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Abstract—The majority of density-based clustering algorithms
can not perform properly when data expose very different density
through the feature space. These algorithms implicitly presume
that all clusters almost have the same density, therefore, they
normally use global parameters. Consequently, they are often
biased towards finding dense clusters in front of sparse ones. In
this paper, we propose a parametric multilinear transformation
method to homogenize cluster densities while preserving the
topological structure of the dataset. The transformed clusters
have approximately the same density while all inter-cluster
regions become globally low-density. In our method, the feature
space is locally bent by dense data point concentrations the
same way as stars bend the space-time dimensions in Theory of
Relativity. We present a new Gravitational Self-organization Map
to model the feature space curvature by plugging the concepts
of gravity and fabric of space into the Self-organization Map
algorithm to mathematically describe the density structure of
the data. To homogenize the cluster density, we introduce a novel
mapping mechanism to project the data from a non-Euclidean
curved space to a new Euclidean flat space. Specifically, this
mechanism transfers the basis vectors instead of the feature
vectors to guarantee the continuity of the mapping function and
optimize the computation cost of the algorithm. As a result, our
method can efficiently and explicitly homogenize the density of
any dataset globally to then apply existing clustering algorithms
without modification. Our experimental results over both real-
world and synthetic datasets show that our approach outperforms
the current statistical-based methods.

Index Terms—Varied densities, Density-based clustering,
Topology Preserving, Self-Organization Map

I. INTRODUCTION

Density-based clustering algorithms are now widely used
in a variety of applications, ranging from agriculture [6], high
energy physics [17], material sciences [14], social network
analysis [8] to molecular biology [3]. These approaches regard
clusters as regions in the feature space in which the data points
are dense and separated by regions of low data point density
(noise). However, they fail to properly find clusters in data
exposing different densities in various regions of the feature
space. This failure results from using a single global density
threshold on all the data points.

We refer to multi-density or varied densities clusters as the
clusters in different regions of the feature space that are formed
in considerably different densities [7]. Typically, density-based
clustering algorithms require the user to specify the parameters

(typically one or few constants) that define the density-level
thresholds, as an input to the algorithm. Properly selecting the
value of those parameters becomes even more difficult when
the data expose a multi-density structure since a single density
threshold parameter that appropriately detect such structure
would be different in various regions of the feature space.
Therefore, the main goal of this paper is to introduce a new
preprocessing method for homogenizing the density of data in
order to enable existing single density threshold algorithms to
properly identify the actual clusters structure throughout the
whole feature space.

Fig. 1: The stars (distinguished by colors) bend space-time
(grid), and the gravitational force among the stars (black lines)
can be described by space-time curvature.

In analogy to the Theory of Relativity [4], the computation
of distance between objects changes when objects are placed
in a space that introduces local curvatures. In this work, we
propose a method to map an originally euclidean feature space
into a non-euclidean one with local curvatures introduced by
the presence of the data points themselves. Then we project the
data from a non-Euclidean curved space to a new Euclidean
flat space. By projecting data points to their new coordinates
in this transformed space, we observe a more uniform density
distribution and we show how traditional clustering algorithms
in this projected dataset result in significantly better capacity
to identify its structure. The key idea is that data clouds can
bend the feature space based on their density, which represents
the density structure of the data.

According to the Theory of Relativity, see Fig.1, the planets
warp space-time, and the standard quantized version of the
theory includes massless gravitons delivering the gravitational
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force. The space-time curvature is a quantity describing how
the local geometry of a subspace differs from the flat space
around any single planet. In our method, we assume that a data
cluster bends the m-dimensional feature space locally based
on its shape and density; we use this property as a source to
model the data density structure.

In particular, our approach includes two main steps: first, we
apply our new Gravitational Self-Organization Map (GSOM)
method to compute the data density structure by using the
gravity force in terms of relationships between clusters rather
than distance. It computes the feature space bending with a
correct topology preserving map to present the potentially
complex multi-density structure of the data. Second, we apply
our novel parametric multilinear transformation, using the
GSOM map, to project the data points to a new linearized
and euclidean feature space with more uniform density dis-
tribution. Any existing density-based clustering algorithm can
then be applied to the projected data to identify its clusters.
This very often leads to better clustering analysis performance
than using original data, without applying algorithmic changes
to the clustering algorithm itself.

Note that the multilinear transformation is a spatial trans-
formation which has commonly been used in Mathematical
Physics [18] and Graphics for video compression [9]. The
novelty of our approach is that we apply multilinear trans-
formation to map an originally euclidean feature space into a
new euclidean space by a given curvature model, in our case
computed by the GSOM method, where the projected data
points show more uniform density distribution.

The rest of this paper is organized as follows: The intuition
and motivation of the multi-density clustering analysis are
presented along with an overview of related work and methods
in section 2. In section 3, the basic notions and the problem
of multi-density are defined. In section 4, the background
techniques are briefly reviewed. In section 5, our new Feature
Space Curvature Map (FSCM) algorithm is described. The
experimental result of our FSCM method is illustrated in
section 6. Section 7 concludes the paper with a summary.

II. RELATED WORK

Density-Based Clustering refers to the methods that detect
clusters in the data based on the idea that a cluster in a
feature space is an adjacent region of concentrated points,
separated from other clusters by regions that are empty or
sparse. DBSCAN [20] computes the density of each data point
by counting the existing data points in its ε-neighbourhood.
However, using a single ε can often not adequately characterize
the datasets with clusters of very different densities. Several
approaches have been proposed to cope with this weakness.

Many efforts have been devoted to solving the varied
densities problem by variants of DBSCAN. The HDBSCAN(ε̂)
[13] and OPTIC [2] address this issue by producing the
reachability plot to extract clusters. The reachability plot is
a 2D plot, with the ordering of the points as processed by
these algorithms on the x−axis and the reachability distance
on the y − axis. As points associating to a cluster have a

low reachability distance to their nearest neighbor, the clusters
appear as valleys in the reachability plot. However, they are
methods to visualize the cluster structures without producing
a clustering result explicitly. Thus, these methods manually
need to extract the clusters, with varying densities, from the
reachability plot. Our approach mathematically combines the
strengths of statistical and topological methods to eliminate
the need for expert human visual analysis.

The VDBSCAN [10] and MSDBSCAN [19] partition a
dataset into different density level sets by statistical analysis,
and then estimate ε for each density level set. Finally, they
use DBSCAN clustering on each density level set with corre-
sponding ε and mPts to get clustering results. However, they
are not suitable for large datasets since they require several
passes of the data and consume high computational time. Our
method is more efficient since it is a preprocessing step which
enables us to carry out a single pass clustering. Furthermore,
it is a scalable approach as it uses the SOM-based iterative
resampling schemes rather than the whole dataset.

Recently, neighborhood-based density estimator approaches
use local density estimation to overcome the issues of varying
densities. CFSFDP [16] instead of finding core points uses a
global threshold in the first step, it finds the density peak of
every cluster and then links the neighboring points of each
peak to form a cluster. LC-CFSFDP [5] and DPC-DBFN [11]
improve the clustering performance of CFSFDP by enhancing
local density estimators based on a kNN graph and a fuzzy
neighbourhood measure, respectively. However, most of these
algorithms face problems in handling large datasets since they
require high storage to keep the distance matrix. In contrast,
we use the GSOM to efficiently learn and build a density
structure map of data by preserving its neighboring relations
since this structure requires significantly lower storage than
the distance matrix.

More recently, density-ratio based scaling methods have also
been applied to handle the multi-density data. The density-
ratio of a point is the ratio of two density estimates which are
calculated by using the same density estimator, but with two
different bandwidths. ReScale [21] enables a density-based
clustering algorithm to identify clusters with varied densities
by rescaling the given dataset. Nevertheless, it rescales each
individual feature independently and if a significant overlap
exists among clusters on some features, ReScale may become
less effective.

Rather than rescaling on each individual feature, [22]
proposes a new density-ratio DScale method which rescales
the pairwise distance as a multi-dimensional scaling, such
that points located at locally high-density areas have higher
densities than points located at locally low-density areas.
However, DScale fails to be a globally valid CDF (Cumulative
Distribution Function) transformation for the entire dataset
since it is valid within the λ-neighbourhood of each data point
which is treated independently.

Furthermore, CDF-TS [23] density-ratio method applies the
same CDF transform process as DScale with an additional
“shift” to ensure that: (i) the transformed-and-shifted dataset



becomes approximately uniformly distributed in the scaled λ-
neighbourhood; and (ii) then we can use standard Euclidean
distance to measure distances between any two transformed-
and-shifted points. These advantages are not available in
DScale which relies on a rescaled distance which is non-
metric and asymmetric. However, CDF-TS does not preserve
the potentially complex topological structure of clusters since
it still uses the CDF scaling. In contrast, our method uses a
novel parametric and global mapping function that preserves
potentially complex topological density structure.

The intention of our work is to present a novel generalized
technique to homogenize the density of adjacent clusters of
varying density. Our method introduces analogies between the
data analysis domain and the Theory of Relativity in physics
by using the tensor calculus and a modified Self-Organization
Map method; Thereby, our FSCM is a parametric, scalable,
automated method and it does not depend on any particular
clustering algorithm. Especially, in our GSOM we use the
SOM-based iterative resampling schemes to optimize the
computation cost and increase the efficiency and scalability.

III. THE PROBLEM OF MULTI-DENSITY

In this section, we firstly provide a brief mathematical no-
tation to use throughout this paper, then formalize the general
weakness of existing density-based clustering algorithms to
stratify multi-density clusters.

We use X to indicate a dataset of n data points X =
(x1, x2, ..., xn) where xi ∈ Rm. Let pdf(x) and p̂df(x) stand
for the true density of point x and its estimation based on
sample data respectively. Besides that, let N (x, ε) = {x′ ∈
X|d(x, x′) 6 ε} denote the ε-neighbourhood of x, where
d : Rm ×Rm → R is the euclidean distance function.

Technically, the density-based clustering algorithms (e.g.
DBSCAN [20]) use a small ε-neighbourhood to estimate the
pdf(x) as follows:

p̂df(x, ε) =
|N (x, ε)|
nV(ε)

(1)

Where V(ε) is the volume of an m-sphere of radius ε [22].
Let C = {c1, c2, ..., cq} denote a set of non-overlapping and

non-empty clusters where ci ⊂ X , ∀i 6=j(ci ∩ cj = ∅) and
ci 6= ∅. Let mi = argmaxx∈ci p̂df(x) and pi = p̂df(mi)
denote the data point with the mode (highest density) of cluster
ci and its corresponding peak density value respectively.

In [21], they present a condition to guarantee these density-
based clustering algorithms can identify all clusters in a
dataset. The condition is that the estimated density pi at the
mode mi of each cluster is greater than the maximum of the
minimum estimated density along any path through p̂df which
is linking any two modes:

min
i∈{1...q}

pi > max
j 6=k ∈{1...q}

gjk (2)

Where gjk is the highest of the minimum density along the
path that links clusters cj and ck.

This condition implies that a single density threshold τ
must exist to fracture all trajectories between the peaks by

nominating the regions with density less than τ to noise.
Nevertheless, these density-based clustering algorithms fail to
detect all clusters when the peak density of some clusters is
lower than a low-density region between some other clusters.

In this paper, we propose a parametric transformation which
acts as a preprocessing step to tackle this issue by projecting
a given dataset X to X ′ that has a more uniform density
distribution and it also better fulfills this property. As a result,
it enables clusters with varied densities in the original space to
be identified using a single threshold in the transformed space,
something that would be impossible in the original space.

IV. BACKGROUND
In this section, we discuss an overview of two techniques

that we leverage and extend in our analytic approach. We
firstly revisit the self-organization map algorithm, then we
review the multilinear transformation technique.

A. Self-organization map
Kohonen’s Self-Organization Map (SOM) [15] is one of the

popular types of neural network which preserves and retains
an accurate representation of the topology of the data space.

The SOM often arranges a set of neurons in a 2-D rectan-
gular or hexagonal grid T in size ς , to establish a discrete
topological mapping of an input space X ∈ Rn×m. Ω is
the set of neuron indexes. The neurons are represented by
a set of weight vectors V = {v1, v2, ..., vς}, where vi is the
weight vector associated with neuron i and is a vector of the
same dimension −m− of the input, ς is the total number of
neurons, and let ri be the location vector of neuron i on the
grid. At the start of the learning, all the weights are initialized
to small random numbers. Then the algorithm repeats next two
steps until the map converges in order to preserve maximum
topological properties of the data on the map.

Each iteration t, it first chooses one random point x(t) of
the dataset and selects the winner neuron:

ν(t) = argmin
k∈Ω

‖x(t)− vk(t)‖ (3)

Then it updates the weights of the winner and its neighbors:

∆vk(t) = α(t)η(ν(t), k, t)[x(t)− vν(t)(t)] (4)

where the coefficient α(t) is termed the ’learning rate’
which is scalar-valued and it decreases monotonically [15]:

α(t) = α0.e
−t
λα (5)

η is the neighborhood function which quantifies the prop-
agation and decay of the updates to the winner node on its
neighbours through the grid topology. The Gaussian form is
often used in practice, specifically:

η(ν(t), k, t) = exp

[
−
‖rν(t) − rk‖2

2σ(t)2

]
(6)

Where σ(t) represents the effective range of the neighbor-
hood radius around ν(t). Like the learning rate, the neighbor-
hood similarly decays with an exponential decay function:

σ(t) = σ0.e
−t
λσ (7)



where λα and λσ are the decay time constants.
Note that the initial learning rate α0, radius σ0, and both

time constants are empirically chosen based on the application.
In our work, we later present their value in the section V.

The ”No Move” [12] criteria is widely used to detect
convergence of the learning mechanism. It considers stopping
condition that defines no-improvement in SOM’s status as no
training samples change their best match unit in a complete
iteration of the training set. However, when we use the ”No
Move” criterion, then there could be a case where the weights
kept oscillating between iterations. Thus causing the criterion
is never met. Therefore, an iteration threshold is necessary to
be selected whether the SOM doesn’t converge.

Furthermore, the ”Mean Distance to the Closest Unit”
(MDCU) criteria is the quantization error of the SOM map [15]
which is computed after the training process. It calculates the
average distance of the sample vectors to the node centroids
by which they are represented.

Finally, the SOM provides a topology preserving map [8]
from input to output spaces, which includes grid T and weight
vectors V . For SOM training, the weight vector associated
with each neuron moves to become the center of a local group
of input vectors. The group i is represented by its centroid
vector vi and the local groups are connected via T.

In this work, we enhance the generic SOM technique to
model the feature space curvature by plugging the gravitation
and fabric of space concepts into the standard SOM, in analogy
with Relativity theory, to model the density structure of dataset
and still describe the whole original feature space.

B. Multilinear Transformation

The multilinear transformation is a spatial transformation
function which is locally linear but the coefficients change
across different regions of the space. In general, a multilinear
transformation function M : Rm → Rm of m variables is
called a m− linear map. To represent it visually, we describe
in details the bilinear transformation function B : R2 → R2,
which is the multilinear map of two variables [18].

In Fig.2, on the 2D Cartesian coordinate system, we have
a quadrilateral (left image) that we want to transform into a
rectangle (right image). To interpolate each point ρ on the
arbitrary quad into ρ′ on the rectangle, we need to obtain a
bilinear map function which describes the entire point space
enclosed by the quadrilateral [9].

Fig. 2: A bilinear transformation enables us to represent the
arbitrary shaped quadrilateral as a rectangle.

We need to compute the function which transfers the
quadrilateral into the rectangle. We assume there are bilinear
mapping functions Bx and By:

x = a1Bx(x, y) + a2By(x, y) + a3Bx(x, y)By(x, y) + a4

y = a5Bx(x, y) + a6By(x, y) + a7Bx(x, y)By(x, y) + a8

(8)
Where a1...a8 are the transformation parameters. When we

have the values of Bx and By for four lateral points of the
rectangle, we can compute the parameters by solving two
linear systems, each of four equations with four unknowns.

Let ~d1, ~d2, ~d3, ~d4 be the displacement vectors of the rect-
angle corners which upper left one is point (x′0, y

′
0) and

~di = (dxi , d
y
i ) = (xi − x′i, yi − y′i). In [9], they compute

the parameters a1...a8 of the bilinear transformation for these
displacements as follows:

a1 = [(dx2 − dx1)(`2 − y′0) + y′0(dx4 − dx3) + `1`2] /`1`2

a2 = [(dx1 − dx3)(`1 + x′0) + x′0(dx4 − dx2)] /`1`2

a3 = [dx2 − dx1 + dx3 − dx4 ] /`1`2

a4 = x′0 + dx1 − a1x
′
0 − a2y

′
0 − a3x

′
0y
′
0

a5 = [(dy2 − d
y
1)(`2 − y′0) + y′0(dy4 − d

y
3)] /`1`2

a6 = [(dy1 − d
y
3)(`1 + x′0) + x′0(dy4 − d

y
2) + `1`2] /`1`2

a7 = [dy3 − d
y
1 + dy2 − d

y
4] /`1`2

a8 = y′0 + dy1 − a5x
′
0 − a6y

′
0 − a7x

′
0y
′
0

(9)

To obtain the Bx and By , we solve the Equation system
(8) to represent the Bx and By as a function of x and y.
These functions are calculated as follows: we firstly solve for
Bx(x, y) from the first equation of the system:

Bx(x, y) =

(
x− a4 − a2By(x, y)

a1 + a3By(x, y)

)
(10)

Then, substituting this into the second Equation of system
(8), rationalizing the denominators and combining like powers
of By(x, y), we find the following quadratic equation that must
be solved to get By(x, y):

ABy(x, y)2 +BBy(x, y) + C = 0 (11)

Where:

A = a6a3 − a7a2

C = a8a1 − a5a4 + a5x− a1y

B = a8a3 − a7a4 + a6a1 − a5a2 + a7x− a3y

(12)

Finally, we choose the positive root of the quadratic Equa-
tion (11) for By(x, y) as a feasible solution.

As a result, we obtain a bilinear map function which
describes the entire point space enclosed by the quadrilateral
and lets us displace each point ρ on the arbitrary quad into ρ′

on the rectangle continually. This transformation is likewise
generalizable to the multi-dimensional space, which is called
multilinear transformation to map a hyper-quadrilateral to a
hyper-rectangle. Note that the equation system is no longer
linear; However, it can be solved quite easily by applying
analytical solutions such as Grobner bases [1].



(a) Original Data Distribution. (b) FSC Model of (a). (c) FSCM Projection of (a).

Fig. 3: Application of FSCM on a multi-density 2D dataset Synt10 containing ten clusters. (a) A scatter plot of clusters with
varied densities. The legend shows the size/µ(x(1), y(2))/σ per cluster, the colors represent the data original labeling and the
red lines draw the initial FSF. (b) shows the FSC model that is computed with our FSCM method. Note that the red lines
show the deformation of the FSF. (c) scatter plots the data (a) projected by applying our transformation through model (b).
As a result, the diversity of the clusters’ density scaled appropriately to achieve a better density-based clustering performance.

V. FEATURE SPACE CURVATURE MAP

Our Feature Space Curvature Map (FSCM) method involves
two main steps that will be formally described in this section.
First, we apply our new Gravitational Self-Organization Map
(GSOM) method to compute the clusters density structure. It
computes the feature space bending with a correct topology
preserving map to present the potentially complex multi-
density structure of the data. Second, we apply our enhanced
multilinear transformation, from the GSOM map to project
the data points to the new euclidean feature space with more
uniform density distribution. Note that the new feature space
is typically considered to be euclidean that classic distances
are defined on it. These steps perform a globally nonlinear
transformation of the dataset to which any existing density-
based clustering algorithm based on euclidean distances can
be applied.

A. Feature Space Curvature Modeling

In the first step, we use a topological m-dimensional elastic
mesh T to construct the fabric of feature space as a smooth
manifold with a Riemannian metric, while covering the whole
feature space. We call this mesh the Feature Space Fabric
(FSF) through this paper. Then, we compute the Feature
Space Curvature (FSC) model where the concentrations of data
points can bend the FSF dramatically while the areas with
less concentration just slightly bend it or leave it as locally
euclidean. The FSC presents the density structure of the data.

To be able to derive the FSC, we propose a new Gravita-
tional Self-Organization Map (GSOM) algorithm. We train a
GSOM network to learn the density topology of the input data
X , while still covering the whole feature space. To plugging
the concept of the gravity and fabric of space to the generic
SOM, we apply four key enhancements on it.

1) Initialization Method: For initializing the neurons in
topological space T instead of random initialization, we use

an m-dimensional Regular Rectangular Grid (RRG). Let Ij be
the grid interval of the feature x(j) ∈ Rn:

Ij = [min(x(j))− h,max(x(j)) + h] (13)

Where h is the marginal coefficient to create extra space
around the grid where h = 0.15 works well. Let ξ be the
number of grid lines for each grid interval Ij where ξ = m

√
ς

and ξ ∈ Z3+. This RRG slices the entire feature space into
subdivisions to accurately capture and represent potentially
complex local density structures of the data. See Fig.3a, the
red lines represent an initial 2D RRG.

2) Rigid Boundary: We modify the SOM algorithm to keep
the boundary nodes rigid, during the weight updating of the
winner node and its neighbors, to avoid the crumpling and
folding the RRG. The node ω is boundary if it belongs to:

s = {ω ∈ Ω|∃j(v(j)
ω = min(Ij) ∨ v(j)

ω = max(Ij))} (14)

Where j ∈ [1, . . . ,m] and s ⊂ Ω. To keep rigid the
boundary nodes, we replace the Equation (4) with:

∆vk(t) =

{
0 if k ∈ s
α(t)η(ν, k, t)[x(t)− vν(t)] else

(15)

See Fig.3a, the black nodes at the sides of RRG represent
boundary ones which remain rigid after training, see Fig.3b.

3) Update Procedure: The Law of Universal Gravitation
[4] states that every particle of matter in the universe attracts
every other particle with a force that is directly proportional
to the product of the masses of the particles and inversely
proportional to the square of the distance between them. In like
manner, we propose a novel Gaussian neighborhood function
based on an assumed mutual force acting between all pairs
of neurons, when this force is varied for each pair of neurons
based on their mass and the euclidean distance between them.
The mass of each neuron represents the number of times which
this neuron selected as a winner neuron. Let µi(t) be the mass
of the ith neuron after step t where ∀i∈Ω(µi(0) = 1) at the
initial state. Then, for each time t, the mass of the winner



neuron ν(t) is increased by one unit. Therefore, the winner
will be the neuron generating more gravitational attraction
force to the selected point instead of the closest neuron. For
this purpose, we substitute the euclidean distance with gravity
force in both Equations (3) and (6) respectively:

ν(t) = argmax
k∈Ω

[
µk(t)

‖x(t)− vk(t)‖2

]
(16)

η(ν, k, t) = exp

[
F(ν, k)

2σ(t)2

]
(17)

Where the mass of the presented input x(t) is equal to one
and F(ν, k) is the gravity force between node ν and k:

F(ν, k) =
µν(t).µk(t)

‖rν − rk‖2
(18)

Fig.3b shows an example where the dense cluster C8
(orange), with big size and small standard deviation, curved
the FSC dramatically while the sparse one C1 (yellow) only
slightly bent it.

We empirically figure out the appropriate value for the time
constants λα = 1000/α0 and λσ = 1000.σ0 by conducting
several experiments. These values lead the GSOM to generate
the smooth FSC without crumpling and folding that is neces-
sary for the transformation step of our approach.

There are two principal consequences of this gravitation-
based function: (1) the updated weight of neurons depend
on both their distances and masses, which guarantees the
smoothness of the final FSC, and (2) the GSOM converges
faster to stable model when the massive neurons stabilize
earlier than light mass neuroses which arrange around them
later on, the same way as the stars in a galaxy.

4) Early Stopping Condition: In our approach, we use
MDCU to learn convergence mechanism per each iteration
rather than calculate after the training process like the standard
SOM. We compute the MDCU(t) per each iteration t, as
follows:

MDCU(t) =
1

n

n∑
i=1

min
k∈Ω
‖xi − vk(t)‖ (19)

It considers the stopping condition that defines the proper
GSOM’s status as no training samples reduces the overall
MDCU. However, a more elaborate trigger is required in
practice since the training of the GSOM is stochastic that can
be noisy. Therefore, GSOM monitors the overall MDCU for
a given number of consecutive epochs in order to try to avoid
falling into a local minima. Using this condition, the training
process is automatically stopped as soon as it successively
sees no reduction in MDCU metric over a given number of
epochs E where E = 10 works well based on our conducted
experiments. We compute early stop function ES(t) per each
iteration t, as follows:

ES(t) = |{e ∈ E|MDCU(t−e)−MDCU((t−1)−e)) ≤ 0}|
(20)

Where t > E and E = [0, . . . , E ]. The training is stopped
as soon as the ES(t) is equal to E .

Note that the FSF modeling divides up the feature space
into regular rectilinear cells to capture the density structure of
data, see Fig.4a. Although, the computed FSC’s cells are not
longer rectilinear but are irregular quadrilaterals, see Fig.4b.

As a result, by applying the GSOM on X , we obtain an m-
dimensional irregular grid T in size ς and V = [v1, v2, ..., vς ],
vi ∈ Rm, which accurately represents the density structure of
the clusters by preserving the topological structure of data. We
summarize the FSC modeling algorithm in Algorithm 1.

Algorithm 1 : Feature Space Curvature modeling

Input: n data points with m features;
σ0: The initial neighborhood size;
α0: The initial learning rate;
ξ: The number of grid lines;
E : The validation number of epochs;

Output: The grid T and the neurons V = [v1, v2, ..., vς ];

1: Initiate RRG map T of size ξ. (Eq.13)
2: repeat

2.1: Select xi ∈ X randomly
2.2: Find the winner neuron ν(t) (Eq.16)
2.3: Update weight of the winner and its neighbors (Eq.17)
2.4: µν(t) = µν(t) + 1
2.5: Decrease the learning rate α(t) (Eq.5)
2.6: Decrease the neighborhood size σ(t) (Eq.7)

3: until ES(t) < E (Eq.20)
4: return T, V = [v1, v2, ..., vς ]

B. Curvature Map

To apply traditional density-based clustering algorithms
which are designed for euclidean spaces, we need to project
the data from a non-Euclidean curved space FSC to the new
euclidean flat space. Our transformation mechanism reduces
the density of high-density regions intensively while it slightly
reduces the density of low-density ones.

As euclidean space, it is described by orthogonal dimensions
and its discretized version can be represented by a rectangular
grid FSF. The resulting FSC is described by a deformed
grid where the nodes in the original coordinate space now
form irregular quadrilaterals. Our data transformation method
”relinearizes” the FSC considering its original grid structure
and performing a multilinear projection of each original data
point to the new euclidean grid space based on its position in
its enclosing irregular quadrilateral of the FSC.

Let U ′ = [u′1, .., u
′
ϕ] be the initial position of grid T cells

in m-dimensional space, where ϕ = (ξ − 1)m, u′i ⊂ V and
|u′i| = 2m; and L = [`1, .., `m] stand for the side sizes of each
regular cells where `ι = |Iι|/(ξ − 1). In the same way, U =
[u1, .., uϕ] denotes the cells position in FSC when ui → u′i.

We begin by computing B = [β1, .., βϕ] a set of parametric
transformation function between FSC and FSF. For each cell
uj ∈ U , we compute individual transformation function βj by
giving the displacement vectors ~D = [~d1, .., ~d2m ] of the cell
corners, see section IV-B.



Then, for each xi ∈ X , we identify the cell uφ ∈ U which
xi is located inside it. To do that, we firstly find the Best Unit
Match (BMU) ν(xi) by applying Equation (3).

According to the T topology, the neighborhood N (ν(xi))
in Rm is split into 2m cells. If the direct topological neighbors
of the ν(xi) expresses by Θ = [θ1, .., θ2m] where θ ⊂ Ω. Then
we can specify the uφ with ν(xi) and m lattice indicator points
in the neighborhood. Therefore, to single out the cell uφ ∈ U
which xi is located inside, we find the most similar lattice
point l0 ∈ Θ to xi:

l0 = argmax
k∈Θ

(~P(xi). ~P(θk)) (21)

Where ~P(θk) = ~vθk − ~ν(xi) is the position vector of the
lattice point θk, similarly ~P(xi) = ~xi − ~ν(xi) is the position
vector of xi. Then, to distinguish the source cell uφ ∈ U , we
complete the lattice indicator set as follows:

Lxi = {k ∈ Θ : ~P(l0). ~P(θk) 6 ~P(xi). ~P(θk)} (22)

After we get cell lattice indicator set Lxi , we could find the
cell uφ easily since we keep the grid topology T. Finally, for
each xi ∈ X we apply the appropriate multilinear transforma-
tion βφ(xi) to map it into the regular FSF.

(a) Wrapped FSC (b) Transformed by FSCM

Fig. 4: Data point transformation between a bent FSC (a) and
a regular FSF (b) based on the Multilinear Mapping in R2.

Fig.4 shows a 2D grid example where its cells are repre-
sented by 22 corners. Therefore, to map the wrapped FSC
(Fig.4a) onto the regular FSF (Fig.4b), we compute the trans-
formation function Bj for each cell u′j , where ~dj1, ~dj2, ~dj3, ~dj4
are the displacement vectors of cell corners. The ν(xi) is the
BMU. The red and blue arrows represent the position vectors
of lattices and position vector of xi respectively. The computed
indicator set is Lxi = {θ4, θ3} where l0 = θ4. As a result, the
cell u′φ which xi is located inside (the thick block) is depicted
with this lattice set. Finlay, Bφ(xi) shows the transformer of
xi after the applying mapping function Bφ : u′φ → uφ. We
summarize the Curvature Map algorithm in Algorithm 2.

VI. APPLICATION OF FSCM IN THE REAL DATA

In this section, we have carried out several experiments to
show the efficiency and effectiveness of our proposed FSCM
method to overcome the weaknesses of existing density-based
clustering algorithms in diagnosing all clusters with varying
densities.

Algorithm 2 : Curvature Map

Input: n data points with m features;
The grid T and the neurons V = [v1, v2, ..., vς ];

Output: Homogenized data X ′ = (x′1, ..., x
′
n), x′i ∈ Rm;

1: Compute the regular cell side size L = [`1, .., `m]
2: Compute the initial position of cells U ′ = [u′1, .., u

′
ϕ]

3: Compute the final position of cells U = [u1, .., uϕ]
4: for φ = 1 to ϕ do
5: Compute the displacement vectors ~D = [~d1, .., ~d2m ]
6: Compute the map function Bφ : uφ → u′φ (Sec. IV-A)
7: end for
8: for i = 1 to n do
9: Find the BMU ν(xi) = argmink∈Ω ‖xi − vk‖

10: Compute the indicator set Lxi of source cell uφ (Eq.22)
11: Find the source cell uφ
12: Compute the transformation x′i = βφ(xi)
13: end for
14: return X ′ = (x′1, ..., x

′
n)

A. Datasets

We used 10 real-world datasets from the UCI Repository1

and a synthetic datasets Syn10, to validate the capability of our
method in homogenizing multi-density dataset. Table.I outlines
the basic properties of the datasets.

Syn10 is syntactic ”hard distributed” 2-dimensional data
that is generated by sampling a mixture of 10 Gaussian
distributions N(µ, σ). Therefore, this data set is labeled and
can be used to measure the quality of the different clustering
approaches. The statistics (size/µ(x(1), y(2))/σ) of each clus-
ter was shown in Fig.3a. As shown in the density plot Fig.5a,
the clusters do not satisfy the clause stated in the Equation (2).
As a result, DBSCAN fails to precisely stratify the clusters.
For example, the three clusters on the top-right and the other
three’s at bottom of the density plot represent high-density
areas which DBSCAN is unable to separate them by applying
an appropriate global ε value, see Fig.5b.

TABLE I: Datasets properties

Dataset Points (n) Features (m) Classes (q)

Segment 2310 19 7
Wine 178 7 3
Wifi 2000 7 4
Iris 150 4 3
Breast 569 30 2
ForestType 523 27 4
Diabetes 768 8 2
Ecoli 336 7 8
Pendig 10992 16 10
ILPD 579 9 2
Syn10 1530 2 10

B. Evaluation Metric

We use the Overall F-measure denoted by “FScore” which is
commonly used in the literature to compare the quality of the
clustering results. FScore is computed by the harmonic mean

1https://archive.ics.uci.edu



(a) Synt10 Histogram
(b) Synt10 Scatter plot
Dbscan(ε=1.41,mPts=22) (c) FSCM Synt10 Histogram

(d) FSCM Synt10 Scatter plot
Dbscan(ε=1.62,mPts=17)

Fig. 5: Comparison of 3D original histogram (a) of dataset Syn10, previously shown in Fig.3a, and the homogenized density
(c) by our FSCM method, subsequently their DBSCAN clustering results (b) and (d). Without applying FSCM, DBSCAN ends
up merging the three blobs on the top-right into a single one to be able to identify some cluster point in the sparse blob on
the left. FSCM as a preprocessing step to DBSCAN allows to better identify the overall structure of the data.

of precision score and recall score, and the overall FScore is
the unweighted average over all clusters:

FScore =
1

q

q∑
i=1

2PiRi
Pi +Ri

(23)

Where Pi and Ri are the precision score and the recall score
of the cluster ci respectively. The higher the value of FScore
is, the better the clustering performance is.

C. Experiment Setup

Our method, denoted here by FSCM, is compared with:
both DScale and ReScale, which consists of first using these
scaling algorithms for data preprocessing, and then implement-
ing three state-of-the-art density-based clustering algorithms
(DBSCAN, OPTICS and DP) to partition the data.

Before the experiments began, we normalized each dataset
by scaling each feature to [0,1] range by min-max normaliza-
tion. To be able to visualize both our methodology and the
empirical result in 2D, we reduced the data dimensionality
by applying Principal Component Analysis (PCA). Then,
we conducted the whole set of experiments by taking into
account the first two Principal Components. We apply the
Exhaustive Grid Search method to search the hyper-parameter
space for the best validation FScore. Table.II specifies the
parameters and their search space for each algorithm. The
search ranges of both ψ and η are as used by [22] where ψ is
the number of intervals to estimate and control the precision
of f̂η . We implemented the entire set of algorithms used in
our experiments in python.

TABLE II: Parameters and their search ranges.

Algorithm Parameters & Search Range

DBSCAN ε ∈ [0, 2], mPts ∈ {1, 2, .., 25}
OPTIC ε ∈ [0, 2], mPts ∈ {1, 2, .., 25}
DP ε ∈ [0, 2], k ∈ {1, 2, .., 20}
ReScale ψ = 100, η ∈ {0.1, 0.2, ..., 0.5}
DScale η ∈ {0.1, 0.2, ..., 0.5}
FSCM ξ ∈ {3, .., 10}, α0 ∈ {0.005, 0.006, ..., 0.015},

σ0 ∈ {1, 1.1, ..., 2.0}

D. Clustering Results

The results obtained in our experiments are shown in Table
III. The highest obtained FScore values for each dataset-
algorithm are highlighted in bold. The second last row reports
the average FScore. As we can see, our proposed FSCM
method persistently surpasses both competitors on all the three
clustering algorithms. The highest magnitude of improvement
depicted for DBSCAN from 0.59 to 0.77. However, for DP
and OPTIC, the performance gap shrinks slightly since they
are an advanced version of DBSCAN which are using multiple
density thresholds to efficiently detect cluster centers. Still,
FSCM increases the clustering performance of DP and OPTIC
significantly more than both ReScale and DScale.

The last row of Table III shows the proportional perfor-
mance winner. It is computed by the number of times a prepro-
cessing method wins the performance divided by total number
of datasets for each clustering algorithm. By looking at the
first five columns, we see that FSCM-DBSCAN outperforms
the other two methods in a large majority, 8 out of 11, of
the datasets (in many cases by a large margin); while FSCM-
OPTICS and FSCM-DP are the performance winner on 7 and
9 out of 11 datasets, respectively. In the only three datasets
where FSCM does not perform best (Breast, ForestType, and
Ecoli), its FScore values are very close to the “winner”.

In case of Syn10, our FSCM remarkably improves the
clustering performance of all existing algorithms, probably
because the data is generated from a mixture of Gaussian
sources. For example, in Fig.5c we present the histogram
of the homogenized Syn10 by applying our FSCM. The
mapping yields that both three sets of clusters in the top-
right and bottom of original space (corresponding to the two
high density reigns, see Fig.5a) are expanded and segregated
in the new space with valleys appearing between them. As
a result, the densities at the peak of different clusters are
closer after this mapping. Thereafter, we could efficiently
stratify 10 distinct clusters which correspond to the actual
generative model for the data by using DBSCAN, see Fig.5d.
However, ReScale fails to increase clustering performances
on this dataset since it is just using one-dimensional scaling.



TABLE III: The best FScore for DBSCAN, OPTIC, DP, and their ReScale, DScale, and FSCM versions. For each clustering
algorithm, the best performer in each dataset is boldfaced. Orig, PCA, ReS, and DS represent the Original algorithm, Principal
Component Analysis, ReScale, and DScale respectively.

DBSCAN OPTIC DP

Dataset Orig PCA ReS DS FSCM Orig PCA ReS DS FSCM Orig PCA ReS DS FSCM

Segment 0.59 0.62 0.62 0.61 0.70 0.69 0.69 0.67 0.70 0.74 0.78 0.78 0.77 0.80 0.85
Wine 0.64 0.65 0.86 0.80 0.91 0.76 0.78 0.84 0.88 0.91 0.93 0.98 0.95 0.96 0.97
Wifi 0.74 0.76 0.87 0.86 0.90 0.79 0.76 0.88 0.85 0.93 0.90 0.91 0.92 0.92 0.95
Iris 0.85 0.89 0.90 0.93 0.96 0.85 0.85 0.84 0.88 0.94 0.97 0.97 0.97 0.97 0.97
Breast 0.82 0.82 0.95 0.96 0.94 0.84 0.79 0.96 0.95 0.95 0.97 0.79 0.97 0.97 0.97
ForestType 0.27 0.32 0.51 0.48 0.49 0.29 0.51 0.64 0.52 0.61 0.69 0.75 0.83 0.70 0.80
Pima 0.43 0.46 0.48 0.64 0.72 0.65 0.65 0.65 0.66 0.70 0.62 0.64 0.66 0.67 0.71
Ecoli 0.37 0.42 0.40 0.54 0.53 0.44 0.50 0.57 0.50 0.51 0.48 0.53 0.55 0.63 0.61
Pendig 0.70 0.73 0.78 0.74 0.78 0.74 0.78 0.78 0.78 0.81 0.79 0.79 0.82 0.82 0.84
ILPD 0.41 0.42 0.42 0.56 0.57 0.47 0.47 0.47 0.57 0.54 0.60 0.60 0.63 0.62 0.63
Syn10 0.66 0.61 0.58 0.72 0.89 0.67 0.65 0.65 0.76 0.91 0.69 0.70 0.60 0.78 0.92

Average 0.59 0.60 0.67 0.71 0.77 0.65 0.68 0.72 0.73 0.78 0.77 0.78 0.79 0.81 0.85
Winner % 0.0 0.0 9.1 18.1 72.8 0.0 0.0 27.3 9.1 63.6 0.0 9.1 9.1 9.1 72.7

Furthermore, the DScale moderately increased the FScore
values of DBSCAN, OPTIC and DP about 0.06, 0.09 and 0.09
unit respectively, since it still depends on a rescaled distance.
On the other hand, our FSCM method significantly improved
FScore values of DBSCAN, OPTIC, and DP from 0.66, 0.67
and 0.69 to 0.89, 0.92 and 0.92, respectively.

In Fig.6 and Fig.7, we compare the DBSCAN clustering
quality on two original WiFi and Breast datasets and their
transformation due to FSCM. They show that both transformed
datasets are stratified more efficiently than the original data
by DBSCAN. For the WiFi dataset, see Fig.6, plot(a) shows
the original data with original labeling, including four distinct
classes, and the embedded FSC computed by FSCM. As we
can see that the Class 2 (red) is dense while the Class 1
(pink) is sparse. As shown in plot (b), DBSCAN just iden-
tified three clusters due to the fact that we observed varied
densities in data. Consequently, classes 2 and 4 are jointly
identified as a single cluster, see the blue cluster in Fig.6b.
In contrast, Class 2 becomes sparser using FSCM and we
generally observe that the projected data has approximately
uniform densities in the populated areas, as shown in plot
(c). As a result, DBSCAN identified four distinct clusters by
applying single density threshold, as shown in plot (d). Further,
our FSCM method significantly improved FScore values of
DBSCAN from 0.76 to 0.9, see Table.III.

For the Breast dataset, see Fig.7, plot(a) shows the original
data with original labeling, including two distinct classes, and
the embedded FSC computed by FSCM. As we can see that the
Class 1 (dark blue) is significantly dense while the Class 2
(light blue) is sparse. As shown in plot (b), DBSCAN just
identified the dense cluster. Consequently, the majority of the
data points belonged to the sparse class are designated as
noise, the red ×. In contrast, Class 1 becomes sparser using
FSCM and we generally observe that the projected data has
approximately uniform distribution, as shown in plot (c). As
a result, DBSCAN identified two distinct clusters by applying
single density threshold, as shown in plot (d). As illustrated in
Table.III, our FSCM method significantly improved FScore

values of DBSCAN from 0.82 to 0.96.

E. Complexity Analysis

The computational complexity of ReScale, DScale, and
FSCM are shown in Table IV. The result shows DScale has
higher computational complexity than ReScale since it com-
putes and frequently updates a n×n distance matrix. While the
computational complexity of FSCM is roughly corresponding
to the performance of Feature Space Curvature modeling phase
which is similar to the standard SOM algorithm. Considering
a map of ς neurons and the input data X ∈ Rn×m, then each
learning epoch t ∈ [1, . . . , tf ] of the GSOM algorithm costs
O(mς + nς2) elementary operations. Therefore, its overall
theoretical complexity is O(tf (mς + nς2)). The size of map
ς is the only parameter which could be quite big for the high-
dimensional data.

Furthermore, the computational complexity of the majority
of existing density-based clustering algorithms is O(n2) [23],
thus our method doesn’t notably affect their final complexities.

TABLE IV: Complexity of ReScale, DScale and FSCM.

Algorithm Time complexity Memory complexity

ReScale O(mnψ) O(mn+mψ)
DScale O(mn2) O(mn+ n2)
FSCM O(tf (mς + nς2)) O(mς + nς2)

VII. CONCLUSION AND FUTURE WORK

We have presented a new topological Feature Space Curva-
ture Map (FSCM) method to homogenize the density of data to
overcome the weakness of density-based clustering algorithms
in finding clusters of varied densities. Our FSCM involves
two steps: Feature Space Curvature modeling and Curvature
Mapping to non-linearly project a multi-dimensional dataset.
In analogy to Relativity Theory, we assume an m-dimensional
feature space as an elastic Feature Space Fabric (FSF) which
is bent when data points are placed in it depending on their
density. Therefore, the massive data clouds wrap the FSC
intensively while the sparse ones wrap it slightly. We propose



(a) Original labeled data & FSC (b) Dbscan(ε=0.365,mPts=10) (c) Projected data by FSCM (d) Dbscan(ε=0.248,mPts=13)

Fig. 6: Application of FSCM-DBSCAN on the Wifi dataset and the original datasets in R2.

(a) Original labeled data & FSC (b) Dbscan(ε=1.05,mPts=25) (c) Projected data by FSCM (d) Dbscan(ε=1.695,mPts=19)

Fig. 7: Application of FSCM-DBSCAN on the Breast dataset and the original datasets in R2.

a new gravitation-based version of the self-organization map
(GSOM) to model the density structure of the data, which
is defined on the m-dimensional Regular Rectangular Grid
(RRG) of neurons to recognize data density structure. In con-
sequence, GSOM guarantees the smoothness and continuity
of the final FSC model and it converges faster to a stable
model than standard SOM. Then, we apply a novel multilinear
transformation to straighten out the wrapped FSC to reach a
new equidistant feature space when the data points are attached
to the Feature Space Fabric. Our parametric multilinear trans-
formation approach projects the data points to the new feature
space, showing more uniform density among data aggregations
than in the original space. As a result, existing density-based
clustering algorithms can efficiently identify clusters within
this data homogenized by FSCM, as it is clearly demonstrated
empirically in this paper. Here FSCM is a general and an
efficient preprocessing method that is parametric, assumption-
free, and automated that can be applied before clustering
analysis.
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