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Abstract

Asmore andmore autonomous vehicles enter our road, newmechanismsmust be
considered to ensure the safe coordination between the autonomous vehicles. Al-
thoughmany algorithms have been proposed to coordinate autonomous vehicles,
few of them have considered the robustness of the solution against disturbances.

Therefore, in this master’s thesis, a vehicle coordination algorithm that uses
vehicle to vehicle (V2V) communication is design in order to achieve collision free
trajectories, while rejecting disturbances. Specifically, a robust tube-based model
predictive control (MPC) scheme is proposed in order to control the autonomous
vehicle. This controller uses series of zonotopic reachable sets (also known as
tube) to compute a set of state and input constraints, which ensure the robust
feasibility of the problem. To reduce the computational burden of the MPC opti-
mization problem, the vehicle model is reformulated into a pseudo-linear model
by transforming its non-linear equations into the linear parameter varying (LPV)
form. The disturbance rejection is performed by a H∞-optimal corrective con-
troller. Finally, the collision avoidance is achieved by a V2V coordination algo-
rithm, in which the lateral bounds of a collision free path are computed.

To validate the proposed control scheme, a series of simulations have been
performed to test the disturbance rejection of the corrective controller, as well as
the vehicle coordination capabilities. The results from these tests show that the
proposed controller is effective in coordinating a multiple overtaking maneuver,
while rejecting the disturbances.

Keywords: Autonomous vehicles, vehicle coordination, tube-basedMPC, LPV
modelling, H∞-optimal control.
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Chapter 1

Introduction and Overview

1.1 Motivation
Conventional means of transportation face a series of issues, such as traffic acci-
dents and air pollution. According to the World Health Organization, approx-
imately 1.35 million people die each year worldwide as a result of road traffic
crashes, and between 20 and 50 million more suffer non-fatal injuries, with many
incurring a disability as a result of their injury [1]. Of these accidents, at least
97.5% of them were attributed to human factor causes [2]. Similarly, it is esti-
mated that 4.2 million people die worldwide due to ambient air pollution [3], of
which 27% can be attributed to transportation [4]. Other problems present in
transportation include traffic congestion, which in the USA can entail an annual
loss of 74.5 billion dollars [5].

Figure 1.1: Autonomous vehicles coordinating in an intersection. Source [6]
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The extended use of autonomous vehicles is not only expected to reduce most
of the car accidents attributed to human factors [7], but also decrease traffic con-
gestion in cities, which will reduce air pollution [8]. Some studies have esti-
mated that autonomous vehicle will account for up to 87.2% of vehicles by the
year 2045 [9].

However, as more and more autonomous vehicles enter our road, new V2V
communication protocols must be considered to ensure the safe coordination be-
tween the autonomous vehicles, especially in the execution of mobility tasks, e.g.
platooning and rampmerging, or in complex scenarioswith shared resources, e.g.
parking slots and intersections [10], as presented in Figure 1.1.

This is the context in which the project developed in this thesis is framed.
Specifically, a vehicle coordination algorithm that uses V2V communication is de-
sign in order to achieve collision free trajectories.

1.2 Objective
The main objective of this thesis is to design a real-time autonomous vehicle co-
ordination algorithm using a MPC approach, capable of eluding collisions while
rejecting disturbances. Based on this key objective, the following short-term goals
have been defined:

• Study of the vehicle dynamics, as well as its mathematical model.
• Derive a LPV model of the vehicle.
• Design of a corrective controller capable of rejecting the disturbances affect-

ing the vehicle.
• Propose an autonomous vehicle coordination algorithm that avoids colli-

sions.
• Design a robust tube-based MPC controller.
• Reduce the computational burden of theMPC optimization problem by con-

sidering the LPV model of the vehicle.
• Perform simulation tests to validate the proposed control scheme.

1.3 Document Structure
The document is divided into the following chapters:

• Chapter 2: Vehicle Modelling. This chapter presents the kinematic and
dynamic models of the vehicle.

• Chapter 3: LPV Representation of the Vehicle Models. In this chapter, the
LPV representation of the vehicle models are derived.

• Chapter 4: Polytopic LPV Representation of the Vehicle Models. In this
chapter, the polytopic LPV representation of the dynamic vehicle model is



1.3. Document Structure 5

computed using an approximate method of lower order.
• Chapter 5: Robust LPV Corrective Controller. This chapter presents the

design of a robust LPV corrective controller capable of rejecting the distur-
bances affecting the system.

• Chapter 6: Autonomous Vehicle Coordination. This chapter presents an
autonomous vehicle coordination algorithmbywhich collisions are avoided.

• Chapter 7: Robust Tube-BasedMPC Controller for Autonomous Driving.
In this chapter, a robust tube-based MPC controller is derived to achieve
robust feasibility.

• Chapter 8: Tests and Results. This chapter presents a series of tests per-
formed to validate the proposed control scheme, as well as their results.

• Chapter 9: Social, Economic andEnvironmental Impact. This chapter presents
a sustainability study of the project, with special emphasis on its social, eco-
nomic and environmental impact.

• Chapter 10: Project Budget. This chapter presents the budget associated
to the project, considering the material costs, personnel expenses and the
amortization of the used equipment.

• Chapter 11: Conclusions and Future Work. This chapter presents the con-
clusions derived from the development of the project, as well as future work
proposals.
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Part II

Development
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Chapter 2

Vehicle Modelling

The dynamics of a road vehicle, such as a car, can bemodelled by a set of first order
differential equations that describe its mechanical properties in a mathematical
way.

These differential equations can be grouped into two major groups: kinematic
and dynamic models. The first one describes the motion of the vehicle, such as
the position, velocity or acceleration, without taking into account the forces that
affected this motion, whilst the second one describes this motion by considering
these forces as the cause of movement.

Deciding on a kinematic or dynamic model depends on the chosen vehicle and
the control application. In vehicles operating at low velocities, Kinematic models
have been used for control purposes, e.g. [11], as the lateral forces affecting the
vehicle are negligible. Nevertheless, when these forces are not negligible, such as
in high velocity vehicles, accurate dynamic models are necessary, e.g. [12].

The following sections describe the kinematic and dynamic models that are
used throughout the project, both for simulation and controlling objectives.

2.1 Kinematic Model
Kinematic models present the advantage of being simpler and easier to derive
than dynamic models, as they only depend on the geometrical relationship be-
tween the vehicle and its surroundings.

There are many kinematics models available to choose from, each of them cor-
responding to different types of vehicle geometries (mass-point, differential drive,
bicycle, Ackermann, etc.) or the trajectory’s description (curvature-based, reference-
based, etc.) [13], [14] & [15].

The following subsection presents the mass-point kinematic model, which is
widely used for its simplicity.



10 Chapter 2. Vehicle Modelling

2.1.1 Mass-Point Kinematic Model
Themass-point kinematicmodel uses the linear and angular velocities of a vehicle
expressed in local coordinates, to compute the motion of the CG of the vehicle
expressed in global coordinates.

Figure 2.1: Diagram of the mass-point kinematic model.

To better illustrate this model, the diagram presented in Figure 2.1 shows the
local and global coordinate system of the vehicle, as well as the positive directions
of the linear and angular velocities of said vehicle.

From this diagram, the differential equations describing the motion of the CG
of the vehicle can be obtained by applying trigonometric relationships, as shown
in (2.1).


ẊG = vx cos θG − vy sin θG
ẎG = vx sin θG + vy cos θG

θ̇G = ω

(2.1a)
(2.1b)
(2.1c)

Where XG, YG and θG express the global position and orientation of the CG
of the vehicle, and vx, vx and ω represent respectively, the longitudinal and the
lateral linear velocity and the angular velocity of the vehicle.

Thismodel is useful for simulation purposes as the global position and orienta-
tion of the CG of the vehicle can be readily computed from the velocities obtained
from the dynamic bicycle model presented in Section 2.2.
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However, from a control point of view focused on vehicle-coordination, the
motion described by (2.1) does not offer any practical information, as constrain-
ing theXG, YG coordinates throughout an arbitrary trajectory would prove highly
complex and computationally costly. For this reason, the next kinematic model is
proposed.

2.1.2 Curvature-Based Kinematic Model
The necessity to express the vehicle’s road constraints in an efficient manner jus-
tifies the use of the curvature-based kinematic model. This model uses the linear
and angular velocities of a vehicle expressed in local coordinates to compute the
motion of the CG of the vehicle with respect to a curvilinear trajectory.

Ground Truth

TrajectoryReference

Figure 2.2: Diagram of the curvature-based kinematic model.

To better illustrate this model, the diagram presented in Figure 2.2 shows the
linear and angular velocities of a vehicle (vx, vx and ω) expressed in local coordi-
nates, as well as the variables used to represent the motion of the vehicle through-
out the curvilinear trajectory:

• s: Represents the distance travelled along the curvilinear trajectory.
• ye: Represents the lateral error of the vehicle, which is perpendicular to

the slope of the trajectory at a distance s.
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• θe: Represents the orientation error between the ground truth orientation
of the vehicle and the desired one, which is determined by the angle of
the slope of the trajectory at a distance s.

The derivation of the differential equations describing the curvature-based kine-
matic model are obtained from [16]. This deduction starts by computing the ve-
locity headed in the direction of the trajectory’s slope, vxc , as shown in (2.2).

vxc = (R− ye)ωc = vx cos θe − vy sin θe (2.2)

WhereR is the radius of the trajectory curve at a distance s and ωc is the desired
angular velocity. By defining κ = 1/ R as the curvature of the road at a distance
s, ωc can be isolated from (2.2), as shown in (2.3).

ωc =
vx cos θe − vy sin θe

1− yeκ
κ (2.3)

Thus, the time derivative of the orientation error, θe, can be deduced as shown
in (2.4).

θ̇e = ω − ωc = ω − vx cos θe − vy sin θe
1− yeκ

κ (2.4)

Also, the time derivative of the distance travelled along the curvilinear trajec-
tory can be deduced from ωc, as shown in (2.5).

ṡ = Rωc =
vx cos θe − vy sin θe

1− yeκ
(2.5)

Finally, the time derivative of the lateral error, ye, can be directly obtained by
computing vyc , the velocity headed in the direction perpendicular to the trajectory
slope, as shown in (2.6).

ẏe = vyc = vx sin θe + vy cos θe (2.6)

Therefore, the curvature-based kinematic model is given by clustering Equa-
tions (2.4), (2.5) & (2.6), as shown in (2.7).



ẏe = vx sin θe + vy cos θe

θ̇e = ω − vx cos θe − vy sin θe
1− yeκ

κ

ṡ =
vx cos θe − vy sin θe

1− yeκ

(2.7a)

(2.7b)

(2.7c)
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2.2 Dynamic Model

Bicycle approximation

Ackermann

Figure 2.3: Diagram of the Ackermann model and its bicycle model approxima-
tion.

Most cars can be modelled after the Ackerman dynamic model, in which the
two front wheels are steered, while the two rear wheels are fixed. The angle of
each front wheel, while approximately close, are not equal due to eachwheel trav-
elling through an arc of different radius, as shown in Figure 2.3.

For small wheel slip angles, the inner and outer steering angles, δi and δo, can
be approximately computed by (2.8), where the effective radius of each wheel has
been considered.

δi ≈
L

R− W
2

(2.8a)

δo ≈
L

R + W
2

(2.8b)

WhereL,W andR are the vehicle’s length, width and turning radius, as shown
in Figure 2.3.The average and difference between steering angle can be computed
using (2.9) [13].
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Figure 2.4: Differential steer from a trapezoidal tie-rod arrangement [13]
.

δAckaverage =
δi + δo

2
≈ L

R
(2.9a)

δAckdifference = δi − δo ≈ δ2Ackaverage
W

L
(2.9b)

In practice, this steering angle difference is accomplished byusing a trapezoidal
tie rod arrangement [13], as shown in Figure 2.4, where the inner wheel always
turns with a larger steering angle.

Inmany applications, the Ackermannmodel can be approximated by using the
bicycle model, as shown in Figure 2.3, in which the two front and two rear wheels
are reduced to one front and one rearwheel. This approximation is common as the
steering angle derived from the bicycle model, shown in (2.10), is approximately
equal for small wheel angle slips to the average steering angle of the Ackermann
model, shown in (2.9a) [13].

δbicycle ≈ δAckaverage ≈
L

R
(2.10)

Therefore, the dynamic model assumed in this thesis will be the bicycle dy-
namic model, of which a complete diagram is shown in Figure 2.5. Unlike the
kinematic models previously presented, the bicycle dynamic model is more ap-
propriate for working with higher velocities due to its non-assumption of negligi-
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Figure 2.5: Diagram of the Cartesian dynamic model.

ble lateral tire forces acting on the front and rear wheels. This assumption can be
made due to the inclusion of the of the lateral tire force model.

2.2.1 Lateral Tire Force Model
The lateral tire forcemodel is a crucial element in high velocity control application
since it is linked with the vehicle’s traction to the road. High lateral tire forces
could lead to a complete loss of traction, which could prove fatal. The lateral
force in a tire is a function of the tire slip angle, which is defined as the angle
between the orientation of the tire and the orientation of the velocity vectors of
the wheels [13].

The diagram presented in Figure 2.5 shows the lateral force vectors, Fyf and
Fyr , the front and rear slip angles, αf and αr, as well as the velocity vectors of each
wheel, vf and vr. The slip angles can be computed using (2.11).

αf = δ − θvf = δ − arctan

(
vy + lfω

vx

)
(2.11a)

αr = −θvr = − arctan

(
vy − lrω
vx

)
(2.11b)

Where δ is the steering angle, θvf and θvr are the angles that the velocity vectors
of each wheel forms with the bicycle’s longitudinal axis, lf and lr are the distances
from theCG to the front and rear tires, and vx, vx andω are the longitudinal, lateral
and angular velocities respectively.

As previously commented, the lateral tire forces depend on the tire slip angle,
as shown in Figure 2.6 [13]. This dependency is approximately linear for small
slip angles but non-linear as the slip angle increases. As such, two lateral tire force
models can be considered, depending on the expected slip angles or the level of
fidelity.
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Figure 2.6: Lateral tire force curve obtained from Pacejka’s Magic Formula [13].

Lateral Tire Force Model for Small Slip Angles.
For small slip angles, the front and rear lateral tire forces, can be computed by the
linear function shown in (2.12).

Fyf = Cfαf (2.12a)

Fyr = Crαr (2.12b)

Where Cf and Cr are the front and rear cornering stiffness.

Lateral Tire Force Model for Large Slip Angles.
In cases where the slip angles become larger a more sophisticated model is re-
quired. However, since analytical tire models do not always lead to quantitatively
accurate results, semi-empirical tire models such as Dugoff’s tire model or Pace-
jka’sMagic Formula have been used [17]. In this thesis, theMagic Formula shown
in (2.13)[18] will be considered as the lateral tire force model.

Fy(α) = D sin

(
C arctan

(
Bα− E

(
Bα− arctan (Bα)

))) (2.13)
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Where the model parameters B, C, D and E have the following nomenclature
(a detailed explanation of each parameter is found in [18]):

• B: Stiffness factor.

• C: Shape factor.

• D: Peak value.

• E: Curvature factor.

2.2.2 Bicycle Dynamic Model
Having defined the lateral tire dynamics, the bicycle dynamic model can be de-
rived. This model is composed of the bicycle’s longitudinal, lateral and yaw dy-
namics.

Longitudinal Dynamic Model
The bicycle’s longitudinal dynamics in the CG can be obtained by applying New-
ton’s second law in the longitudinal direction, as shown in (2.14).

ax = v̇x − ωvy =
∑
Fx
m

(2.14)

Where ax is the inertial acceleration in the longitudinal direction, m is the ve-
hicles mass and vx, vx and ω are the longitudinal, lateral and angular velocities
respectively. The sum of forces acting on the longitudinal direction is shown
in (2.15).

∑
Fx = Fmotor − Fyf sin δ − Fresx (2.15)

Where Fmotor is the force generated by the vehicle’s motor or breaks, Fyf is the
front lateral tire force, which can be computed using (2.12a) or (2.13), and Fresx
is the longitudinal resistive force.

The force generated by the vehicle can be computed using (2.16), where a is
the rear wheel’s acceleration.

Fmotor = ma (2.16)

The longitudinal resistive force is composed of Ff , the force due to the rolling
resistance at the tires due to friction, Fdx , the longitudinal aerodynamic drag force
and Fg, the gravitational force due to the grade of the road. This resistive force
can be computed using (2.17).



18 Chapter 2. Vehicle Modelling

Fresx = Ff + Fdx + Fg =

Ff = mµg

Fdx = sgn (vx − vwx)
1

2
ρCdlongArlong (vx − vwx)

2

Fg = mg sinϕroad

(2.17a)
(2.17b)
(2.17c)
(2.17d)

Where µ is the static friction coefficient, g is the gravitational constant, vwx is
the longitudinal wind velocity, Cdlong is the aerodynamic drag coefficient in the
longitudinal direction, ρ is the mass density of air, Arlong is the frontal area of the
vehicle and ϕroad is the angle of inclination of the road on which the vehicle is
traveling.

By substituting Equations (2.15), (2.16) and (2.17) in (2.14) and then isolating
v̇x, we obtain the longitudinal dynamic model shown in (2.18).

v̇x = a−
Fyf sin δ

m
− Fresx

m
+ ωvy (2.18)

Lateral Dynamic Model
The bicycle’s lateral dynamics in the CG can be obtained by applying Newton’s
second law in the lateral direction, as shown in (2.19).

ay = v̇y + ωvx =

∑
Fy
m

(2.19)

Where ay is the inertial acceleration in the lateral direction. The sum of forces
acting on the lateral direction is shown in (2.20).

∑
Fy = Fyf cos δ + Fyr − Fresy (2.20)

Where Fyf and Fyr are the front and rear lateral tire forces, which can be com-
puted using (2.12) or (2.13), and Fresy is the lateral resistive force.

The lateral resistive force is only composed of Fdy , the lateral aerodynamic drag
force, which can be computed using (2.21).

Fresy = Fdy = sgn
(
vy − vwy

)1
2
ρCdlatArlat

(
vy − vwy

)2 (2.21)

Where vwy is the lateral wind velocity, Cdlat is the aerodynamic drag coefficient
in the lateral direction and Arlat is the lateral area of the vehicle.

By substituting Equations (2.20) and (2.21) in (2.19) and then isolating v̇y, we
obtain the lateral dynamic model shown in (2.22).

v̇y =
Fyf cos δ

m
+
Fry
m
−
Fresy
m
− ωvx (2.22)
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Yaw Dynamic Model
The bicycle’s yaw dynamics in the CG can be obtained by applying Newton’s sec-
ond law for rotation in the axis perpendicular to the plane of the road, as shown
in (2.23).

ω̇ =

∑
τ

Iz
(2.23)

Where Iz is the moment of inertia of the vehicle in the CG. The sum of torques
acting on the vehicle is shown in (2.24).

∑
τ = Fyf lf cos δ + Fresy lw − Fyr lr (2.24)

Where lw is the distance in the longitudinal direction from the CG to the point
where the wind is exerting its force, as shown in the diagram presented in Fig-
ure 2.5.

By substituting (2.24) in (2.23), we obtain the yaw dynamic model shown
in (2.25).

ω̇ =
Fyf lf cos δ + Fresy lw − Fyr lr

Iz
(2.25)

Finally, the complete bicycle dynamic model can be computed by combining
Equations (2.18), (2.22) and (2.25), as shown in (2.26).

v̇x = a−
Fyf sin δ

m
− Fresx

m
+ ωvy

v̇y =
Fyf cos δ

m
+
Fry
m
−
Fresy
m
− ωvx

ω̇ =
Fyf lf cos δ + Fresy lw − Fyr lr

Iz

(2.26a)

(2.26b)

(2.26c)

2.3 Simulation and Control Oriented Models
In this section, two different models will be defined for control and simulation
purposes.

2.3.1 Simulation Oriented Model
The simulation-oriented model (SOM) presented in (2.27), is obtained by com-
bining the mass-point kinematic model shown in (2.1), the curvature-based kine-
matic model shown in (2.7) and the bicycle dynamic model shown in (2.26). This
non-linear model will simulate the full dynamics of the vehicle by means of an
ordinary differential equations (ODE) solver.
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

v̇x = a−
Fyf sin δ

m
− Fresx

m
+ ωvy

v̇y =
Fyf cos δ

m
+
Fry
m
−
Fresy
m
− ωvx

ω̇ =
Fyf lf cos δ + Fresy lw − Fyr lr

Iz
ẏe = vx sin θe + vy cos θe

θ̇e = ω − vx cos θe − vy sin θe
1− yeκ

κ

ṡ =
vx cos θe − vy sin θe

1− yeκ
ẊG = vx cos θG − vy sin θG
ẎG = vx sin θG + vy cos θG

θ̇G = ω

(2.27a)

(2.27b)

(2.27c)
(2.27d)

(2.27e)

(2.27f)

(2.27g)
(2.27h)
(2.27i)

2.3.2 Control Oriented Model
The control-oriented model (COM) will be used by the vehicle coordination al-
gorithm in order to safely maneuver the vehicle around the road, while avoiding
other vehicles. This model will differ from the SOM in two main aspects:

• Reduction of differential equations: the COMwill not require the mass-point
kinematic model presented in (2.1), as it does not add any relevant infor-
mation useful for the vehicle coordination algorithm.

• Simplified dynamics: the dynamics of the bicycle model presented in (2.26)
will be simplified in order to test the robustness of the designed vehicle co-
ordination algorithm under the perturbations caused by the unmodelled
dynamics.

The simplified bicycle dynamic model is presented in (2.28).


v̇x = a−
Fyf sin δ

m
− F̃resx

m
+ ωvy

v̇y =
Fyf cos δ

m
+
Fry
m
− ωvx

ω̇ =
Fyf lf cos δ − Fyr lr

Iz

(2.28a)

(2.28b)

(2.28c)

Where two simplifications have been made: the longitudinal resistive forces
caused by the angle of inclination of the road and the wind are not considered,
and the lateral resistive forces are neglected, as presented in (2.29).
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Fresx ≈ F̃resx = Ff + F̃dx = mµg + sgn (vx)
1

2
CdlongρArlong (vx)

2

Fresy ≈ 0

(2.29a)
(2.29b)

Therefore, theCOMpresented in (2.30), is obtained by combining the curvature-
based kinematic model shown in (2.7) and a simplified dynamic of the bicycle
dynamic model shown in (2.28).



v̇x = a−
Fyf sin δ

m
− F̃resx

m
+ ωvy

v̇y =
Fyf cos δ

m
+
Fry
m
−
Fresy
m
− ωvx

ω̇ =
Fyf lf cos δ + Fresy lw − Fyr lr

Iz
ẏe = vx sin θe + vy cos θe

θ̇e = ω − vx cos θe − vy sin θe
1− yeκ

κ

ṡ =
vx cos θe − vy sin θe

1− yeκ

(2.30a)

(2.30b)

(2.30c)
(2.30d)

(2.30e)

(2.30f)

Finally, the model parameters, as well as the bounds of the dynamic state used
for the COM and SOM are presented in Table 2.1 and 2.2, which were obtained
from the driverless UPC racing car presented in [19].

Parameter Value Parameter Value
lf 0.902m L 4.2m
lr 0.638m W 1.8m
m 196 kg Cf 25 · 103 N

rad

Iz 93 kg ·m2 Cr 25 · 103 N
rad

Cdlong · Arlong 1.64 B −17.3065
Cdlat · Arlat 1.82 C 1.1804

ρ 1.225 kg
m3 D 1.2246 · 103N

µ 0.015 E 0
g 9.81 m

s2

Table 2.1: Dynamic model parameters of the driverless UPC Car [19].
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Variable Lower Bound Upper bound
vx 1 m

s
15 m

s

vy −1 m
s

1 m
s

ω −π
2
rad
s

π
2
rad
s

a −2 m
s2

13 m
s2

δ −0.25 rad 0.25 rad
∆a −0.5 m

s2
0.5 m

s2

∆δ −0.05 rad 0.05 rad

Table 2.2: Lower and upper bounds of the states and inputs [19].

Where∆δ and∆a are the maximum increments allowed on the control actions
during a time interval of Ts = 30 ms. The bounds on the kinematic states of the
COM and SOM are not presented in this Chapter, as they are defined by the road
characteristics and not by the vehicle.
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Chapter 3

LPV Representation of the Vehicle
Models

In this chapter, the LPV representation of the vehicle models presented in Chap-
ter 2 are formulated using the non-linear embedding approach. The goal of the
this approach is to embed the non-linearities of the original equations into a se-
ries of varying parameters, so that the resulting LPVmodel is formulated in a state
space (SS) representation, as shown in (3.1), in which the matrices are a function
of these varying parameters.

ẋ = A
(
θ (ζ)

)
x+B

(
θ (ζ)

)
u (3.1)

Where x and u are vectors containing the system’s states and inputs, A (
θ (ζ)

)
and B (

θ (ζ)
) are the LPV matrices, θ is a vector containing the matrices’ varying

parameters and ζ is a vector containing the scheduling variables used to compute
these varying parameters.

3.1 Curvature-based Kinematic LPVModel
The kinematic states and inputs of the curvature-based kinematic LPV model are
defined as in (3.2).

x =

 ye
θe
s

 , u =

 vx
vy
ω

 (3.2)

Such that the SS representation obtained from the non-linear embedding ap-
proach can be expressed as in (3.1). In order to compute the LPV matrices, the
non-linear embedding approach must be applied to the kinematic model pre-
sented in (2.7), as shown in (3.3).
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ẋ = A(vx, vy, ye, κ)x+B(ye, θe, κ)u (3.3a)

Where the LPV matrices are presented in (3.3b).

A(vx, vy, ye, κ) =

 0 A12 0
0 A22 0
0 A32 0

 , B(ye, θe, κ) =

 B11 B12 0
B21 B22 1
B31 B32 0

 (3.3b)

And the varying parameters are defined in (3.3c).

A12 =
1

2

sin(θe)

θe
vx ≈

1

2
vx

A22 =
1

2

vy
1− yeκ

sin(θe)

θe
κ ≈ 1

2

vy
1− yeκ

κ

A32 = −
1

2

vy
1− yeκ

sin(θe)

θe
≈ −1

2

vy
1− yeκ

B11 =
1

2
sin(θe)

B12 = cos(θe) (3.3c)

B21 = −
cos(θe)

1− yeκ
κ

B22 =
1

2

sin(θe)

1− yeκ
κ

B31 =
cos(θe)

1− yeκ

B32 = −
1

2

sin(θe)

1− yeκ

It should be noted that, to avoid singularities in the matrixA(vx, vy, ye, κ)when
θe = 0, the small-angle approximation shown in (3.4) was applied to the varying
parametersA12, A22 andA32. The error committed with this approximation is less
than 1% for −13.99◦ ≤ θe ≤ 13.99◦ [20].

sin(θe)

θe
≈ 1 (3.4)

3.2 Simplified Bicycle Dynamic LPVModel
The dynamic states and inputs of the simplified bicycle dynamic LPV model are
defined as in (3.5).
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x =

 vx
vy
ω

 , u =

[
a
δ

]
(3.5)

Such that the SS representation obtained from the non-linear embedding ap-
proach can be expressed as in (3.1). To compute the LPV matrices, the non-linear
embedding approachmust be applied to the simplified dynamicmodel presented
in (2.28). However, this process is not trivial due to the strong non-linearities
present in the lateral tire force model. As such, the following approximations are
to be considered [21].

First, the tangent function present in (2.11), which is used to compute the slip
angles αf and αr, is approximated by tan(α) ≈ α, as shown in (3.6).

αf = δ − arctan

(
vy + lfω

vx

)
≈ δ − vy + lfω

vx
(3.6a)

αr = − arctan

(
vy − lrω
vx

)
≈ −vy − lrω

vx
(3.6b)

The error committed with this approximation is less than 1% for −9.91◦ ≤ δ ≤
9.91◦ [20]. This approximation is valid as typical slip angles remain within this
interval [14].

Second, the Magic Formula presented in (2.13) is approximated by a n-order
polynomial using a least-squares algorithm, as shown in (3.7).

Fy(α) ≈ pnα
n + pn−1α

n−1 + · · ·+ p1α + p0 (3.7)

Where pi are the n coefficients of the induced polynomial, being n the polyno-
mial’s order.

With this polynomial, the non-linear embedding approach is applied to the
Magic Formula as shown in (3.8).

Fy(α) ≈ C(α)α (3.8a)

C(α) = pnα
n−1 + pn−1α

n−2 + · · ·+ p1 + p0
1

α + ϵ
(3.8b)

WhereC(α) is the tire cornering stiffness function obtained from the non-linear
embedding approach and ϵ is a small constant used to avoid singularities in C(α)
when α = 0.

With the help of these two approximations, the simplified bicycle dynamic
model presented in (2.28) can be approximated by (3.9), where the non-linearities
have been embedded.
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

v̇x = a− F̃resx
mvx

vx +
Cf sin δ

mvx
vy +

(
Cf lf sin δ

mvx
+ vy

)
ω − Cf sin δ

m
δ

v̇y = −
Cf cos δ + Cr

mvx
vy −

(
Cf lf cos δ − Crlr

mvx
− vx

)
ω +

Cf cos δ

m
δ

ω̇ = −Cf lf cos δ − Crlr
Izvx

vy −
Cf l

2
f cos δ + Crl

2
r

Izvx
ω +

Cf lf cos δ

Iz
δ

(3.9a)

(3.9b)

(3.9c)

Where the front and rear tire cornering stiffness parameters, Cf and Cr, are ap-
proximated by (3.8b). By using the approximations made to the dynamics equa-
tions shown in (3.9), the LPV model can be readily obtained, as shown in (3.10)

ẋ = A(vx, vy)x+B(δ)u (3.10a)
Where the LPV matrices are presented in (3.10b).

A(vx, vy) =

 A11 A12 A13

0 A22 A23

0 A32 A33

 , B(δ) =

 1 B12

0 B22

0 B32

 (3.10b)

And the varying parameters are defined in (3.10c).

A11 = −
F̃resx
mvx

A12 =
Cf sin δ

mvx

A13 =
Cf lf sin δ

mvx
+ vy

A22 = −
Cf cos δ + Cr

mvx

A23 = −
Cf lf cos δ − Crlr

mvx
− vx (3.10c)

A32 = −
Cf lf cos δ − Crlr

Izvx

A33 = −
Cf l

2
f cos δ + Crl

2
r

Izvx

B12 = −
Cf (α) sin δ

m

B22 =
Cf (α) cos δ

m

B32 =
Cf (α)lf cos δ

Iz
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3.3 Control Oriented LPVModel
TheCOMshown in (2.30) can be transform into the LPV formby combining Equa-
tions (3.3) and (3.10), as presented in (3.11).

ẋ = A(vx, vy, ye, κ)x+B(ye, θe, κ, δ)u (3.11a)
Where the state and input vectors are shown in (3.11b).

x =



vx
vy
ω
ye
θe
s


, u =

[
a
δ

]
(3.11b)

The LPV matrices are presented in (3.11c) and (3.11d).

A(vx, vy, ye, κ) =



A11 A12 A13 0 0 0
0 A22 A23 0 0 0
0 A32 A33 0 0 0
A41 A42 0 0 A45 0
A51 A52 1 0 A55 0
A61 A62 0 0 A65 0


(3.11c)

B(ye, θe, κ, δ) =



1 B12

0 B22

0 B32

0 0
0 0
0 0


(3.11d)

And the varying parameters are defined in (3.11e).

A11 = −
Fresx
mvx

A12 =
Cf sin δ

mvx

A13 =
Cf lf sin δ

mvx
+ vy

A22 = −
Cf cos δ + Cr

mvx

A23 = −
Cf lf cos δ − Crlr

mvx
− vx

A32 = −
Cf lf cos δ − Crlr

Izvx
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A33 = −
Cf l

2
f cos δ + Crl

2
r

Izvx

A45 =
1

2
vx

A55 =
1

2

vy
1− yeκ

κ (3.11e)

A65 = −
1

2

vy
1− yeκ

A41 =
1

2
sin(θe)

A42 = cos(θe)

A51 = −
cos(θe)

1− yeκ
κ

A52 =
1

2

sin(θe)

1− yeκ
κ

A61 =
cos(θe)

1− yeκ

A62 = −
1

2

sin(θe)

1− yeκ

B12 = −
Cf (α) sin δ

m

B22 =
Cf (α) cos δ

m

B32 =
Cf (α)lf cos δ

Iz

Finally, note that even though the presented LPV models were developed in
continuous time (CT), their discrete time (DT) formulation can be obtained by
using the Euler discretization method shown in (3.12).

x[k + 1] = Adx[k] +Bdu[k] ≈ (I + ATs)x[k] + TsBu[k] (3.12)

Where Ad and Bd are the DT SS matrices, A and B are the CT SS matrices and
Ts is the sampling time.
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Chapter 4

Polytopic LPV Representation of the
Vehicle Models

The LPV models presented in Chapter 3 serve as a useful tool for obtaining lin-
ear models without linearization by embedding the non-linearities in the varying
parameters ζ .

However, due to the unmodelleddynamics present in theCOMshown in (2.30),
which were the result of simplifying the dynamic bicycle model, a corrective con-
troller is required for robustness.

This corrective controller can be formulated as a gain-scheduled multivariable
controller, in which the stability and performance of the close-loop system is en-
sured by applying the Lyapunov theory. One approach to synthesized this con-
troller is to apply linear matrix inequality (LMI) optimization techniques to the
LPV COM system presented in (3.11).

However, the LMI optimization problem cannot be directly applied to a LPV
system, like the one shown in (3.1), due to the fact that the optimization problem
should be evaluated for all the possible numerical values that the LPV matrices
could adopt. As a result, the optimization problemwould become an infinite con-
straint LMI problem.

To get around this problem, the infinite constraints are reduced to a finite num-
ber of constraints, obtained by evaluating the optimization problem in each vertex
of the system’s polytopic LPV model, as e.g. [22]. Equation (4.1) presents a stan-
dard polytopic LPV model of a system.

ẋ =
N∑
i=1

µi(θ)(Aix+Biu) (4.1)

Where the pair of matrices (Ai, Bi) represents one of theN vertices of the poly-
tope that bounds all the numerical values of the LPV matrices, and µi(θ) is the
vertex membership function, which indicates the membership degree of the LPV
model (A(θ), B(θ)

) in the (Ai, Bi) vertex. This functionmust satisfy the constraints
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shown in (4.2).

N∑
i=1

µi(θ) = 1, µi(θ) ≥ 0 (4.2)

The next section will present algorithms capable of generating polytopic LPV
models.

4.1 Generation of Polytopic LPVModel
Multiple algorithms have been proposed to compute the polytopic LPV model of
a system, of which two will be presented in this section. The first one is the tradi-
tional bounding box method [23], which proves inefficient as a result of the con-
servatism introduced due to overbounding. While the second one is the principal
component analysis (PCA) based parameter set mapping method [24], which is
more efficient, as it yields tighter polytopes.

4.1.1 Bounding Box Method
The bounding boxmethod starts by assuming that themeasurement of each vary-
ing parameter of the LPV model, θj , is available in real-time and that their range
is known a priori, as shown in (4.3).

θj ≤ θj ≤ θj, j = 1, . . . , nθ (4.3a)

θj = max
ζ∈[ζ,ζ]

θj(ζ), θj = min
ζ∈[ζ,ζ]

θj(ζ) (4.3b)

Where θj and θj are the lower and upper bounds of θj , found withing the
scheduling variable’s range ζ ∈

[
ζ, ζ

]
, and nθ is the number of varying param-

eters.
If these assumptions are applicable, then the polytopeΘ bounding the varying

parameter vector can be defined as shown in (4.4).

θ ∈ Θ := co {Θ1,Θ2, . . .ΘN} (4.4)

Where each vertex Θi is formed by considering one of the N = 2nθ possible
permutations of θj and θj for j = 1, . . . , nθ and co{·} is defined as the convex hull
operator of said vertices. This method is referred to as bounding box since the
resulting bounding polytope has the shape of a hyperrectangle.

Byusing this boundingpolytope, the varyingparameter vector can be expressed
in polytopic form, as shown in (4.5).
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θ =


N∑
i=1

µi(θ)Θi

∣∣∣∣∣∣
N∑
i=1

µi(θ) = 1, µi(θ) ≥ 0

 (4.5)

Note that if an affine function is applied to the varying parameter vector: δ(θ),
then its new bounding polytope can be obtained by computing the image of Θ
under δ(·), as shown in (4.6).

δ(θ) ∈ δ(Θ) := co
{
δ(Θ1), δ(Θ2), . . . δ(ΘN)

} (4.6)

Since all the LPV matrices, A(θ) and B(θ), shown in Chapter 3, presented an
affine relation with the varying parameter vector θ, the polytope bounding each
LPV matrix can be computed as the image of Θ under A(·) and B(·), as shown
in (4.7).

A(θ) ∈ A(Θ) := co {A1, A2, . . . AN} (4.7a)
B(θ) ∈ B(Θ) := co {B1, B2, . . . BN} (4.7b)

WhereAi = A(Θi) andBi = B(Θi), for i = 1, . . . , N . By using these two bound-
ing polytopes, the LPV matrices can be expressed in polytopic form, as shown
in (4.8).

A(θ) =


N∑
i=1

µi(θ)Ai

∣∣∣∣∣∣
N∑
i=1

µi(θ) = 1, µi(θ) ≥ 0

 (4.8a)

B(θ) =


N∑
i=1

µi(θ)Bi

∣∣∣∣∣∣
N∑
i=1

µi(θ) = 1, µi(θ) ≥ 0

 (4.8b)

Therefore, by substituting (4.8) in (3.1), as presented in (4.9), the desired LPV
polytopic model shown in (4.1) is obtained.

ẋ = A(θ)x+B(θ)u

=

 N∑
i=1

µi(θ)Ai

x+

 N∑
i=1

µi(θ)Bi

u

=
N∑
i=1

µi(θ)(Aix+Biu)

(4.9)

Finally, the vertexmembership functionµi(θ) can be computed as shown in (4.10) [21].
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µi(θ) =

nθ∏
j=1

ξij

(
η
j
, ηj

)
, ∀i = 1, . . . , N = 2nθ (4.10a)

η
j
=
θj − θj
θj − θj

(4.10b)

ηj =
θj − θj
θj − θj

= 1− ηj0 (4.10c)

Where ξij
(
η
j
, ηj

)
is a function that alternates between η

j
and ηj , in order to

compute the N possible combinations.

4.1.2 PCA-Based Parameter Set Mapping
The bounding box method, presented in the previous section, is a simple and
straight forward method for computing the polytopic LPV model of a system.
However, it presents a series of drawbacks [24]:

• Poorly scalable: the number of vertices of the polytopic model increases
exponentially with the number of varying parameters: N = 2nθ . Conse-
quently, many non-linear systems with high number of varying parame-
ters resort to ad hoc simplifications (such as neglecting dynamic coupling
or fixing parameter dependent variables) in order to reduce the total num-
ber of varying parameters. Ultimately, a compromise between model ac-
curacy and model tractability is considered.

• Excessive conservatism: Since the bounding polytope presented in (4.4)
does not take into account the inherent couplings between different vary-
ing parameters, many of the polytope’s vertices are unreachable by the
system, which results in unnecessary overbounding.

To amend these disadvantages, algorithms like the PCA-based parameter set
mapping [24] have beenproposed,which try tomitigate the aforementioneddraw-
backs by reducing the number of varying parameters and tightening the bounding
polytope so that only reachable vertices are considered.

The steps involve in the PCA-based parameter set mapping algorithm are: the
generation of the trajectories of the varying parameters, the application of the PCA
algorithm to these trajectories to reduce the number of varying parameters and
finally, the computation of the reduced polytopic LPV model.

Generation of Varying Parameter Trajectories
First, this algorithm requires the generation of typical trajectories of the schedul-
ing variables ζ , obtained by either measurements or simulation. These trajectories
should cover the expected range of operation, which in the case of road vehicles
consists of different driving maneuver such as: accelerating, braking or making
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tight or wide turns. This step could also provide information about any inherent
couplings present between the scheduling variables.

Equation (4.11) shows a trajectory formed byNs measurements of the schedul-
ing variable that have been sampled at a frequency of f = 1/Ts.

Υ =
{
ζ[0], ζ[Ts], . . . , ζ[kTs], ζ[(Ns − 1)Ts]

} (4.11)

The trajectories of the varying parameters can be generated by computing the
image of the trajectory of scheduling variables, Υ, under the varying parameter
mapping θ(ζ), as shown in (4.12). These new trajectories could give informa-
tion about any possible inherent couplings present between the varying parame-
ters, due to scheduling variables appearing repeatedly in themapping of different
varying parameters.

Ξ =
{
θ[0], θ[Ts], . . . , θ[kTs], θ[(Ns − 1)Ts]

}
=

{
θ(ζ[0]), θ(ζ[Ts]), . . . , θ(ζ[kTs]), θ(ζ[(Ns − 1)Ts]

} (4.12)

In order to weight each varying parameter equally, each row of the trajectory
matrix Ξ is normalize, as shown in (4.13), to achieve scaled - zero mean trajecto-
ries.

Ξnormi = Ni(Ξi) =
Ξi − µΞi

σΞi
(4.13)

Where Ξi is the ith row of the trajectory matrix Ξ and µΞi and σΞi are, respec-
tively, the mean and standard deviation of Ξi.

Reduction of the Number of Varying Parameter
The next step involves applying the PCA, in order to reduce the number of vary-
ing parameters. To do so, the singular value decomposition of the normalized
trajectory matrix Ξnormi is performed, as shown in (4.14). If these trajectories are
correlated, then some of the singular values will be small in comparison with oth-
ers and as such, they can be neglected.

Ξnorm = UΣV

= [UsUn]

[
Σs 0 0
0 Σn 0

][
V T
s

V T
n

]
(4.14)

Where the matrices Us, Σs and Vs correspond to themmost significant singular
values, such that Ξnormi can be approximated by (4.15).

Ξnormi ≈ Ξ̂norm = UsΣV
T
s (4.15)
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By using the Us matrix and the normalization presented in (4.13), the reduced
vector of varying parameters ψ can be computed as shown in (4.16), where the
number of varying parameters has been reduced from nθ to nψ = m, beingm the
chosen number of most significant singular values.

ψ(θ) = UT
s N

(
θ(ζ)

) (4.16)

As a quality measurement of this approximation, the fraction of total variation
shown in (4.17) can be applied.

vm =

∑nψ
i=1 σi∑nθ
i=1 σi

100% (4.17)

Where σi is the ith most significant singular value. The performed approxima-
tion should achieve a trade-off between a high percentage of the fraction of total
variation and an effective reduction of the number of varying parameters.

Finally, Equation (4.18) is used to transform from the reduced varying param-
eter vector ψ(ζ) to the original varying parameter vector θ(ζ).

θ̂(ψ) = N−1
(
Usψ(ζ)

) (4.18)

Where N−1(·) rescales the data down to the original mean µΞ and standard
deviation σΞ presented in (4.13).

Reduced Polytopic LPVModel
To compute the reduced polytopic LPV model, the upper and lower bounds of
the reduced varying parameter vector ψ(ζ) are computed. However, unlike in
the bounding box method shown in (4.3), where the bounds were computed ig-
noring the possible inherent coupling between parameters, these new bounds are
searched throughout the generated trajectories of the scheduling variable Υ, as
presented in (4.19). As a result, these new bounds are less conservative as un-
reachable dynamics are not considered in the bound’s computation.

ψΥ

j
≤ ψj ≤ ψ

Υ

j , j = 1, . . . , nψ (4.19a)

ψ
Υ

j = max
k
ψj

(
ζ [kTs]

)
, ψΥ

j
= min

k
ψj

(
ζ [kTs]

)
, k = 0, . . . , (Ns − 1) (4.19b)

With these bounds, a newpolytopeΨ bounding the reduced varying parameter
vector can be defined as shown in (4.20).

ψ ∈ Ψ := co
{
ΨΥ

1 ,Ψ
Υ
2 , . . .Ψ

Υ
M

}
(4.20)
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Where each vertex ΨΥ
i is formed by considering one of the M = 2nψ possible

permutations of ψΥ

j
and ψΥ

j for j = 1, . . . , nψ. Then, applying the transformation
shown in (4.18) to the vertices ΨΥ

i leads to the polytope shown in (4.21), which is
a lower order approximation of Θ, the overbounding polytope computed in (4.4)
using the bounding box method.

θ ∈ Θ̂ := co
{
Θ̂1, Θ̂2, . . . Θ̂M

}
= co

{
θ̂(ΨΥ

1 ), θ̂(Ψ
Υ
2 ), . . . θ̂(Ψ

Υ
M)

}
(4.21)

Finally, the reduced polytopic LPV model can be obtained by applying (4.22).

ẋ =
M∑
i=1

µi(θ)(Âix+ B̂iu) (4.22)

Where the vertex matrices (Âi, B̂i) can be computed as the image of Θ̂ under
the affine functions A(·) and B(·), as shown in (4.23), where Âi = A(Θ̂i) and
B̂i = B(Θ̂i), for i = 1, . . . ,M .

A(θ) ∈ A(Θ̂) := co
{
Â1, Â2, . . . ÂM

}
(4.23a)

B(θ) ∈ B(Θ̂) := co
{
B̂1, B̂2, . . . B̂M

}
(4.23b)

Thanks to the PCA-based parameter set mapping algorithm, the total number
of vertices can be reduced by a factor of 2nθ−nψ

4.2 Polytopic LPVModel of theBicycleDynamicModel
The polytopic LPVmodel of the bicycle dynamic model will be necessary in order
to synthesized a robust LPV corrective controller using LMI optimization tech-
niques, as presented in Chapter 5.

Since the LPV model of the bicycle dynamic system presented in (3.10) had
ten varying parameters, the polynomic LPVmodel would presentN = 210 = 1024
vertices if the bounding boxmethodwas used to compute the bounding polytope.

Thus, to obtain the robust corrective controller, an optimization problem with
at least 1024 constraints would have to be solved. Since this would result unfea-
sible or at least present a poor performance due to the excessive conservatism,
the number of constraints is reduced by considering the vertices of the reduced
polytope computed by the PCA parameter set mapping algorithm.
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(a) The trackCircuit de Barcelona-Catalunya used to generate the trajectories of the
scheduling variable.

(b) Data acquisition obtained by manually driving the car.

Figure 4.1: Generation of the trajectories of scheduling variables.

As described in Section 4.1.2, the first step necessary to apply the PCA param-
eter set mapping algorithm is to compute a trajectory of the scheduling variables
that covers their expected range of operation.

To do so, a simulation is performed using the SOM,with the parameters shown
in Tables 2.1, in which the vehicle was manually driven through a circuit, as pre-
sented in Figure 4.1. This circuit has been designed by using the real-life coordi-
nates of the track Circuit de Barcelona-Catalunya, which were obtained from [25].

The generated trajectories of the scheduling variables ζ = [vx, vy, δ]
T are shown

in Figure 4.2. These trajectories contained a total number of 18619 samples which
were sampled at a frequency of 30 Hz.
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Figure 4.2: Trajectories of the scheduling variable Υ.

As presented in (4.12), the trajectories of the varying parameters can then be
computed by evaluating (3.10c) for the generated trajectories of the scheduling
variables. As a result, the trajectories of the varying parameters shown in Fig-
ure 4.3 are obtained.

Figure 4.3: Trajectories of the varying parameters Ξ
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The next step involves normalizing the trajectory of each varying parameter as
indicated in (4.13). The trajectories resulting from this normalization are shown
in Figure 4.4.

Figure 4.4: Normalized trajectories of the varying parameters Ξnorm.

After applying the singular value decomposition to the normalized trajectory
matrix, the singular values shown in (4.24) were obtained.

Σ =



2.5804 · 102
2.1580 · 102
2.0231 · 102
1.6681 · 102
6.5056 · 10
4.6110
4.2121
7.0412 · 10−9

6.2057 · 10−14

3.4784 · 10−14


(4.24)

If only the first five singular values are considered, then the fraction of total
variation defined in (4.17), will present the value shown in (4.25).

vm =

∑5
i=1 σi∑10
i=1 σi

100% = 99.04% (4.25)
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This high percentage indicates that around 99% of the information contained
in the normalized trajectories of the varying parameters is represented by the first
five singular values. Thus, by applying the mapping shown in (4.16), the number
of varying parameters can be reduced to five, while ensuring a good approxima-
tion of the model.

As a result, the number of vertices of the polytope bounding the varying pa-
rameters has been effectively reduced from theN = 210 = 1024 vertices yielded by
the bounding box method, to theM = 25 = 32 vertices computed by the PCA pa-
rameter set mapping method. These vertices can be computed by applying Equa-
tions (4.19), (4.20) and (4.21).

The graph presented in Figure 4.5 serves as an illustrative example of the ca-
pacity of the PCA parameter set mapping method of yielding tighter polytopes.
Specifically, the three-dimensional polytope bounding the varyingparametersA11,
A22 and A33 obtained by applying the bounding box method, was reduced to a
two-dimensional polytope which better bounded the varying parameter trajec-
tory shown in red.

Figure 4.5: Bounding polytopes computed by the bounding boxmethod (red) and
the PCA parameter set mapping method (blue).

Finally, the vertices of the polytopic LPV model of the dynamic bicycle system
were obtained by applying the affine transformation shown in Equations (3.11c)
and (3.11d) to vertices of the reduced polytope Θ̂, as presented in (4.26).

ẋ =
32∑
i=1

µi(θ)(Aix+Biu) (4.26a)
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A1 =

 −0.1400 −19.5224 −17.7292
0 −249.7994 −31.8731
0 −68.9487 −321.1669

 , B1 =

 1 8.1807
0 129.2453
0 245.6939

 , A2 =

 −0.1446 −7.2003 −7.4967
0 −260.3390 −32.5475
0 −71.0887 −334.5146

 , B2 =

 1 131.8493
0 129.4535
0 246.0898



A3 =

 −0.1846 −18.2613 −16.5938
0 −212.7207 −39.1326
0 −57.2953 −273.1203

 , B3 =

 1 3.9603
0 125.0664
0 237.7500

 , A4 =

 −0.1892 −5.9391 −6.3613
0 −223.2603 −39.8070
0 −59.4353 −286.4680

 , B4 =

 1 127.6290
0 125.2747
0 238.1458



A5 =

 −0.0376 −24.5611 −22.8220
0 −155.6979 −9.7749
0 −42.2200 −199.9814

 , B5 =

 1 51.7991
0 124.0234
0 235.7672

 , A6 =

 −0.0422 −12.2389 −12.5895
0 −166.2375 −10.4493
0 −44.3601 −213.3291

 , B6 =

 1 175.4677
0 124.2317
0 236.1631



A7 =

 −0.0823 −23.3000 −21.6865
0 −118.6193 −17.0343
0 −30.5666 −151.9348

 , B7 =

 1 47.5787
0 119.8446
0 227.8233

 , A8 =

 −0.0869 −10.9778 −11.4540
0 −129.1589 −17.7087
0 −32.7067 −165.2825

 , B8 =

 1 171.2474
0 120.0528
0 228.2191



A9 =

 −0.0892 6.5001 7.0041
0 −380.3930 −23.4798
0 −103.3946 −488.6487

 , B9 =

 1 −117.8307
0 125.4415
0 238.4629

 , A10 =

 −0.0938 18.8223 17.2366
0 −390.9326 −24.1542
0 −105.5346 −501.9964

 , B10 =

 1 5.8379
0 125.6497
0 238.8587



A11 =

 −0.1338 7.7613 8.1396
0 −343.3144 −30.7393
0 −91.7412 −440.6021

 , B11 =

 1 −122.0511
0 121.2626
0 230.5189

 , A12 =

 −0.1384 20.0834 18.3721
0 −353.8540 −31.4137
0 −93.8812 −453.9498

 , B12 =

 1 1.6175
0 121.4708
0 230.9147



A13 =

 0.0132 1.4615 1.9113
0 −286.2916 −1.3816
0 −76.6659 −367.4631

 , B13 =

 1 −74.2123
0 120.2196
0 228.5362

 , A14 =

 0.0085 13.7836 12.1438
0 −296.8312 −2.0560
0 −78.8060 −380.8109

 , B14 =

 1 49.4563
0 120.4278
0 228.9320



A15 =

 −0.0315 2.7226 3.0468
0 −249.2130 −8.6410
0 −65.0125 −319.4165

 , B15 =

 1 −78.4327
0 116.0407
0 220.5922

 , A16 =

 −0.0361 15.0448 13.2793
0 −259.7526 −9.3154
0 −67.1526 −332.7643

 , B16 =

 1 45.2359
0 116.2490
0 220.9881



A17 =

 −0.1455 −6.3045 −5.2586
0 −59.0102 −30.3175
0 −17.8629 −76.2852

 , B17 =

 1 −46.6717
0 132.9620
0 252.7594

 , A18 =

 −0.1501 6.0177 4.9739
0 −69.5498 −30.9919
0 −20.0030 −89.6330

 , B18 =

 1 76.9969
0 133.1703
0 253.1553



A19 =

 −0.1901 −5.0433 −4.1232
0 −21.9316 −37.5769
0 −6.2095 −28.2386

 , B19 =

 1 −50.8921
0 128.7832
0 244.8154

 , A20 =

 −0.1947 7.2788 6.1093
0 −32.4712 −38.2513
0 −8.3496 −41.5863

 , B20 =

 1 72.7766
0 128.9914
0 245.2113



A21 =

 −0.0431 −11.3431 −10.35140 35.0912 −8.2193
0 8.8658 44.9003

 , B21 =

 1 −3.0533
0 127.7402
0 242.8327

 , A22 =

 −0.0477 0.9791 −0.1189
0 24.5516 −8.8937
0 6.7257 31.5526

 , B22 =

 1 120.6153
0 127.9484
0 243.2286



A23 =

 −0.0878 −10.0820 −9.2159
0 72.1699 −15.4787
0 20.5192 92.9469

 , B23 =

 1 −7.2737
0 123.5613
0 234.8887

 , A24 =

 −0.0924 2.2402 1.0166
0 61.6303 −16.1531
0 18.3791 79.5992

 , B24 =

 1 116.3949
0 123.7696
0 235.2846



A25 =

 −0.0947 19.7181 19.4747
0 −189.6039 −21.9242
0 −52.3088 −243.7670

 , B25 =

 1 −172.6832
0 129.1582
0 245.5283

 , A26 =

 −0.0993 32.0403 29.7072
0 −200.1435 −22.5986
0 −54.4489 −257.1147

 , B26 =

 1 −49.0145
0 129.3664
0 245.9242



A27 =

 −0.1393 20.9792 20.6102
0 −152.5252 −29.1837
0 −40.6554 −195.7204

 , B27 =

 1 −176.9035
0 124.9793
0 237.5844

 , A28 =

 −0.1439 33.3014 30.8427
0 −163.0648 −29.8581
0 −42.7955 −209.0681

 , B28 =

 1 −53.2349
0 125.1876
0 237.9802



A29 =

 0.0077 14.6794 14.3819
0 −95.5024 0.1740
0 −25.5801 −122.5815

 , B29 =

 1 −129.0648
0 123.9363
0 235.6017

 , A30 =

 0.0030 27.0016 24.6144
0 −106.0420 −0.5004
0 −27.7202 −135.9292

 , B30 =

 1 −5.3961
0 124.1446
0 235.9975



A31 =

 −0.0370 15.9406 15.5174
0 −58.4238 −7.0854
0 −13.9267 −74.5348

 , B31 =

 1 −133.2851
0 119.7575
0 227.6577

 , A32 =

 −0.0416 28.2627 25.7499
0 −68.9634 −7.7598
0 −16.0668 −87.8826

 , B32 =

 1 −9.6165
0 119.9657
0 228.0535



(4.26b)
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Chapter 5

Robust LPV Corrective Controller

The complete dynamic bicycle model presented in (2.26) can be expressed in DT
as a non-linear difference equation similar to the one shown in (5.1).

x[k + 1] = f
(
x[k], u[k]

)
+ d[k] (5.1)

Where f (x[k], u[k]) would be the non-linear difference equation obtain from
the discretization of the simplified dynamic bicyclemodel presented in (2.28) and
d[k]would represent a vector containing all the unmodelled dynamics of the real
vehicle and/or exogenous disturbances acting over it, such as the wind forces or
the angle of inclination of the road.

Chapter 3 presented the LPV model of the simplified dynamic bicycle model,
such that the non-linearmodel presented in (5.1), could be expressed in LPV form
as shown in (5.2).

x[k + 1] = A(ζ)x[k] +B(ζ)u[k] + d[k] (5.2)

However, since the disturbance vector d[k] cannot be predicted based on the as-
sumptions that have beenmade, theMPC controller designed to safely coordinate
the vehicles must work with the nominal system presented in (5.3), which does
not take into account any of the disturbances.

x̃[k + 1] = A(ζ)x̃[k] +B(ζ)ũ[k] (5.3)

As a result, a mismatch error between the states of the real vehicle system (5.2)
and the states of the disturbance-free nominal system (5.3) will occur. This mis-
match error can be computed as shown in (5.4).

e[k] = x[k]− x̃[k] (5.4)

In order to minimize this mismatch error, a local corrective controller must be
implemented, such as the control law proposed in (5.5).
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u[k] = ũ+K(ζ)e[k] (5.5)

WhereK(ζ) is a gain-schedule polytopic LPV controller, as presented in (5.6).

K(ζ) =
N∑
i=1

µi(θ)Ki (5.6)

This LPV controller should be designed such that the dynamic behaviour of the
closed-loopmismatch error system, presented in (5.7), is asymptotically stabilize.

e[k + 1] = x[k + 1]− x̃[k + 1] =
(
A(ζ) +B(ζ)K(ζ)

)
e[k] + d[k] (5.7)

To better illustrate the control scheme, a diagram of the local corrective con-
troller is presented in Figure 5.1, in which the connection between the different
systems is shown.

+

Real Vehicle Plant

-

Nomincal Vehicle Model

+

 Corrective Controller

+

Figure 5.1: Diagram of the stabilized vehicle using a robust LPV controller.

The proposed LPV controller will be synthesized by applyingH∞-optimal con-
trol, as it has been proven to be more efficient when dealing with systems subject
to external disturbances at rejecting system variations than linear quadratic regu-
lator (LQR)-optimal control strategies [19].
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5.1 Theoretical Background on H∞-Optimal Control
Theory

This sectionwill be focused on presenting the LMI used to synthesizeH∞-optimal
controllers for linear time invariant (LTI) and LPV DT systems.

5.1.1 H∞-Optimal Control Design for LTI Systems
Optimization problems solved by the H∞-optimal control theory are expressed
using the generalized plant P , also known as the standard control problem, as
many LTI systems can be expressed in this form. A diagram of a generalized plant
is presented in Figure 5.2.

(Generalized Plant)

(Controller)

Inputs

Performance Outputs

States

Exogenous Inputs

Figure 5.2: General control configuration used for H∞-optimal control.

The discrete-time generalized plant P can be described by the SS plant shown
in (5.8). Where x are the system’s states, u are the system’s inputs, w are the
exogenous inputs and z are the performance outputs.

{
x[k + 1] = Adx[k] +Bd

uu[k] +Bd
ww[k]

z[k] = Cx[k] +Duu[k] +Dww[k]

(5.8a)
(5.8b)

The goal of H∞-optimal control is to design a feedback controller K that min-
imizes the H∞-norm of the closed-loop transfer matrix from w to z, as presented
in (5.9).

min
K

γ

s.t. ∥Gw→z∥∞ < γ
(5.9)

Where the closed-loop transfer matrix from w to z can be computed by first
substituting u[k] = Kx[k] in (5.8), as presented in (5.10).
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x[k + 1] =
(
Ad +Bd

uK
)
x[k] +Bd

ww[k]

z[k] = (C +DuK)x[k] +Dww[k]

(5.10a)
(5.10b)

And then converting the SS representation shown in (5.10) into its equivalent
DT transfer function representation, shown in (5.11).

Gw→z = (C +DuK)

(
zI −

(
Ad +Bd

uK
))−1

Bd
w +Dw (5.11)

Thus, the DTH∞-optimal feedback controllerK can be synthesized by solving
the LMI optimization problem shown in (5.8) [26].

min
X,F,γ

γ

s.t. X > 0
X AdX +BdF Bd

w 0
∗ X 0 XCT + FTDT

u

∗ ∗ γI DT
w

∗ ∗ ∗ γI

 > 0

X ∈ Snx

γ ∈ R
F ∈ Rnx×nu

(5.12)

Where P = X−1 is the Lyapunov matrix and F is a matrix used to recover the
DT H∞-optimal gain as presented in (5.13).

K = FX−1 (5.13)

5.1.2 H∞-Optimal Control Design for LPV Systems
The previous chapter presented a LMI optimization problem capable of synthe-
sizing a DT H∞-optimal feedback controller for LTI systems, such as (5.8).

However, this optimization problem is not directly applicable for LPV systems,
such as the one presented in (5.14), since the LMI constraint should have to be
evaluated under all the possible numerical values of Ad(ζ) and Bd(ζ).

{
x[k + 1] = Ad(ζ)x[k] +Bd

u(ζ)u[k] +Bd
ww[k]

z[k] = Cx[k] +Duu[k] +Dww[k]

(5.14a)
(5.14b)

Thus, in order to compute a LPV DTH∞-optimal feedback controllerK(ζ), the
LMI constraint must be evaluated in each vertex of the DT polytopic LPV model,
as shown in (5.15).
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min
X,Fi,γ

γ

s.t. X > 0
X AdiX +Bd

i Fi Bd
w 0

∗ X 0 XCT + FT
i D

T
u

∗ ∗ γI DT
w

∗ ∗ ∗ γI

 > 0, ∀i = 1, . . . , N

X ∈ Snx

Fi ∈ Rnx×nu , ∀i = 1, . . . , N

γ ∈ R

(5.15)

Where the matrices (Adi , Bd
i ) correspond to the discretized matrices (Ai, Bi) of

the DT polytopic LPV model, P = X−1 is the common Lyapunov matrix of the
LPV system and Fi is a matrix used to recover each vertex of the gain-schedule
polytopic LPV controller, as presented in (5.16).

Ki = FiX
−1 (5.16)

5.2 H∞-LPV Corrective Controller for the Bicycle Dy-
namic Model

To compute an optimalH∞-LPV corrective controller, the disturbance and the per-
formance vectors, z and d, must be appropriately defined in order to achieve the
desired corrective behaviour.

A common strategy to define the performance vector is to compute them as the
weighted control input and weighted state error, as presented in (5.17).

z1[k] = Wvx

(
vxref [k]− vx[k]

)
z2[k] = Wvy

(
vyref [k]− vy[k]

)
z3[k] = Wω

(
ωref [k]− ω[k]

)
z4[k] = Waa[k]

z5[k] = Wδδ[k]

(5.17a)

(5.17b)
(5.17c)
(5.17d)
(5.17e)

Where vxref , vyref and ωref are the velocity references, and Fi ∈ R+ are the
weights used to normalize each performance output.

Regarding the disturbance vector d[k], it can be defined as a three variable vec-
tor affecting each velocity independently, as presented in (5.18).

d[k] =
[
dvx [k], dvy [k], dω[k]

]T (5.18)
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From these twodefinitions, the exogenous inputsw[k] can bedefined as in (5.19).

w[k] =
[
dvx [k], dvy [k], dω[k], vxref [k], vyref [k], ωref [k]

]T
(5.19)

Such that the matrices Bd
w, C, Du and Dw can be derived, as shown in (5.20).

Bd
w =

 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 , C =


−Wvx 0 0
0 −Wvy 0
0 0 −Wω

0 0 0
0 0 0



Du =


0 0
0 0
0 0
Wa 0
0 Wδ

 , Dw =


Wvx 0 0 0 0 0
0 Wvy 0 0 0 0
0 0 Wω 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



(5.20)

Finally, having defined the previous vectors and matrices, the optimization
problem presented in (5.15) was optimally solved using the matrices (Ai, Bi) of
the polytopic LPV model, shown in (4.26), and the weights presented in (5.21).
The solver used for the optimization problem was Mosek [27], which was config-
ured using the YALMIP framework [28].

Wvx =
0.4363

vxmax
, Wvy =

0.2285

vymax
, Wω =

0.1454

ωmax
, Wa =

0.1891

amax
Wδ =

0.0007

δmax
(5.21)

The resulting attenuation of the H∞-norm of the closed-loop transfer matrix
Gw→z is presented in (5.22).

γ = 1815.298 (5.22)

The common Lyapunov matrix is presented in (5.23).

P =

 0.3025 −0.0459 −0.0037
−0.0459 6.0813 −4.8026
−0.0037 −4.8026 4.1140

 > 0 (5.23)

Whereas the vertices of the polytopic H∞-LPV corrective controller are pre-
sented in (5.24).

K(ζ) =
32∑
i=1

µi(θ)Ki (5.24a)
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K1 =

[
−59.8026 8.1119 2.2422
0.0268 1.0382 −0.0939

]
, K2 =

[
−56.2344 −16.3128 0.4590
−0.1661 0.9194 0.0172

]

K3 =

[
−59.7404 10.5713 0.1289
0.0339 1.2991 −0.5905

]
, K4 =

[
−56.2725 −19.6580 9.2467
−0.1708 1.1669 −0.4485

]

K5 =

[
−59.6847 −0.3965 9.8619
−0.0512 1.7042 −0.9790

]
, K6 =

[
−52.7904 −35.9001 24.6460
−0.2365 1.4534 −0.7557

]

K7 =

[
−59.7194 0.1283 11.5797
−0.0486 2.0039 −1.5295

]
, K8 =

[
−52.6492 −41.3503 37.2701
−0.2462 1.7154 −1.2353

]

K9 =

[
−55.4040 5.2595 27.9716
0.2152 0.2181 1.3162

]
, K10 =

[
−60.4384 −6.3211 1.3055
0.0352 0.1406 1.5762

]

K11 =

[
−53.0890 8.6245 21.8098
0.2352 0.4172 0.9078

]
, K12 =

[
−60.2333 −4.2215 −0.0334
0.0438 0.3783 1.1244

]

K13 =

[
−56.5246 14.8602 9.9017
0.1709 0.8127 0.5832

]
, K14 =

[
−60.1847 −5.9420 −5.1009
−0.0373 0.7406 0.7223

]

K15 =

[
−56.0764 20.9050 0.9351
0.1884 1.0620 0.1004

]
, K16 =

[
−60.6647 −5.0566 −3.4702
−0.0629 1.0626 0.2234

]

K17 =

[
−58.4475 36.5288 −26.8768
0.1052 2.1357 −2.0860

]
, K18 =

[
−59.1245 −14.9753 18.6779
−0.0809 2.1092 −2.0014

]

K19 =

[
−58.2520 42.4815 −35.7753
0.1168 2.4078 −2.6105

]
, K20 =

[
−59.1733 −15.4340 22.0784
−0.0807 2.3989 −2.5420

]

K21 =

[
−62.0529 17.7156 −4.1667
0.0435 2.8673 −3.0759

]
, K22 =

[
−57.2793 −40.7242 53.3373
−0.1543 2.6892 −2.8160

]

K23 =

[
−59.7802 27.2625 −14.4515
0.0634 3.2423 −3.7286

]
, K24 =

[
−60.5589 −49.6574 66.2920
−0.1270 3.0484 −3.4256

]

K25 =

[
−49.7579 43.5823 −24.3954
0.2627 1.1868 −0.5413

]
, K26 =

[
−58.3122 14.5575 −13.2440
0.1172 1.3206 −0.5377

]

K27 =

[
−48.8968 52.6749 −40.3918
0.2800 1.3874 −0.9509

]
, K28 =

[
−58.0574 19.8082 −20.8282
0.1306 1.5791 −1.0301

]

K29 =

[
−53.0135 56.1909 −42.4744
0.2348 1.8441 −1.3979

]
, K30 =

[
−60.6768 13.4131 −12.9358
0.0424 2.0240 −1.4737

]

K31 =

[
−52.3325 65.2017 −57.5873
0.2537 2.0866 −1.8746

]
, K32 =

[
−60.8157 17.7883 −17.9848
0.0514 2.3294 −2.0366

]

(5.24b)
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Chapter 6

Autonomous Vehicle Coordination

The coordinated control of autonomous vehicles can be divided into three archi-
tectures [29]: centralized control, decentralized control, and distributed control,
as shown in Figure 6.1.







(a) Centralized control. (b) Decentralized Control.

  Communication

(c) Distributed Control.

Figure 6.1: Different coordinated control architectures.

The characteristics, as well as the advantages and disadvantages of each archi-
tecture are presented below:

• Centralized control. In this approach, a central control unit gathers all the
information from the autonomous vehicles, makes decisions using this in-
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formation, and then control each autonomous vehicle. An advantage of
this architecture is that the controller can compute a globally optimal so-
lution since all the decisionmaking is made at the same location and time.
However, a disadvantage of this architecture is that the required compu-
tational power and communication bandwidth increases with the number
of autonomous vehicles. Another drawback is that they are vulnerable to
a single point of failure (SPOF) since a fault in the decision making or
in the communication could result in a catastrophic failure of the whole
system.

• Decentralized control. In this approach, each autonomous vehicles makes
its own decisions based on the information provided by the local sensors.
As a result, it can only achieve locally optimal solutions. However, the
advantage of this architecture is that it is scalable, modular and tolerant
to individual failures, as it lacks any SPOF.

• Distributed control. In this architecture, a local controller is implemented in
each autonomous vehicle (or groups of autonomous vehicles), but there
exists information exchange between the different control units. This ap-
proach does not need a central control unit like in the centralized archi-
tecture, at the expense of requiring a far more complex communication
and decision process structure. This architecture has been shown to be
more promising in autonomous vehicles that present limited computa-
tional power and short-range communication capacities [30].

In this project, a distributed coordination control system is proposed, by which
an autonomous vehicle is capable of maneuvering through a road while avoiding
other vehicles. This is achieved by using the information broadcasted by the other
vehicles in order to compute the lateral bounds of a trajectory that avoids any
possible collision.

6.1 Lateral BoundsComputationUsingDistributedVe-
hicle Coordination

The vectors of lateral bounds, yvect
e

and yvecte , of the controlled vehicle during a
prediction horizon ofHp steps are computed based on the following information,
received from the surrounding vehicles:

• svect: A vector containing the predicted s coordinates during a prediction
horizon of Hp steps.

• yvecte : A vector containing the predicted lateral error ye with respect to the
centre of the road during a prediction horizon of Hp steps.

Using this information, the controlled vehicle can predict future collisions and
avoid them by modifying its future lateral bounds, as proposed in Algorithm 1.
This algorithm takes respectively as input the vector of predicted s coordinates
of the controlled vehicle, svect0 , and the obstacle vehicle, svect1 ; the vector of pre-
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dicted lateral error of the obstacle vehicle, yvecte1
; the length and width of the vehi-

cle, Lvehicle and Wvehicle; the width of the road, Wroad, and the number of steps of
the prediction horizon, Hp. As output, it computes the vectors of lateral bounds,
yvect
e

and yvecte .
The algorithmworks by looping though the prediction horizon in inverse order,

i.e. form tk+Hp to tk+1, while searching for possible collisions. A collision at step tk
is indicated by a distance between the predicted svect0 [k] and svect1 [k] smaller than a
predefined collision threshold, which could be defined as the length of the largest
vehicle plus a security margin. If a collision is predicted, then the lateral bounds
are reduced in order to avoid the collision by either turning to the right or to the
left lane. Finally, the auxiliary variables ∆+ and ∆− are used to gradually reduce
the lateral bounds between t1 and tk, instead of a discontinuous jump at tk.

Algorithm 1 Lateral bounds computation with one obstacle vehicle.
Input: svect0 , svect1 , yvecte1

, Lvehicle,Wvehicle,Wroad, Hp

Output: yvect
e

, yvecte

1: ∆+ ← 0
2: ∆− ← 0
3: threshold← Lvehicle
4: margin← Wvehicle/2
5: Collision← False
6: for i = Hp, Hp − 1, . . . , 2, 1 do
7: if distance from svect0 (i) to svect1 (i) < threshold then ▷ Collision?
8: Collision← True
9: if yvecte1

(i) > 0 then ▷ Obstacle on left lane?
10: yvecte (i)← Wroad

2
−

(
yvecte1

(i) +margin
)

11: ∆+ ←
(
Wroad

2
− yvecte (i)

)
/(i− 1)

12: else ▷ Obstacle on right lane?
13: yvect

e
(i)← −

(
Wroad

2
−
(
yvecte1

(i) +margin
))

14: ∆− ←
(
Wroad

2
− yvecte (i)

)
/(i− 1)

15: end if
16: else if Collision = True then ▷ Previous collision?
17: yvecte (i)← yvecte (i) + ∆+

18: yvect
e

(i)← yvect
e

(i)−∆−

19: else ▷ No collision
20: yvecte (i)← Wroad

2

21: yvect
e

(i)← −Wroad

2

22: end if
23: end for

Figure 6.2 presents a series of scenarios that illustrate how the lateral bound
of the red vehicle are computed using Algorithm 1. The first scenario shown in
Figure 6.2a presents the initial position of the controlled vehicle (in red) and the
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obstacle vehicle (in yellow) at tk. The second and third scenarios shown in Fig-
ures 6.2b and 6.2c present the predicted position of each vehicle at tk+1 and tk+2

in which no collisions are detected. Finally, the fourth scenario shown in Fig-
ure 6.2d predicts a collision between the vehicles at tk+3. As such, the vector of
lateral bounds is computed so that the red vehicle avoids the yellow vehicle, as
presented in the final scenario shown in Figure 6.2e. Also note that the lateral
bound gradually decrease thanks to the use of the auxiliary variables∆+ and∆−.

(a) Initial position of each vehicle at tk.

(b) Predicted position of each vehicle at tk+1 (without collision).

(c) Predicted position of each vehicle at tk+2 (without collision).

(d) Predicted collision on right lane at tk+3.

(e) Lateral bounds based on the predicted collision at tk+3.

Figure 6.2: Computation of the lateral bounds based on vehicle coordination.

Unfortunately, the lateral bounds computed using Algorithm 1 are only valid
when only one obstacle vehicle is present. For scenarios with multiple obstacle
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vehicles occupying the road, the procedure presented in Algorithm 2 has been de-
signed. This new algorithm computes the individual bounds generated by each
obstacle vehicle using Algorithm 1, and then loops through each step of the pre-
diction horizon to select the most restrictive constraint.

Algorithm 2 Lateral bounds computation with N obstacle vehicle.
Input: svect0 , [svect1 , . . . , svectN ], [yvecte1

, . . . , yvecteN
], Lvehicle,Wvehicle,Wroad, Hp

Output: yvect
e

, yvecte

1: for i = 1, . . . , N do ▷ Compute bounds for each obstacle
2: [yvect

ei
, yvectei

]← f(svect0 , svecti , yvectei
, Lvehicle,Wvehicle,Wroad, Hp) ▷ Algorithm 1

3: end for
4: for j = 1, . . . , Hp do ▷ Select most restrictive constraints
5: yvecte (j)← min

i
yvectei

(j)

6: yvect
e

(j)← max
i
yvect
ei

(j)

7: end for

Finally, Figure 6.3 presents a series of scenarios that illustrate how the lateral
bound of the red vehicle are computed using Algorithm 2. The first scenario
shown in Figure 6.3a presents the initial position of the controlled vehicle (in red)
and the obstacle vehicles (in yellow) at tk. The second and third scenario shown
in Figures 6.3b and 6.3c present the individual lateral bounds generated by the
predicted collision with each obstacle vehicle at tk+2 and tk+5, respectively. Fi-
nally, the final scenario shown in Figure 6.3d presents the resulting lateral bounds
obtained from selecting the most restrictive bounds.

(a) Initial position of each vehicle at tk.

(b) Predicted collision on right lane at tk+2.

(c) Predicted collision on left lane at tk+5.
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(d) Resulting lateral bounds.

Figure 6.3: Computation of the lateral bounds with multiple vehicle coordination.
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Chapter 7

Robust Tube-Based MPC Controller
for Autonomous Driving

In this chapter, a MPC controller is designed to maneuver an autonomous vehicle
through a road, whilst avoiding other moving vehicles. The proposed controller
uses the LPVmodels presented in Chapter 3, to reduce the computational burden
of the optimization problemby transforming the non-linear optimization problem
into a quadratic one.

The path generated by the controller avoids collision by constraining the lateral
displacement of the vehicle to the bounds computed by the vehicle coordination
algorithm presented in Chapter 6.

Meanwhile, the robust feasibility of the problem is ensured by implementing a
tube-based model predictive control (T-MPC), in which the state and input con-
straints are adapted using the reachable sets (also known as tubes) of the mis-
match error, presented in Chapter 5, between the real dynamics of the vehicle and
the nominal model. The reachable sets are represented by zonotopes, which are a
special type of polytope that present efficient computational properties, that im-
prove the controller’s speed and accuracy. Further information about zonotopes
can be found in Appendix A.

7.1 Reachable Set Computation Using Zonotopes
The main idea behind reachable sets is to bound, at every step time tk, the maxi-
mum achievable values of a DT system, as the one presented in (7.1), given a set
of initial states ψ[0] ∈ Ψ0.

ψ[k + 1] = Adψ[k] +Bdu[k] +Bd
ww[k] (7.1)

Such that each state is boundedby the reachable set: ψ[k] ∈ Ψk, for k = 1, . . . , Hp,
being Hp the prediction horizon of the reachable set. To compute each bounding
set Ψk+1, the one-step reachable set from Ψk is defined as in (7.2).
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Ψk+1 =
{
Adψ[k] +Bdu[k] +Bd

ww[k]
∣∣∣ ψ[k] ∈ Ψk, u[k] ∈ U,w[k] ∈ W

}
(7.2)

Where Ψk is the reachable set at tk, and U andW are sets bounding the inputs
and disturbances. If the setsΨk, U andW are expressed using zonotopes, then the
one-step reachable set can be efficiently computed using the zonotopic operation
shown in (7.3) [19].

Ψk+1 =
(
Ad ⊗Ψk

)
⊕
(
Bd ⊗ U

)
⊕
(
Bd
w ⊗W

)
(7.3)

7.1.1 Reachable Sets of the Mismatch Error
In this section, the reachable sets of themismatch error between the real and nom-
inal states of the COM will be computed using the Equations presented in Sec-
tion 7.1.

First, the DT system shown in (7.1) must be defined for the dynamics of the
mismatch error. These dynamics had been previously defined in Chapter 5, from
which the mismatch error of the COM can be computed using (7.4).

e[k + 1] =



evx [k + 1]
evy [k + 1]
eω[k + 1]
eye [k + 1]
eθe [k + 1]
es[k + 1]


= ACL(ζ[k])e[k] + w[k] (7.4)

Wherew[k] are the disturbances affecting the system andACL is the statematrix
of the close-loop system presented in (7.5).

ACL(ζ[k]) = A(ζ[k]) +B(ζ[k])K⋆(ζ[k]) (7.5)

In which A(ζ[k]) and B(ζ[k]) are the LPV matrices obtained from the COM
presented in (3.11), and K⋆(ζ[k]) is the state feedback gain shown in (7.6).

K⋆(ζ) =
[
K(ζ[k]), 0, 0, 0

] (7.6)

WhereK(ζ[k]) is the polytopicH∞-LPV corrective controller presented in (5.24).
Note that the state feedback gain is only multiplying the dynamic states of the bi-
cycle model, which implies that the mismatch error over the prediction horizon
will be smaller for the dynamic states than for the kinematic ones.

If the disturbances can be bounded by a zonotope,w[k] ∈ W , then the zonotopic
one-step reachable set defined in (7.3), can be computed for the mismatch error
system presented in (7.4), as shown in (7.7).
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Ek+1 = ACL(ζk)⊗ Ek ⊕W, ∀k = 0, . . . , Hp − 1 (7.7)

Where the initial reachable set is set to zero, E0 = ⟨0, 0⟩, since the initial mis-
match error is null. This is due to the measurement of the real states at t0, which
thereby reset the values of the nominal states: x̃0 = x0,⇒ e0 = 0.

Note that to compute the reachable sets, the scheduling variables ζ = [vx, vy, ye, θe, κ, δ]
must be estimated over the prediction horizon ofHp steps, in order to estimate the
matrixACL(ζk) and the feedback gainK(ζk). This prediction can be performed us-
ing the estimated states and inputs of the MPC optimization problem.

Finally, these reachable sets will used to compute a window of robust state
and input constraints that will be used in the MPC controller, as presented in the
following section.

7.2 Robust Constraint Computation Using Reachable
Sets

In this section, the constraints of the states and inputs of the controlled vehiclewill
be tightened to ensure the robust feasibility of the MPC controller, as presented
in [19]. To do so, the new input and state constraints sets will be updated at every
control iteration, as presented in (7.8).

X̃k+i = Xk+i ⊖ Ek+i, ∀i = 1, . . . , Hp

Ũk+i = U ⊖Kζk+iEk+i, ∀i = 0, . . . , Hp − 1

(7.8a)
(7.8b)

Where U and Xk+i are the original state and input constraints and X̃k+i and
Ũk+i are the tightened constraints that ensure robust feasibility. Note that the orig-
inal set of state constraintsXk+i is time dependent due to the time dependency of
the lateral displacement of the vehicle yek+i , which ensured a collision-free path,
as presented in Chapter 6.

An illustrative example is presented in Figure 7.1, which show how the new
robust constraint sets ensure robust feasibility under the presence of mismatch
error caused by disturbances.
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(a) New state constraints using the reachable set of the mismatch error.

(b) New input constraints using the reachable set of the mismatch error.

Figure 7.1: Computation of the new robust state and input constraints.

Specifically, if the nominal states and inputs belong to the tightened sets, x̃k ∈
X̃k and ũk ∈ Ũk, then the real states and inputs are ensured to be held within the
original constraints, as presented in (7.9).

xk = x̃k + ek ∈ Xk = X̃k ⊕ Ek
uk = ũk +K(ζk)ek ∈ Uk = Ũk ⊕K(ζk)Ek

(7.9a)
(7.9b)

However, the drawback of this method is that as the length of the prediction
horizon increases, the mismatch error sets Ek will increase, and as such, there
exists the possibility that the new constraint sets become empty, i.e. X̃i = ∅ and
Ũi = ∅, resulting in an unfeasible optimization problem.

7.3 MPC Formulation
The MPC controller is formulated as a quadratic optimization problem that is
solved at each sampling time tk, in order to obtain the optimal sequence of nominal
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control actions ũk+i and the estimated nominal states x̃k+i during the prediction
horizon of Hp steps. This quadratic optimization problem is presented in (7.10).

min
∆uk,xk

Hp−1∑
i=0

(
(rk+i+1 − x̃k+i+1)

TQ (rk+i+1 − x̃k+i+1) + ∆ũTk+iR∆ũk+i

)
s.t. x̃k+i+1 = Adζk+ix̃k+i +Bd

ζk+i
ũk+i

ũk+i = ũk+i−1 +∆ũk+i

∆ũk+i ∈
[
∆ũk+i, ∆ũk+i

]
x̃k+i+1 ∈ X̃k+i+1 = Xk+i ⊖ Ek+i
ũk+i ∈ Ũk+i = U ⊖Kζk+iEk+i

x̃k = xk

ũk−1 = uk−1

(7.10a)

(7.10b)
(7.10c)
(7.10d)
(7.10e)
(7.10f)
(7.10g)
(7.10h)

Where the quadratic cost function shown in (7.10a), presents two conflicting
objectives: the penalization of both the reference error defined as ek = rk − x̃k,
and the incremental control action ∆ũk. A low reference error will demand high
variation in the control action and vice versa. Thus, the tuning matrices for the
reference error and the variation of the control inputs,Q∈ Snx ≥ 0 andR∈ Snu ≥ 0
must be adequately tuned to achieve the desired dynamical behaviour.

Regarding the constraints, the LPVDT systempresented in (7.10b) corresponds
to the discretized version of COM presented in (3.11). The parameter ∆ũk+i =
[∆a,∆δ] shown in (7.10c), represent the incremental control action performed
between sampling periods. Equation (7.10d) shows the constraint imposed on
this parameter, which ensures a progressive increment on the control actions in-
stead of abrupt changes. The constraints shown in (7.10e) and (7.10f) bound the
nominal state and input such that robust feasibility of the controller is ensured,
as presented in Section 7.2. Finally, the parameters xk and uk−1 shown in (7.10g)
and (7.10h), represent the initial state and input, which are assumed to be known
by either direct measurement or estimation.

7.4 Summary of the Proposed Controller
The complete control scheme that safelymaneuvers an autonomous vehicle through
a vehicle-filled road is presented in the diagram shown in Figure 7.2. This dia-
gram also shows the sampling period of each block. The proposed controller is
composed of the following blocks:

• Real vehicle plant. This continuous time block represents the dynamics of the
autonomous vehicles, which could be obtained from a real life vehicle, or by
using a SOM, like the one presented in (2.27).
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• Vehicle coordination. This block is sampled at 30Hz and is responsible for the
coordination with the surrounding vehicles in order to determine the lateral
bounds of a collision-free path, as presented in Chapter 6.

• RobustMPCController. This block, which is also sampled at 30Hz, is respon-
sible for the computation of a nominal control action that safely maneuvers
the autonomous vehicle through a collision-free road, as presented in this
Chapter.

• H∞-corrective controller. This block is in charge of modifying the value of
the nominal control action to robustly reject the disturbances affecting the
autonomous vehicle. Consequently, it is sampled at a higher frequency than
the other blocks (300 Hz).

Robust MPC
Controller Real Vehicle Plant

Corrective Controller




Vehicle Coordination
    Vehicle Communication

Figure 7.2: Diagram of the control scheme used to safely maneuver the au-
tonomous vehicle in a vehicle-filled road.
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Chapter 8

Tests and Results

In this Chapter, a series of tests will be performed to validate the proposed control
scheme. These tests will consist on a series of simulations performed using Mat-
lab [31] on a HP OMEN 16.1 (Intel Core i7-11800H @ 2.30GHz) Laptop, in which
the assumptions presented in the following section have been made.

8.1 Tests Specifications
The roadused in the proposed tests has been simulatedusing theCircuit de Barcelona-
Catalunya track, which was presented in Figure 4.1. In each test simulation, a por-
tion of 90 m of this track is chosen depending on the desired curvature require-
ments.

As for the vehicle, the driverless UPC racing car presented in [19], has been
considered. The model parameters of this vehicle were presented in Table 2.1,
while the bounds on the dynamic states were shown in Table 2.2. The bounds
of the kinematic states were derived from the chosen track and can be seen in
Table 8.1. Note that the bounds shown for the lateral displacement of the vehicle
ye only represents the lateral limits, i.e. the width of the road, and not the bounds
obtained from the vehicle coordination algorithm.

Variable Lower Bound Upper bound
ye −5m 5m
θe −π rad π rad
s 0m 4650.5m

Table 8.1: Bounds of the kinematic states derived from the Circuit de Barcelona-
Catalunya track.

During the simulation, two sources of disturbances will be considered. These
disturbances are caused by the dynamics of the SOM, which are unmodelled in
the COM. These unmodelled dynamics were presented in Section 2.3.2, and cor-
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respond to the grade of the road and the longitudinal and lateral forces caused by
the wind.

0 10 20 30 40 50 60 70 80 90
-0.15

-0.1

-0.05

0

0.05

0.1

Figure 8.1: Grade (slope) of the road during the test simulations.

The considered grade for the track is presented in Figure 8.1, in which the
maximum angle reached is ±0.1 rad, which is equivalent to a steep road with
a 10% inclination. The disturbances caused by the road’s grade are modelled us-
ing (2.17d).
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Figure 8.2: Wind velocity and direction during the test simulations.

The disturbances caused by the wind are simulated using the graph presented
Figure 8.2, in which the speed and the direction of the wind is shown. The max-
imum speed of 12 m/s corresponds to a strong breeze of level 6 on the Beaufort
scale. The disturbances caused by the wind’s force are modelled using Equa-
tions (2.17c), (2.21) and (2.25).
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From the assumed grade of the road and the wind, the maximum disturbances
affecting the dynamics of the vehicle during a time interval of Ts = 33.33 ms can
be computed as shown in (8.1), in which a 25% margin has been added to bound
any other possible disturbance.

wmaxvx [k] = 125% Ts

[
mg sinϕmaxroad +

1

2
ρCdlongArlong (v

max
w )2

]
= 0.0257

m

s

wmaxvy [k] = 125%
1

2
ρCdlatArlat (v

max
w )2

1

m
= 0.0085

m

s

wmaxω [k] = 125%
1

2
ρCdlatArlat (v

max
w )2

lw
Iz

= 0.0024
rad

s

(8.1a)

(8.1b)

(8.1c)

Where ϕmaxroad is the maximum considered grade and vmaxw is the maximumwind
speed. From these values, the zonotope that bounds the dynamic disturbances
w[k] ∈W can be computed, as shown in (8.2), which will be used to compute the
reachable sets of the MPC controller.

W =

〈[
0
0

]
,

 wmaxvx /2 0 0
0 wmaxvy /2 0

0 0 wmaxω /2

〉 (8.2)

Finally, theMPCoptimizationproblemhas been solvedusing theMosek solver [27],
which was configured using the YALMIP framework [28]. The optimal length of
the prediction horizon has been determined to be Hp = 15, which allowed a pre-
diction of up to 0.5 s ahead. As for the tuning matrices Q and R, they have been
defined as shown in (8.3), where each weight has been selected after a thorough
process of trial and error performed throughout multiple simulations.

Q =



0 0 0 0 0 0
0 0.0064

(1m/s)2
0 0 0 0

0 0 0 0 0 0
0 0 0 0.1919

(1 m)2
0 0

0 0 0 0 0.0007
(π/3 rad)2

0

0 0 0 0 0 0.6396
(1 m)2


≥ 0

R =

[
0.1599

(0.5 m/s2)2
0

0 0.0016
(0.05 rad)2

]
≥ 0

(8.3a)

(8.3b)

Note that each weight of the tuning matrices has been normalized by dividing
by the square of the maximum acceptable value according to Bryson’s rule [32].

The following sections present the test simulations that have made to validate
the control scheme. Specifically, these simulations evaluate the performance of the
corrective controller against disturbances, and the single and multiple overtaking
maneuver achieved by vehicle coordination.
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8.2 Corrective Controller Results
In this section, the effectiveness of the corrective controller presented in Chapter 5
has been validated. To do so, two simulations have been performed, one with the
corrective controller installed and the other onewithout, in which an autonomous
vehicle has to follow a reference (represented in green) while rejecting the distur-
bances. Regarding the references, these were obtained by performing the same
simulation but without any disturbances affecting the dynamics of the system,
i.e. with a grade of 0◦ and wind speed of 0m/s.

(a) Path without the corrective controller. (b) Path using the corrective controller.

Figure 8.3: Paths followed by the controlled vehicle both with and without the
corrective controller. The red vehicle represents the position of the vehicle every 2
seconds, the green line represents the reference path while the red line represents
the ground truth path.

The trajectories resulting from these simulations are presented in Figure 8.3,
where the path followed by the vehicle with the corrective controller tracks the
desired reference better than the vehiclewithout the corrective controller. It is also
worth noting that due to this corrective controller, the vehicle maneuvers with a
smooth behaviour with less oscillation than in the other vehicle.

These results can be better analysed by viewing the evolution of the states of
each vehicle in Figure 8.4 . Clearly, the states of the vehicle with the corrective
controller are closer to the reference, especially in the states ye and θe.

This improvement in the reference tracking obtained by the disturbance rejec-
tion properties of the corrective controller is of utmost importance, since an ill-
tracked path could derive in a vehicle going out of track or even a collision.
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Figure 8.4: Evolution of the states of the autonomous vehicle with and without
the corrective controller.

The applied control actions of each vehicle are presented in the graph shown
in Figure 8.5. Since the proposed corrective controller is operating at 300 Hz, the
control actions computed by this controller present a higher oscillation, in order
to reject the disturbances affecting the states.
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Figure 8.5: Applied control actions to the autonomous vehicle with and without
the corrective controller.
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8.3 Overtaking Maneuver Results
In this section, the vehicle coordination algorithms presented in Chapter 6 will be
tested. Specifically, two simulations will be performed, in which an autonomous
vehicle is to overtake a single and multiple vehicle obstacles, respectively.

8.3.1 Single Overtaking Maneuver
In this first test, an autonomous vehicle has to overtake a single vehicle using the
vehicle coordination procedure presented in Algorithm 1. The results from this
test are presented in Figure 8.6. Specifically, four graphs are shownwhich present
the overtaking sequence from the initial position of each vehicle to the final one.
The complexity of the overtaking maneuver has been reduced by considering a
road without curvature, in order to evaluate the proposed control scheme in a
simple scenario.

(a) Initial position of each vehicle. (b) Beginning of the overtaking maneuver.

(c) Finalization of the overtaking maneuver. (d) Final position of each vehicle.

Figure 8.6: Single overtaking maneuver sequence performed by the red vehicle
using the proposed control scheme. The red and yellow vehicles represent the po-
sition of the controlled vehicle and the obstacle vehicle every two seconds, while
red and yellow lines represent the ground truth path followed by each vehicle.

The effectiveness of the proposed algorithm is made evident in this simulation,
as the controlled vehicle is capable of overtaking the obstacle vehicle vehicle, while
rejecting the disturbances presented in Figure 8.1 and 8.2.

Before showing the evolution of the states and the control actions, a more com-
plex overtaking maneuver will be presented in the next subsection.

8.3.2 Multiple Overtaking Maneuver
In this second test, an autonomous vehicle has to overtake two obstacle vehicles,
which are driving in different lanes, by using the multiple vehicle coordination
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procedure presented in Algorithm 2. The results from this test are presented in
Figure 8.7 and in the video uploaded in the following link: https://youtu.be/
QxyDjeZTl9U.

As in the previous simulation, four graphs are shown which present the over-
taking sequence from the initial position of each vehicle to the final one. The com-
plexity of the overtakingmaneuver has been increased by considering a roadwith
a close curvature, in order to evaluate the proposed control scheme in a demand-
ing scenario.

(a) Initial position of each vehicle. (b) Beginning of the overtaking maneuver.

(c) Finalization of the overtaking maneuver. (d) Final position of each vehicle.

Figure 8.7: Multiple overtaking maneuver sequence performed by the red vehicle
using the proposed control scheme. The red and yellow vehicles represent the po-
sition of the controlled vehicle and the obstacle vehicle every two seconds, while
red and yellow lines represent the ground truth path followed by each vehicle.

This overtaking sequence does not only demonstrate the effectiveness of the
proposed control scheme under the disturbances presented in Figure 8.1 and 8.2,

https://youtu.be/QxyDjeZTl9U
https://youtu.be/QxyDjeZTl9U
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but in the presence of a complex dynamical scenario, such as the closed curvature
considered.

These results can be better analysed by viewing the evolution of the states in
the graphs presented in Figure 8.8. In each graphs, four lines have been plotted,
which correspond to the nominal states predicted by the MPC controller, x̃, the
real states affected by the disturbances, x, and the upper and lower bound of each
state, x and x.
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Figure 8.8: Nominal and real states of the controlled vehicle during the multiple
overtaking maneuver.

As expected, the nominal states are held within the constraints, as ensured
by the MPC optimization problem. Similarly, the real states are also held within
the constraints thanks to the computation of the reachable sets, presented in Sec-
tion 7.1, which were used to compute a robust set of constraints that ensured the
feasibility of the problem. Also, the error between the nominal and the real states
is almost inappreciable, thanks to the efforts of the corrective controller.

It is also worth noticing the bounds of the lateral displacement of the vehicle,
y
e
and ye, that avoid the collisions with the surrounding obstacles. These were

computed using the vehicle coordination procedure presented in Algorithm 2.
The nominal and real control actions applied to the controlled vehicle during
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the multiple overtaking maneuver, as well as the control action bounds, are pre-
sented in the graph shown in Figure 8.9.
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Figure 8.9: Nominal and real inputs of the vehicle during the simulation.

Similarly to the nominal and real states presented in Figure 8.8, neither the
nominal, nor the real control actions violate the considered constraints, due to the
mentioned robust set of constraints that ensured the feasibility of the problem.

8.4 Execution Time Results
The execution time of theMosek solver during themultiple overtaking simulation
presented in Section 8.3.2, is shown in Figure 8.10.
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Figure 8.10: Solver execution time per iteration during the simulation.

Unfortunately, the mean value of approximately 0.034 s is two high for it to be



70 Chapter 8. Tests and Results

solved in real time, since, in the proposed control scheme, the MPC should be
executed at 30 Hz.

Nonetheless, the proposed quadratic optimization problem obtained by using
the LPV model of the vehicle presents a huge reduction in the execution time in
comparison with the non-linear optimization problem obtained from considering
the non-linear vehicle model.

For example, a single execution of the non-linearMPCusing the fmincon solver [33]
would require an execution time of approximately 30 s, which is almost 900 times
the execution time required in the proposed LPV MPC.
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Chapter 9

Social, Economic and Environmental
Impact

The project’s sustainability study can be divided into the social, economic and
environmental impact.

9.1 Social Impact
Autonomous vehicles will relieve passengers from the burden of driving, plan-
ning routes, or even paying attention to the road, thus improving the driving ex-
perience by providing extra time that can be exploited in other activities [10].

The extensive usage of autonomous vehicles together with the development
of V2V communication protocols will reduce most of the crashes attributed to
human factors, thus avoiding multiple injuries and saving countless of lives [7].
while intelligent route optimization techniqueswill reduce traffic congestion, which
will notably reduce the total number of vehicles circulating on the road, thus re-
ducing air pollution [8].

New mobility solutions will be implemented thanks to the spread of coordi-
nated autonomous vehicles, such as car sharing, in which a fleet of autonomous
vehicles will be available for the public [34]; personalized public transport, where
autonomous buses can dynamically modify their route based on their passengers
necessities [35]; or smart parking solutions, in which autonomous vehicles can
cooperate between themselves to satisfy their parking needs [36].

9.2 Economic Impact
A direct economic impact can be directly derived from the usage of coordinated
autonomous vehicles, as their precise driving and intelligent route optimization
can reduce fuel consumption and increase the durability of the mechanical parts
of the vehicle [37].
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The aforementioned mobility solutions can also promote the development of
new industries which can economically exploit these solutions.

9.3 Environmental Impact
Asmentioned, the intelligent route optimization together with the precise driving
of autonomous vehicles can reduce the carbon footprint of daily transportation.

Regarding the development of the project, since it was integrally developed us-
ing a laptop, the analysis of the environmental impact will only take into account
the power consumption of the laptop.

According to the manufacturer, the HP OMEN 16.1 (Intel Core i7-11800H @
2.30GHz) laptop has a power supply of 230W [38]. If a total of 840 hours of work
are considered in the development of the project, then the total power consump-
tion can be estimated in 193.2kWh.

Thus, by using the greenhouse gas equivalencies calculator developed by the U.S.
Environmental ProtectionAgency [39], the estimated carbon footprint of the project
is 83.6 kilograms of Carbon Dioxide (CO2) equivalent.
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Chapter 10

Project Budget

The budget associate with this project can be divided into costs related to software
licenses, personnel expenses and the amortization of the used equipment.

The personnel expenses have been computed considering a total of 840 hours
of work, which have been distributed throughout the 7 months dedicated to the
development of the project. The engineer wage has been estimated to be of 15 €
per hour. Thus, the personnel cost can be computed as shown in (10.2)

Personnel expenses = 840 hours · 15€/hour = 12, 600€ (10.1)

The equipment used consists in a laptop with an estimated value of 1,600€.
Thus, by considering the maximum annual percentage of amortization for elec-
tronic equipment of 20 %, as stated by the Spanish Law 27/2014, of November
27, on Corporation Tax [40], the amortization cost can be computed as shown
in (10.2). Where the ratio of 7/12 has been added to consider the project’s esti-
mated duration of 7 months.

Amortization cost = 20% · 1, 600€ · 7
12

= 186.67€ (10.2)

A summary of the aforementioned costs, considering a value-added tax of 21%,
are presented in Table 10.1.

Concept Quantity Cost (€)
Matlab license 1 2,541

Matlab Optimization Toolbox 1 1,452
Engineer wage 1 12,600

Laptop Amortization 1 186.67
Total Cost 16,779.67

Table 10.1: Budget associated to the project.
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In conclusion, the total cost invested in developing the project was approxi-
mately 16,779.67€.
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Part III

Conclusions
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Chapter 11

Conclusions and Future Work

This thesis presented a robust control scheme designed for the safe coordina-
tion of autonomous vehicles. Specifically, a robust controller was designed to
autonomously maneuver an autonomous vehicle through a road, while avoiding
collisions with other vehicles. The collision avoidance was achieved by proposing
a coordination algorithm between the vehicles, while the robustness was ensured
by using a robust tube-based MPC, together with a corrective controller in charge
of rejecting disturbances.

To provide a basis for future research, the main conclusions of the thesis, as
well as the proposed future work are presented in this chapter.

11.1 Conclusions
The main conclusions reached in each chapter are summarized below:

• Chapter 2was devoted to the mathematical modelling of vehicles. Different
modelswere presented, highlighting the kinematic curvaturemodel and the
dynamic bicycle model, which proved to be suitable in the proposed con-
trol scheme. Furthermore, a SOM was proposed, from which a COM was
derived. The later model presented a series of unmodelled dynamics that
functioned as disturbances.

• Chapter 3 presented the LPV versions of the vehicle models. This proved to
be essential in the development of the project as it allowed working with the
linear control theory and transformed the MPC controller from a non-linear
to a quadratic optimization problem, which can be solved more efficiently,
thus reducing the execution time.

• Chapter 4presented the polytopic LPVmodel of the dynamic vehiclemodel.
Specifically, the PCA parameter set mapping algorithmwas successfully ap-
plied, in order to reduce the order of the polytopicmodel, whilemaintaining
a valid approximation of the system.

• Chapter 5 presented the design of a robust LPV corrective controller capa-
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ble of rejecting the disturbances affecting the system. This controller was
synthesized by applying the H∞-optimal control theory. Specifically, the
controller was computed by efficiently solving a LMI optimization problem
evaluated on the vertices of the polytopic LPV model.

• Chapter 6 presented an algorithm by which autonomous vehicles could co-
ordinate with each other, in order to compute the bounds of collision-free
paths.

• Chapter 7 was devoted to the robust tube-based MPC and its formulation.
Specifically, the robustness was ensured by computing a series of zonotopic
reachable sets (also known as tubes), whichwere used in the generation of a
set of tightened constraints that ensured the robust feasibility of the control
scheme.

• Chapter 8 presented a series of test performed to validate the safe coordi-
nation of autonomous vehicles. The results from these test proved that the
proposed control scheme was effective in maneuvering the autonomous ve-
hicle through a vehicle-filled road, while rejecting disturbances; and that
the use of LPV models greatly reduce the solver’s execution time, while still
being a faithful approximation of the vehicle.

• Chapter 9 provided a sustainability study of the project, with special em-
phasis on its social, economic and environmental impact. Additionally, the
carbon footprint of the developed project was computed.

• Chapter 10 presented the budget associated to the project, considering the
material costs, personnel expenses and the amortization of the used equip-
ment.

11.2 Future Work
This section summarizes the open issues that could be addressed and/or improved
in future work.

• The vehicle coordination algorithm could be further improved to cope with
more complex scenarios, such as intersectionmanagement, optimal platoon-
ing, ramp merging or traffic flow optimization.

• The COM could be obtained through a parameter estimation process, in or-
der to evaluate the robustness of the proposed controller against parametric
uncertainty.

• The disturbance rejection of the proposed H∞-optimal corrective controller
could be compared with corrective controllers synthesized by applying H2-
optimal or mixed H2-H∞-optimal control theory.

• The robustness of the proposed tube-based MPC controller could be com-
pared with other robust MPC architectures, such as theMin-MaxMPC [41].

• The execution time of the MPC optimization problem could be lowered to
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achieved the real-time requirements by considering other commercials solvers
such as Gurobi [42], CPLEX [43] or XPRESS [44].

• The proposed method has only been validated in simulation. Thus, a future
line of work could be developed by testing the proposed control scheme in
an advanced simulators such as CARLA [45] or a real-life vehicle.
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Part IV

Appendices
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Appendix A

Zonotope Theory

A zonotope Z ∈ Rn is a special case of polytope with centre c ∈ Rn and generator
matrix G = [g1, . . . , gp] ∈ Rn×p, as defined in (A.1). The order of a zonotope is
defined as ρ = p

n
and represents a dimensionless measure of the representation

size [46].

Z := ⟨c, G⟩ =

c+
p∑
i=1

βigi

∣∣∣∣∣∣ βi ∈ [−1, 1]

 (A.1)

Zonotopes are a useful tool for representing sets in high-dimensional spaces in
a compact way. Another advantage is that the computation of linear maps and
the Minkowski sum are especially efficient, as presented below.

Linear Map of a Zonotope

The linear map of a zonotope M ⊗ Z with Z ∈ Rn and M ∈ Rq×n is defined as
in (A.2).

M ⊗ Z = ⟨M · c, M ·G⟩ (A.2)

A graphical example of this operation is presented in Figure A.1, in which a
zonotope is linearly mapped by the rotation matrix presented in (A.3).

M = R(30◦) =

[
cos 30◦ − sin 30◦

sin 30◦ cos 30◦

]
(A.3)
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Figure A.1: Linear map of a zonotope.

Minkowski Sum of two Zonotopes
In geometry, the Minkowski sum of two sets A and B is defined by adding each
vector in A to each vector in B, as presented in (A.4).

A⊕B = {a+ b | a ∈ A, b ∈ B} (A.4)

The Minkowski Sum of two zonotopes Z1 ⊕ Z2 with Z1, Z2 ∈ Rn is defined as
in (A.5).

Z1 ⊕ Z2 = ⟨c1 + c2, [G1, G2]⟩ (A.5)

A graphical example of this operation is presented in Figure A.2.
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Figure A.2: Minkowski sum of two zonotopes.

Minkowski difference of two Zonotopes
The Minkowski difference of two sets A and B is not defined as A ⊕ (−B), but
rather by using the complement operation, as presented in (A.6).

A⊖B =
(
Ac ⊕ (−B)

)c (A.6)
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Since the complement of zonotope cannot be efficiently computed, theMinkowski
difference of two zonotopes Z1 ⊕ Z2 with Z1, Z2 ∈ Rn is alternatively defined as
in (A.7).

Z1 ⊖ Z2 = {Z ∈ Rn | Z ⊕ Z2 ⊆ Z1} (A.7)

Such that (Z1 ⊖ Z2) ⊕ Z2 ⊆ Z1. When Z̃1 = Z ⊕ Z2, where Z is an arbitrary
zonotope, such that Z2 ⊆ Z̃1, the Minkowski difference satisfies Z̃1 ⊖ Z2 ̸= ∅ and
thus,

(
Z̃1 ⊖ Z2

)
⊕ Z2 = Z̃1. A graphical example of this operation is presented in

Figure A.3.

0 1 2 3 4 5 6
-2

-1

0

1

2

3

4

-1 0 1 2 3 4 5
-3

-2

-1

0

1

2

3

-2 -1 0 1 2 3 4
-2

-1

0

1

2

3

4

Figure A.3: Minkowski difference of two zonotopes.

Unfortunately, the computation of the zonotopic Minkowski difference is not
as efficient as the linear map or the Minkowski sum presented in (A.2) and (A.5).
As such, more efficient approximations of this operation have been proposed,
e.g. [47]. Nonetheless, these approximations are still far less efficient than the
zonotopic linear map or the Minkowski sum operations. In time-critical con-
trollers, the zonotopic Minkowski difference can be further approximated, at the
expense of reducing its accuracy, by implementing the interval difference pre-
sented in (A.8), in which the Interval Hull of each zonotope has been previously
computed.

[a, a]− [b, b] = [a− b, a− b] (A.8)

Interpretation of Zonotopes
Zonotopes can be interpreted in three ways depending on the desired applica-
tion [46]:

• A zonotope can be interpreted as an affine transformation defined by the
projection of a p-dimensional unit hypercubeC = [−1, 1]p onto then-dimensional
space by the generator matrix G, followed by the translation to the center c:
Z = c⊕G⊗ C.
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• A zonotope can be interpreted as the Minkowski sum of line segments li =
βigi where βi ∈ [−1, 1].

• A zonotope can be interpreted as a polytopewhose j-faces are centrally sym-
metric.
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