t) = µh
XCOD(t)

KCOD + XCOD(t)
SO(t)

KOH + SO(t)
XBH(t)

θ2(t) = µhηNOg
XCOD(t)

KCOD + XCOD(t)
SNO(t)

KNO + SNO(t)
KOH

KOH + SO(t)
XBH(t)

θ3(t) = µa
SNH(t)

KNH,A + SNH(t)
SO(t)

KO,A + SO(t)
XBA(t)

θ4(t) = bHXBH(t)

θ5(t) = bAXBA(t)

With the flow rate given as Qin(t), Vo as the volume of the aerobic tank and considering
that S0in(t), SNOin(t), XBAin(t) are equal to zero. ϑ1(t), ϑ2(t), · · · , ϑ6(t) are given as follows:

ϑ1(t) =
Qin(t)

Vo

[
XCODin(t)− XCOD(t)

]
ϑ2(t) =

Qin(t)
Vo

[
− SO(t)

]
+ KLa(t)

[
SOsat − SO(t)

]
ϑ3(t) =

Qin(t)
Vo

[
SNHin(t)− SNH(t)

]
ϑ4(t) =

Qin(t)
Vo

[
− SNO(t)

]
ϑ5(t) =

Qin(t)
Vo

[
XBHin(t)−

fw(1 + fr)

fr + fw
XBH(t)

]
ϑ6(t) =

Qin(t)
Vo

[
XBA(t)−

fw(1 + fr)

fr + fw
XBA(t)

]
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where YH , YA, fr, fw, bh, bA, ixb, and fp are the stoichiometric parameters and µh, KCOD,
KOH , µa, KNH,A, and KO,A are the kinetic parameters.

Figure 2. Layout of Girona WWTP.

2.3. LPV Representation of the WWTP

For ease of computational burden, the nonlinear reduced model is represented in a
LPV form which involves the embedding of nonlinearities in varying parameters, resulting
in a linear representation in state space. This procedure offers benefits when applied to
MPC over its nonlinear MPC [15] and linear MPC [17] counterparts as applied on the
WWTP by providing a faster run time and the avoidance of numerical problems with
respect to the former and the ability to operate in a wide range of operating points with
regard to the latter. The nonlinear model in this case is defined by linear systems at each
time instance based on some time-varying parameters σ(t) ∈ Rnσ , with an assumption that
the parameters σ(t) are not known a priori but can be measured or estimated online [18].
The dynamic behavior of the LPV model is therefore described as:

ẋ(t) = A(σ(t))x(t) + B(σ(t))u(t) (7)

y(t) = C(σ(t))x(t) + D(σ(t))u(t) (8)

where x(t) ∈ Rnx and u(t) ∈ Rnu are the states and inputs, respectively, with y(t) ∈ Rny as
the measured signals. A(σ(t)), B(σ(t)), C(σ(t)) and D(σ(t)) are time-varying matrices of
appropriate dimensions that are affine in σ(t) ∈ Rnσ . In the quasi LPV case, the scheduling
parameters are dependent on measured signals, ys(t) ∈ Rk ⊂ y(t) ∈ Rny , such that

σ(t) = f (ys(t))

where f : Rk 7→ Rnσ is a continuous mapping [19]. With observed states and exogenous
inputs (w(t)), nonlinearities involving the system states can be “hidden” in the varying
parameters, σ(t, ys(t), w(t)).

Therefore, from the generic nonlinear form

ẋ(t) = f (x(t), u(t), w(t))

y(t) = g(x(t), u(t))
(9)

a linear quadruple (A(σ(t, ys(t), w(t))), B(σ(t, ys(t), w(t))), C(σ(t, ys(t), w(t))), and
D(σ(t, ys(t), w(t))) estimate is formulated and incorporated into the EMPC for a con-
vex optimization problem. In the following, the function σ(t, ys(t), w(t))) will simply
be represented as σ(t). The choice of scheduling parameters considering the origin of
nonlinearities in the reduced model (1) are
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σ1(t) = Qin(t), σ2(t) =
XCOD(t)

KCOD + XCOD(t)
XBH(t)

KOH + SO(t)
,

σ3(t) =
XCOD(t)

KCOD + XCOD(t)
SNO(t)

KNO + SNO(t)
KOH

KOH + SO(t)
,

σ4(t) =
1

KOA + SO(t)
SNH(t)

KNH + SNH(t)
XBH(t), σ5(t) = SO(t).

The dynamic LPV model is thus given as:

ẋ = A(σ(t))x(t) + B(σ(t))u(t) + Ew(t). (10)

with the time-varying matrices, A(σ(t)), B(σ(t)), and time-invariant disturbance matrix
E as:

A(σ(t)) =



a11(t) 0 0 0 a15(t) a16
0 a22(t) 0 0 a25(t) 0
0 a32(t) 0 0 a35(t) a36
0 a42(t) 0 0 a45(t) 0
0 0 0 0 a55(t) 0
0 a62(t) 0 0 0 a66(t)

,

B(σ(t)) =



0
b12(t)

0
0
0
0

 and E = 1
VO



1 0 0
0 0 0
0 1 0
0 0 0
0 0 1
0 0 0

.

where

a11(t) =
σ1(t)

Vo
, a15(t) = −

µh
Yh

σ2(t) +
(
1− fp

)
bh −

µhηNOg

Yh
σ3(t), a16 =

(
1− fp

)
ba,

a22(t) = −
σ1(t)
VO
− 4.57−Ya

Ya
µaσ4(t), a25(t) =

Yh − 1
Yh

µhσ2(t)

a32(t) = −
(

ixb +
1

Ya

)
µaσ4(t), a35(t) =

(
ixb − fpixp

)
bh − ixbµhσ2(t)− (ixbµhσ3(t)),

a36 =
(
ixb − fpixb

)
ba, a42(t) =

1
Ya

µaσ4(t), a45(t) =
Yh − 1
2.86Yh

µhηNOgσ3(t),

a55(t) = µhσ2(t)− bh −
(

σ1(t)
VO
− fw(1 + fr)

fr + fw

)
− ba, a62(t) = µaσ4(t),

a66(t) =
σ1(t)
VO

(
− fw(1 + fr)

fr + fw
− 1− ba

)
, b12(t) = Ssat − σ5(t).

The input concentrations are

w(t) =
[
Qin(t)XCODin(t) Qin(t)SNHin(t) Qin(t)XBHin(t)

]T .

Remark 1. In this work, it is assumed that all the concentrations are measured online, but it must
be noted that in practice, not all the concentrations, such as, e.g., XCODin can be measured.

3. EMPC of a WWTP
3.1. Operational Goals

The immediate control goal of a WWTP is to meet water quality levels established
by regulators while operating efficiently by reducing operational cost. As discussed in the
introduction, predictive control techniques may be used to compute strategies which achieve
this goal while at the same time optimizing the system performance in terms of different
operational indices. To achieve this objective, the control of dissolved oxygen concentration
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as well as nitrates within certain limits is necessary. The MPC presents the advantage of
being a non-conservative control strategy, such that in periods of low influents, with a
minimal level of pollutants, the effluent quality can be achieved by regulating the levels of
S0 and SNO below the stipulated reference point to avoid waste of energy. Subsequently,
during periods of high influents levels, it is then important to meet the predefined set
points to reduce pollutants, avoiding the violation of the standard effluent quality set by
authorities [15]. In this work, a PI-EMPC control strategy is employed: PI designed by
authors of the BSM1 for the regulation of SNO and a designed EMPC for the control of SO in
the aeration tank. In the proposed LPV EMPC, the following objectives are then considered:

• Economic costs. The main economic costs associated with WWTP are primarily due to
treatment and electricity costs. Water through the WWTP involves important electricity
costs in pumping stations in charge of internal and external water recirculations as well
as aeration in the aerobic tanks. In our case, only the aeration energy is considered with
an objective of minimizing the cost associated with supply of oxygen for controlled
culture growth. The performance index is described as follows

Jeco(k) =
Sosat

1800
VoKLa(k)

[kwh
day

]
. (11)

• DO concentration control. In order to control the So within some bounds in the EMPC
during the aeration process, slack variables are introduced in the optimization problem,
which seek to penalize the dissolved oxygen states, such that they are maintained in
a range to maintain effluent quality. Selecting slack variables, (λ+ > 0 and λ− > 0),
additional terms of soft constraints (see (16c) and (16d)) and a quadratic objective index
are introduced with xsp as the selected DO concentration value. The introduction
of the slack variables ensures that the DO concentration varies within a boundary
around xsp aided by the appropriate selection of weights in the objective function.
The performance index is thus given as

Jλ(k) = ‖λ(k)‖2
2, (12)

where λ(k) =
[

λ−(k), λ+(k))
]T

.

• Smooth set points for equipment conservation. The operation of WWTP and main
valves and pumps usually requires smooth flow set-point variations. To obtain such a
smoothing effect, the proposed MPC controller includes a third term in the objective
function to penalize the control signal variation between consecutive time intervals.
This term is expressed as

Jsmo(k) = ∆u(k)TWu∆u(k). (13)

Therefore, the performance function J considering the aforementioned control objec-
tives has the form

J = w1

Hp−1

∑
k=0

Jeco(k)+w2

Hp−1

∑
k=0

Jsmo(k) + w3

Hp

∑
k=1

Jλ(k). (14)

3.2. Control Strategy Computation

The control strategy is determined by the computation of an optimal sequence of
control actions for a prediction horizon, Hp.

ũk = (u( k|j))Hp−1
j=0 =

(
u( k|0), u( k|1), · · · , u( k|Hp−1)

)
. (15)

We solve at each time instance k, the following optimal control problem with initial
state obtained from measurements (or state estimation) of the dynamics WWTP model and
prediction in the MPC loop with the qLPV plant model (10),
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min
ũk

J(ũk, k) (16a)

subject to

x(i + 1|k) = A(σ(k))x(i|k) + B(σ(k))u(i|k) + Ew(i|k) i = 0, · · · , Hp − 1, (16b)

xso (i|k) >= xsp + λ+(i|k), i = 1, · · · , Hp, (16c)

xso (i|k) <= xsp − λ−(i|k), i = 1, · · · , Hp, (16d)

u(i|k) ∈ U i = 0, · · · , Hp − 1, (16e)

x(i|k) ∈ X i = 1, · · · , Hp, (16f)

y(i|k) ∈ Y j = 0, · · · , Hp, (16g)

λ+(i|k), λ−(i|k) >= 0 (16h)

where xso is the dynamic state representing the soluble oxygen. (16c–f) are described by the
box constraints:

U =
{

u ∈ Rnu |umin ≤ u ≤ umax},
X =

{
x ∈ Rnx |xmin ≤ x ≤ xmax},

Y =
{

y ∈ Rny |ymin ≤ y ≤ ymax}.
(17)

which are determined from the maximum residual concentrations imposed in order to cope
with the European Union effluent standards on chemical oxygen demand COD, suspended
solids SS and total nitrogen TN :

COD 6 CODmax = 125 gm−3,

SS 6 SSmax = 35 gm−3,

TN 6 TNmax = 10 gm−3.

The first control action of the sequence u( k|0) is applied to the WWTP plant to obtain
the system measurements and/or MHE estimated states, which are then used in the
succeeding optimization problem, resulting in a recursive procedure. Not all the state
variables are measured as stated earlier; the moving horizon estimator (MHE), which is the
dual of the MPC controller, estimates the unmeasurable states.

4. Moving Horizon Estimation

Since some states cannot be measured online in the operation of the WWTP, a design
of an estimator, in our case the MHE, is necessary for the prediction of system outputs,
bearing in mind that apart from purposes of feedback control, the quasi-LPV formulation
relies on information of the system states for the model construction. By solving a con-
strained optimization problem, the MHE utilizes a limited N-prediction horizon of past
measurements through an error minimization scheme aided by information of the system
model in a prediction window to estimate the system states. The optimization problem is
therefore set up with the discretized plant model as:

min
{x̂(i|k)}0

i=−N

(
x̂(−N|k)− xo

)T
Po

(
x̂(−N|k)− xo

)
+

k

∑
i=−N

(
ε(i|)TQε(i|k) + s(i|k)T Rs(i|k)

)
s.t. x̂(i + 1|k) = A(σ(i|k))x̂(i|k) + B(σ(i|k))u(i|k) + Ew(i|k) + ε(i|k) i = −N, · · · ,−1,

y(i|k) = Cx(i|k) + s(i|k),
x̂k ∈ X .

(18)
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where R = RT ∈ Rny×ny > 0, Q = QT ∈ Rnx×nx ≥ 0 and Po = PT
o ∈ Rnx×nx ≥ 0

are the weighting matrices that are defined according to uncertainty levels induced re-
spectively by the noise, disturbance and unknown initial conditions (xo). X bounds the
estimated states. At every iteration, N sets of control inputs, {u(i|k)}−1

i=−N ∈ Rnu×N ,
measurements {y(i|k)}−1

i=−N ∈ Rny×N and N sets of LPV matrices {Ai}−1
i=−N ∈ R(nx×nx)N ,

{Bi}−1
i=−N ∈ R(nx×nu)N are taken as inputs into the optimization problem to predict the state

sequence {x̂(i|k)}0
i=−N ∈ Rnx×(N+1) by solving the dynamical optimization problem (18).

The last element of the sequence {x̂(i|k)}0
i=−N is subsequently chosen as the estimated

states, the measurements and inputs are then discarded, and the procedure is repeated.
The ammonia concentration (SNH), nitrate concentration (SNO) and the soluble oxygen
(So) are supposedly measurable; therefore, the MHE is designed for the estimation of
[XCOD, XBH , XBA]

T as shown in Figures 3–5 .
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Figure 3. MHE estimate of oxygen demand concentration (XCOD) for 7 days.
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Figure 4. MHE estimate of heterotrophic biomass (XBH) for 7 days.
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Figure 5. MHE estimate of autotrophic biomass (XBA) for 7 days.

5. Simulation Results
5.1. LPV EMPC Implementation Details

To illustrate LPV EMPC approach presented in this paper, the Girona WWTP case
study presented in Section 2 is used. The constituents of the influent wastewater of Girona
WWTP varies during the day between the following bounds :

• Qin (between 10,000–35,000 m3/d);
• COD (between 400–650 mg/L);
• DBO (175–225 mg/L); and
• Nitrogen (between 40–65 mg/L).

The inflow of Girona WWTP is shown in Figure 6.

0 1 2 3 4 5 6 7

1

1.5
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2.5

3

3.5
10

4

Figure 6. WWTP inflow.
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With a quasi-linear approximation of the nonlinear WWTP via the LPV representa-
tion, the constrained optimization problem (16) is solved using quadratic programming
formulation using the CPLEX® solver in MATLAB® on an Intel Core i7, 8 GB of RAM PC.
A sampling time of 15 min and a prediction horizon of 6 h is chosen for simulation. The
process is simulated for 7 days in a Simulink environment representing the dynamics of
the Girona WWTP, as shown in Figure 1.

Using the weights wi associated with the multiobjective EMPC cost function, (14) is
tuned using the procedure as performed in [20,21] with the aim of maintaining the quality
of the exit water at some levels within the current regulations regardless of the entry at a
minimum cost.

Some control scenarios are selected to show different behaviors of the proposed scheme
by altering Xsp and manipulating weights wi, ideally to illustrate the different actions of
aeration corresponding to different dissolved oxygen requirements for a quality effluent.

5.2. First Scenario

The first scenario consists of controlling the dissolved oxygen concentration in the
exit of the biological treatment plant between the bounds (1.5, 2.5). Figure 7 shows the
dynamics of the DO concentration (above) and its corresponding aeration energy (below).
The operation of the aeration, as stated in the preceding section, corresponds to the variation
of the influents during the day; therefore, the DO concentration varies between the defined
bounds in relation to the amount of pollutants at each time instance in the influents, which
can be inferred from Figure 6.

0 1 2 3 4 5 6 7

1.6

1.8

2

2.2

2.4

0 1 2 3 4 5 6 7

10

12

14

16

Figure 7. (Above): DO concentraton variation. (Below): Aeration flow for Scenario 1.

5.3. Second Scenario

The second scenario also consists of controlling the DO concentration between the
ranges of 0.5 to 1.2 mg/L with minimum aeration energy consumption.

From Figure 8, a similar behavior of oxygen in the tanks as in the first scenario is
realized with an expected less aeration energy, as less DO is required for treatment. The
nitrates in the exit of the WWTP (Figure 9) range approximately between 5 and 7 mg/L.
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Figure 8. (Above): DO concentration variation and (Below): Aeration flow for Scenario 2.

0 1 2 3 4 5 6 7

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

7

7.2

Figure 9. Nitrate concentration variation.

6. Conclusions

In this paper, an LPV EMPC strategy for the control of dissolved oxygen concentration
in the aerated reactors of a WWTP is proposed and applied to the Girona (Spain) case
study. The proposed approach combines two improvements with respect to the existing
approaches in the literature: First, differently from standard tracking MPC, the proposed
EMPC strategy optimizes the economic performance of the plant instead of following some
pre-established set points. Second, a reduced model of the WWTP is represented in a
quasi-LPV form allowing the real-time implementation of the controller thanks to the use
of quadratic programming optimization tools. If otherwise, the nonlinear model plant
was used, nonlinear programming algorithms are required that usually prevent the real-
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time implementation because of the large computational time. Moreover, an LPV moving
horizon state estimation scheme has also been proposed that allows the implementation of
the LPV EMPC with the available sensors in the WWTP. The effectiveness of the proposed
scheme has been illustrated in the considered case study with two scenarios aiming at
keeping the DO within some bounds.

As future work, real testing in the WWTP plant will be conducted to further validate
the performance of the proposed solution. Another issue to take into consideration is the
application of the proposed methodology for aerobic conditions maintenance in sewer
networks [22].
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The following abbreviations are used in this manuscript:

ASM Active Sludge Model
ASP Active Sludge Process
BSM Benchmark Simulation Model
COD Chemical Oxygen Demand
DO Dissolved Oxygen
EMPC Economic Model Predictive Control
qLPV Quasi-Linear Parameter Varying
LPV Linear Parameter Varying
MHE Moving Horizon Estimator
MPC Model Predictive Control
NEMPC Nonlinear Economic Model Predictive Control
NMPC Nonlinear Model Predictive Control
RTO Real-Time Optimization
SSTO Steady-State Target Optimizator
WWTP Wastewater Treatment Plant
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