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Abstract— Radio-frequency interference (RFI) is an increasing 
problem particularly for Earth observation using microwave 
radiometry. RFI has been observed, for example, at L-band by 
the European Space Agency’s (ESA’s) soil moisture and ocean 
salinity (SMOS) Earth Explorer and by National Aero- nautics 
and Space Administration’s (NASA’s) soil moisture active passive 
(SMAP) and Aquarius missions, as well as at C-band by 
Advanced Microwave Scanning Radiometer (AMSR)-E and 
AMSR-2, and at 10.7 and 18.7 GHz by AMSR-E, AMSR-2, 
WindSat, and GPM Microwave Imager (GMI). Therefore, sys- 
tems dedicated to interference detection and removal of contam- 
inated measurements are nowadays a must in order to improve 
radiometric accuracy and reduce the loss of spatial coverage 
caused by interference. In this work, the feasibility of using the 
empirical mode decomposition (EMD) technique for RFI 
mitigation is explored. The EMD, also known as Hilbert–Huang 
transform (HHT), is an algorithm that decomposes the signal into 
intrinsic mode functions (IMFs). The achieved performance is 
analyzed, and the opportunities and caveats that this type of 
methods present are described. EMD is found to be a practical RFI 
mitigation method, albeit presenting some limitations and 
considerable complexity. Nevertheless, in some conditions, EMD 
exhibits a better performance than other commonly used methods 
(such as frequency binning). In particular, it has been found that 
EMD performs well for RFI affecting the <25% lower part of 
the intermediate frequency (IF) bandwidth. 

Index Terms— Hilbert–Huang transform (HHT), interference, 
microwave radiometer, passive microwave remote sensing, radio- 
frequency interference (RFI), RFI detection. 

I. INTRODUCTION 

ICROWAVE radiometers are increasingly affected by 
radio-frequency interference (RFI) [1], [2]. The pres- 

ence of man-made signals, usually of much larger power than 
the natural emission itself, affects the radiometric resolution of 
the measurements making it difficult to achieve the high values 
required by many applications. These interferences conceal the 
underlying natural signal, corrupting, and even preventing the 
retrieval of geophysical variables. Passive remote-sensing 
bands are protected by the International Telecommunications 
Union (ITU) Radio Regulations, and considerable effort is 
devoted to enforce proper spectrum usage [3]. Nevertheless, 
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RFI remains a considerable threat to the accuracy and spatial 
coverage of microwave passive instruments. The adoption of 
detection and mitigation techniques is then required to reduce 
the impact of RFI, increasing the radiometric accuracy and data 
reliability and extending the coverage to areas where 
measurements are normally lost due to interference. Over the 
last years, a wide range of RFI detection techniques has been 
developed. Some examples include: 

1) parametric techniques, where the RFI type is known a 
priori [4]; 

2) statistical detection methods, where the statistics of the 
received signal are estimated and compared to the 
Gaussian ones, for example, [5], [6]; 

3) correlation-based detection methods, where the distor- 
tion on correlation can be used to detect RFI [7]; 

4) polarimetric methods, where the cross-polarization com- 
ponents may indicate the presence of RFI [8]; and 

5) time and/or frequency analysis, where the time/frequency 
properties of the   signal are   studied to infer the 
presence of RFI [9]. 

In this work, and for the first time to the authors’ knowledge, 
the suitability of the empirical mode decomposition (EMD) for 
RFI mitigation is explored. The EMD, also known as Hilbert–
Huang transform (HHT), decomposes the signal into several 
intrinsic mode functions (IMFs). The EMD can be interpreted 
as a nonlinear time–frequency decomposition tool, especially 
tailored for nonstationary signals. In this work, the EMD is 
evaluated as a potential RFI-mitigation tool and represents a 
first step toward the adoption of nonlinear decomposition 
methods. 

II. EMPIRICAL MODE DECOMPOSITION 

EMD is a useful algorithm for the decomposition of 
multiple-component signals into a set of the so-called IMF. 
In some cases, the resulting IMFs may approximate the original 
additive components of the signal, which often allows for useful 
interpretations of the physical origin of its parts. This property 
has made the EMD a useful algorithm for signal 
decomposition in several areas, such as biomedical analysis 
[10], seismic studies [11], or structural analysis [12]. 

The signal into consideration can be decomposed as 

 

(1) 

 

where IMFi is the i th “intrinsic mode function” resulting from 
the decomposition, and d(t) is a remainder. The computation 
of each IMF is obtained by a process called “shifting” that can 
be summarized as follows [13, p. 917]. 
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1) Identify the local minima and maxima of the function 
x(t). 

2) With the help of an spline interpolator, create the upper 
and lower envelopes of x(t) along the identified minima and 
maxima. 

3) Compute the mean of the two envelopes: m1(t). 
4) Subtract m1(t) from the original signal x(t), obtain- ing 

a preliminary estimation   of   the   first   IMF, h1(t) x(t) 
m1(t). 

5) Proceed then to obtain a refined version of the IMF 
estimation, h2(t), by repeating steps 1–4 with h1(t) in the 
place of x(t). Stop the shifting process once mn(t) falls 
below an arbitrary threshold for all t. 

The described process allows to compute the first IMF. 
Subsequent IMFs can be obtained by recursively repeating the 
steps above on the residual signal di , obtained by subtracting 
the previous IMF to the original signal 

 

(2) 

IMFs are functions that have near-zero mean, positive max- 
ima, and negative minima. Therefore, they resemble sinusoids 
that are modulated in frequency and amplitude. In Fig. 1, 
a signal composed by the addition of a sinusoid with a chirp is 
shown. As an example of the EMD capabilities, the result of 
the EMD decomposition is shown in Fig. 2. As it can be 
appreciated, EMD is capable of approximately untangling both 
signals without any a priori information on the frequency 
contents of its constituents. This makes EMD an adaptive, data-
driven, nonparametric method for signal decomposition, able to 
separate even nonstationary signals. It can also be understood 
as a nonlinear time–frequency representation of the original 
signal. 

Note that, in general, IMFs are not uncorrelated. In some 
conditions, EMD results in components that do not have 
physical meaning, thus hindering the effective use of EMD. 
This phenomenon is called “mode mixing,” and it is described 
in [14]. It occurs when the constituent signals do share the same 
instantaneous frequency, or by the presence of pulsed bursts in 
the signal. To overcome this, several alternatives and 
refinements to EMD exist, such as, for example, the ensemble 
empirical mode decomposition (EEMD) [15], tai- lored to 
decompose pulsed signals. In addition, EMD or its variations 
remain mainly empirical methods, and their analytical 
foundations are still lacking [16]. 

 
III. APPLICATION OF EMD TO RFI FILTERING 

By construction, higher-order IMFs will exhibit larger-scale 
(i.e., slower) fluctuations. Therefore, the frequency contents 
will be lower in higher-order IMFs, with the first IMFs 
containing most of the high-frequency energy of the signal. 
This property makes the EMD a suitable technique for signal 
denoising, as initially identified by Huang et al. [13, p. 978]. 
Signal denoising with EMD is based on the determination if a 
certain IMF contains useful signal energy or only noise. Once 
this has been determined for all IMFs, a denoised recon- 
structed signal can be computed by adding up only the useful 

 

 

Fig. 1.   Chirp + CW example signal. 

 

Fig. 2. Resulting IMFs after EMD decomposition of Fig. 1 signal. 
 
 

components, discarding those containing noise. If the EMD 
signal decomposition is sparse in relation to the noise, then it 
would allow for efficient denoising. This basic idea can also 
be used for RFI filtering in passive microwave instruments. By 
adding up only the noise components, an estimation of the 
uncontaminated radiometric signal can be obtained. Given the 
useful properties that the EMD exhibits, especially local 
adaptability, it may be a good approach to working with 
nonstationary signals. EMD has been explored as an RFI mit- 
igation strategy for active instruments [17], but to the authors’ 
knowledge, no performance evaluation has been attempted for 
passive sensors. In Section III-A, a practical implementation of 
EMD for passive RFI mitigation is proposed, and the caveats 
and opportunities of this approach are analyzed. Another 
common RFI-mitigation technique, frequency blanking (FB), is 
used as a comparison benchmark to put EMD results into 
context. 

 
A. Classical EMD Thresholding 

Different criteria to quantitatively determine the presence of 
signal components have been developed. In particular, it has 
been pointed out that, in the presence of Gaussian noise, the 
EMD is approximately equivalent to a dyadic filter bank [18], 
[19]. In other words, the higher-order IMFs can be interpreted 
as the result of overlapping bandpass filters of the input signal. 
The first IMF is approximately the result of a half- band high-
pass filter, and each IMF of higher-order contains frequency 
components that are roughly in the upper half-band of the 
previous IMF [20]. Following this interpretation, it can be 
deduced that, in the sole presence of noise and because the 
bandwidth is halved, the variance of the IMFs decreases 
geometrically with the IMF order by a factor of ≈2 in 
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TABLE I 

VALUES FOR α AND β TO ACHIEVE DIFFERENT Pfa  

 
   
 

   
 

each iteration. According to [19], the variance of the IMF 
component of order k can be approximated by the following 
expression, which depends on the variance of the first IMF: 

 

(3) 

A threshold can be defined above this model. To do that, a probability of false alarm ( Pf a) has to be defined. For example, the 
99% confidence interval (and therefore that achieves a Pfa = 1%) can be calculated as follows: 

 
(4) 

where α = 0.46 and β = −1.919. Therefore, if an IMF of 
variance σk 

 

(5) 

it can be considered unwanted signal components or RFI and 
can be discarded as such. Numerical values for 95% confidence 
thresholds can be found tabulated at [19] and are reproduced 
here for the sake of completeness (Table I). 

Let us consider first the case where the RFI is confined 
in the lower part of the spectrum after frequency down- 
conversion. A simulated Gaussian noise signal of 300 K of 
power and 20 MHz of bandwidth has been combined with 
a sinusoidal waveform of 600 K of power and 1 MHz of 
frequency, simulating contamination by RFI. The combined 
signal is shown in Fig. 3, and the resulting decomposition in 
Fig. 4. 

In this case, when compared to the noise, the RFI is “low 
frequency,” it is safe to assume that the first IMF will be RFI- 
free, and therefore the threshold derived from the variance of 
the first IMF can be safely applied. In Fig. 5, the variances for 
each IMF component are plotted. In addition, the confidence 
interval (4) has been illustrated. As it can be appreciated 
in Fig. 4, the RFI is clearly detected in IMF 5, where the 
sinusoidal component can easily be identified. The comparison 
with the threshold in Fig. 5 makes it possible to identify also 
IMF 6 as containing a significant RFI contribution. The RFI-
filtered signal can be then computed as the sum of all the IMF 
components except components 5 and 6. 

There are some further important points to consider as 
follows. 

1) Any discarded component contains a nonnegligible frac- 
tion of the radiometric noise and, as a consequence, the 
RFI-filtered signal power will be systematically biased. 
This power loss has to be accounted for and properly 
compensated, for which a model of the noise power of 
each component must be available. In this case, the 
modeled power given by (3) can be used for this purpose. 
When the components are uncorrelated (e.g., frequency 
binning, time binning, etc.), it suffices to add 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Resulting EMD decomposition (first six IMF components) from the 
signal of Fig. 3. 

 

Fig. 5.    IMFs variances in log2, along with the 99% confidence thresholds 
(red line). 

 
up the modeled power of the discarded components. 
EMD is, however, a decomposition whose components 
are correlated, and therefore the cross-variances must be 
taken into consideration as well. 
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2) Some fractions of the RFI may be contained in com- 
ponents considered RFI-free, and therefore their power 
will not be mitigated. 

3) The resulting mitigated power will be of the lower 
radiometric resolution, and this will depend on the 
fraction of the noise power that is discarded. 

These considerations are not specific to this method and can 
be found in other decomposition-based techniques such as 
time/frequency binning. The performance and limitations of 
this classic method will be studied and discussed in the 
following sections. 

 
B. Multicomponent EMD Thresholding 

The usefulness of this “low-frequency” RFI case is, how- 
ever, very limited in a practical scenario. Note that this method 
is based on the strong assumption that the first IMF only 
contains noise samples. While this may be useful for removing 
slow-varying signals from a higher frequency noise, in the 
context of RFI mitigation, where the interference may appear at 
any frequency, this cannot be considered general. In fact, as 
shown in this work, RFI frequency must be under 1/4 of the 
noise bandwidth for the above condition to be true in a practical 
scenario (Fig. 12, and [20]). If this is not true, the power model 
of (3), and the thresholds of (4) will be higher than expected, 
and therefore no components will be detected as RFI. 
Therefore, to derive a practical RFI filtering technique from 
EMD a refinement to the above classical algorithm must be 
introduced. 

The model for the IMF variances (3) can be written as a 
function of an arbitrary component, IMF j . If this component is 
RFI-free, then it can be used as a reference, and an alternative 
threshold for the rest of IMFs can be computed as (from 4) 

 
(6) 

with th99% denoting the threshold to be applied to IMF number 
k. 

This alternative threshold computation still requires know- 
ing beforehand which specific IMF component is free of RFI 
contamination, in order to be used as a reference. This 
requirement can be bypassed by running several parallel tests, 
each one assuming different IMF as RFI-free. 

To exemplify this process, a hypothetical case of such 
parallel thresholding is shown in Figs. 6 and 7. In this exercise, 
the RFI is a combination of two continuous waves (CW): one 
is of low frequency (0.5 MHz) and another is of high frequency 
(12 MHz). By checking the measured variances of the IMF 
components in Fig. 6, it can be appreciated that the RFI 
appears as a deviation from the expected linear decreasing trend 
in IMF numbers 1 and 5, with possible spillovers of lower 
power in IMF 6. It should be noted how the contamination of 
the first IMF makes the use of classical EMD thresholding 
impossible. 

In Fig. 7, the result of conducting nine parallel mitigation 
exercises is shown, each of them considering one different IMF 
as a candidate to be RFI-free (marked with green arrows). For 
each mitigation branch, the computed thresholds and model (6) 
are depicted. Any IMFs that are above the threshold have been 

 

 
 

Fig. 6. IMFs measured variances in log2 for the multicomponent thresholding 
example of Fig. 7. 

 
 

identified with a red circle and would be removed for obtaining 
the mitigated power output. As it can be seen from Fig. 7, 
branch 1 is not able to detect the high-frequency component, 
and branch 5 is unable to detect any IMF as RFI contaminated. 
Branches #2, #3, #4, and #9 offer comparable results and are 
good candidates for proper mitigation of the majority of the 
RFI power, having detected the major RFI components and the 
spillover in IMF 6. Given that the removed power is 
conveniently compensated, the criteria to select the best branch 
could be the lowest power after mitigation. 

In summary, for the branches where the reference IMF is 
RFI-free, mitigation will work, and the resulting mitigated 
power will be close to the noise signal. In those cases where 
this assumption is not fulfilled, the resulting mitigated power 
will contain most of the RFI signal, and therefore the power will 
be higher. As a consequence, to identify the best option, it 
suffices to select the minimum mitigated power between the 
mitigation branches.1 As it will be shown, this “multicompo- 
nent thresholding approach” allows for EMD to be used as an 
RFI detection method for high RFI frequencies as well. 

It should be noted that this novel thresholding strategy is not 
limited to EMD, and it can be applied to any mitigation method 
where the threshold levels have to be estimated from the data 
themselves. 

 
IV. METHODOLOGY 

In order to evaluate the performance of the proposed 
methods, a simulated processing chain has been implemented. 
The radiometric signal (either the in-phase or in-quadrature 
components) has been simulated as a real random Gaussian 
process of 300 K of power with N 214 independent samples. 
The combined signal is then passed through a digital anti-
aliasing filter of Bw 20 MHz, and sampled at the Nyquist 
frequency Fs 2Bw. This simulates the real low-pass equivalent 
of a generic radiometer signal. 

In order to understand the behavior of EMD for the wide 
range of RFI signals, the performance is analyzed for the RFI 
signals described as follows. 

1) Delta function: An instantaneous signal with all the RFI 
power concentrated in a single temporal bin. 

2) Amplitude-modulated CW: A single tone signal (sinu- 
soidal), simulating a narrowband modulation, of con- 
figurable frequency, and modulated with a slow-varying 

1 An additional check may be introduced in order to discard results whose 
radiometric resolution is too low. 
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Fig. 7. Example of parallel multicomponent thresholding approach. 

 
 

signal (resulting of the sum of two Gaussian envelopes) 
to make it nonstationary. This can represent, for exam- 
ple, a moving CW RFI source modulated by a Gaussian 
antenna pattern. 

3) Burst of pulses with a 10% duty cycle: A train of 
rectangular pulses with a pulse repetition time (PRT) of 
N/64 samples, and a pulsewidth of PRT /10 samples. 
Burst   of   pulses with   a   50% duty cycle: A   train of 
rectangular pulses with a PRT of N/64 samples, a 
pulsewidth of PRT /2 samples, and configurable cen- tral 
frequency. Kurtosis detection exhibits a blindspot for 
this duty cycle and is therefore interesting to study how 
correlation-based RFI detection behaves in the same   
scenario. 

implementation of the EMD method [21] and with a maximum 
number of iterations Imax 25, and a maximum of 6 IMFs to 
guarantee a reasonable performance. Mitigation is then applied 
to the decomposed signal under the considerations discussed in 
Section III, and performance is assessed. To take into account 
the stochastic properties of RFI, NMC 100 Montecarlo 
simulations have been executed for each scenario. 

To have a reference to compare with, FB mitigation has been 
implemented as well. FB is based on the decomposition 
provided by the fast Fourier transformation (FFT). Each sam- 
ple of the FFT of the contaminated signal is tested for RFI by 
comparison with a threshold, computed following [9, eq. 6]: 

 

(7) 

4) Narrow-band chirp signal: A chirp signal sweepin 
linearly with an arbitrary bandwidth of Bw/2, and a PRT   
N/16 samples. Chirp signatures are representa- tive of 
RAdio Detecting And Ranging (RADAR) signals and 
jammers. 

5) Wide-band chirp signal: A chirp signal sweeping linearly 
with an arbitrary bandwidth of Bw, and a PRT N/16 
samples. 

6) Generic wide-band signal modulation: Simulated using 
a pseudorandom noise code (PRN) of PRT      N/16, with 
its nonuniform bandwidth overlapping the entire noise 
bandwidth. 

Their spectrograms are presented in Fig. 8. 
The combined signal is then decomposed using the EMD, 

and the presence of RFI is tested for each component. 
Decomposition is computed using the publicly available 

where σ 2 is the variance of the noise. The same probability of false 
alarm Pfa   1% than EMD has been chosen to compute the 
threshold. Note that, in a practical implementation of FB, σ 2 
will also have to be estimated from the data themselves. To this 
effect, in this study, σ 2 is estimated by computing the median 
absolute deviation (MAD) of the ensemble [22]. The MAD is a 
robust estimator of the standard deviation of an ensemble in the 
presence of outliers and, as a consequence, its value will not 
be affected by the RFI as long as the number of affected 
frequency bins is low. 

V. RESULTS 

A. Performance Evaluation 

In this section, the mitigation performance achieved with the 
presented method is analyzed. Mitigation performance can be 
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defined as the residual RFI power after mitigation, Tb
rfi 

   Tb
rfi = Tb

n+rfi − Tb
n (8) 

 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.   Spectrograms of the different types of RFI considered in this study. 
(a) Delta function. (b) Amplitude modulated continuous wave. (c) Train of rec- 
tangular pulses (duty 10%). (d) Train of rectangular pulses (duty 50%). 
(e) Narrow-band chirp. (f) Wide-band chirp. (g) Wide-band modulation 
(PRN). 

where Tb
n+rfi is the resulting power after the mitigation process, 

and Tb
n is the brightness temperature of the radiometric noise. 

As a first step, the performance achieved will be analyzed for 
all RFI types by using the classical EMD thresholding. 
Specifically, for RFI signals with configurable central 
frequency (CW and narrowband and pulsed chirps), this is 
chosen to be 0.1   of the measurement bandwidth. In Fig. 
9(a), the residual RFI power is plotted in function of the total 
input RFI power, Tb

rfi, for all the RFI types defined before. 
From Fig. 9(a), it is clear that EMD is able to detect and 

mitigate most of the studied RFI types, as long as the RFI only 
contaminates partially the noise spectra. In the case of wide-
band chirp or the delta RFIs, where the RFI overlaps the entire 
noise bandwidth, mitigation does not work. The EMD is not 
capable to untangle the chirp signal from the noise. All IMFs 
contain significant fractions of the chirp RFI and, as a 
consequence, no mitigation is possible. 

In the presence of very impulsive signals, such as the delta 
function, it can be observed how the mitigation may result 
in higher residual power than the original signal. This is 
because EMD does not behave well with high-power impulsive 
signals, and the decomposition does not have any physical 
meaning. Due to the highly correlated character of mode- 
mixed components, removing some of them may lead to higher 
final RFI powers than the ones originally present. To account 
for that, additional filtering can be added to check if the signal 
power after mitigation is higher than the original power of the 
signal. If it is the case, it can be concluded that it was not 
possible to obtain a proper decomposition of the signal and then 
no mitigation should be attempted. 

In Fig. 9(b), the performance results obtained with the FB are 
plotted as well. These results are well aligned with the 
equivalent results obtained in [9], and they will be used here 
as a reference. As it can be appreciated, FB is depending on the 
type of RFI. It works well for tonal RFIs, while it struggles with 
chirps or wide-band signals [9]. 

A comparison between the EMD and the FB shows remark- 
able qualitative similarities. Both EMD and FB are well tailored 
for CW or narrow-band RFI. FB provides, however, better raw 
performance for most RFI types, especially in the case of CW 
and pulsed signals. Nevertheless, EMD provides better 
performance than FB for some selected types of RFI, especially 
narrow-band chirps and PRNs. This makes EMD a possible 
candidate for RFI mitigation in certain scenarios. In general, 
for those RFI types where mitigation is possible, EMD provides 
a similar level of mitigation regardless of RFI type, which 
makes it more balanced than FB. 

In Section I, it has been mentioned that the EMD is a locally 
adaptive method, suitable to decompose nonstationary signals. 
Despite that, it is clear from the results presented that the EMD 
is not able to mitigate nonstationary signals overlapping the 
entire noise spectrum, such as wide-band chirp RFIs or Delta 
functions. The adaptiveness of EMD to the signal is not useful 
in the RFI mitigation scenario for passive instruments. 



 

 

 

 
 

  

Fig. 9. RFI mitigation performance for the RFI types considered in this study. (a) EMD. (b) FB. 
 

 

Fig. 10. PD for the RFI types considered in this study. (a) EMD. (b) FB. 

 

This is because the method adapts to the highest frequency 
component present locally. In the presence of radiometric 
noise, the highest frequency component is the noise itself. 
Hence, the EMD behaves like a static dyadic filter, and no 
matching to the RFI occurs. This is an important caveat that 
advises against the use of EMD for passive instruments, as one 
of its most important properties cannot be exploited. The EMD 
performance is then qualitatively similar to those achieved with 
frequency binning, which again is reasonable if the dyadic filter 
interpretation is followed. 

In addition to the mitigation performance, the probability of 
detection (PD) can be computed. In this case, PD can be defined 
as the probability that the residual biases are below the RFI 
power. Specifically, if the residual is 0.1 of the RFI power, the 
RFI is considered detected and successfully mitigated (as 90% 
of its power has been removed). PD is then the number of 

“detections” divided by the number of simulation runs. Note 
that this definition of PD is different than the PD of each 
component [i.e., the probability to detect RFI in a given IMFs 
(EMD), or frequency bin (FB)]. 

In Fig. 10, the computed PDs are depicted. It is clear that 
frequency blanking is able to detect CW RFIs for lower RFI 
powers than EMD. Nevertheless, EMD exhibits earlier 
detection for narrow-band chirp and PRN signals. For some 
specific types of RFI, detection is not step-like; this is not fully 
understood, but it may be related to the nonlinearities present 
with EMD. 

The last performance metric considered in this study is the 
resolution loss (RL). RL is defined as the fraction of the 
radiometric power that is eliminated from the signal after RFI 
mitigation. While this lost power can be compensated, this 
introduces an unavoidable degradation of the radiometric 



 

 

 

 
 

 

Fig. 11. RL for the RFI types considered in this study. (a) EMD. (b) FB. 

 
 

 

 

Fig. 12. Classical (solid) and multicomponent (dotted) EMD thresholding 
performance for a CW of variable frequency. 

resolution (∆T ), and it is equivalent to a reduction of the 
integration time. 

In Fig. 11, the RL results are plotted. RL is higher for EMD, 
something which is to be expected given the lower spectral 
resolution of EMD. It should be noted that RL in EMD is step-
like. This is due to the limited number of IMFs that EMD 
produces, in contrast with the larger number of bins that FB has. 

 
B. Dependence on RFI Signal Frequency 

As a second step, the strong limitations presented by classi- 
cal EMD thresholding are analyzed in this section, along with 
the results obtained with the refined thresholding presented in 
this work. Performance is analyzed for a CW RFI of variable 
frequency. First, detection is performed only by using the 
thresholds given by (4) (i.e., the classical EMD thresholding). 
In Fig. 12, the resulting mitigation performance is plotted in 

solid lines in function of the input interference power and for 
different CW frequencies. 

As it can be appreciated, this method achieves a reasonably 
good performance while the CW frequency is below Bw/4. 
If the RFI frequency is higher than this value, the first IMF 
is contaminated, the RFI is undetected, and it cannot be 
mitigated and, as a consequence, the performance curve 
appears close to the unitary-slope line. This demonstrates that 
the single-threshold EMD classical technique is impractical for 
the mitigation of high-frequency RFI. 

Let us analyze now the results with the multicomponent 
EMD thresholding approach. In Fig. 12, the resulting mitiga- 
tion performance for this case is also plotted in dotted lines in 
function of the input interference power. With this strategy, 
mitigation is able to work successfully also at higher frequen- 
cies. Performance is, however, degraded when considering 
high-frequency RFI, something that is clear by considering the 
nonnegligible residuals, which increase with frequency. This 
can be understood by examining the dyadic filter inter- 
pretation of EMD, with the lower-order IMFs, containing the 
higher frequencies, being wider and therefore less capable of 
discriminating RFI. 

Its marked dependence on RFI frequency makes the adop- 
tion of this method hardly justifiable in a general case, 
especially if the added implementation complexity is factored 
in. However, the EMD may still be an alternative in selected 
scenarios. In a low-frequency RFI environment, for example, 
EMD performs better than FB for some types of RFI, and 
it is in general a balanced approach for most types of RFIs. The 
use of EMD is well-tailored for RFI affecting the lower part of 
the measurement bandwidth, where the computation of the 
threshold is simpler, and where the spectral resolution of the 
method is best. It is not, however, a technique that enables 
better detection of nonstationary signals in the passive scenario: 
as mentioned, in that regard, FB and EMD are similar. 
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Fig. 13. Mitigation performance for narrow-band chirp for different sample 
sizes. 

 
 

C. Dependence on Sequence Length 

The prior analysis has been conducted with N   214 sam- ples, 
which assuming a sampling frequency of 40 MHz equals a 
sequence length of around 41 ms. In order to understand how 
the EMD performance changes with sequence length, the 
analysis has also been conducted with other reasonable num- 
bers for N . Without loss of generality, mitigation performance 
achieved has been computed for the narrow-band chirp RFI 
type, and it is depicted in Fig. 13. 

As it can be appreciated, the EMD is able to work with 
comparable performance for a wide range of sequence lengths. 
Lower sequence lengths exhibit a poorer performance in the 
mitigation region, but mitigation levels are reasonably good 
for all sample sizes considered. 

 
VI. CONCLUSION 

In this work, the possibilities of using the EMD as an RFI-
filtering method for passive radiometry are studied. It has been 
shown that the application of the classical thresholding strategy 
is not useful for RFI filtering due to the strong constraints on 
the RFI frequency. The usual strategy for EMD denoising is 
based on the assumption that the first IMF only contains noise. 
If this holds, a variance model for the rest of the IMF noise 
components can be derived, and therefore, the presence of RFI 
can be tested by comparison with a threshold. It has been shown 
that for RFI mitigation, this only works when the RFI 
frequency components are < Bw/4. 

In order to overcome this, a refined approach is proposed in 
this work. The noise model and thresholds are derived from 
each IMF component separately, and each model is then used 
in a separate detection branch. Once the mitigated powers for 
each branch are obtained, the minimum of the ensemble is 
selected, as is the one that minimizes the residual power. This 
multicomponent model strategy has the potential to be applied 
to other decomposition schemes as well, especially when a 
data-derived noise model is required. In addition, the EMD 

has some novel challenges that have been addressed: since 
the IMFs are correlated, their covariance matrix has to be taken 
into account to compensate for the radiometric power lost 
during mitigation. 

The performance achieved by the EMD is studied by 
computing three different performance metrics: mitigation 
residuals, PD, and RL. Performance is then compared with FB. 
It has been found that their behavior is qualitatively similar, 
with FB working better for CW RFI, and EMD for narrow- 
band chirps. However, it has been concluded that EMD is 
not showing adaptiveness to nonstationary RFI. The rationale 
is that the EMD adapts locally to the “highest frequency 
available” and, in the case of microwave radiometry, this is 
always found in the noise component. 

EMD works reasonably well for RFI affecting the lower part 
of the measurement bandwidth, where the computation of the 
threshold is direct, and where the spectral resolution of the 
method is the best. In this scenario, EMD is an interesting 
alternative to other commonly applied methods, offering good 
performance for some types of RFI. However, in a general case, 
the complexity of EMD and its limitations may still be a 
problem. 

This analysis is an important first step in the exploration of 
nonlinear decomposition methods for RFI mitigation. We con- 
sider that the potential that these types of decomposition 
schemes are enormous, especially when treating nonstationary 
signals. As mentioned, many variations of EMD have been 
developed to mitigate some of their problems, such as EEMD 
or adaptive local iterative filtering (ALIF). These improved 
techniques are worth to be assessed in the context of RFI 
mitigation as well. In addition, other nonlinear transformations 
are also worth trying. In this context, some of the challenges 
encountered in this work can be applied there as well. 
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