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Abstract

Photoconductive antennas are devices capable of generating THz waves. In this thesis,
we propose a model of THz wave generation in photoconductive antennas based on the
Dude model. The derived equations explain the THz radiation when a optical pulse illu-
minates a photoconductor with an applied bias field. Furthermore, we derive an additional
term appearing in the Drude equation that accounts for the generation of carriers with
zero velocity. The model includes space-charge screening through a geometrical factor and
radiation screening through an effective antenna impedance. The system is solved numer-
ically using the iterative fixed-point method and Anderson acceleration. The fixed-point
method convergence is limited, but Anderson acceleration can converge for a broader
range of parameters. Analyzing the photocurrent at different optical powers, we find that
it saturates at high optical powers due to the slowdown of the dynamics by the screening
fields.
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1 Introduction

Since the discovery of electromagnetic waves (EM waves), several studies have led to their
controlled emission, their detection, and exploitation for a variety of purposes. Today,
they are used for communication (radio, wireless internet, mobile phones,...) and imaging
and study of materials based on their interactions with the EM waves. The properties
and applications of EM waves are very much dependent on their frequency. Therefore, we
can classify them into several groups (Radio waves, infrared, visible, ultraviolet, X rays,
and Gamma rays, Fig. 1). Among them, a particular band stands out due to the lack
of natural terrestrial sources, the Terahertz band. Terahertz electromagnetic radiation or
submillimetre radiation lies between the high-frequency microwave band (300 gigahertz)
and the long-wavelength edge of infrared light (3000 gigahertz), i.e., between the wave-
lengths of 0.1 mm infrared to 1.00 mm. Despite having several uses, this band is the less
studied range of EM waves [7]. In particular, astronomers and space scientists have used it
for about twenty years because “98% of the photons emitted since the Big Bang are in the
submillimetre band” (P. Siegel, [20]). In the medical field, Terahertz wave radiation can
penetrate many organic materials without causing the same damage as X-rays and other
ionizing radiation. Moreover, dielectrics and intrinsic semiconductors are transparent in
the THz band, while metals have very high reflectivity in the 1 THz frequency. Polar
substances, such as water, have a high absorption rate (α ≈ 250 µm−1 at 1THz for liquid
water). These properties arouse interest in the Terahertz band for its potential uses in
quality control and biomedical imaging or scanning bombs and explosives at airports [7].

Figure 1: EM spectrum

There are various efficient ways to generate and detect EM waves in both the ranges of
microwaves and the optical domain. Advances in optics and electronics have led to different
sources of THz frequencies, such as P-Type Ge lasers and quantum cascades lasers [2] that
generate high-power THz radiation. In addition, relativistic electrons generate extremely
bright broadband THz radiation because of their quick acceleration [1]. However, these
sources tend to be very expensive and usually extensive in size [6]. As an alternative,
photoconductive antennas (PCA) offer a cheaper and lighter source of THz radiation
thanks to their fast varying processes [3]. Unfortunately, current PCA technology is low
in efficiency.

The main objective is to create a physical model for a THz-band PCA transmitter to
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improve and optimize its performance and efficiency. In this thesis, we derive a model for
PCA based on the Drude model. As a novelty, we solve the nonlinear set of equations
numerically using a robust and reliable accelerated fixed-point method. Finally, we discuss
the validity of the model and results obtained, commenting on the potential improvements.

1.1 Design of PCA for THz generation

Figure 2: Scheme of a PCA generating THz radiation. The power radiated by the laser, Popt(t), is
absorbed at the LT-GaAs layer. The generated current, IPC(t), radiates a THz wave due to the fast

variations.

The basic principle of PCA as an emitter is to achieve a current pulse that changes in
the picosecond regime to obtain a THz wave. It has four main components: the pho-
toconductive layer, the high-resistivity substrate, the air-coupling lens, and the dipole
electrodes (fig. 2). In the photoconductive layer, an incident laser pulse generates elec-
tron/hole pairs in femtoseconds. At the same time, a bias voltage applied through the
electrodes accelerates the photogenerated carriers towards the electrodes. As a result, the
produced photocurrent radiates feeds the antenna and radiates EM energy, according to
the Maxwell equations.

The photocurrent raises at the same time as the optical pulse. After the current peaks, it
decays over a time depending on the photoconductor’s properties rather than the optical
pulse’s temporal shape. If the carriers have a long lifetime, they will contribute to the
photocurrent after the pulse is absorbed. Photoconductors in PCAs, based on LT-GaAs,
avoid this by having short-lived carriers [7]. In this material, the time of the pulse de-
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cay occurs in the picosecond regime, which implies that the terahertz components will
predominate in the radiated field.

The geometrical shape of the electrodes is a critical factor that not only affects the conver-
sion efficiency but also the THz radiation direction pattern. Popular choices like the bow
tie or H shape give a high enough directivity, but new designs such as grid-like electrodes
show increased peak directivity [8].

2 PCA modelling

The basic principle for a successful model is that it should approximate the actual solution
or, in experimental cases such as this one, the experimental data. However, understanding
the critical processes of a system and how they interact is also particularly important when
looking for a model that is not only accurate but also simple and computationally meets a
trade-off between accuracy, and the ability to capture the impact of the main phenomena
at play and computational efficiency. With this in mind, several researchers have proposed
different models with different approximations, such as dimensionality reduction, trying
to replicate the observed data. In the simplest cases, the variables such as the current
density and the carrier density are assumed to be uniform in space, ignoring the effects of
complex geometries. A common trait in these models is that quantities such as the carrier
density, photocurrent, or charge polarization have a response function to the external
stimulus.

Duvillaret et al. proposal ([12]) is based on the Drude model and neglected any non-linear
response in the current as they did not consider any screening process and included the
effect of collision with the lattice through a phenomenological scattering time. As a result,
the data follows the obtained analytical expressions only for carrier densities smaller than
1018 cm−3, and found no saturation in the photocurrent. When space charge screening
is added such as in the work of Piao [22] or Jacobsen and Jepsen [18], nonlinearities in
the photocurrent start to appear. They introduced space charge screening by a geomet-
rical factor. Another type of screening called the radiation screening was also considered
by Loata in his thesis [5] but he assumed that the carrier velocities reached saturation
instantaneously. On the other hand, the work of Sergio Revuelta in [13] considered an
instantaneous reach of the saturation velocity but including the 3D geometry and the
diffusion of carriers. In this case, he observed a current saturation, but it remains to be
seen the effects of radiation screening and how to include it in a simple 3D model. Also,
the Drude model is often applied in a non-rigourous way, disregarding the fact that we
are applying it to a variable number of particles.

2.1 Carrier density

Two phenomena determine the carrier density. On the one hand, the absorption of photons
from the laser, and on the other hand, recombination. These two processes are indepen-
dent and add to the total carrier variation. Here we assume that the recombination and
generation are bimolecular, meaning electrons and holes recombine in pairs. Therefore,
the number of electrons and holes is the same. Mobile carriers, however, include another
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process that determines their free lifetime, namely trapping by imperfections. When a
carrier is trapped, its velocity is zero while it still contributes towards a net charge at its
location. Depending on the manufacture of the material, the material may have more or
fewer impurities that decrease or increase the trapping time. In most cases, the trapping
time is much shorter than the recombination time, so we use the trapping time when we
talk about free carriers. Thus the density nf of free (mobile) carriers is given by

dnf

dt
= − n

τc
+ g(t) (1)

where τc is the trapping time, and g(t) is the generation per unit volume. τc may be
different for electrons and holes but for simplicity, we consider it the same.

The intensity of a single Gaussian optical pulse with repetition frequency f is written as
[5]:

Iopt = Ipeak exp

(
−4 ln (2)

(
t

TFWHM

)2
)

(2)

Ipeak =
√

4 log(2)/π
Iavg

TFWHMf

Iavg =
Pavg

So

Where Ipeak is the peak intensity, Iavg the time-averaged intensity, TFWHM is the full
width at half the maximum of the intensity, Pavg is the time-averaged laser power and So

the surface of the laser spot. The band gap energy Eg, absorption a, and reflectivity R
determine the number of photogenerated carriers given the optical power [5].

g(t) =
a(1−R)

Eg

Iopt(t) (3)

Equation 1 can be solved by the convolution of the generation with Green’s function.

nf (t) =

∫ t

−∞
g(t) exp− t−t′

τc dt′ (4)

For a Gaussian pulse excitation as in (2), (4) gives:

nf (t) =
a(1−R)

Eg

P0√
2
exp (t/τc) exp

((
T0

2
τc

)2
)(

1− erf

(
T 2
0

2τc
− t

T0

))
(5)

where we defined the new constants
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T0 =
TFWHM√
4 ln 2

(6)

P0 = PpeakT0

√
π/2 (7)

2.2 Drude model

In [19], it is pointed out that the Drude model for PCAs should include an extra term
with respect to Duvillaret that goes unnoticed and is not explained. In this section, we
derive it ourselves and understand its origin. We assume the velocity v of a single carrier
follows the Drude model [21].

dv

dt
= − v

τs
+

qE(t)

m
(8)

where τsis the scattering time and q the charge of the carrier (e for electrons and −e for
holes). The current density j is the result of the movement from every free carrier:

j = qnf (t)⟨v⟩ = q

∑N(t)
i vi

volume
(9)

is mean velocity of the carriers, vi is the velocity of a single carrier, N(t) is the number
of free carriers. As we will see, an equation similar to (8) can be derived for the mean
velocity. First, we express the evolution of the mean velocity taking into account the
known variation in the number of carriers:

d⟨v⟩
dt

=
1

N(t)

d

dt

N(t)∑
i

vi − ⟨v⟩
N ′(t)

N(t)
(10)

The derivative of the sum of velocities can be expressed more rigorously by converting
the sum over carriers to an integral over velocities.

N(t)∑
i

vi =

∫ ∞

−∞
N (v, t)vdv (11)

d

dt

N(t)∑
i

vi =
d

dt

∫ ∞

−∞
N (v, t)vdv =

∫ ∞

−∞

d

dt
N (v, t)vdv (12)

N (v, t) is the free carrier distribution over velocities v at time t. We can substitute the
total derivative with a partial derivative because the dummy variable v does not depend
on time inside the integral. The time derivative of (12) can be understood as the change in
the number of carriers with velocities between v and v+dv. By analogy to hydrodynamics,
we express it as the sum the particles entering the range [v, v + dv] and the created or
destroyed particles inside [v, v + dv]. If we approximate N (v, t) as being smooth, the

expression for the local change in carrier distribution density ρ(v, t) = N (v,t)
volume

is
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∂

∂t
ρ(v, t) = −ρ(v, t)

τc
+ G(v, t)− ∂

∂v
(ρ(v, t)v′) (13)

The first term is the decrease of free carriers by trapping. G(v, t) is the carrier generation
density distribution. Here we consider G(v, t) = δ(v)g(t) with δ being the Dirac delta, so
the generation contribution to the integral of (12) is null. The third term can be seen as
the divergence of the velocity flux, v′ being given by (8). The result of combining (8), (12)
and (13) is

d

dt

N(t)∑
i

vi = −
∑N(t)

i vi
τc

−
∑N(t)

i vi
τs

+N(t)
qE

m
(14)

Therefore, the equation for the mean velocity, using N ′ = −N/τc+g(t) ·volume and (10),
is

d⟨v⟩
dt

= −⟨v⟩
τs

+
qE

m
− ⟨v⟩ g(t)

nf (t)
(15)

Equation 15 is the application of the Drude model to an ensemble of particles. We see an
additional term with respect to the literature related to the Drude model in PCAS [12]
[22] [18], to account for the newly generated carriers with zero velocity. This additional
term is essential in sharp increases in the generation or low trapping times.

2.3 Electric field

There are mainly two different electric field screening processes that reduce efficiency. The
first one is the space charge screening which is heavily affected by the geometry of the
electrodes. The second one is radiation screening or screening due to short-range emitted
fields.

The electric field inside the PCA is the result of several terms:

• the bias field Ebias.

• the screening of the bias field due to the space charge polarization, Esc

• the screening of the bias field by the THz radiation, Erad.

E = Ebias + Esc + Erad (16)

In our model, we approximate the first and second terms by the result that we would obtain
with parallel electrodes. While this is far from reality, we use constants that depend on
the electrodes’ geometry and can be fitted to experimental data. This approximation is
good as long as the computed quantities don’t need to be explicitly dependent on space;
instead, they are effective averages.
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The voltage difference between the electrodes induces the bias field. The equivalent electric
field in parallel plates separated by a distance le is

Ebias =
V

le
(17)

The charge polarization of the photoconductor represents the charge surface density sep-
arated by the electric field and accumulated around the electrodes. It is given by charge
arriving at the electrodes, and the time it takes to disappear by recombination:

dP (t)

dt
= −P (t)

τr
+ j (18)

where τr is the recombination time. Following the same principle of parallel plates ap-
proximation, we express the quasiestatic screening field as

Esc =
P (t)

κϵ
(19)

where ϵ is the dielectric permittivity of the photoconductor, and κ is the screening factor.
κ depends on the geometry of the electrodes and the screening efficiency.

The radiation screening can be approximated similarly by introducing the antenna impedance
Za (figure 3). The antenna impedance Za describes the opposing electric field generated
by the current inside the photoconductor.

Erad(t) = −
ipc(t)Za

le
= −j(t)SeZa

le
(20)

with ipc being in the photocurrent and Se the surface of the electrodes.

Far from the PCA, it may be viewed as a dipole varying in time. Assuming a Hertzian
dipole in an isotropic media with a refractive index n =

√
ϵ/ϵ0, the electric field radiated

from a time-dependent dipole moment p(t) is [10]:

E(r, ϕ, θ) =
1

4πϵ

(
1

r3
p(t) +

n

cr2
ṗ(t) +

n2

c2r
p̈(t)

)
sin θ (21)

The three terms are written in the following order: the quasi-static field, the near field,
and the far-field. Due to the 1/r dependence, the far-field will dominate at long distances
from the photoconductor. Therefore the radiated is proportional to the derivative of the
photocurrent and is equal to

ETHz =
le

4πϵr

∂ipc(t)

∂t
sin θ (22)
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Figure 3: Schematic representing the equivalent circuit of the PCA
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3 Iterative Fixed point methods

Let G be a vector-valued function that may be nonlinear. We define the fixed point vector
x∗ by the following equation:

G(x∗) = x∗ (23)

Iterative fix point methods formally give the solution of (23) after an infinite number of
steps. The idea of iterative methods is to create a sequence of vectors x(k) that converges
to the fixed point vector.

x∗ = lim
k→∞

x(k) (24)

Ideally, the iteration is stopped at value of n when ||x(n) − x∗|| < ϵ, where ϵ could be a
fixed tolerance and || · || is any convenient vector norm. However, since the precise solution
is clearly not available, it is necessary to introduce suitable stopping criteria to watch for
the convergence of the iteration. The residual f is defined as:

f(x) = G(x)− x (25)

The residual of x is used to estimate how far x is from the fixed point, for example, by
taking the norm.

3.1 Fixed-Point Iteration

The fixed-Point iteration is defined as

Algorithm 1 Fixed-point Iteration

Given x0

k ← 0
while xk has not converged do

xk+1 ← G(xk)
k ← k + 1

The algorithm converges to the fixed-point x∗ if G fulfills certain spectral conditions. The
following theorems provide sufficient conditions to determine if the fixed point exists and
if the fixed-point iteration will converge. For the proofs, we refer to [14].

Definition 1 A mapping G : D ⊂ Rn → Rn is a contraction on a set D0 ⊂ D if there
exists a constant α < 1 such that ||G(y)−G(x)|| ≤ α||y − x||, ∀x,y ∈ D0

The Contraction-mapping theorem ensures the existence of a fixed point.

Theorem 1 (Contraction-mapping theorem) If G : D ⊂ Rn → Rn is a contraction
on a closed set D0 ⊂ D and G(x) ∈ D0, ∀x ∈ D0, then G has a unique fixed point in D0.

Theorem 2 Suppose that G : D ⊂ Rn → Rn has a fixed point x0 in the interior of D and
that G is continuously differentiable in a neighborhood of x0. Denote by JG the Jacobian
matrix of G and assume that ρ(JG(x

∗)) < 1. Then there exists a neighborhood S of x∗
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such that S ⊂ D and, for any x0 ∈ S, the iterates xk defined in Algorithm 1 all lie in D
and converge to x∗.

As we can see, the conditions required to ensure convergence are not guaranteed. The
main problem of fixed-point iterations is that they may not converge; if they do, they
may do so linearly, which is unacceptably slow for real-world applications. In that case,
it is necessary to find another method. One option is to reformulate the problem as a
root-finding problem to use well-known algorithms that provide better convergence. The
option we choose is to use a refinement of the fixed-point iterations, the acceleration
methods.

3.2 Anderson acceleration

Acceleration methods can alleviate slow convergence or even divergence. A particular ac-
celeration method that originated in the work of Anderson is called Anderson acceleration
[16]. Unlike other methods for solving nonlinear equations, such as the Newton method,
Anderson acceleration does not require evaluating the Jacobian of the functional, which
is usually a numerically unstable process. The algorithm for computing the fixed point x∗

with Anderson acceleration, as stated in [15], is

Algorithm 2 Anderson Acceleration

Given x0 and m ≥ 1
x1 ← G(x0)
for k= 1, 2, ... do

mk ← min{k,m}
Fk ← (fk−mk

, ..., fk) where fi = G(xi)− xi

Determine αk = (αk
0, ..., α

k
mk

) that solves minα||Fkα||2 s.t.
∑mk

i=0 αi = 1
xk+1 ←

∑mk

i=0 α
k
iG(xk−mk+i)

The acceleration methods consider previous iterations to try to minimize the next residual.
In Anderson acceleration, the minimization problem finds a linear combination of the prior
iterands such that its associated coefficients also minimize the linear combination of the
residuals. Intuitively, if G were a linear operator, it would be equivalent to the generalized
minimal residual (GMRES) method [15].

Algorithm 2 is not exactly the same as Anderson’s original formulation [16]. The least-
squares problem was originally formulated in a unconstrained form:

min
(θ1,...,θmk)

∥fk +
mk∑
i=1

θi(fk−i − fk)∥ (26)

These two formulations are equivalent, and neither is preferred in theory. In the code, we
implemented a modified unconstrained form.
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3.3 Practical implementation of Anderson method

There are two primary considerations when implementing algorithm 2. The first one is
choosing an appropriate truncation mk of the number of iterations taken into account.
The second one is choosing an efficient way to solve the least-squares problem.

The choice of mk must be neither too high nor too low. A low value limits the information
for finding the best next iteration, decreasing the convergence rate. On the other hand, a
high value might set a high condition number for the least-square problem and use too old
iterations that degrade the convergence [15] and could demand large memory resources
due to the need to store all the iterands.

To solve the least square problem efficiently, we use QR decomposition. The advantage of
inverse solutions using QR decomposition is that they are more numerically stable than
the direct matrix inverse, as evidenced by their reduced condition numbers.

The Matlab code used is the following:

Listing 1: Matlab code for Anderson acceleration

function y = AndersenAcce lerat ion ( f , x0 , k max , t o l r e s ,m)
global n i t e r ;
x = [ x0 , f ( x0 ) ] ; % Vector o f i t e r a t e s x .
g = f ( x0 ) − x0 ; % Vector o f r e s i d u a l s .
g = [ g ( f ( x ( : , 2 ) )−x ( : , 2 ) ) ] ;

G k = g ( : , 2 ) − g ( : , 1 ) ; % Matrix o f increments in r e s i d u a l s .
X k = x ( : , 2 ) − x ( : , 1 ) ; % Matrix o f increments in x .

k=2;

e r r o r e s t ima t i o n = Inf ;
while k < k max && e r r o r e s t ima t i o n > t o l r e s

m k = min(k , m) ;

% Solve the op t im i za t i on problem by QR decomposi t ion .
[Q, R] = qr (G k) ;
gamma k = R \ (Q’ ∗ g ( : , k ) ) ;

% Compute new i t e r a t e and new r e s i d u a l .
x = [ x (x ( : , k ) + g ( : , k ) − (X k + G k) ∗ gamma k) ] ;
g = [ g ( f ( x ( : , k + 1) ) − x ( : , k + 1) ) ] ;

X k = [ X k , x ( : , k + 1) − x ( : , k ) ] ;
G k = [G k , g ( : , k + 1) − g ( : , k ) ] ;
e r r o r e s t ima t i o n = norm( g ( : , end) , 2 ) /norm( x ( : , end) , 2 )

n = s ize (X k , 2) ;
i f n > m k
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X k = X k ( : , n − m k + 1 :end) ;
G k = G k ( : , n − m k + 1 :end) ;

end
k = k + 1 ;

end
n i t e r = k−1;
y = x ( : , end) ;
end

It should be noted that the form (26) is not optimal for implementation. In our code,
we organize the computation differently to make the coefficient matrix easy to update
by adding a column and deleting another. As suggested by [15] the following least-square
problem has better conditioning and is equivalent to (26):

min
θ∈Rmk

∥f(xk) +

mk−1∑
j=0

θj(f(x
k−mk+j+1)− f(xk−mk+j)∥ (27)

The loop stops when it reaches the maximum number of iterations or when the relative
residual of x, ∥G(x)−X∥

∥x∥ (L2 norm), is less than the specified tolerance.
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Figure 4: Cycle of dependence between the variables used for the fixed point methods

4 Application of fix point method to the model

4.1 Problem definition

The inclusion of the Drude model makes the problem very hard to solve. Indeed, the
current depends on the velocity, which depends on the field, which depends on the current
and the polarization (figure 4). We have a cyclic dependence that suggests the use of a
fixed-point method. To define the functionG, we choose as the variable the current density
time series jt. jt ∈ Rn is a time series whose element jt[i] indicates the values of the jt
at time ti. Thus, the dimension n of the vector corresponds to the number of time steps
in which the time interval of interest is discretized. We want to transform a differential
equation problem into the following fixed point problem:

jt = G(jt) (28)

Since the mean velocity is not defined at the beginning when the carrier density is zero,
we use the flux of carriers variable J(t) =

∑
vi

volume
of equation (9) and (14) instead of the

mean. For the discretization, we employ numerical convolution (⊛), evaluating the impulse
responses at the time points. Therefore, the operator G is defined by the following set of
equations:
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G(jt) = e
(
J t
e − J t

h

)
(29)

J t
e =
−e
me

(nt
fE

t)⊛ (θ(t)e−t(1/τc+1/τs))δt (30)

J t
h =

e

mh
(nt

fE
t)⊛ (θ(t)e−t(1/τc+1/τs))δt (31)

Et = Eb −
1

κϵ
P t − Za

le
Sej

t (32)

P t = jt ⊛ (θ(t)e−t/τc)δt (33)

where the superscript t denotes a time series vector of the corresponding variable, and δt
is the duration of every discrete time interval. Equations (29) to (33) are nothing more
than the time discreet version of the model. Equations (30) and (31) are the Drude model.
The operator G is not linear due to the presence of the bias field.

THz radiation is also computed to evaluate the emission power and spectrum.

Et
THz =

le
4πϵr

diff(jt)

δt
sin θ (34)

diff(jt) = jt[i+ 1]− jt[i] is the difference of consecutive current values.

The spectrum is given by:
Ef

THz = F(E
t
THz) (35)

Where F is the Fourier transform.

4.2 Parameters and initial value

When choosing the parameters, we aim at realistic values that allow us to explore depen-
dencies and compare results. As reference, the standard values around which we study
the results are in Table 1.

parameter value

le 50 µm
Se 5 µm2

κ 900
me 0.067me

mh 0.37me

τc 0.5 ps
τr 100 ps
τs 0.03 ps

parameter value

a 15 000 cm−1

R 0.3
Eg 1.4 eV
Vb 20V
Za 100Ω
TFWHM 0.15 ps
Pavg 20mW
So 25 µm2

f 180MHz

Table 1: Values of antenna parameters .
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Optical properties of GaAs are found in [17].

As shown by Theorem 2, the initial value x0 determines whether or not the method
converges. Therefore, we must try to start with a value as close as possible to the fixed
point. We can use the analytical expression adapted from [18] as a first approximation:

j0(t) = enf (t)

(
Eb − Ebnf (t)⊛

(
eµ

κϵ

τcτr
τr − τc

(e−t/τr − e−t/τc)

))
(36)

This expression approximates the solution without the Drude model and only with space
charge screening.
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Figure 5: Evolution of the relative residual ∥G(x)−X∥
∥x∥ for Anderson acceleration and

fixed-point iteration at different optical powers, using Table 1 parameters and m = 30
and a residual tolerance of 10−3.

5 Results

5.1 Convergence

We will first analyze the convergence of the two proposed methods. Starting the compu-
tations, we quickly realized that the fixed-point iteration has a relatively limited region
of convergence. The results of Figure 5 show that for optical powers higher than 13mW,
the fixed-point iteration fails to converge. As expected, Anderson acceleration shows a
steady exponential decrease in the residual with each iteration. Fixed-Point iteration is
particularly surprising as the residual starts decreasing slowly and suddenly decreases
and stagnates if the optical power is less than 13mW. If the optical power is higher than
13mW, the residual stays around 1, meaning that the iterand is changing significantly
and it won’t reach the fixed point. A good enough convergence is achieved only when
the residual is much smaller than 1. The lower the optical power, the lower the level
of stagnation, and the sooner convergence is achieved. With Anderson acceleration, the
convergence is also faster at low optical power.

The Anderson acceleration method converges in fewer iterations than the basic fixed-point
method but is slower (Figure 6). Fortunately, increasing the value ofm works well to speed
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Figure 6: Time to converge of both methods as a function of the optical power. We used
the parameters from Table 1 with m = 30 and a residual tolerance of 10−3.

up the process at higher optical powers because fewer iterations are needed (Figure 7).
m also determines if Anderson acceleration converges. When m is too low, we see the
number of iterations necessary to achieve a certain error exponentially increase with the
optical power (Figure 7). The broader range of convergence and the ability to fine-tune
performance through m makes Anderson acceleration our preferred method.

5.2 PCA Performance

In Figure 8, we can observe the Gaussian optical pulse and the computed results. At
first, the current increases as the optical pulse generates carriers. Then it decreases as
the number of free carriers decays and the electric field decreases. We can observe that
the initial guess correctly predicts the peak position but decreases too fast compared to
the final result. This is not surprising as the expression (36) used as initial guess does
not include neither radiation screening nor the delayed response of the carrier flux to the
electric field.

The average current is the measured current when the optical pulse repeats at a frequency
f :

⟨ipc⟩ = f

∫ T

0

ipcdt (37)

Thanks to the increased convergence range offered by the Anderson acceleration, we can
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Figure 9: (a) Time averaged photocurrent < ipc > vs. optical power with two different
gap lengths between electrodes. (b) Time average of the radiated squared electric field

vs. optical power with two different gaps lengths between electrodes.

see the saturation effect of the average current (Figure 9) as the optical power increases.
The same phenomenon is seen in the radiated power. Due to the saturation, the PCA is
most efficient at lower optical powers.

Decreasing the gap length seems to have a positive effect, increasing the generated current
(Figure 9), but actually, the radiated THz field decreases due to the shorter dipole length
and the reduced current time variations.

For the frequency, we observe that the optical power significantly broadens the peak in
Figure 10. On the other hand, the gap length does not affect the width; it only reduces
the peak height in the spectrum (Figure 10).

5.3 Screening effects

The electric field inside the photoconductor reveals the role played by the screening.
For example, in Figure 11, we see that the space charge screening is responsible for the
long-living screening fields. Radiation screening, on the other hand, provides a short-
lived decrease in the electric field. It should be noted that the bias field in Figure 11 is
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4×105Vm−1. Therefore each component Esc and Erad can be deduced by subtracting from
the bias field. These and other results regarding screening effects obtained with the Drude
model using iterative fixed point algorithms will be presented in the 47th International
Conference on Infrared Millimeter Wave and Terahertz Waves (IR-MMWTHz-2022) to
be held in Delft from 28 August to 2 September [23].

We found that the geometrical factor affects the operational frequency of the antenna. In
Figure 12, there is a clear shift of the position of the peak towards higher frequencies when
decreasing the geometrical factor. Therefore a high efficiency in space charge screening
will result in a higher radiation frequency but lower peak. On the other hand, the antenna
impedance positively affects the THz radiation. In Figure 12, the division of Za by two
results in almost twice the emitted THz field.

As expected, the local field shows reduced long-lived screening when κ is higher because it
reduces the space charge screening (Figure 13). This effect is the opposite in the radiation
screening, which increases. Additionally, we see that at low values of κ, the field switches
sign. Owing to the specifics of the Drude model, the direction of the current does not
change if field switches sign for a very short time (less than 0.2 ps in this case), as we see
in Figure 13 because the radiation screening remains negative. In Figure 14, the antenna
impedance Za presents the opposite effect; it increases the radiation screening but reduces
the space charge screening. Nevertheless, in this case, the current can change direction at
low impedance.
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6 Conclusions and future development:

In this work we have reviewed the foundations of the classical Drude model as applied
to describe the dynamics of photocurrent generation and transport in Photoconductive
Antennas. Bias field screening both with a space charge and radiation origin has been
included. In our derivation, we take into account the effect of the generation of new
carriers on the average velocity of the whole ensemble. This leads to an extra term on the
classical Drude equations for PCA modeling as compared to the available literature.

The equations have been solved numerically through iterative methods. The originality
of the application of iterative fixed-point methods to solution of the Drude model includ-
ing screening is confirmed by acceptance of a paper at the upcoming 47th International
Conference on Infrared Millimeter Wave and Terahertz Waves (IR-MMWTHz-2022) to be
held in Delft from 28 August to 2 September [23] (Appendix A). The simple fixed-point
method showed limited convergence, and therefore an Anderson acceleration algorithm
has been implemented. Anderson acceleration provides a robust method to find the so-
lution (current density) of the nonlinear problem. For low values of m (the number of
previous iterations used) and a given error tolerance, the required iterations increased
exponentially with the optical power. However adjusting the variable m to higher values
around 30 was enough to ensure convergence with a relatively small number of iterations
in all the relevant range of parameter values. This evidenced that Anderson acceleration
is a superior method compared to fixed-point iterations.

The simulations based on the Anderson acceleration algorithm have allowed to reproduce
the typical experimental results and the saturation phenomena due to bias field screening.
Inside the photoconductor, the screening fields slow down the carrier dynamics. Space
charge screening is responsible for long-lived screening fields whereas radiation screening
produces short-lived fields. Within our model, the radiation impedance seems to decrease
the radiated power and the geometrical factor is able to slightly shift the spectrum.
Moreover, by analyzing the local fields we saw that the geometrical factor and the antenna
impedance had opposite effects in both types of screening.

As an extension to our published work [23], a future paper contribution is already under
way to include the rigorous derivation of the model and the iterative Anderson algorithm
implementation. Other effects that will be interesting to study is a more precise addition of
the radiation field screening that could take into account the specifics of the actual antenna
imprinted over the PCA substrate. Also, the Drude models applied are based on space-
averaged quantities and phenomenological factors. Further studies should consider the
space dimension. Preliminar work has been conducted through a finite element simulation
to compute the electric field.

By enabling a better understanding of the underlying dynamics, our results should help
pave the way towards optimized design of PCAs.
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Abstract- A numerical approach for the modelling of dipole 

Photoconductive Antennas (PCAs) is presented, based on the 

classical Drude model with extension to include the bias field 

screening due to both the space charge and the THz radiation 

fields. By employing a fixed-point iterative algorithm, good 

computational efficiency and convergence are obtained for typical 

PCA configuration parameters. Results unveiling the role played 

by each of the different phenomena and the radiated THz spectra 

for different dipole lengths are shown and discussed. 

I. INTRODUCTION  

Y  leveraging mature optical laser technology to provide 

room-temperature compact devices for the advantageous 

generation and detection of Terahertz (THz) waves, 

Photoconductive Antennas (PCAs) have spurred numerous 

applications mainly in the fields of spectroscopy, imaging, and 

communications [1-2]. Notwithstanding, the extremely low 

optical-to-THz efficiencies reported suggest there is still huge 

room for improvement [2].  

   The classical Drude model has been extensively applied to 

describe the dynamics of the charge transport in PCAs including 

the space charge bias field screening through a 

phenomenological geometrical factor, whose adjustment to fit 

experimental observations typically yields unphysical values, 

around two orders of magnitude greater than expected for an 

ideal case. The discrepancy has been attributed to the specifics 

of the space charge motion transients [3]. Revision of the basic 

assumptions of the model and computationally efficient 

implementations that may shed light on the physical processes 

at play are found of interest. 

   In this paper, we describe the basis of the classical Drude 

approach for the modelling of PCAs including screening effects, 

both with a space charge field origin, following [3], and coming 

from the THz radiation effect, as in [4]. The coupled problem is 

solved with a fixed-point iterative algorithm. Fixed-point 

methods iteratively refine the approximation of an equation of 

the form 𝑥 = 𝑓(𝑥) by considering an initial guess 𝑥0  and 

applying the recurrence relation 𝑥𝑘+1 = 𝑓(𝑥𝑘). Convergence is 

ensured if the operator 𝑓(∙) is a contraction on a certain norm 

on its function space. In the case of linear operators, fixed-point 

methods are mathematically equivalent to the Neumann series. 

Due to their formal simplicity, these methods are 

computationally very efficient provided that the convergence 

conditions are fulfilled [5]. The computed photocurrent is 

employed in the classical dipole radiation expressions for the 

radiated field into a semi-infinite substrate [6]. Results for a 

representative PCA configuration are presented in typical PCA 

configuration to assess the impact of each of the phenomena 

involved. 

II. PHOTOCURRENT MODEL 

   The basic structure of a PCA is shown in Figure 1. An 

ultrashort laser pulse is focused on the GaAs voltage-biased gap 

area of length 𝑔 and width 𝑤 in between the dipole arms of 

length 𝐻. A layer of depth 𝑑 grown by Molecular Beam Epitaxy 

(MBE) at a low temperature ensures subpicosecond lattice 

trapping lifetime of carriers, 𝜏𝑐 , for ultrafast current switching. 

The dipole mainly radiates towards the high-permittivity 

substrate (𝜖𝑟~11.9). A hyper-hemispherical high resistive 

silicon lens is placed to couple the THz radiation to air.  

   Following the classical Drude model, when the semiconductor 

is illuminated with photons whose energy exceeds the material’s 

energy bandgap, 𝐸𝑔, electron-hole charge pairs are generated. 

The time dependence of the photogenerated carrier density, 

𝑛(𝑡), is given by 
𝑑𝑛(𝑡)

𝑑𝑡
= −

𝑛(𝑡)

𝜏𝑐
+

𝛼(1−𝑅)

𝑤𝑔𝐸𝑔
𝑃𝑜𝑝𝑡(𝑡) ,                    (1) 

with 𝑃𝑜𝑝𝑡(𝑡) the time evolution of the optical pulse power 

and 𝑅 = (
1−𝑛

1+𝑛
)

2

 the air-substrate interface reflectivity, with  

𝑛 = √𝜖𝑟   the substrate refractive index. Homogeneous 

illumination of the gap area 𝑔 × 𝑤 and exponential absorption 

of the pulse energy as it propagates through the GaAs substrate 

with optical field absorption constant 𝛼 are assumed. 

   Under the influence of the bias field, the photogenerated 

carriers are accelerated towards the dipole arms. The time 

evolution of their average velocities, 𝑣𝑒(𝑡), 𝑣ℎ(𝑡), respectively 

for electrons and holes, is given by: 
𝑑𝑣𝑒,ℎ(𝑡)

𝑑𝑡
= −

𝑣𝑒,ℎ(𝑡)

𝜏𝑠𝑒,ℎ
+

𝑞

𝑚𝑒,ℎ
𝐸(𝑡) ,                   (2) 

with 𝑞 the charge of an electron / hole,  𝑚𝑒,ℎ the effective mass 

of electrons / holes with typical values 𝑚𝑒 = 0.067 𝑚0,       

𝑚ℎ = 0.37 𝑚0, with 𝑚0 the fundamental electron mass, 𝜏𝑠𝑒,ℎ 

the momentum relaxation time of electrons / holes, and 𝐸(𝑡) the 

electric field in the gap volume which is subject to both space 

charge [3-4] and THz radiation field screening [5], as follows 

𝐸(𝑡) = 𝐸𝑏 −
𝑃(𝑡)

𝛾𝜖
−

𝐼𝑃𝐶(𝑡)

𝑔𝑍𝑎
  ,                       (3) 

where 𝐸𝑏 = 𝑉𝑏/𝑔 with 𝑉𝑏  the biasing voltage applied across the 

gap area, is the applied bias field assumed uniform in the 

micrometre-sized gap volume, 𝑃(𝑡) is the polarization field due 

to the accumulation of charge, 𝛾 is a geometrical factor which 
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in the ideal isotropic case takes the value 𝛾 = 3, 𝜖 is the 

permittivity of the substrate, and 𝑍𝑎 is the antenna radiation 

impedance. From (1) and (2), we may define the impulse carrier 

density and velocity responses, respectively as: 

𝑛𝑖(𝑡) =
𝛼(1−𝑅)

𝑤𝑔𝐸𝑔
𝑒𝑥𝑝 (−

𝑡

𝜏𝑐
) 𝑢(𝑡)                  (4) 

 𝑣𝑖(𝑡) = 𝑣𝑖𝑒(𝑡) − 𝑣𝑖ℎ(𝑡)                            (5) 

𝑣𝑖𝑒,ℎ(𝑡) = 𝜇𝑒,ℎ𝐸(𝑡) ⊗ (𝑒𝑥𝑝 (−
𝑡

𝜏𝑠𝑒,ℎ
) 𝑢(𝑡))               (6) 

where ⊗ denotes convolutions, 𝑢(𝑡) is the Heaviside unit step 

function and 𝜇𝑒,ℎ =
𝑞𝜏𝑠𝑒,ℎ

𝑚𝑒,ℎ
  represent the electron / hole 

mobilities. From (4)-(6) a PCA impulse photocurrent response 

may be defined as 

𝐼𝑃𝐶,𝑖(𝑡) = 𝑞𝑤𝑑 𝑛𝑖(𝑡)𝑣𝑖(𝑡)                      (7) 

 so that the instantaneous photocurrent is given by the 

convolution of the impulse photocurrent response and the time 

evolution of the optical pulse that illuminates the gap area, 

mathematically, 

𝐼𝑃𝐶(𝑡) = 𝑃𝑜𝑝𝑡(𝑡) ⊗ 𝐼𝑃𝐶,𝑖(𝑡)                    (8) 

   We assume Gaussian-like pulses, described as                           

𝑃𝑜𝑝𝑡(𝑡) = 𝑃𝑝𝑘𝑒𝑥𝑝(−4𝑙𝑜𝑔(2)(𝑡/𝑇0)2), with 𝑇0 the pulse Full 

Width at Half Maximum (FWHM) and power peak value 𝑃𝑝𝑘. 

   The time evolution of the polarization field is given by: 
𝑑𝑃(𝑡)

𝑑𝑡
= −

𝑃(𝑡)

𝜏𝑟
+ 𝐽𝑃𝐶(𝑡)                             (9) 

where 𝜏𝑟 is the recombination lifetime of carriers, and 𝐽𝑃𝐶(𝑡) is 

the photocurrent density, 𝐽𝑃𝐶(𝑡) =
𝐼𝑃𝐶(𝑡)

𝑤𝑑
, under the usual 

assumption of homogeneous current distribution. 

III. DIPOLE RADIATION 

   To find the spectrum of radiated fields in the maximum 

directivity direction (𝜃 = 90º  in Figure 1), the Hertzian short-

dipole approximation has been used [6], 

𝐸𝑇𝐻𝑧(𝑓, 𝑟)~ℱ [
𝜇0𝑔

4𝜋𝑟

𝑑𝐼𝑃𝐶(𝑡)

𝑑𝑡
]                               (10) 

where ℱ[∙] denotes the Fourier transform, 𝜇0 is the permeability 

of vacuum, and 𝑓 and 𝑟 are respectively the frequency and 

distance from the PCA. To take into account the effect of the 

dipole length on the radiated spectrum, we use a resonant dipole 

approximation [6]. Because of the effect of the lens preventing 

back reflections and allowing efficient coupling of the wave 

from the substrate to air, radiation into a semi-infinite substrate 

may be assumed. 

IV. SIMULATIONS 

   A fixed-point iterative numerical method is applied to solve 

the coupled equations given by the model. Figure 2 summarizes 

the outcomes for a representative PCA example with parameters 

displayed in the inset in Figure 2b.  The impact of the different 

phenomena is assessed by selective switching of the terms 

adding their contribution to the equations. Regarding 

photocurrent, results in absence of screening in Figure 2a 

include both the assumption of instantaneous reach of the 

saturation velocity and gradual exponential increase with 𝜏𝑠 

time scale, and three cases of screening: space charge only, 

radiation only and both space charge and radiation.  The curves 

confirm previous observations [4], with space charge screening 

yielding a sudden rise and fall of the time response, smoothed 

out when radiation screening is added. Also apparent is the fact 

that radiation screening dominates the global photocurrent 

behaviour. Figure 2b shows that the radiation field has a 

relevant impact on the polarization charge field. This is, to the 

best of our knowledge, the first time this extreme has been 

pointed out. Figure 2c shows the time evolution of the local 

electric field in four cases: space charge only, radiation only, 

both screenings and an analytical first-order approximation to 

include the space charge screening found in [7].  It is seen how 

the radiation field causes a large and sudden drop of the electric 

field that finally dies off giving rise to pre-eminence of space 

charge screening, which causes a slower time evolution of the 

electric field, in the longer term. Figure 2d shows the effect of 

the dipole length with all the effects included with the 

characteristic shift of the resonance peak as the dipole length 

changes. Extensive testing of our fixed-point algorithm reveals 

that for the typical PCA, the convergence is compromised for 

optical average powers beyond 5 𝑚𝑊, whereas PCA 

developments may work with power levels up to 20 𝑚𝑊. 

The analysis and results presented show great promise to help 

research in improved PCA designs, but a further numerical 

investigation is required and the efficacy of refined iterative 

methods to extend the parameter convergence range explored.  
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Fig. 2. Results from the simulation of the PCA with data given in the inset in 

b). Time evolution with different approaches of a) photocurrent, b) 

polarization space charge field, c) electric field, and d) radiated spectra for 

different dipole lengths. 
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