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Abstract
We introduce amodel for the randomization of complex networks with geometric structure. The
geometric randomization (GR)model assumes a homogeneous distribution of the nodes in a hidden
similarity space and uses rewirings of the links tofind configurations thatmaximize a connection
probability akin to that of the popularity-similarity geometric networkmodels. The rewiring preserves
exactly the original degree sequence, thus preventing fluctuations in the degree cutoff. TheGRmodel
ismanifestly simple as it relies upon a single free parameter controlling the clustering of the rewired
network, and it does not require the explicit estimation of hidden degree variables.We demonstrate
the applicability of GRby implementing it as a nullmodel for the analysis of community structure. As
a result, we find that geometric and topological communities detected in real networks are consistent,
while topological communities are also detected in randomized counterparts as an effect of structural
constraints.

1. Introduction

The practice of testing hypotheses against a properly specified control case, or nullmodel, is at the heart of the
scientificmethod. In network science [1], nullmodels take typically the formof generativemodels that produce
maximally randomgraph ensembles given some specific features [2, 3]. Beyond the unrealistic Erdös-Rényi
randomgraph [4], thesemodels were directed to generate randomnetworks replicating specific features of real
systems, like heterogeneous degree sequences [5–9], high levels of clustering [8, 10], communities [11–13], and
other additional properties in unweighted [14–17] andweighted networks [18–23]. Suchmodels played amajor
role in discerning relevant patterns in the fabric of networks which are not attributable to specific constraints.
Many successful applications include the detection of over-representedmotifs in networks [24], the
quantification of communities usingmodularity [25], the detection of rich-club ordering [21, 26] and other
degree–degree and higher order correlations [27], and the characterization of structural correlations inweighted
networks [22].

However, nullmodels for networks that incorporate geometric information are scarce andmainly focused
on spatial networks [28–30]. In fact, a geometric approach to the structure of complex networks has only started
to be developed recently. A class of thesemodels in hiddenmetric spaces [31, 32] explainsmany pivotal features
of real networks simultaneously—including the small world property, heterogeneous degree distributions, high
levels of clustering, and self-similarity—based only on three parameters controlling the average degree, the
exponent of the power-law degree distribution and the clustering coefficient. In thosemodels, the probability of
connecting two nodes is determined by their distance in an underlying latent space. This distance is defined
along two dimensions representing popularity and similarity features of the nodes, such that themore popular
and themore similar two nodes are, the greater the chance to interact and be linked. Specifically, in the 1model
[31], the hidden degree of a node is a proxy for its popularity, and nodes are assigned angular positions in a one-

OPEN ACCESS

RECEIVED

2April 2019

ACCEPTED FOR PUBLICATION

30April 2019

PUBLISHED

29May 2019

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2019TheAuthor(s). Published by IOPPublishing Ltd on behalf of the Institute of Physics andDeutsche PhysikalischeGesellschaft

https://doi.org/10.1088/1367-2630/ab1e1c
mailto:marian.serrano@ub.edu
https://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/ab1e1c&domain=pdf&date_stamp=2019-05-29
https://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/ab1e1c&domain=pdf&date_stamp=2019-05-29
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


dimensional sphere (or circle) such that the angular separation between nodes provides ameasure of similarity.
The hidden degree can be reinterpreted as a radial coordinate in a hyperbolic plane [33], leading to the
formulation of an isomorphic version, the2 model, that is purely geometric. In the2 model, networks are
represented in the hyperbolic disk, where higher degree nodes are placed closer to the center, while the angular
coordinate remains as in the 1 similarity space, and the probability of connection decreases with the hyperbolic
distance.

However, in bothmodels, 1 and2, the angular coordinate is uniformly distributed, at odds with the
heterogeneous angular distributions observed in hyperbolicmaps of real networks [34–36]. Clusters of nodes
lying nearby in the similarity space form indeed geometric communities [35, 36] (named soft or latent
communities), that can bemodeled in the geometric framework [37, 38]. This observation opens the door to the
use of geometricmodels with homogeneous similarity distribution as nullmodels for the investigation of the
community organization and other structural properties of real networks.

In this paper, we present a rewiring procedure [39] based in thewell-knownpopularity-similarity 1

networkmodel. The geometric randomization (GR)model, as we named it, preserves exactly the degree
sequence of the input networkwhile completely randomizes the angular coordinates of the nodes. Such
randomization of the similarity coordinate supports the use of theGR as a nullmodel for the analysis of the
topological properties of real networks, including community structure. TheGRmodel assumes the same form
of the connection probability as in the 1model, and a uniformdistribution for the similarity coordinate aswell.
In contrast, it is fit with a given degree-sequence. Gainfully, the use of prescribed degrees allows to skip the
delicate task of estimating hidden degree variables from real data. This attribute can help, for instance, in the
analysis of features which are specially sensitive tofluctuations in the degree cutoff, like the behavior of
dynamical processes such as epidemic spreading or synchronization, or for high-fidelity reproduction of real
network topologies. Based on the premisesmentioned above, we propose an algorithm that homogenizes the
angular distribution and rewires the links in a network preserving the given degrees andmaximizing the
likelihood that the new topology is generated by the geometricmodel.Moreover, we analyze the effects of theGR
model on the topological properties of real and synthetic geometric networks, including community structure.

2. TheGRmodel

TheGRmodel operates on networkswhere nodes have an observed degree and exist in a similarity space. The
similarity space is taken to be a circle, as in the 1 or2 models (see appendix A). In thosemodels every node i is
characterized by a popularity-similarity pair of coordinates (κi, θi), whereκi is the node’s hidden degree
(expected to be proportional to the observed degree ki) and θi its angular or similarity coordinate.

In theGRmodel, instead, only angular coordinates are assigned to the nodes, chosen uniformly at random
from [0, 2π]. The network is then rewired in order tomaximize the likelihood that the new topology is generated
by the 1model while preserving the observed degrees, and thus the total number of edges E. The rewiring
procedure is conducted by executing aMetropolis–Hastings algorithm, aimed atfinding the network
connectivity, i.e. the adjacencymatrix aij, that preserves the observed degrees in the networkwhile the
congruency (measured in terms of the likelihood function, see appendix B) between the rewired topology and
the 1model ismaximized. The rewiring algorithmproceeds by repeating the following steps.

• Choose two links at random (between nodes i and j and between nodes l andm).

• Compute the probability of rewiring (connecting i and l and j andm) as the ratio  =pr n c, where c

corresponds to the value of the likelihood function before the swap and n after the swap. Notice that pr can be

calculated as n/ =
q q

q q

bD D

D D( )c
ij lm

il jm
using only information about the angular coordinates of nodes (see also

appendix B).

• If p 1r accept the link swap.

• Otherwise, accept the link swapwith probability pr.

The rewiring algorithm is terminated after a number E2 of edges are chosen to be swapped, ensuring that the
likelihood has reached a plateau. Notice that at the end of the rewiring procedure the degrees of the nodes have
not changed, but the resulting networkmight not be connected.Moreover, theGRmodel does not require to
estimate the hidden degrees of the nodes because they do not enter in any step of the algorithm. Therefore, the
GRmodel simply needs to assign uniformly distributed angular coordinates and give a value for the clustering
parameterβ, as discussed in detail in the next section.
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GRs of networks can be also obtained using the 1model with parameters γ,β andμ—controlling the
exponent of the power-law hidden degree distribution, the clustering coefficient, and the average degree,
respectively—estimated from the empirical network. This alternative however, requires the explicit estimation
of the hidden degree sequence P(κ) or of the exponent of the hidden degree distribution, and, thus, itmay
introduce undesired fluctuations in the degree cutoff which can induce relevant differences between the
topological properties of real and 1 generated networks.

3. Tuning clustering through parameterβ

In order to apply theGRmodel to a real or synthetic network one simply needs tofix parameterβ, which
controls the level of clustering in the network [31]. Clustering is a signature of themetricity of geometric
networks [40] and gives the connection between the observed topology and the underlyingmetric space, as a
reflection of the triangle inequality.

Note that the value ofβ affects the probability to accept a link swap (see equation (B7)) so it determines the
final network’s structure.We address the role ofβ by applying theGRmodel to synthetic networks generated by
the geometric preferential attachment (GPA)model [37] and the soft communities in similarity space (SCSS)
model [38]. Bothmodels are intended to produce synthetic networks with tunable community structure.

TheGPAmodel generates geometric networkswith soft-communities using a growingmechanism in the
hyperbolic plane. The probability of connection depends on parameterΛ controlling the initial attractiveness of
the different angular regions, such that the heterogeneity of the angular coordinate is a decreasing function ofΛ,
with L  ¥ recovering the homogeneous distribution. Notice that the degree distribution and the clustering
coefficient in networks generated by theGPAmodel are independent ofΛ. However, b  ¥ by construction
and, thus, the level of clustering is always themaximumpossible. The SCSSmodel consists in an 1 version for
the generation of soft communities that allows to change the generated level of clustering as a function ofβ.

Figure 1(a) shows the average clustering coefficient á ñc of aGPAnetwork comparedwith the randomizations
obtained by applying theGRmodel using different values ofβ. As expected, the average clustering of the rewired
networks strongly depends on the value ofβ: the lowerβ, the lower á ñc in the resulting network. A level of
clustering similar toGPA values can be obtained inGRnetworks by using large values ofβ, such as b = 10.

Infigures 1(b), (c), we report the average clustering coefficient obtained by applying theGRmodel to
synthetic networks generatedwith the SCSSmodel. The SCSS networks are produced using two different
generating values, referred asβ0. Figures 1(b), (c) show that it is possible tofine tune the value ofβ used by the
GRnetworks so that they reproduce the same average clustering á ñc as the original networks. If the generation
valueβ0 is used for the rewiring, the level of clustering in theGR instances does not reach that in the original
networks and remains smaller. This observation can be understood by noticing the following two points. First,
for SCSS networks the á ñc is independent of the level of angular clusterization, so any two SCSS networks with

Figure 1. (a)Average clustering á ñc of a network generated by theGPAmodel (dashed line) and rewired versions (orange) obtained by
applying theGRmodel with different values ofβ. The networks have sizeN=103, exponent of the degree distribution γ=2.5,
number of links per nodem=4, and the initial attractivenessΛ=0.1. (b)Average clustering of two networks generatedwith the
SCSSmodel (dashed line)with attractivenessΛ=0.1 andβ0=1.5 in (b) andβ0=3.5 in (c). Green bars indicate the á ñc of networks
obtained by applying theGRwithβ0 andwithβ, respectively.
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equalβ0 and the same distribution of hidden degrees, P(κ), will have equal á ñc . Second, aGR instance of a SCSS
network obtained usingβ0 would be onewith homogeneous P(θ) and the same observed degree distribution P
(k) as in the SCSS network. That is, ifP(k)=P(κ) exactly, then the average clustering á ñc reached by theGR
instancewithβ0 would need tomatch that of the SCSS network. Sincewe do not observe thismatching in
figures 1(b), (c), we conclude it is due to differences between the distribution of observed and hidden degrees of
the SCSS network.

4. Effects of GR in empirical networks

In the following, we apply theGRmodel to real networks.We consider six empirical networks fromdifferent
domains: the network offlows of goods and services exchanged betweenUSA industrial sectors in 2007
(Commodities) [48], the network of chords transitions inwestern popularmusic (Music) [41], the one-mode
projection ontometabolites of the humanmetabolic network at the cell level (Metabolic) [35], theword
adjacency network inDarwin’s bookOn theOrigin of Species (Words) [42], the email communication network
within the Enron company (Enron) [43], and the Internet at the autonomous system level (Internet) [34, 44], see
table 1 and appendix C for details.

As described in the previous section,β is the only free parameter of themodel, and can be used to tune the
clustering coefficient. In the following, wewill show results by using a value ofβ ensuring that the average
clustering of the rewired network is equal to that of the real one. Another possible choice forβ is the value
estimatedwhen embedding the real network into the underlyingmetric space [34], whichwe indicate asβ0 in
table 1. The embeddingmethod estimates the coordinates of the nodes in the underlying geometry by
maximizing the likelihood that the observed topology has been produced by themodel. In the process,β0 is
estimated such that the expected clustering coefficient of the embedded networkmatches the observed
clustering coefficient of the network topology. As explained in the previous section for synthetic networks, using
β0 as the input inGRdoes not produce in general rewired networks with the same average clustering á ñc as in the
original networks. For real networks, the two values ofβ are very similar but not always identical, see table 1. The
small difference is relatedwith the fact that, for some real networks, theGRmodel cannot adjust simultaneously
the empirical connection probability and the observed clustering using a single value ofβ, see figure 2. The
rewired networks obtained by applying theGRmodel aremostly connected, the disconnected parts are
extremely small comparedwith the rest. In table 1, we report the size of the giant connected component of the
GRnetworks as a fraction of the original size of the networkN, averaged over 10 realizations. Inwhat follows, the
analysis is carried out over the giant connected component ofGRnetworks.

4.1. Clustering and degree correlations
Figure 3 shows the average clustering á ñc of the empirical networks under consideration as compared to the
randomized versions obtained by theGRmodel.We consider both valuesβ andβ0 (the corresponding networks
are indicated byGR andGR0, respectively), andwe include also a comparisonwith real network replicas
generated by the S1model [31] (see appendix A). As expected, GRnetworks show an average clustering
practically identical to that of the original data, whileGR0 networks presentmild deviations, and differences are
usuallymore important for S1 networks due to deviations in the obtained degrees. One exception to the
preservation of clustering inGR instances is theWords data set. This empirical network has aβ0 extremely close
to theminimal threshold ofβ0=1 defined in hiddenmetric space networkmodels. Theβ value necessary to
ensure that theGRnetwork has the same level of clustering as the empirical one cannot be achieved since it
would need to be lower than 1. In general, an embedding value ofβ0;1 suggests that clustering is due tofinite

Table 1.Properties of the data sets under consideration:N, size of the network;G, fraction of the giant
connected component of theGRnetwork overN; γ, exponent of the power-law formfitting the degree
distribution, P(k)∼k− γ; parameterβ0 estimated from the embedding of the real network; parameter
β that preserves the level of clustering in theGRnetwork; á ñk , average degree; and theD score (95%
CI) of theKS test performed between theP(θ) distributions of the original networks and networks
obtained by applying theGRmodel (seemain text).

Data set N G γ β0 β á ñk á ñc DKS

Enron 33696 0.998 2.14 2.70 2.60 10.73 0.71 0.027

Comms. 374 0.994 2.50 1.06 1.25 5.83 0.22 0.144

Metabolic 1436 0.999 2.60 2.13 2.50 6.57 0.54 0.092

Words 7377 0.999 2.25 1.01 1.00 11.98 0.47 0.116

Internet 23748 0.977 2.16 1.88 2.20 4.92 0.61 0.123

Music 2476 0.999 2.27 2.50 2.65 16.66 0.82 0.072
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size effects, sinceβ0=1 corresponds to absence of clustering in the thermodynamic limit of the geometric
networkmodels.

Graphs on the top rowoffigure 4 show the clustering spectrum ( )c k for empirical networks and networks
obtained by theGR and S1models. In all cases, the functional formof c(k) is similar, a decreasing function of k
with a broad tail. The clustering spectrumof theGRnetworks is always very close to the original data, while the
S1 networks present important departures in some systems, as a result of the lack of preservation of the empirical
degrees. This is especially evident for the S1 versions of theMusic andWords networks, with the clustering
spectrummuch lower than that of the original data.

Figure 2.Empirical connection probability for original (blue dots) andGR (orange dots)networks. Fraction of connected pairs of
nodes as a function ofχij=Δθij R/(μκiκj). The black line shows the theoretical curve, equation (B.2).

Figure 3.Average clustering á ñc of empirical networks (blue), networks obtained from theGR (red) and S1 (light blue)models. GR
networks obtainedwithβ0 (green) are indicated asGR0. Error bars are calculated over 10 realizations of theGR and S1models.

Figure 4.Clustering c(k) (top) and average degree of nearest neighbors ¯ ( )k knn (bottom) as a function of the degree, for empirical
networks (dots), and networks obtained from theGR (continuous orange line) and S1 (black dashed line)models.
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On the other hand, the real networks under consideration are generally disassortative, as revealed by the
decreasing formof the average degree of nearest neighbors, ¯ ( )k knn function, figure 4 (bottom). Internet,Music
andWords show a decaywith power law form,while other data sets showmilder degree correlations. In all cases,
GRnetworks have ¯ ( )k knn distributions very similar to the original data, while S1 networks exhibit strong
deviations, with the exception of the Internet.

4.2. Community structure
So far, GR randomized versions of real and synthetic geometric networks seem to be able to preserve topological
features beyond the degree distribution, including clustering and the average nearest neighbors degree.
However, theGR randomization homogenizes the distribution of nodes in similarity space, while nodes in real
networks are typically heterogeneously distributed, as they aremore concentrated in some specific regions
[35, 36]. This denotes the presence of communities of similar nodes, named soft communities [37]. Top rowof
figure 5 shows the representations of the empirical networks embedded in the hyperbolic plane, with
coordinates (r, θ) (see appendix A for the relationship between r and the degree, and appendix C for references to
the sources of the empiricalmaps). One can clearly see that the angular coordinates θ are heterogeneously
distributed in [0, 2π]. A different perspective is shown in the bottom row infigure 5, displaying the probability
density function P(θ) of the similarity coordinate of the nodes for the six empirical networks.

The heterogeneity of the angular coordinate can be quantified by performing aKolmogorov–Smirnov (KS)
test between the probability density functions P(θ) andPGR(θ). TheKS statisticmeasures the difference between
two probability distributions, and it is defined as themaximumdifference between the values of the
distributionsP(θ) andPGR(θ). The larger theKS score, themore heterogeneous the angular distribution. Thus, it
can be used to discard the null hypothesis that the empirical P(θ) and synthetic PGR(θ) samples (with uniform
distribution by construction)present the same angular distribution. TheKS distanceDKS for empirical networks
under consideration is reported in table 1.One can see that the null hypothesis is strongly rejected for all real
networks.

Soft communities in the geometric domain can then be detected using geometricmethods.We use the
definition of soft communities given in [37], where they are defined as group of nodes in similarity space
separated from the rest by two angular gaps that exceed a certain critical value,Δθc. The critical gapΔθc is
calculated as the expected value of the largest gap between two nodeswhen the angular coordinates are
distributed uniformly at random:Δθc;2π ln(N)/N. In the top rowoffigure 5, we highlight the soft
community deterministic partition detected by the critical gapmethod in the real networks using different
colors.

Next, we compare the community structure of the real networks with their randomized counterparts. To
quantify their topological community structure, we apply thewidely used Louvainmethod [45], aimed at
maximizing themodularityQä [−1, 1], that compares the fraction of links inside communities with the
expected fraction for a randomdistribution of edges with the same node degree distribution as the given
network. Interestingly, figure 6(a) shows that in real networks, albeit the Louvainmethod identifies topological
communities with highermodularity, the soft communities discovered by theCGdisplay largeQ values, in some
cases (e.g.Metabolic orMusic data sets) comparable to themodularities given by the purely topological LM.

This picture is completely different forGRnetworks, reported infigure 6(b). GR networks show strong
community organization at the topological level, resulting in large values ofQ asmeasured by the Louvain
method, which is induced by structural constraints imposed by the geometricmodels [46]. However, as
expected, the critical gap does not detect soft communities, as demonstrated by the non-significant values of the
modularity, compatible with zero, over different realizations of the randomization process.

Figure 5.Top row: empirical networks embedded in the hyperbolic disk. Distinct communities are indicated by different colors.
Bottom row: probability distribution of the angular coordinate, P(θ), of the empirical networks.
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We study inmore detail the relationship between soft communities and topological ones by comparing the
partition obtained by the Louvainmethodwith the partition generated by the critical gap. The overlap between
the two partitions can be quantified by the normalizedmutual information [47]. Figure 6(c) shows that the
overlap between geometric and topological communities is quite large for real networks, specially forMetabolic
and Internet data sets,meaning that communities identified by purely (deterministic) geometricmethods are
meaningful, though subject to the degree of congruency of the real networkwith the hiddenmetric space.On the
contrary,figure 6(c) shows that the overlap between soft and topological communities inGRnetworks is very
lowdue to the complete randomization of the angular coordinate operated byGR.

5. Conclusions

The rewiring process preserving degrees in theGRof real networks gives an alternative to their replication using
directly the popularity-similaritymodel as a topology generator. TheGRoffers the advantage of avoiding the
delicate task of estimating the hidden degree distribution, and it can be especially useful in problems responsive
tofluctuations of the degree cutoff, like the behavior of some dynamical processes including epidemic spreading
processes.

As amodel, GRdepends on a single parameter controlling the level of clustering in the resulting networks, so
that the clustering coefficient of real networks can be chosen to be replicated or not. Interestingly, the
discrepancies between hidden and observed degrees in embedded networks, have an effect on the clustering level
achieved by theGR. In particular, the parameter value suggested by the embedding of the original data is, in
general, not far but not totally coincident with the needed value for replicating the clustering coefficient of the
original network. Our results also indicate that, in some networks, degree–degree correlations can only be
replicated by the geometric networkmodels if the observed degrees are preserved.

As a nullmodel, GR can be used to investigate the relevance of geometric communities in real networks.
Taken together, our results indicate that geometric communities aremeaningful in the real networks analyzed
here. At the same time, topological communities, like those detected inGRnetworks, are not always reliable and

Figure 6. (a), (b)ModularityQ as detected by the Louvainmethod (purple) and the critical gap (yellow), for real (plot a) andGR (plot
b))networks. Error bars in plot (b) are obtained by 10 realizations of theGRmodel. (c)Normalizedmutual information between the
partition detected by the Louvain and the critical gapmethods, for empirical (blue) andGR (red)networks. Error bars are obtained by
10 realizations of theGRmodel.
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can be a result of constraints induced by the underlying geometric architecture. The fact that an underlying
geometric organization imposes structural constraints on complex networks, which are strong enough for
recreating detectable topological communities even in the absence of geometric ones, is an interesting subject by
itself andwill be investigated in futurework.
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AppendixA. The 1 and2 models

In the 1model [31], every node is characterized by hidden degrees and angular coordinates (κi, θi) representing
the popularity (related to the degrees), and similarity dimensions. TheNnodes of the network are distributed at
random in the similarity space, which is taken to be a one-dimensional sphere or circle of radius  p=R N 2 ,1

adjusted to have a density of nodes equal to 1. Every pair of nodes is connectedwith a probability



=
+

q

mk k

bD( )
( )p

1

1

, A1ij
Rij

i j

1

whereΔθij stands for the angular separation between nodes i and j in the similarity circle, and the parametersμ
andβ control the average degree of the network and the level of clustering, respectively.

There exists an isomorphism between the 1model and a version in hyperbolic space, the2 model [33],
where the hidden degreesκ are transformed into a radial coordinate, r, in a hyperbolic disk of radius R 2 such
that

k ~ - ( )( )e . A2R r 22

Consequently, nodes closer to the center of the hyperbolic disk have a higher expected degree and every node i
has then a radial and an angular coordinate q( )r ,i i . A link between two nodes i and j exists with a probability
p(dij) that depends on their distance dij, measured in the hyperbolic hiddenmetric space, such that nodes with
higher probabilities of being connected are closely positioned in that space. Therefore, the connection
probabilitymust be a decreasing function of distance between nodes and, specifically, it can be chosen to be

b
=

+ -
( )

[ ( )]
( )

/
p d

d R

1

1 exp 2
, A3ij

ij H2

where the parameterβ still controls the network’s clustering coefficient. The distance dij in the hyperbolic plane
is calculated using the hyperbolic law of cosines,

q= - D( ) ( )d r r r rcosh cosh cosh sinh sinh cos , A4ij i j i j ij

where qD ij is theminimumangular distance between nodes i and j.
To produce replicas of the real networks using the 1model, we extracted the parameters from the empirical

networks, namely the sizeN and the exponent γ of the degree distribution, and used the exponentβ0 given by the
embedding of the network into the hyperbolic disk. In order to generate the hidden degree sequence P(κ)we
adjusted parameterμ to obtain the observed average degree á ñk , see table 1.

Appendix B. Likelihoodmaximization preserving degrees

Toproduce network topologies that aremaximally congruent with the 1 geometric networkmodel one has to
maximize the standard likelihood function defined in terms of the probability of connection

  k k q k k q= D - D
<

-( ) [( ( )) ] ( )p p, , 1 , , , B.1
i j

i j ij
a

i j ij
a1ij ij

whereΔθij stands for the angular distance between nodes i and j, and the 1 connection probability p(κi,κj,Δθij)
reads
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k k q
c

cD =
+

=
+

=
q

mk k

b bD( )
( ) ˜( ) ( )p p, ,

1

1

1

1
. B.2i j ij

R
ij

ij
ij

i j

Parameterμ depends on the observed average degree á ñk of the network, andR is the radius of the circle (adjusted
to have a density of nodes equal to 1, see appendix A) .

Due to the fact that during the rewiring process the hidden degrees are kept constant (independently of their
values), the probability of swapping links between nodes i and j and between nodes l andm simply reads

 
q q
q q

=
D D

D D

b⎛
⎝⎜

⎞
⎠⎟ ( ). B.3n c

ij lm

il jm

Therefore, as exposed by equation (B.3), theGRmodel is independent of the hidden degrees and relies in just
a single free parameter,β, controlling the resulting level of clustering in the randomized network.

AppendixC. Empirical data sets

USCommodities.This network represents theflows of goods and services exchanged (inUSD) between
industrial sectors inUSAduring year 2007. The hyperbolic embeddingwas obtained from [48].

Enron. It is the network of emailmessaging activity within employees from the Enron company.We use the
network obtained in [43, 49] and the hyperbolic embedding constructed in [50].

Internet.This network consists of the connectivity data of the Internet at the autonomous systems level
collected by theArchipelago project[44]during June 2009 and embedded in hyperbolic space in [34].

Humanmetabolic.This network is the one-mode projection ofmetabolites of the bipartitemetabolic
network of human cellmetabolisms, as spatially embedded in [35].

Music. In this network nodes are chords-sets ofmusical notes played in a single beat and links represent
observed transitions among them, see [41].We use the hyperbolic embedding of a sparser and undirected
version of such network as reconstructed in [50].

Words.This is the network of adjacency betweenwords in the book ‘TheOrigin of Species’ byDarwin, see
[51].We use the embedding presented in [50].
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