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,e area of smart power grids needs to constantly improve its efficiency and resilience, to provide high quality electrical power in a
resilient grid, while managing faults and avoiding failures. Achieving this requires high component reliability, adequate
maintenance, and a studied failure occurrence. Correct system operation involves those activities and novel methodologies to
detect, classify, and isolate faults and failures and model and simulate processes with predictive algorithms and analytics (using
data analysis and asset condition to plan and perform activities). In this paper, we showcase the application of a complex-adaptive,
self-organizing modeling method, and Probabilistic Boolean Networks (PBNs), as a way towards the understanding of the
dynamics of smart grid devices, and to model and characterize their behavior.,is work demonstrates that PBNs are equivalent to
the standard Reinforcement Learning Cycle, in which the agent/model has an interaction with its environment and receives
feedback from it in the form of a reward signal. Different reward structures were created to characterize preferred behavior. ,is
information can be used to guide the PBN to avoid fault conditions and failures.

1. Introduction

,ere is not a picture of the present that is complete without
electrical power; it has become essential to our civilization.
Electrical power has been a constant in our lives for almost
two centuries since Faraday’s discovery and the first alter-
nating current power grid in 1886. Generating, transmitting,
and distributing electrical power has evolved from a com-
modity to a basic need during this time.,is process has not

changed much for a long time. Electricity is produced in
different ways, but the basic cycle is essentially the same: it is
generated (via electromechanical generators, geothermal
power, nuclear fission, solar, and other means) and then it is
delivered to clients via a transmission-distribution network.

Most modern systems are still like the first ones: cen-
tralized, unidirectional electrical power transmission sys-
tems with demand-driven control. In the latter decades of
the 20th century, local grids began to arise, and since the
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early 21st, the industry has attempted to take advantage of
telecommunication improvements to solve the limitations
imposed by centralization and the challenges brought with
the use of renewable sources and new technology like
photovoltaic panels and wind turbines [1]. Decentralized
systems provide bene�ts and cause signi�cant challenges,
boosting e�cient techniques in modeling and controlling
smart grid systems [2]. �e European Union Commission
Task Force on Smart Grids has de�ned these as an “elec-
tricity network that can cost e�ciently integrate the behavior
and actions of all users connected to it–generators, con-
sumers, and those that do both–in order to ensure eco-
nomically e�cient, sustainable power system with low losses
and high levels of quality and security of supply and safety”
[3]. Applying Signal Processing and Communications to the
power grid has allowed a �ow of data that is one of the
de�ning elements of the smart grid. �is includes the use of
“Smart Devices,” such as the Intelligent Power Router (IPR).
�is device [4] was inspired on Internet routers, and it has a
degree of “intelligence” that allows it to switch lines and shed
loads. Devices such as the former allow the Electrical Power
Distribution System (EPDS) to become reliable, resilient,
�exible, and e�cient. With them, decisions can be made in
the event of power failures or component malfunctions,
coordinating with other devices in their vicinity to react to
load, demands, faults, and emergencies. It represents a
multidisciplinary issue being faced in the last decade [5].�e
basic elements of an IPR are shown in Figure 1.

EPDS that has incorporated IPRs (EPDS-IPR) has also
the capacity of automatic service restoration if a network of
IPRs is deployed strategically throughout the power grid,
and if they are programmed for the exchange of information
to manage and recon�gure the network following a rule set,
any time a perturbation occurs. �is allows survivability and
better use of system resources.

Designing these EPDS-IPR networks is a very complex
task. �ere is no speci�c model that can guide the designer.
�e devices must be con�gured with preset instructions on
how to react when a particular set of conditions has oc-
curred. Another challenging task is to make these grids
adaptive [6] and not just follow a hard-wired set of in-
structions. A much more favorable situation is that the
network can act autonomously and self-recon�gure in the
event of a perturbation, i.e., loss of a power source, higher
demand in critical loads, or sabotage. IPR devices when
interconnected can bemodeled as an intelligent Probabilistic
Boolean Network, which is a complex-adaptive system that
can learn from its steady state behavior and exhibits self-
organization and resilience. Methodologies for modeling
based on a Probabilistic Boolean Network (PBN) have been
presented in [7–16], validating the use of PBNs as amodeling
mechanism for industrial processes and Smart Grids using
IPRs and enabling the simulation of several scenarios. �is
has the potential to allow designers to better program the
devices and design a more robust network. We would like to
imbue EPDS-IPRs with the intelligence that allows them to
survive a wide set of perturbation events that are practically
impossible to predict.

Biomimetic approaches have been used to analyze and
solve complex problems in general and for EPDS design in
particular. Frameworks that are qualitative in nature, such as
PBNs, permit the description of biological system networks,
with no property losses that are relevant to the system, and
allow the representation of complex-adaptive behavior, such
as self-healing and self-organization. Probabilistic Boolean
Networks are used in bioinformatics for Gene Regulatory
Network (GRN) modeling. GRNs are DNA segments in a
cell that in�uence other segments and substances in it in-
directly, to rule the level of expression of a gene or a set of
genes. �ey are used to estimate the main rules that com-
mand the regulation of genes in genomic DNA. �ese PBNs
are state-transition systems satisfying the Markov Property;
they have no memory, so they are not reliant on previous
states of the system). Proposed by I. Shmulevich and
E. Dougherty [16] extending Stuart Kau�man’s N-K or
Boolean Network (BN) concept [17, 18], they mix the rule-
based modeling richness of BNs and introduce probabilistic
behavior. �ese PBNs are built upon a collection of con-
stituent BNs which are assigned selection weights or
probabilities, in which every BN can be considered a
“context.” Information for every one of the cells comes from
antithetical sources; each represents a cell context. For every
point in time t, a particular system can be commanded by a
single BN, and the PBN will change to another context or
constituent BN at a di�erent time, based on a particular
switching probability. �e methodology for using PBNs in
manufacturing engineering systems was proposed in
[12, 16], with continued development in [7–11, 13–15].

In genomic research, the focus is to discern the way cells
exercise control and perform extensive numbers of opera-
tions that are needed for their operation and function. �ey
are massively parallel and highly cohesive systems, and a
path that considers a perspective supreme to that of a single
gene is needed so we can understand these biological pro-
cesses better. Bioinformatics tools and algorithms are in high
demand and have proven to be useful in solving these tasks
[19]. However, novel computational approaches, digital
medicine technologies, and networks and metabolic path-
ways analysis are needed to fully understand biological
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Figure 1: Basic elements of an IPR.
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systems. Genes, cells, and molecules are networked systems
that require a deeper understanding, to manufacture im-
proved medicines and delivery mechanisms for treating and
eradicating human disease. A mechanism for treating and
processing massive quantities of data using computational
methods and model checking can be used to understand the
rules that govern them and make more accurate predictions
about how these systems behave. EPDSs are akin to GRNs
because to understand the main rules that control them and
to make accurate forecasts on how they will behave, endure,
or decline under a collection of prospects, models that
correctly describe the system and its behavior are essential.
,e harmonized synergy, interaction, and governance be-
tween genes and their products form these chains, in which
gene expression is an important factor.

In this research, the use of Probabilistic Boolean Net-
works, already applied auspiciously in manufacturing en-
gineering systems, will be broadened to analyze IPR
reliability and trust and the scrutiny of faults that may lead to
catastrophe. As our main contribution, we explored the
PBN’s model capacity for performing a basic Reinforcement
Learning (RL) cycle, and we explored RL as a means for
directing the network’s evolution to increase the network’s
resilience, working towards achieving automatic learning
and control of itself using RL.

2. Preliminaries and Theoretical Background

A review of Boolean and Probabilistic Boolean Networks,
Reinforcement Learning, and a basic understanding of
Electrical Power Distribution Systems and Intelligent Power
Routers is presented in the following subsections.

2.1. Probabilistic Boolean Networks in System Modeling and
Simulation. Kauffman N-K or Boolean Networks (BNs)
[17, 18] and PBNs [20] have been studied for biological
systems modeling and their dynamics and to infer [21] their
behaviors with statistical data analysis and [22] simulation.
,is application is very well documented in bioinformatics
for biological systems modeling [23–27] and for GRNs
description [28–33]. ,e mechanism of intervention [34] is
used to conduct the evolution of the PBN away from un-
favorable conditions or states as are those associated with
illness.

Kauffman’s BNs are a finite grouping of Boolean nodes
[35, 36], in which states quantize to 0 or 1 (although in PBNs,
alternative quantizations are possible). A state is determined
by the present state of other nodes/genes in the network.,e
set of entry/input nodes in a BN is known as regulatory
nodes, with a collection of Boolean functions (known as
predictors), that dictate the future values of the different
nodes. When the set of genes and their respective predictors
are defined, the network is defined as well. PBNs are, in
essence, a tree of BNs for which, at any particular time
period, the node state vector transitions are established by
one of the rules of the constituent BNs. Formally, a
Kauffman Network is a graph G(V, F) defined by the set

V � x1, x2, . . . , xn􏼈 􏼉. (1)

that contains all the network’s nodes, and the set

F � f
(1)
1 , f

(2)
1 , . . . , f

(i)
j fn􏽮 􏽯, f

(i)
j : 0, 1{ }

nΔ 0, 1{ }. (2)

of sets of predictor functions, where the subindex j denotes
the realization or constituent network and the subindex i
denotes the predictor number, e.g., f

(1)
2 is the first predictor

of the second constituent network of the PBN. Instead of a
single predictor per node, we have one or more predictors,
that can be selected to determine the future state of node xj.
,e probability of selecting f

(i)
j as the predictor for the node

is given by c
(i)
j , where

0< c
(i)
j ≤ 1, 􏽘

l(j)

i�1
c

(i)
j � 1,

∀j � 1, 2, . . . , n.

(3)

A useful metaphor is to think of the PBN as a tree of BNs,
and each BN is selected with a particular probability.

Let fi denote the i
th possible realization of the network,

with

fi � f
(1)
i1

, f
(2)
i2

, . . . , f
(n)
in

􏼐 􏼑, (4)

for every

1≤ ij ≤ l(j), j � 1, 2, . . . , n. (5)

A realization of a PBN is one of its constituent BNs. ,e
maximum number of realizations is given by

D � 􏽙
n

j�1
l(j). (6)

In [12], the authors validated that PBNs are appropriate
for modeling engineering systems through a system model
that was verified using model checking and the simulation
results compared with real machine data. In [11], this
methodology was applied to a manufacturing process, to
gather quantitative occurrence data for DFMEA. In [10], the
methods were further expanded including the application of
PBNs in industrial manufacturing processes, using inter-
vention (guided perturbations) as guide to move a system
away from fault conditions and catastrophe, thus postponing
its failure. A formal and thorough description of BN and
PBN is presented in [21].

2.2. Reinforcement Learning. Artificial intelligence tech-
niques are developing and growing rapidly. Methods like
Deep Learning and Reinforcement Learning are helping
with the complexities and uncertainty of power systems [37].
In this sense, there is a correlation between power systems
and machine learning in order to predict the consumption
[38], low prices [39], and energy optimization [40].

Born in the field of Behavioral Psychology, Reinforce-
ment Learning (RL) [41, 42] is considered an area of Ma-
chine Learning (which can be defined as the design and
analysis of algorithms that can improve on the base of
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experience) in the �eld of Computer Science. It is concerned
with how agents should perform actions in a given envi-
ronment such that they maximize a cumulative reward
signal. In Reinforcement Learning, a learner, or agent, is not
told what to do or which set of actions to take, rather it must
discover the sequence of actions that achieve an optimal
reward by trying them. �e use of trial-and-error and
delayed rewards are the two characteristic features of this
approach. RL is studied in many other disciplines, such as
control theory, operations research, statistics, and game
theory. RL allows the software agent to learn a correct be-
havior based only on feedback from the environment, au-
tomating the learning scheme and extinguishing the need for
human expertise and cutting the time needed to devise a
solution. �ere are multiple solutions to a RL problem, but
the most common approach is to allow the agent to select
actions that yield a maximum reward in the long run, by
using algorithms with an in�nite horizon. One of the most
used approaches is to make the agent learn to estimate the
expected future rewards of (action, states) pairs. �e esti-
mates are adjusted through time by propagating part of the
future state’s reward, and if all states and all actions are tried
numerous times, an optimal policy can be learned. Improved
RL has been used for hybrid energy systemmanagement and
optimization, e.g., SAC-based RL [43] and DDPG-based RL
[44].

A RL agent learns by interacting with its environment.
�e RL agent acquires knowledge from the result of its
interactions with the environment, instead of being taught
explicitly, and selects its actions based on past interactions
(called exploitation) or by making new choices (explora-
tion).�e reinforcement signal (mostly numerical in nature)
it receives is a reward that encodes the success (or failure) of
a given action’s outcome, and it seeks to acquire knowledge
by selecting actions that maximize the cumulative reward
over time. Figure 2 illustrates the standard Reinforcement
Learning Cycle.

In a standard Reinforcement Learningmodel, the learner
is known as the agent, whomakes decisions and is connected
to its environment through perception and action. Agent
and environment interact at a sequence of steps in time, t,
and at each interaction step, our agent senses the envi-
ronment for information and determines the state of its
“world.” Based on this information, the agent chooses and
takes an action. �e information of the state of the envi-
ronment constitutes the input of our agent, and the action
chosen by our agent becomes its output.�e actions taken by
the agent in each step change the state of its environment
and its own state. A time step later, the state transition’s
value following the action taken is given to our agent by its
environment as a numerical value, called reward.

Reinforcement Learning di�ers from supervised learn-
ing, another form of learning studied in machine learning
where the agent learns from examples that are provided by a
supervisor, which is external to it. A challenge that is present
in RL and not in other learning methods is that we have to
choose and/or balance exploration and exploitation. An
agent that uses exploration discovers and tries new actions to
see if they produce a greater or lesser reward, but an agent

that uses exploitation uses preferred and tried actions that in
the past have been successful at producing reward. It also
considers the whole problem; in uncertain environments,
the agent does not consider subproblems and sees how
everything �ts into the whole picture, starting with an agent
that is complete, interactive, and with explicit goals, sensing
aspects of its environment and choosing actions that in-
�uence it.

2.3. Supervised andUnsupervised Learning. A representative
set of pairs of states and actions is provided by a teacher to
the agent in supervised learning. �e agent must modify its
strategy for selecting actions so that its actions get closer
every time to the selected target actions. �erefore, the main
problem in supervised learning is then the approximation of
a functional mapping from states to actions that is an un-
known to the agent and known to the teacher, which can be
done with neural networks, fuzzy systems, or other learning
models. �is is impractical for complex problems because of
the inability to specify a representative set of pairs of states
and actions, making �nding optimal solutions unknown in
some instances.

An agent that performs unsupervised learning in its
purest form is perceiving the states of the process it has
under control but will not get any information about the
actions, and the control strategy is not evaluated. Unsu-
pervised learning cannot be used to learn control strategies.
A typical application of it is the identi�cation of structure in
data, as in data clustering.

2.4. Reinforcement Learning versus Purely Unsupervised
Learning. Just as in unsupervised learning, our agent per-
forms Reinforcement Learning and receives no information
about an optimal strategy for control, but in RL the agent
gets rewards or reinforcement signals provide feedback
about its control strategy. With these signals, the agent can
improve the strategy, giving intelligence to the trial-and-
error process.

�e problem faced by our agent in RL is that it must
learn its behavior through trial-and-error interactions with
its environment. Two main strategies are used for RL
problem solving: an agent can choose to search in the be-
havior space to �nd a behavior that is appropriate to its
environment (the approach used in genetic algorithms and
genetic programming) or it can use statistics and dynamic
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Figure 2: Standard Reinforcement Learning Cycle.
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programming to estimate a utility function of taking actions
in states of its environment.

2.5. Main Components of a Reinforcement Learning System.
In addition to the agent and the environment, the principal
components of a Reinforcement Learning system are as
follows:

(i) ,e policy dictates the way that our agent will
behave at any given time. It maps states of the
environment to a set of actions that are going to be
taken when the states are reached. ,is policy is
central to our agent since it is the only thing needed
to determine the agent’s behavior.

(ii) ,e reward function is the reinforcement signal
and in our RL problem defines the goal of the agent,
by mapping the perceived state or states of our
world to a numerical value. ,is way we know
which state is more desirable. In RL, our agent’s only
purpose in “life” is to maximize the total reward it
will receive, and our agent must choose which ac-
tions contribute to that goal. Reward functions may
be stochastic and are the basis for changing the
policy of the agent. A strong assumption of the RL
framework is that the reward signal can be un-
equivocally and directly observed, as the feedback
the framework receives is part of the environment in
which the agent is working on. However, rewards
are often delayed as the effective reward is obtained
several steps after the action leading to it has been
executed. ,is fact notably increases the difficulty of
training a RL agent.

(iii) ,ere exist many RL algorithms, with different
features and properties. One family of algorithms
learn a value function that estimates the expected
cumulative reward of a given state or an (action,
state) pair. ,is way, it specifies what is better for
our agent in the long run whether a given state is
desirable considering the states that follow this one
and the rewards available in them. ,ey are sec-
ondary to rewards and serve as predictions of them.
Action choices are based on values. Values are much
harder to determine than rewards. Rewards are
essentially given by the environment to the agent,
whereas values are estimated and then re-estimated
from the observations that an agent makes over
time. Another family of algorithms simply tries to
optimize the policy directly to achieve the maxi-
mum cumulative reward. Finally, there are hybrid
methods that combine both approaches.

(iv) ,emodel of the environment is a simulation of the
behavior of the problem’s environment. It is re-
quired by some RL algorithms although in practice
it is only used in relatively simple problems.

2.6. Markov Decision Processes. Reinforcement learning
problems are well modeled asMarkov Decision Processes, or

MDPs. Named after Russian scientist Andrey Markov,
MDPs can be viewed as RL tasks that satisfy the Markov
Property. When a stochastic process satisfies the Markov
Property, it is memoryless. In other words, the conditional
probability distribution of its future states only depends on
the present state and not on the past. MDPs are discrete time
stochastic control processes that are useful for studying and
solving optimization problems through Dynamic Pro-
gramming and RL. MDPs consist of the following:

(i) A set of states, S: the states are the inputs to our
learning system. ,ey represent all the information
necessary to perform optimally.

(ii) A set of actions, A.
(iii) A reward function R: S × A⟶ R, R: S × A⟶ R:

our learning system will execute an action in each
state, and each action causes a transition. Because of
the Markov Property, rewards are only dependent
on the current and the successor state and do not
depend on past information.

(iv) State-transition function T: S × A⟶Π(S)∨Π(S)

T: S × A⟶Π(S)∨Π(S) is a probability distribu-
tion over S.

(v) Policies are sequences of mappings in the form
Π: π0, π1, . . .􏼈 􏼉, Π: π0, π1, . . .􏼈 􏼉, where πk, πk maps
the state sk ∈ S to an action ak � πk(sk) ∈ A(sk). When
both state and action spaces are finite, MDPs are
said to be finite.

,e Value Function, Vπ(s), in Reinforcement Learning is
of extreme importance. It estimates the expected cumulative
reward of state s. In MDPs, the value function can be defined
as

V
π
(s) � Eπ Rt∨st � s􏼈 􏼉

� Eπ 􏽘

∞

k�0
c

k
rt+k+1∨st � s

⎧⎨

⎩

⎫⎬

⎭,
(7)

where Eπ { } defines the expected value when the agent
follows the policy π, “R” is the reward, “s” is a state, and c is
the discount factor. ,e terminal state’s value, if it exists, is
zero. Vπ is the state-value function for π. Most RL algorithms
estimate value functions. A value function is a mapping of
states that provide an estimate of how fit it is for the agent to
be in a given state, defined in terms of the future rewards to
be expected or the expected return. ,ey are delineated with
respect to a given policy. We also define Qπ(s, a), the action-
value function for π, as follows:

Q
π
(s, a) � Eπ Rt∨st � s, at � a􏼈 􏼉

� Eπ 􏽘

∞

k�0
c

k
rt+k+1∨st � s, at � a

⎧⎨

⎩

⎫⎬

⎭.
(8)

where “a” represents action.
In many RL algorithms, the action-value function Q is

used instead of the value function V because it easily lets the
agent choose the action with higher expected rewards.
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2.7. Ce Reinforcement Learning Problem. ,e RL agent
interacts with its world in a series of time steps. With each
discrete time step t, the agent receives an observation ot
and a reward rt. An action at is chosen from the group of
actions available to the agent and executed within the
environment. ,is moves the environment to a new state
st+1. A new reward for the transition and new state is now
determined. ,e agent needs to accumulate as much re-
wards as possible.

,e RL problem is defined as finding a policy for the
agent that will specify the action that the agent will take
when in a given state. Once an MDP combines with a policy
as such, the action for each state is fixed and behaves like a
Markov Chain. RL is not considered a technique for the
solution but rather a way of formulating a problem [45]. In
[46], the basic problem that is apt for the use of RL is
formulated, where a system needs to interact with the en-
vironment to achieve a certain goal and based on the current
state’s feedback, what action should it perform next? RL is
the way of learning the correct action to be taken in each
situation based solely on feedback obtained from the en-
vironment [41]. For our purposes, feedback is a numerical
reward that we assign to the actions that an agent takes. RL
agents can learn offline or online. Offline learning is similar
to the knowledge acquired by a student from a teacher; the
agent is taught what is needed to know before venturing into
the environment. Online learning is more spontaneous
similar to the way a child learns how to walk, where
knowledge is acquired in real-time. ,e agent explores its
environment, and it is constantly adding experiences to
make better future decisions.

3. Electrical Power Distribution Systems and
Intelligent Power Routers

3.1. Electrical Power Distribution Systems. Electrical power
generated at and transmitted from generation plants is the
product of the transformation several energy sources (coal,
natural gas, petroleum, nuclear, geothermal, solar, tidal, and
so on) into electrical current [8]. Managing this vital re-
source is guided by the necessity to secure a stable and
persistent supply of energy despite demand fluctuations.
Electrical power plants have grown in capacity and size since
they were first built over a hundred and fifty years ago. ,e
generation of electrical power generally occurs distant from
where it is ultimately consumed. ,erefore, consumers are
usually separated from electrical power plants by great
distances.

Two distinguishable types of networks that interconnect
consumers to generation sites exist. ,ese types are as
follows:

(i) Transmission networks: covering large areas, they
make sure that most or all regions of a country are
covered and provide the service. ,ese high voltages
(in the range of 230 kV or 138 kV) allow for the
minimization of losses in its transmission. Different
lines are bundled together at electrical power sub-
stations, and the networks eventually interconnect

and feed power to distribution networks, that reach
end-customers.

(ii) Distribution networks: these are engineered to
provide power to smaller areas and have lower
voltages than transmission grids but are denser
because they are meant to serve electricity to the final
customers. Lower voltages are used for safety and
security reasons and due to installation costs. ,ey
are also able to provide several voltage levels to
different end users, through transformers.

Industrial, commercial, and residential end-users must
receive reliable electrical power at their facilities or homes.
Several factors, natural and artificial, in the process of
generating, transporting, and distributing electricity can
damage equipment (wind, ice, storms (thunderstorms, ty-
phoons, hurricanes), vegetation growth that can induce
short circuits, and other nature-induced or human disasters,
as well as malicious perturbations). Some factors cannot
be predicted and must be taken care of in real time. Other
events and factors can cause network unbalance. As an
example, variations in temperature may cause changes in
electrical loads, and overall demand for electrical power
varies with time, season, weather, and so on. Some of
these factors affect supplied power quality, while other
factors cause emergency situations that force network
operators to disconnect power to regions that cause
problems to prevent chain reactions. Other severe sit-
uations may cause power outages or network power
imbalance. Intentional power outages should be limited
and minimized.

Electrical Power Grids are almost always managed from
control rooms. Some can be telemetered, such that control
engineers have accurate real-time information about their
status. ,ey can also have protection equipment that can be
actioned from within the control room, so larger failures are
prevented. ,ere are instances in which telemetry may be
cost ineffective, and aberrant network states can be reported
by operators, engineers, workers, or customer communi-
cation. System repairs and maintenance may be performed
manually by skilled workers.

Electrical substations [8] can have several busbars, and
two of these may be interconnected via a switch or a con-
ductor line. Both extremes of the power line are connected to
a breaker. A breaker is a standard protectionmechanism that
has a relay that can automatically open in case of a short
circuit, giving it the ability to disconnect all or a single circuit
from the remaining network. Messages with alarms to
control rooms can be generated as well, and with these,
engineers can have the ability to control the state of the
breakers. ,e main objective in fault management of an
EPDS is to restore the power supply quickly to as many end
users as possible. Since in an EPDS there may be different
routes through which power can be served, the EPDS can be
switched to select alternative routes through breakers and
switches that can bypass the areas, lines, or devices that cause
problems. ,e need arises to isolate and determine any
malfunction in protective equipment, generate correct di-
agnoses from the alarm messages that are received, and
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continue to postulate a plan to restore electricity safely and
efficiently to the largest number of end-users.

EPDSs [8] are a group of sources and power lines that
operate under common supervision to provide electrical power
to end-users. Systems for electrical power delivery are formed
by joining Distribution and Transmission Systems. Trans-
mission Networks are meant to transport high voltage elec-
tricity over longer distances. ,eir high voltage loads are
reduced at major load centers and then distributed to cus-
tomers, where distribution networks transport electricity from
the Transmission Network to the customers. EPDSs are
ubiquitous, from large ships to modern data centers. For our
scope, we consider only Generation and Transmission Systems.

3.2. Intelligent Power Routers. IPRs [4] are the principal
components of a smart grid that was developed as a dis-
tributed architecture for decentralized coordination, con-
trol, and communication between power system
components. Intelligent control and planning of network
operations are built into smart computing devices attached
to sources, power lines, and other power network devices,
thus allowing them to have a picture of current network
conditions and assign resources to respond to failures,
priority, or demand. ,ey are configured on a Peer-to-Peer
(P2P) network architecture, and in the event of a failure, they
make local decisions and coordinate with other devices in
their neighborhood to return the system into operation from
an undesired state.

Currently, the control of electrical power generation and
distribution, even if redundant generators and lines are
present, is done in a centralized way. Future EPDS should be
capable of distributing coordination and control of gener-
ation and distribution tasks throughout the network when
contingencies or emergencies arise. IPRs were engineered
for survivability, fault tolerance, scalability, cost-effective-
ness, and continuous unattended operation. At its core, the
IPR is a power flow controller with embedded software. An
IPR has two principal components: Interfacing Circuits
(ICKT) and an Integrated Control and Communications
Unit (ICCU). ,e ICKTs operate power flow control and
sensing devices, such as breakers, capacitors, and trans-
formers. ,ey can also receive network status information
from sensors and dynamic system monitors. ,ey have
direct control of the ICCU, and with their logic and software,
calculate how to route power, change loads, and take any
corrective or preventive actions that enhance safety, stability,
and security. ,e network architecture and communication
protocols are similar to the Internet Protocol (IP) Local Area
Networks. A load connected to an IPR can be assigned a
priority, and contrary to nonsmart power networks, when a
power source fails, the ICCU of an IPR reacts to this failure
through reconfiguration of the network, so that the load with
the highest priority may be served.

4. Materials and Methods

With the following methodology, faults and failures can be
categorized for a single IPR’s failure mode in an EPDS. We

propose establishing the model using the Probabilistic
Symbolic Model Checker (PRISM) [47], to verify its use and
formal correctness using Probabilistic Computational Tree
Logic (PCTL). ,e models were built in PRISM by con-
structing three modules: one for the environment in which
the device operates, a module for the IPR’s Probabilistic
Boolean Network, and a reward structure. ,e actual state of
the device PBN’s nodes is in the second module, which uses
the state of the variables available in the environment
module and applies the corresponding Boolean Predictor
Functions to transition to the next state. With the values of
these variables as a base and the device’s failure modes, the
state of the IPR variables is changed, giving us the device’s
current state. In this manner, given the device’s failure
modes (which are based on the possible failure modes of its
components), the model produces the failure modes cor-
responding to the system as an output.

To calculate individual IPR reliability, we have divided
them into three principal subsystems: power hardware
(power circuit breakers), computer hardware (used for
IPR-to-IPR communications, routing, and CPU func-
tions), and the software that manages the device. ,e
reliability estimates of each of the subsystems that compose
the IPR are provided in [4]. ,e reliability of a circuit
breaker was obtained from data sheets as 0.99330. Each IPR
has two circuit breakers, a main breaker and a redundant
secondary. ,e reliability of data routers is estimated at
0.9009 (in a year). Lastly, software reliability is estimated at
0.99.

PBNs can precisely emulate an EPDS with IPRs since this
has coincidences with GRNs that have been modeled with
BNs and PBNs. As a first step, the PBN representing the
EPDS is built. Each modeled component of the EPDS is
equivalent to a gene (node) in a GRN, where a gene can
assume one of two states; 0 means the IPR is ON and 1
means it is OFF (by the convention established in [4]). For
each node, the Boolean functions that determine the state of
its IPR in time t + 1 are applied, given the state of the EPDS’s
nodes in time t.

In the next step, a matrix for every node is built, to
construct its Predictor Function. When calculating the
predictors, only relevant nodes, those directly affecting the
status or state of the node under study, are considered. All
nodes that do not directly affect the current node’s state are
ignored. As per the connections between relevant nodes and
the observed node, the equation or set of equations (con-
structed with the basic Boolean operators) that determine
the state of each node are presented. For every node, there
exists a set of equations (one or more per node). ,ese
Boolean Functions are solved from the examination of the
relationships between each node and its relevant nodes. All
possible states of all relevant nodes are analyzed, and an
evaluation is made about the next state of the node in time
t+ 1, given the state of all relevant nodes in time t. ,is
method proposed adapts the Fault Detection and Isolation
(FDI) scheme described in [48] and shown in Figure 3,
where a model is used for describing the normal operation of
the process and another model is used to describe each of the
faults or failure modes.
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PBNs possess a characteristic called self-organization,
and they do so into attractor states [36]. Attractors are sets of
repeating states that, in the case of the models under study,
are related to the failure modes that the system exhibits.
�ere are similarities between the construction and se-
mantics of the models we present and those in [11]. By
characterizing the failure modes of the device under study,
the models can, with model checking, characterize the state
of their nodes to determine the faults and failures correlated
to the device’s fault conditions. �is methodology is �exible,
and the design of the network model and its state transitions
depends on how much resolution the experts need, based on
design speci�cations. Complexity and expression are scal-
able in this method, depending on the needs of the experts.

Device operation has been modeled by simulation of the
network’s components, taking into consideration the reli-
ability analysis in [4]. �ese simulations were performed for
the IPR by modeling of its relevant components based on the
data of their Mean Time between Failures (MTBFs). �e
model can detect and isolate single and multiple IPR failure
modes.

4.1. Classi�cation. We begin by classifying the di�erent
states of the IPR’s components, to properly create models of
the device. Following the methodology in [48], we begin
describing the system’s failure modes, starting from its
normal operation and continuing into modeling the dif-
ferent types of faults in the system.

Each subsystem is perceived as being in one of two
di�erent states:

Breakers:

0: the breakers can close/switch properly
1: the breakers do not close/switch properly

Router:

0: the data router communicates/sends-receives in-
formation in the network properly
1: the data router does not communicate/send-receive
information in the network

Software:

0: the software makes correct decisions
1: the software makes incorrect decisions

�e state of the device is, therefore, a set of states of its
subsystems. �ere is redundancy in the breakers because all
con�gurations of the IPR break into a series system, and the
reliability of a series system is below the reliability of its
lowest component. �erefore, the only way to increase the
reliability of the IPR would be to provide a redundant path to
the breaker. �e device can be in 16 states (Router, Software,
Breaker1, and Breaker2) that go from all subsystems op-
erational (0000) to all subsystems in failure (1111). Some of
these states, such as the failure of a single breaker, are
identical, and after merging, there are 12 unique states.
Table 1 summarizes the Categories, Types, and states that
constitute these categories in the IPR.

Failure probability for each component is assumed to be
independent of each other. Reliability estimates for each of
the device’s components was detailed in “Electrical Power
Distribution Systems and Intelligent Power Routers”
Section.

�e relevant genes of the IPR’s PBN are its data router,
software, and the main and secondary breakers [8]. For
these, the state of their components determines the failure
mode they are currently on, as per the categories. Category 1
is a type of fault, where the IPR acts appropriately and
changes the state of the breakers on an Active Signal (AS) but
may change themwhen switching is unnecessary. Category 2
describes the normal operation mode of the IPR. Category 3
describes a failure (catastrophic) of this device. Lastly,
Category 4 describes a fault condition on which the device
does not act upon an AS and may also switch the breakers
unnecessarily when there is no AS. Table 2 presents the
predictor Boolean functions for every IPRs subsystems,
based on their con�guration.

�is permits the prognosis of fault conditions those that
do not cause a total failure but rather failure modes that will
lead to instances where the device continues its operation
but does not perform the required task to speci�cations.
�ese are unhealthy states of the device, and they should be
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Figure 3: Fault detection and isolation (FDI) method from [48].
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treated, or they will otherwise lead to failure. For the device
under study, the failure modes described in [4] were used,
and an expert determination was made as to which device
components and failure modes produce a failure or a fault.

PRISM’s Property verification in PCTL was used to
determine the maximum probability of occurrence of the
failure modes that could evolve to a fault or a failure. From
an initial state for the IPR, such as Category 2, a determi-
nation is made about the maximum probability of reaching
one of the different identified failure modes. Property ver-
ification in PRISM permits the verification the models, and
they also permit, through experiments, to reach an estimate
regarding when in time a fault is certain.

5. Results and Discussion

PRISM [47] was used to validate the model quantitatively.
,ese experiments were performed using a PBN represen-
tation of the IPR. Its main components (router, software,
and breakers) were modeled, and their interrelationships are
expressed as Boolean Functions or predictors. ,ese com-
ponents are considered the PBN’s nodes, which give as
output the overall state of the device. In the experiments,
time is expressed in hours (h). A reward is assigned to the
interaction of the PBN agent with its environment. A reward
of ‘1’ has been assigned to the state in which all components
of the IPR are operating correctly. In this way, the agent can
obtain a feedback signal, based on its actions. ,e main
objective of the PBN-RL agent is to remain in a normal
operating state through its operation.

We performed reward-based property experiments to
test the model’s capacity to emulate the standard RL cycle.
We studied the agents’ combined actions in the environ-
ment, and we also studied the actions individually. ,e
experiments assess the model’s capacity to perform the

standard Reinforcement Learning cycle. In the standard RL
cycle, an agent interacts with its environment and receives
feedback upon performing actions in the form of a reward or
cost.

,us, a PBN-based model was established in PRISM
using an MDP, with a module for the environment and a
module for the PBN, with its predictors. PBNs used as GRN
models have been expressed and developed as MDP
[1, 2, 5, 19, 37, 38]. ,e actions of the model correspond to
the different states in which themodel can assume, which are
correlated to the classifications previously presented. ,ese
classifications correspond to the device’s different failure
modes, as per the reliability analysis. In this scheme, the only
missing element would be to assign a reward for the actions
that are to be reinforced, so that the agent can receive
feedback from its environment. PRISM has a rewards
structure that can be used within the model’s specification to
assign rewards to states or sets of states. Currently, all
assigned rewards in PRISM must be positive, and therefore
we do not assign penalties or costs to states or sets of states. It
is possible, however, to create multiple reward structures
within the same model. With these multiple reward struc-
tures, we can analyze the effect of the different actions in the
model. We are also able to conduct reward-based experi-
ments that can provide information about the maximum
cumulative reward over time, for a particular action or state.
We have studied the effect of these rewards separately be-
cause although we value the benefits of model checking, we
are unable to assess the effect of assigning costs and rewards
at the same time with this tool. We understand that the
current benefits of the use of model checking outweigh its
limitations.

,e first experiment conducted was performed to de-
termine the maximum expected reward Rmax for the agent
interacting in its environment and executing any of its
actions. ,e rewards structure assigns a reward of ‘5’ to the
normal operation mode, a reward of ‘1’ to any of the fault
modes, and a reward of ‘0’ to the failure of the IPR (a higher
reward for the action that we would like the device to re-
inforce more). ,is was executed through verification of the
following property:

″Rmax � ?[c< � time]″, (9)

where Rmax is the maximum reward property operator and
’C’ is the operator for Cumulative Reward in PRISM.

Figure 4 presents the results of this experiment to assess
the maximum expected reward of the agent when interacting
with its environment in the standard RL cycle.

Table 1: IPR failure mode classification and their corresponding states [4].

Category 1 2 3 4

Type Fault Normal operation Failure Fault

Description

On active signal (AS, switching event),
the IPR works as intended. On inactive
signal (IS, nonswitching event), IPR does

not work as intended.

On AS, the IPR works
as intended. On IS, the
IPR works as intended.

On AS, the IPR does not
work as intended. On IS,
the IPR does not work as

intended.

On AS, the IPR does not
work as intended. On IS,

the IPR works as
intended.

States S9 S0 S3, S4, S10 S1-2, S5-8, S11

Table 2: Predictors and selection probability, IPR PBN.

Component Predictor Selection
probability c

(i)
J

x1, software x1(t + 1) � x1(t) 1

x2, router
x2(t + 1) � x1(t)∧x2(t) 0.9611
x2(t + 1) � x1(t)∨x2(t) 0.0389

x3, main breaker x3(t + 1) � x1(t)∧x3(t) 0.9611
x3(t + 1) � x1(t)∨x3(t) 0.0389

x4, secondary breaker x4(t + 1) � x1(t)∧x4(t) 0.9611
x4(t + 1) � x1(t)∨x4(t) 0.0389
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In this experiment, the �nal value of the reward is 42946.
�e agent performs its actions and receives feedback in the
form of a reward from each action from the environment,
resulting in the linear plot from Figure 4. To recall, Figure 5
presents a graph of the maximum probability of occurrence
of the normal operation action that can be seemingly ap-
proximated by a sigmoid curve. Since this property reaches
100% probability quickly, a year of operation is not plotted.

Figure 5 can also be approximated by a sigmoid curve.
Figure 6 presents the maximum expected reward for the
normal operation action. It shows a plot of the maximum
reward obtained for the normal operation mode of the IPR
in time, over a period of one year of operation. �e �nal
value of the maximum cumulative reward for this action is
8620, which translates into the device receiving a reward of
‘1’ for every hour of normal operation or 8,620 hours of
normal device operation in the simulation.

�is is the action with the largest cumulative reward, as
the set of states that are part of this classi�cation have the
highest probability of occurrence. �e rewards for all the
other actions presented have a smaller cumulative reward as
these actions also have a lower probability of occurrence. We
can adjust the scale of the maximum occurrence experiment
in Figure 6 to match the time axis to Figure 5. Figure 7 shows
this adjustment.

�e reward initially is low in the very early hours of
operation, corresponding to the early failures (or infant
mortality) period, and as the device enters a steady state, its
expected reward rate increases almost linearly.

As PRISM supports multiple reward structures within a
single model, each reward structure needs to be identi�ed
when running an experiment, as

″R ″normop″{ } � ?[c< � time]″, (10)
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Figure 4: Maximum expected reward for the RL agent interacting with the environment.
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where the property used the “normop” (for normal oper-
ation) reward structure of the model. �e rest of the ex-
periments was executed with similar properties.

Figure 8 presents a plot with the results of a maximum
cumulative reward for the failure of the IPR over a year of
operation. �e �nal value for the maximum cumulative
reward is 73, which re�ects a total of 73 hours for a period of
one year in which the device was in a catastrophic failure in
the simulation.

In Figure 9, the results of a maximum expected reward
experiment for the Fault 1 operating mode of the IPR over a
year of operation are presented in a plot. �e maximum
cumulative reward was 6, which indicates a total of 6 hours
in which the device was in a type 1 fault in the simulation.

Figure 10 presents the result of themaximum cumulative
reward for the Fault 2 operation mode of the IPR over a year
of operation, and this was found to be 118, re�ecting 118
hours in the simulation that the device spent in a Type 2
fault.

�ese results demonstrate that the PBNmodel of the IPR
can correctly emulate the standard RL cycle; as for every

iteration in time, the variables’ states are assessed and
compared with the failure modes of the device, and a reward
is assigned to the actions that the user wants to reinforce.�e
results of these experiments are exportable in PRISM as a �le
that can later be used to analyze the model’s behavior using
statistical packages or machine learning tools.

In these systems, modeled with complex systems tools,
learning occurs in the fundamental sense of adaptation to
changes; the system adapts to survive. Complex systems self-
organize into steady states, which are the long-term behavior
of the system, and this self-organization in the most basic
sense is a form of learning (considering learning as a type of
adaptation and self-organization as an adaptive mecha-
nism). �e evolution of these complex systems can be
controlled externally through interventions [11] so that the
system can avoid “unhealthy” states (failures or faults).

In a standard RLmodel, the agent makes decisions and is
connected to its environment through perception and ac-
tion. Agent and environment interact during a sequence of
time steps, and at each interaction step, our agent senses the
environment for information and determines the state of its
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Figure 7: Maximum reward for normal operation, adjusted scale.
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Figure 6: Maximum reward obtained for the normal operation mode of the IPR in one year of operation.
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“world.” Based on this information, the agent takes an ac-
tion. �e information of the state of the environment
constitutes the input of our agent, and the action chosen by
our agent becomes its output. �e actions taken in each step
change the state of its environment and its own state. A time
step later, the state transition’s value following the action
taken is given to our agent by its environment as a reward.

�e model is an RL agent acting on its environment and
receiving a reward that reinforces a certain behavior over
others. Rewards were assigned to the IPR RL Agent acting
upon the information on its environment. A reward of ‘1’
was assigned to the state in which all of the IPR components
are operating correctly (Cat. 2) and no rewards for other
failure modes. A rewards-based property in PRISMwas used
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Figure 9: Maximum reward obtained for the Fault 1 operation mode of the IPR in one year of operation.
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Figure 10: Maximum reward obtained for the Fault 2 operation mode of the IPR in one year of operation.
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Figure 8: Maximum expected reward obtained for the failure operation mode of the IPR in one year of operation.
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to run an experiment in which an IPR is operating con-
tinuously for a year, and we obtained the maximum reward
assigned to that action. In Figure 4, the RL agent’s goal is to
remain in a normal operating mode. If instead of positively
rewarding the correct operation of the IPR, we rewarded one
of its failure modes, such as a Category 1 Failure mode, the
resulting experiment would yield a maximum reward as per
Figure 9. ,e maximum rewards obtained are directly
correlated with the estimated reliability of the IPR in [4].
,erefore, this reward result is related to the occurrence of
the Category 1 failure mode. Validation through experi-
ments that PBN modeled systems can perform the standard
RL cycle is an important step towards an automatic way of
system control through Machine Learning, where control is
not external but intrinsic to the system.

6. Conclusions and Future Work

In this work, we have studied a smart grid management
device, the Intelligent Power Router, assessed the device’s
reliability, and presented a bioinspired modeling technique
that uses Probabilistic Boolean Networks to create simple
and logical models that exhibit complex behavior. ,ese
models self-organize into constituent Boolean networks with
attractor cycles that can describe long-term system behavior.
In this case, this behavior is equivalent to the different states
in which the device’s components can assume, and, there-
fore, to the different failure modes of the device. We used
PBNs to model Intelligent Power Routers, a smart grid
component, with Reinforcement Learning, and we studied
the model’s evolution in time and how they may learn to
avoid undesirable states in an autonomous way, increasing
their reliability and resilience. We proposed PBNs as a
building block with a novel analysis technique for problem
solving in smart grid modeling, through RL. We validated
and verified through model checking (MC) the viability of
this methodology.

We believe that many areas of future work are available
for the unanswered questions in this research. Particularly,
we have only explored modeling the standard RL cycle, but
we infer it is possible to use other RL techniques, such as
Q-Learning and deep Q-Learning, to endow the system with
automatic machine learning-based control of its evolution.
,ere is a more fundamental question that can be answered
through the study of RL in PBNmodeling that an alternative
to artificial neural networks can be achieved using PBNs as
the building block for this structure. To achieve this, artificial
neural network neurons need to be proven equivalent to the
set of nodes of a PBN, which have input and output states.
,e set of input nodes have a set of predictor functions that
define the output state (like the threshold function). ,e
learning task would be to change the transition probabilities
to select a context (constituent BN) that represents the state
in which the network must be steady state, where states are
the goals to be achieved in the system.
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