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Abstract

In this study, non-premixed combustion of a traditional fuel- natural gas, and an alternative fuel- biogas, is simulated in
a swirling flow industrial gas turbine combustor geometry which includes the combustor liner and the outside casing
in order to replicate the flow and combustion in a real gas turbine combustor. The 3D combustion simulations are
validated and the results for combustion of both gases are analyzed to compare and evaluate the viability of biogas
as an alternative fuel for use in industrial gas turbine combustors. The combustion performance is evaluated based
on multiple combustion performance optimization parameters, namely the combustion efficiency, pattern factor, and
pollutant emissions (CO and NO). The effects of two design parameters: swirl number and fuel injector diameter
on the combustion performance optimization parameters are examined. The results have been analyzed to identify
the best case for each combustion performance optimization parameter and a suitable trade-off case for both gases is
proposed. Additionally, the comparison of the combustion performances of both gases revealed that despite possessing
much lower methane and hence lower heating value (LHV), a combination of swirl number and fuel injector diameter
for biogas of a specific composition results in a combustion performance comparable to natural gas along with lower
NO emission, although at the expense of higher CO emission. Therefore, biogas can potentially be utilized as an
alternative fuel in industrial gas turbine combustors and methods for reducing CO emission can be devised.

Keywords: Biogas and natural gas combustion, alternative fuel, combustion performance, swirl number, fuel
injector, gas-turbine emissions

1. Introduction

Gas turbine combustor design and development have been focused on achieving higher combustion efficiency,

proper flame temperature and gas concentrations, lower and balanced emissions, lower pattern factor, and minimized

entropy generation (Elbaz et al., 2019; Elbaz and Roberts, 2016; Jerzak and Kuźnia, 2016; Santhosh and Basu, 2016;

Shanbhogue et al., 2016; Taamallah et al., 2016). Both conventional fuels like kerosene (Chmielewski and Gieras,

2017; Li et al., 2016), propane (Krieger et al., 2015; Wankhede et al., 2011), methane or natural gas, some liquid-fuels

(Kahraman et al., 2018; Motsamai et al., 2010), and non-conventional fuels like biogas, hydrogen (Bothien et al., 2019;

İlbaş, Karyeyen and İlker Yılmaz, 2016; Rohani and Saqr, 2012), syngas (Safer et al., 2017; Iqbal et al., 2016) have

been used in gas turbine combustors. All these investigations have been conducted in different mixing uniformities

such as premixed, partially-premixed and non-premixed.
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Due to significant usage of fossil fuel in every sector of power generation leading to environmental pollution

and depletion of conventional fuels, the world is forced to move towards alternative and cleaner sources of energy.

Biogas is a promising source as it can be produced from raw materials such as agricultural, animal, and municipal

waste. The development of gas turbines until today is centered around fossil fuels. Increasing usage of alternative

fuels like biogas in gas turbines requires investigation of the effect of the various design parameters on the gas turbine

combustion optimization parameters (Masri, 2020; Lefebvre and Ballal, 2010; Murphy, 2004).

Many investigations on gas turbine combustor during the last decade have explored the performance of natural

gas combustion with some reported works on biogas as well. Amani et al. (2019) proposed a mathematical model to

analyze effects of different air partitioning strategies in a complex combustor configuration based on seven combustion

performance parameters. They observed that the optimal design needs a large portion of total air through the primary

and dome holes. The design also reduces emission by 78% while improving the efficiency by 6%. In a similar study,

Emami et al. (2019) concluded that the NOx emission is minimum if the swirl angle is 55 and it is directly related to

fuel and combustion gas temperature. Another mathematical model proposed by Torkzadeh et al. (2016) analyzes the

effect of swirl number on four combustion optimization parameters and found an optimal case that possesses a swirl

number that is 44% smaller than the base case. The investigations of Rashwan et al. (2018) revealed that the thermal

NOx can be reduced by 95% if higher swirl number is utilized, while İlker Yılmaz (2013) found significant influence

of swirl number on the formation of central and external recirculation zones, flame temperature and concentration of

different gases. It is therefore clear from these investigations that the swirl number is an important design parameter

and that any comprehensive investigation should study the influence of swirl number on combustion performance

parameters such as pollutant emissions.

Zhang et al. (2020) analyzed the influence of different fuel mixing uniformities on the flame dynamic response

in real conditions to provide support for the design of gas turbine combustor and found that both the uniform pre-

mixed and partially premixed case have the double helix vortex core structure. Yang et al. (2019) found that the

semi-major/semi-minor axis ratio has significant influence on the combustion and emission performance of elliptical

jet-stabilized combustors. Lellek et al. (2017) experimentally investigated the effect of water injection on swirling

premixed combustion and recommended water-to-fuel ratio up to 2.25 for stable flame establishment. They further

noted that the global water distribution and water droplet sizes influence NOx emission the most. A similar investi-

gation by Farokhipour et al. (2018) concluded that the best water injection location is at the end of the primary zone,

while a combination of higher mass flow rate and higher swirl intensity gives reduced NOx emission. This work was

extended further by Amani et al. (2018) by considering additional design parameters and it was concluded that an op-

timal water-to-fuel ratio of 3.4, reduces the emission and temperature non-uniformity by 110% and 19%, respectively.
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Shahpouri and Houshfar (2019) investigated a humid combustion case and reported minimum NOx emission when the

water-to-fuel ratio is close to 1, while better combustion efficiency and pollutant reduction are achieved if the inlet air

humidity increases by 25%. Göke et al. (2014) studied the sensitivity of steam and pressure on pollutant emission and

recorded a significant reduction of CO and NOx formation at ultra-wet conditions and exponential increase in NOx

emission at dry conditions. It can be concluded from these investigations that development of pollutant reduction

techniques similar to water injection maybe focused on in a combustion optimization study.

Makhanlall et al. (2013) calculated energy devaluation in the 300 kW BERL combustor (Sayre et al., 1994) through

entropy generation minimization and recommended an optimum fuel-air equivalence ratio of 0.7 if natural gas is used.

In the same combustor, Hajitaheri (2012) attempted to achieve maximum fuel conversion to CO2 by changing the swirl

number and quarl angle. He suggested a swirl number of 0.51 with 23.2 quarl angle instead of the initial empirical

case which increased the CO2 mass generation for about 1.66 kg/hour. Citing the importance of geometrical design

parameters on the performance of micro-combustors, Ansari and Amani (2018) proposed a novel combined baffle-

bluff assembly that improved average temperature by 6.3% and uniformity by 87.5%. They noted that the combustion

efficiency and entropy generation rate are heavily influenced by the baffle length and wall conductivity, respectively.

The optimization by Iki et al. (2007) displayed considerable improvement in micro gas turbine combustor operation by

inverting air flow ratio between the inner and outer liner of the combustor. It can therefore be inferred that geometrical

parameters have been observed to have significant influence on combustion performance.

Asgari and Amani (2017) investigated the influence of four fuel injection design parameters on performance

of a modern dry-low-emission premixed gas turbine combustor. They observed that the location and direction of

fuel injection plays a significant role on the evaporation efficiency, and the interactions between the spray and the

two swirling vortices in the chamber strongly affect the mixture stratification. Burmberger and Sattelmayer (2011)

provided an aerodynamic design guideline that renders maximum safety against flashback which occurs due to vortex

breakdown induced during lean-premixed swirl-stabilized natural gas combustion. Fuligno et al. (2009) studied the

influence of position and size of the liner holes and exit duct on NOx emission and pattern factor. Fully premixed

methane combustion in a 150-kW burner by Bhoi and Channiwala (2008) revealed that uniform and stable flame is

achieved with a conventional bluff body with a 0.65 blockage ratio and the burner flammability limit is established in

the range of 40-55%. Therefore, proper fuel injector design becomes of significant importance while designing gas

turbine combustors.

Sahebjamei et al. (2019) noted improved combustion efficiency and pattern factor after imposing a combined

radial-angular stratified condition during methane-air combustion. Rajabi and Amani (2018) observed a 25% rise

of entropy generation due to radiation in a methane-air diffusion flame for a range of swirl numbers. Arjmandi and
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Amani (2015) calculated entropy generation using two different methods and found the results differ by 6%, while

chemical reaction and heat transfer are the main contributors behind entropy generation and their trade-off results in

the optimum design condition. In a similar study, Janiga and Thévenin (2007) investigated CO emission minimization

by varying the fuel-air ratio in primary and secondary outlet. These investigations seem to suggest that parameters like

combustion efficiency and pattern factor maybe utilized to asses the feasibility of using alternate fuels in gas turbine

combustors.

Similar investigations have also been conducted using biogas, among them the recent investigation by Şahin

(2019) analyzed the thermal field distributions and pollutant emission in combustion of several biogases of different

compositions under distributed combustion conditions in an existing natural gas burner. The result showed good

agreement with the experimental data. For the biogas with lower oxygen concentration, nearly zero emissions were

predicted for CO and NOx emission while CO2 level increased slightly. Şahin and İlbaş (2019) further examined the

influence of H2O amount on the combustion of H2S- and H2O- containing biogas using the same burner and concluded

that higher H2O content provides lower SO2 and CO emission. Therefore it can be deduced that the composition of

biogas and the presence additives like H2O have a significant influence on the emissions.

Several non-premixed and premixed combustion of biogas in industrial burner with higher H2 content have been

reported in the published literature (Hosseini and Wahid, 2014; Zhen, Leung and Cheung, 2014; Zhen, Leung, Cheung

and Huang, 2014; Zhen et al., 2013) and the results demonstrated higher combustion stability and flame temperature

level. Consequently, CO emission decreased while entropy generation and NOx emission increased. In addition, it

was reported that the lower heating value (LHV) of biogas increases with higher H2 content. The effect of CO2 content

in biogas on CO formation for non-premixed and premixed combustion in burners and modeled combustors have also

been investigated in multiple studies (Fischer and Jiang, 2017; Khaleghi et al., 2015; Mordaunt and Pierce, 2014) and

the results indicated that higher CO2 content leads to lower flame stability and temperature, and hence higher CO

emission. In a similar study (Guessab et al., 2016), a monotonous NOx reduction with increasing CO2 content in

biogas has also been reported. The combustion characteristics of biogas can therefore be altered by varying H2 and

CO2 contents.

Chen et al. (2017) proposed a newly designed enhanced lean premixed nozzles for hydrogen-enriched biogas

combustion in a model micro gas turbine combustor and found the nozzles performed better than the original one

and caused strong swirl intensity and vortices at their outlet which contributed to enhanced mixing of air and fuel.

Another experimental investigation (Saediamiri et al., 2016) in a burner concluded that the fuel nozzle diameter and

discharge angle drastically influence the stability of biogas swirling non-premixed and premixed flame and pollutant

CO emission. Other studies (Leung and Wierzba, 2008, 2007) reported the influence of nozzle size on flame stability
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in combustion chambers. The combustion investigation of İlbaş and Şahin (2017) in a burner concluded that higher

turbulator angle results in better air-fuel mixture, thereby resulting in significant increase in combustion completeness

and CO2 emission. Birouk et al. (2014) found in their experimental investigation that the flame attached to high swirl

in a burner stabilizes a wide range of flow conditions compared to low swirl attached flame. Effuggi et al. (2008)

analyzed NOx, soot and Polycyclic Aromatic Hydrocarbons (PAHs) emissions for premixed biogas combustion in a

burner and found that mild combustion can be used for a wide range of low-BTU fuels, and is able to reduce NOx,

soot and PAHs emissions. Flame stability and emissions seem to have a close dependence on the nozzle diameter and

size.

Experimental and numerical investigations (İlbaş, Şahin and Karyeyen, 2018, 2016) on combustion of methane

and four different compositions of biogas in an industrial burner have found that one of the four biogases demonstrate

temperature distribution and maximum flame temperature very close to methane. Biogas flameless combustion in

burners and furnaces were investigated experimentally and numerically (Hosseini and Wahid, 2015; Hosseini et al.,

2014; Hosseini and Wahid, 2013) and it was found that the temperature distribution was more uniform for flameless

combustion, while the combustion efficiency was 53% compared to 32% for the conventional combustion. Further-

more, tangential burner configuration performs better than coaxial configurations for flameless combustion. Despite

that, combustion wall heat loss for tangential burner configuration was higher than the coaxial ones. Although bio-

gas has been found to have combustion performance close to methane in burners and furnaces, it remains to be seen

whether similar trends can be achieved in an actual gas turbine combustor.

The literature survey conducted in this study shows that although a number of natural gas and biogas combustion

studies have been reported, investigations involving actual gas turbine combustor geometries and comparative com-

bustion performance analysis of natural gas and biogas have received little attention in published literature. Therefore,

the present study targets the simulation, analysis and comparison of natural gas and biogas combustion in a gas turbine

combustor designed by the authors. A combustion analysis of the influence of the swirl number and the fuel injector

diameter on the combustion efficiency, pattern factor (PF), and pollutant CO and NO emissions is the main focus of

this study. Additionally, a comparison of the combustion performance of natural gas and biogas combustion is also

targeted to assess the feasibility of the use of biogas in industrial gas turbine combustors.

2. Mathematical model

2.1. Combustor geometry

A gas turbine combustor designed based on standard combustor design methodology and empirical formulations,

considering the practical aspects of combustor design (Melconian and Modak, 1985; Conrado et al., 2004) for swirling
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flow non-premixed combustion is shown in Figures 1 and 2. The combustor design specifications are given in Table 1.

Simulations in the present work are conducted in 3D using the FLUENT code, as the swirling flow and its substantial

role in the mixing process during combustion is highly 3D in nature. In addition, unlike the investigations in the

existing literature, the annulus between the casing and liner is included in the simulations to realistically predict the

path of the incoming airflow from the annulus and flowing into the different holes and cooling slots. The computational

domain is shown in Figure 2.

2.2. Composition of gases

Biogas of different compositions have been investigated in published literature and it has been observed that

significant presence of CO2 in biogas causes reduction in peak pressure, combustion stability and heat generation,

and increased CO emission, while biogas containing more than 45% CO2 causes harsh and irregular functioning of

the engine (Fischer and Jiang, 2017; Khaleghi et al., 2015; Mordaunt and Pierce, 2014; Leung and Wierzba, 2008,

2007). Hobson et al. (1981) and Biswas (1994) reported increased unburned fuel emission in the range of 45-50%

CO2. Therefore, biogas with high CO2 concentration must be avoided for better performance and pollutant emission

minimization. The recommended biogas by İlbaş, Şahin and Karyeyen (2018) for use in industrial combustors as

an alternative fuel to natural gas mainly consists of 33% CO2 and 65% CH4. Similar composition has also been

recommended by Liguori (2016). Based on the recommendations in published literature, the compositions of natural

gas and biogas used in this study are listed in Table 2. The stoichiometric air-fuel ratio of the biogas used in this

study is calculated as 7:1. For natural gas, a standard value of 17.2:1 (Heywood, 1988) was adopted. 10% excess air

was used to achieve highest possible efficiency as recommended by Kuznetsov (1973). The significant difference in

stoichiometric air-fuel ratio of natural gas and biogas indicates why a higher amount of fuel (and therefore higher fuel

velocity) is required for biogas combustion for the same air-flow rate and fuel injector diameter (see Table 1).

2.3. Governing equations

The governing equations comprise of continuity and momentum as listed below:

∂

∂xi
(ρui) = 0 (1)

∂

∂x j

(
ρuiu j

)
= −

∂p
∂xi

+
∂

∂x j

[
µ

(
∂ui

∂x j
+
∂u j

∂xi
−

2
3
δi j
∂ul

∂xl

)]
+

∂

∂x j

(
−ρu′iu

′
j

)
(2)

The closure for the Reynolds stresses −ρu′iu
′
j is specified by the Boussinesq approximation

−ρu′iu
′
j =

2
3

kδi j + µt

(
2S i j

)
(3)
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where,

S i j =
1
2

(
∂ui

∂x j
+
∂u j

∂xi

)
(4)

The turbulent viscosity µt is specified in the standard k − ε model as follows:

µt = ρcµ fµ
k2

ε
(5)

Here, cµ has a standard value of 0.09 and fµ = 1 for the standard wall function model. Additionally, a number

of different formulations for the function fµ are also available in published literature (Launder and Spalding, 1974;

Lam and Bremhorst, 1981). The kinetic energy k and the turbulent dissipation rate ε are determined by solving their

respective transport equations (Launder and Spalding, 1974). Heat transfer is handled by solving the Energy equation

(Patankar, 1980). For turbulence-chemistry interaction, the non-premixed steady-flamelet model (Pitsch and Peters,

1998; Peters, 2004; Poinsot and Veynante, 2005) is used based on primitive variables, where the temperature T , and

the mean of local mass fraction of species Yi, are obtained from lookup tables generated as functions of the mean

mixture fraction f , its variance f ′2, and mean scalar dissipation χst. For lookup tables, the transport equations for f

and f ′2, are solved as,

∂

∂t
(ρ f ) +

∂

∂x j
(ρui f ) =

∂

∂x j

(
µt

σt

∂ f
∂x j

)
(6)

∂

∂t

(
ρ f ′2

)
+

∂

∂x j

(
ρui f ′2

)
=

∂

∂x j

(
µt

σt

∂ f ′2

∂x j

)
+ Cgµt

(
∂ f
∂x j

)2

−Cdρ
ε

k
f ′2 (7)

where, µt is the turbulent viscosity. The values for the constants σt, Cg, Cd are 0.85, 2.86, and 2.0 respectively.

The mean scalar dissipation is modeled as,

χst =
Cχε f ′2

k
(8)

here Cχ is a constant with a value of 2.

2.4. Combustion parameters

2.4.1. Swirl number

The swirl number is one of the most important design parameters (Farokhipour et al., 2018; Rajabi and Amani,

2018; Torkzadeh et al., 2016) and is defined as the ratio of the axial flux of the tangential or swirl momentum and the

axial flux of the axial momentum multiplied by a characteristic length R,

S =

∫ R
0 UWr2dr

R
∫ R

0 U2rdr
(9)
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where W and U are the mean axial and tangential velocity respectively, at the exit plane of the swirl generator.

However, in the present work, the level of swirl is characterized by the geometric swirl number, S g = Us/Ws, defined

according to Kalt et al. (2002). Here, Ws and Us are the bulk axial and tangential velocity of the swirling air stream.

The actual swirl number is linearly proportional to the geometric swirl number (S = 0.90S g) which can be varied by

changing the relative magnitudes of the tangential and axial airflow rates (Al-Abdeli and Masri, 2003).

In the current study, swirl numbers: 0.5, 0.9, 1.5, and 2.0 are considered to account for half, one, one and a half,

and double swirl intensities respectively. Swirl numbers less than 0.5 are not tested, as Lefebvre and Ballal (2010)

stated that values less than 0.4 produce no recirculation zones and such swirls are defined as weak. Therefore, swirlers

of practical interest operate with a strong swirl, which is typically above swirl number 0.6.

2.4.2. Fuel injector diameter

Fuel injector diameter is a sensitive design parameter which influences flame stabilization and pollutant emission

(Saediamiri et al., 2016; Mordaunt and Pierce, 2014). Changes in the fuel injector diameter changes the velocity of the

incoming fuel and also influences the thickness of the separator between the swirler and fuel injector. For large injector

diameter, the separator is a wall, while for lower injector diameter the separator acts as a bluff body. The bluff-body

thickness has crucial impact on the formation and shape of various recirculation zones in different locations inside the

combustor which controls the mixing process. Fuel injector with three different diameters are considered as design

parameters in the present work, as listed in Table 3.

2.4.3. Combustion efficiency

Combustion efficiency and pattern factor are the conventional combustion performance parameters used since the

early days of gas turbine engine development (Mattingly et al., 2002). The combustion efficiency typically measures

combustion completeness (Boyce, 2012) which directly affects fuel consumption, as unburned fuels heating value is

not utilized to increase combustion gas temperature. Lower efficiency also leads to pollutant emissions such as carbon

monoxide (CO) and unburned hydrocarbon (UHC) (Lefebvre and Ballal, 2010). The combustion efficiency is defined

by the ratio of the actual heat release of the gas and the maximum possible theoretical heat input of the fuel (Boyce,

2012; Mattingly et al., 2002; Razak, 2007). Mathematically,

ηc =
∆hactual

∆htheoretical
=

∑
outlets ṁhs −

∑
inlets ṁhs

ṁ f Q f
(10)
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where, hs is the mixture sensible enthalpy, ṁ is the mass flow rate in or out of the combustor, ṁ f is fuel mass flow

rate, and Q f is the lower heating value of the fuel. The mixture sensible enthalpy is defined as,

hs =
∑

i

Yihi +
p
ρ

(11)

where Yi is the mass fraction of species i and hi =
∫ T

Tre f
cp.idT with reference temperature Tre f = 298 K.

2.4.4. Pattern factor

Higher uniformity of the combustor outlet temperature profile ensures longer life of the turbine nozzle vane.

Conventionally, non-uniformity of the combustor outlet temperature profile is calculated using,

PF =
(
Tmax,outlet − T4

)
/ (T4 − T3) (12)

here PF is the pattern factor, defined as the difference between maximum combustor outlet temperature (Tmax,outlet)

and the mean combustor outlet temperature (T4) normalized by the mean temperature rise in combustor (T4 − T3)

(Mattingly et al., 2002; Torkzadeh et al., 2016).

2.4.5. Pollutant emission

The formation of the Pollutant CO and NO are calculated using the mixture fraction, f , defined in terms of the

atomic mass fraction by Sivathanu and Faeth (1990):

f =
Yi − Yi,ox

Yi, f uel − Yi,ox
(13)

where Yi is the elemental mass fraction for element, i. The subscript ox denotes the value at the oxidizer stream inlet

and the subscript f uel denotes the value at the fuel stream inlet.

3. Numerical method

The Finite Volume Method (FVM) is applied to solve the governing equations along with SIMPLE algorithm

for pressure-velocity coupling. Second-order upwind scheme is incorporated for the discretization of the convection

term in the momentum equation and the scalar equations for the reacting flow. A no-slip boundary condition is

implemented on all the walls, while the normal gradient of pressure is set equal to zero at all boundaries. Choice of

reaction-mechanism plays a crucial role in combustion simulation. The GRI 3.0 and GRI 2.11 mechanisms which
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include NO formation have been tested as part of the validation process. The GRI 3.0 mechanism comprised of 325

reactions and 53 species, while the GRI 2.11 contains 277 reactions and 49 species.

Although the GRI reaction-mechanism is designed for methane and natural gas combustion, it is also a viable

mechanism for biogas combustion in predicting the pollutant CO and NOx emissions, as found by Fischer and Jiang

(2015). They also found that the GRI mechanism is the most reliable mechanism considering overall aspects of

biogas combustion if there is no significant presence of hydrogen in the biogas. As the biogas composition used in the

current work has no presence of hydrogen (see Table 2), the GRI reaction-mechanisms can be used reliably for biogas

combustion.

3.1. Validation and grid-independence test

For validation, the swirling methane flame (SM1) case of the Swirl Flows and Flames Database also known as the

Sydney swirl flame database is used. This is considered a reliable validation case for swirling flow combustion in an

industrial type burner. The operating conditions and configuration of the Sydney swirl burner have been reported by

Kalt et al. (2002) and Masri (2007). A 3D grid of 1.0 million cells is used for the simulation. The line plot comparisons

of experimental measurements and computed results of the axial and tangential velocity, temperature, mean mixture

fraction, and CO2, CO, NO formations are shown in Figures 3 to 5. The axial position z is normalized by the bluff

body diameter D = 50 mm, while the radial position r is normalized by the fuel inlet radius R j = 1.8 mm. The axial

velocity W and tangential velocity U are normalized by the fuel velocity W j = 32.7 m/s and the tangential velocity of

air stream through the swirler Us = 19.1 m/s, respectively.

It can be observed from the line plots that the computed results are in good agreement with the experimental

measurements. The symmetric feature of the 3D flow field, temperature distribution, pollutant formations have also

been captured by the simulation. There is no visible difference in the predictions by both reaction-mechanisms except

for the NO formation, where the computation by GRI 3.0 is slightly off in the first two locations (z/D = 0.4 and z/D =

0.8 in Figure 5(c)), and far-off in the last two locations (z/D = 1.1 and z/D = 1.5 in Figure 5(c)). This phenomenon

of excess NO formation prediction by GRI 3.0 has also been reported by Jaravel (2016) in his comparative analysis of

NO formation using GRI 3.0 and 2.11. Therefore, the GRI 2.11 reaction-mechanism is going to be used in subsequent

investigations.

The 3D grid generated for the combustion investigation in a gas turbine combustor comprises of 7.36 million cells

as shown in Figure 6. To check the grid sensitivity, results of the reference case (INJ-765 with S g = 0.9) obtained

using a finer grid of 14.7 million cells is compared with the results obtained using 7.36 million grid as shown in Figure

7. Results show that there is no visible and significant difference in the predictions of axial velocity and temperature.
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4. Results and discussion

The result of the reference case (INJ-765 with S g = 0.9) of natural gas combustion is examined first. The con-

tours of the axial velocity, Y-vorticity, and turbulent kinetic energy are depicted in Figure 8 along with 2D and 3D

streamlines.

Analyzing the axial velocity contour, 3D and 2D streamlines in Figures 8(a) and 8(b), it can be observed that the

flow develops two internal recirculation zones (IRZ). The IRZs are counter rotating as indicated in the Y-vorticity

contour in Figure 8(b). The smaller inner-IRZ is formed due to the incoming natural gas through the central fuel

injector, while the bigger outer-IRZ is formed by the swirling flow through the swirler. An interesting 3D ring-like

structure is observed in the outer-IRZ region as pointed out in Figure 8(a). There is a central recirculation zone (CRZ)

in the middle of the combustor which is visible only through the 3D streamlines shown in Figure 8(a). The CRZ can

also be observed from the turbulent kinetic energy contour in Figure 8(c), where a low turbulent kinetic energy region

is visible. These recirculation zones inside the combustor liner contribute to a proper mixing of air and fuel where the

swirling air flow plays a big role in the process.

The intensity of the swirling flow plays an important role in the combustion performance and has a direct influence

on the different combustion optimization parameters. Figure 9(a) shows the effects of different swirl intensities on

the flow pattern inside the combustor, for INJ-765 injector. It can be observed that with increasing swirl number the

outer-IRZ begins to dominate over the inner-IRZ and at swirl number 2.0 the outer-IRZ is almost twice as big as the

inner-IRZ which has reduced in size significantly.

The dominance of the outer-IRZ with increasing swirl number has a direct influence on the combustion as can be

observed from the temperature contours in Figure 9(b). As the outer-IRZ begins to dominate over the inner-IRZ, a

corresponding increase in the high temperature region is observed in the temperature contours which indicates an early

onset of combustion, more complete combustion and therefore higher efficiency can be expected. This observation

is very clear for S g = 1.5 and 2.0, where large high-temperature regions can be seen covering the central regions of

the combustor. The effect of the swirling airflow on the mixing of the fuel with air and subsequent combustion can

be noted from the thin streaks of high-temperature observed parallel to the inclined dome-wall. However, a much

lower temperature layer can be observed between the dome wall and the high-temperature streaks which is due to

film-cooling air being provided by the dome cooling slots. The effect of film-cooling by combustor liner cooling slots

is also clearly visible in the form of low temperature layers protecting the liner from the high-temperature regions.

The emission patterns for INJ-765 with increasing swirl numbers is shown in Figure 10. The early onset of

combustion and higher combustor temperature for S g =1.5 and 2.0 also contribute to a corresponding CO oxidation

and hence lesser CO emission at the combustor exit as depicted in Figure 10(a). However, higher NO emissions are
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observed at the outlet as the swirl number increases as shown in Figure 10(b).

After analyzing the reference case (INJ-765 with S g = 0.9) in terms of flow patterns, temperature profiles (Figure

9), and CO and NO formation (Figure 10) and their variation with swirl number, a detailed analysis of the influence

of swirl number on the combustion optimization parameters for different injector diameters (10.65 mm and 5.75 mm)

has been carried out and compared with INJ-765 through line plots in Figure 11.

The line plots in Figure 11 provide a broader picture about the effect of the design parameters (swirl number

and fuel injector diameter) on different combustion performance optimization parameters. This allows to choose

a specific fuel injector and swirl number that results in a suitable trade-off between combustion efficiency, pattern

factor, and pollutant emissions (CO and NO). The increase in the high-temperature region and hence more complete

combustion with increasing swirl number observed for INJ-765 injector in Figure 9(b), is manifested in the form

of higher efficiency and higher maximum combustor temperature for all injectors with increasing swirl number in

Figure 11(a). The influence of swirl number on PF: pattern factor and T4: mean temperature at combustor exit is

depicted in Figure 11(b). It can be seen that the PF decreases with increasing swirl number for all injectors indicating

higher uniformity of temperature profile at the combustor outlet and a corresponding increase in T4 is observed for all

injectors. The inverse relationship of CO and NO emission against swirl number is visible in Figure 11(c). In order

to determine the balanced emission for the injectors, the intersecting points of the CO and NO lines are identified

at the X-axis locations of S g = 0.755, 0.898, and 1.215 (marked by green squares in Figure 11(c)) for the injectors

INJ-1065, INJ-765, and INJ-575 respectively. It can be observed that the balanced CO and NO emissions at the

intersecting points are almost equal for INJ-1065 and INJ-765, for S g = 0.755 and 0.898 respectively, while that for

INJ-575 and S g = 1.215 is comparatively higher. Furthermore, analyzing Figure 11(d) the combustion efficiency and

pattern factor for the different injectors at the location of the swirl number corresponding to balanced emissions is

listed in Table 4 below.

It can be concluded based on Table 4 that INJ-765 with S g = 0.898 (approximately 0.9) can be considered as the

most suitable combination amongst the different fuel injector diameters and swirl numbers analyzed.

The flow pattern of biogas combustion using INJ-765 injector for different swirl numbers are shown in Figure

12(a). It can be observed that the higher fuel velocity in biogas combustion (compared to natural gas combustion)

makes the inner-IRZ more dominant compared to the corresponding cases of natural gas combustion shown in Figure

9(a). The temperature contours in Figure 12(b) indicate that the high-temperature regions do not occupy the central

regions of the combustor, but are rather confined to peripheral regions of the combustor. This observation is in contrast

to natural gas combustion in Figure 9(b) where the high temperature regions are concentrated in the central regions

of the combustor. This can be attributed to the higher fuel velocity which causes the fuel jet to dominate over the
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swirling air leading to lower mixing in the central regions of the combustor. However, like natural gas combustion,

the high-temperature regions in biogas combustion increases with increasing swirl number and therefore increase in

combustion efficiency can be expected with increasing swirl numbers.

The CO formation during biogas combustion shown in Figure 13(a) for the injector INJ-765 is quite different than

in the natural gas combustion observed in Figure 11(a). For biogas, the CO formation is largely in two portions, first

at the outer-IRZs and then at far downstream near the outlet whereas in natural gas combustion high concentrations of

CO are located in the central regions of the combustor. With increasing swirl, the downstream CO formation increases

and hence the higher CO emission at the combustor exit is expected. The NO formation trends for biogas combustion

in Figure 13(b) follow patterns similar to that of natural gas in Figure 10(b) where the NO formation is observed

mostly in the secondary and dilution zones of the combustor. The NO formation does not increase significantly

with increasing swirl number for biogas combustion whereas for natural gas combustion a substantial increase in NO

formation with higher swirl numbers is observed. The levels of NO emission for biogas are however much lower than

that for natural gas.

All the trends in the contours of the biogas combustion in Figures 12-13 can be summarized as line plots as shown

in Figure 14 to analyze the effect of the design parameters (injector diameter and swirl number) on the combustion

performance optimization parameters (combustion efficiency, pattern factor, pollutant CO and NO emissions). The

combustion efficiency in Figure 14(a) is found to be the highest for injector INJ-1065 whereas injector INJ-765, which

was found to be most suitable for natural gas combustion shows lower efficiency. The pattern factor for injector INJ-

1065 is also found to have the lowest values consistently and it does not show any significant change with increasing

swirl numbers as depicted in Figure 14(b) (solid blue line).

Unlike the natural gas combustion results for CO and NO emissions (Figure 11(c)), the biogas combustion shows

only a single intersecting point for the CO and NO lines at the X-axis location of S g = 0.75 as shown in Figure

14(c). As the CO-NO lines are not intersecting for INJ-1065 and 575, therefore a balanced emission point for these

two injectors cannot be identified clearly, although it appears that the lines for INJ-1065 may intersect at a swirl

number less than 0.5 while an intersection point maybe achieved for a swirl number greater than 2.0 for INJ-575. It

maybe noted furthermore from the trends of INJ-1065 and INJ-575 in Figure 14(d) that the combustion efficiency will

be lower and the pattern factor will be higher for swirl numbers less than 0.5 which are undesirable. On the other

hand, for swirl numbers greater than 2.0 the efficiency is likely to increase however NO emission is also expected to

increase as can be predicted from Figure 14(c), thereby making injectors INJ-1065 and INJ-575 as not suitable options

for biogas combustion. These observations are summarized in Table 5. Therefore, the intersection point of CO and

NO emission at S g = 0.75 representing the balanced emission for INJ-765 can be considered as the suitable trade-off
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point for biogas combustion.

The key findings of the current investigations for both natural gas and biogas combustions can be summarized as

follows:

• The injector INJ-765 can be considered a suitable choice for both natural gas and biogas combustions with S g

= 0.9 for natural gas and S g = 0.75 for biogas combustion based on the suitable trade-off point identified for

this injector.

• The best cases for the combustion optimization parameters are shown in Table 6.

It is essential to assess the comparative performance of natural gas and biogas, to determine the potential strengths

and weaknesses of biogas for use in various industrial gas turbine engine applications as an alternative to traditional

natural gas. The comparisons are shown in Figure 15.

The significant findings from the line plots in Figure 15 can be summed up as follows:

• INJ-765 with S g = 0.75 for biogas combustion which has been identified as the suitable trade-off case, shows

lower combustion efficiency (67.5%) as compared to suitable trade-off point for natural gas (92%) in Figure

15(a).

• Injector INJ-1065 with S g = 2.0 for biogas combustion (dashed blue line) demonstrates combustion efficiency

(Figure 15(a)) and heat generation (Figure 15(b)) comparable to natural gas despite having much lower amount

of methane in biogas (65%) compared to natural gas (90%) and can be implemented in practical applications

provided methods of reducing pollutant CO emissions can be developed, as the CO levels for biogas in the

present combustor are higher than those for natural gas as observed in Figure 15(d).

• The suitable trade-off case for biogas combustion also demonstrates pattern factor values comparable to the

suitable trade-off case for natural gas combustion in Figure 15(c). Additionally, with increasing swirl number

the pattern factor for biogas reduces further and becomes similar to that for natural gas combustion for swirl

number greater than 1.5. A similar trend of decreasing pattern factor, in the range 1.55 to 0.95 with increasing

swirl number in the range 0.2 to 2.2 has been reported in published literature (Torkzadeh et al., 2016). Therefore,

the current investigation seems to suggest that by increasing the swirl number, the pattern factor can be further

reduced to lower recommended values ranging from 0.25 to 0.45 (Guoyu et al., 2014; Razak, 2007; Oates,

1989). Additionally, design changes such as modification of the dilution zone length and holes can lead to a

more uniform temperature profile at the combustor outlet, lowering the pattern factor further.
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• The main challenge and shortcoming of biogas combustion is excess CO emission compared to natural gas

combustion as depicted in Figure 15(d), which needs to be controlled and reduced for biogas to be established

as an industrial alternative fuel for use in gas turbine combustor applications.

• The NO emission is remarkably low during biogas combustion as shown in Figure 15(e), nevertheless, it is

achieved at the expense of higher CO emission (Figure 15(d)).

Considering all these aspects, it can be observed that biogas has an immense potential in terms of its usage in

industrial gas turbine applications as an alternative fuel to natural gas. Although the higher CO emission rate is the

limitation for this combustion system, but the overall performance makes it a suitable candidate if the CO emission is

controlled and reduced.

5. Conclusion

In the current work, the non-premixed combustion of the traditional fuel natural gas and the alternative fuel

biogas were simulated in a swirling flow gas turbine combustor. To simulate the combustion, the standard k − ε

and steady-flamelet models were used as the turbulence and turbulent-chemistry interaction models, respectively.

The performances of natural gas and biogas combustion were analyzed based on multiple combustion performance

optimization parameters and design parameters. Then the best swirl numbers and fuel injector diameter were identified

for each combustion performance optimization parameters for both gases. Furthermore, a suitable trade-off case by

considering all combustion performance optimization parameters has also been proposed, which are INJ-765 with S g

= 0.9 and INJ-765 with S g = 0.75 for natural gas and biogas, respectively. It maybe noted here that the scaling of the

YNO and YCO axis are somewhat arbitrary, although they were found not to effect the intersection points significantly.

Therefore, it is recommended that a more suitable scaling for representing YNO and YCO maybe developed in a future

work. Lastly, the combustion results are compared for both gases to assess the feasibility of using biogas in industrial

gas turbines. The results indicate that the injector INJ-1065 with S g = 2.0 for biogas of a specific composition gives

performance similar to that of natural gas, although at the expense of higher CO emissions. Therefore, methods to

reduce CO emissions will be targeted in a future work with focus on analyzing the influence of other design parameters

including, but not limited to configuration of primary and secondary holes, and cooling slots in order to allow higher

swirl numbers and thereby achieve lower pattern factors and higher efficiency of combustion for biogas. In addition,

an investigation maybe carried out to study the influence of different biogas compositions with varying CH4 and CO2

amounts on flame stability, temperature distribution inside combustor, and pollutant emissions.
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Table 1: Specification of the combustor.

Combustor specification Value

ṁ f uel Fuel flow rate (natural gas) 0.0323 kg/s
Q̇ f uel Lower heating value (natural gas) 48.24 MJ/kg (ISO, 1995)

ṁ f uel × Q̇ f uel Estimated heat generation (natural gas) 1.558 MJ/s
ṁ f uel Fuel flow rate (biogas) 0.0797 kg/s
Q̇ f uel Lower heating value (biogas) 20.43 MJ/kg

(Gökalp and Lebas, 2004; ISO, 1995)
ṁ f uel × Q̇ f uel Estimated heat generation (biogas) 1.628 MJ/s

R f Fuel injector radius (INJ-765) 7.65 mm
T f Inlet fuel temperature 500 K
ṁ3 Total inlet air 1.9177 kg/s
S g Empirical swirl number 0.9
θ Swirl angle 48◦

T3 Inlet air temperature 543.43 K
P3 Inlet air pressure 8.106 bar

Table 2: Compositions (by mole fraction) of gases used in current study.

Species Natural Gas Biogas

CH4 90% 65%
C2H6 8.5% -
CO2 0.5% 33%
N2 1% 1.3%
O2 - 0.7%

Table 3: Fuel injectors used as design parameter in current work.

Injector Radius Diameter Relative
diameter

Separator between
swirler and injector

Thickness of
the separator

INJ-1065 10.65 mm 21.3 mm 100% Wall 0.75 mm
INJ-765 7.65 mm 15.3 mm 70% Bluff-body 3.75 mm
INJ-575 5.75 mm 11.5 mm 50% Bluff-body 5.65 mm

Table 4: Combustion efficiency and pattern factor for swirl numbers corresponding to balanced emissions for natural gas combustion.

Injector Swirl number Combustion Efficiency Pattern Factor

INJ-1065 0.755 0.89 1.55
INJ-765 0.898 0.92 1.5
INJ-575 1.215 0.9 1.5
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Table 5: Combustion Efficiency and pattern factor for swirl numbers corresponding to balanced emissions for biogas combustion.

Injector Swirl number Combustion Efficiency Pattern Factor

INJ-1065 NA NA NA
INJ-765 0.75 0.68 1.54
INJ-575 NA NA NA

Table 6: Best cases for different combustion performance optimization parameters.

Optimization parameters Natural Gas Biogas

Combustion efficiency INJ-765 with S g = 2.0 INJ-1065 with S g = 2.0
Pattern factor INJ-765 with S g = 2.0 INJ-765 with S g = 2.0

Balanced emission INJ-765 with S g = 0.9 INJ-765 with S g = 0.75

Figure 1: Cutout geometry of the combustor.

Figure 2: Cross-sectional view of the computational domain with various dimensions (in millimeter) and flow rates (as percentage of total air), for
the specifications given in Table 1. D = diameter, ṁ = mass flow rate, L = length, N = number of holes.

20

Page 20 of 30

URL: http:/mc.manuscriptcentral.com/gcst  Email: cst@mne.psu.edu

Combustion Science and Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only
(a)

(b)

Figure 3: (a) Axial and (b) tangential velocity versus radial distance at centerline YZ-plane with different distances from inlet. Comparison between
experimental measurements (LDV) (Kalt et al., 2002; Masri, 2007) and computation using GRI 3.0 and 2.11 mechanisms.

(a)

(b)

Figure 4: (a) Temperature and (b) mean mixture fraction versus radial distance at centerline YZ-plane with different distances from inlet. Compar-
ison between experimental measurements (LDV) (Kalt et al., 2002; Masri, 2007) and computation using GRI 3.0 and 2.11 mechanisms.
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(a)

(b)

(c)

Figure 5: (a) CO2, (b) CO, and (c) NO mass fraction versus radial distance at centerline YZ-plane with different distances from inlet. Comparison
between experimental measurements (LDV) (Kalt et al., 2002; Masri, 2007) and computation using GRI 3.0 and 2.11 mechanisms.
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(a) The grid with annulus (left) and without annulus (right).

(b) Grid structure at the centerline YZ-plane.

Figure 6: Grid of the combustor.
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Figure 7: Axial velocity (top) and temperature (bottom) versus radial distance at centerline YZ-plane with distances from inlet. Comparison
between computation using main and finer mesh.
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(a)

(b)

(c)

Figure 8: Contours of the reference case (INJ-765 with S g = 0.9): (a) 3D streamlines along with a translucent slice of the axial velocity contour at
the centerline of the 3D domain, (b) Y-vorticity with 2D streamlines, (c) turbulent kinetic energy.
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(a) (b)

Figure 9: Contours of (a) axial velocity with 2D streamlines; (b) temperature; for INJ-765 with different swirl numbers for natural gas combustion.

(a) (b)

Figure 10: Contours of (a) CO and (b) NO mass fraction for INJ-765 with different swirl numbers for natural gas combustion.
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(a) (b)

(c) (d)

Figure 11: Natural gas combustion cases for all fuel injectors and against swirl numbers: (a) combustion efficiency and maximum combustor
temperature; (b) pattern factor and mean temperature at the combustor exit; (c) CO and NO emission through the combustor exit; (d) combustion
efficiency and pattern factor.
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(a) (b)

Figure 12: Contours of (a) axial velocity with 2D streamlines; (b) temperature; for INJ-765 with different swirl numbers for biogas combustion.

(a) (b)

Figure 13: Contours of (a) CO and (b) NO mass fraction for INJ-765 with different swirl numbers for biogas combustion.
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(a) (b)

(c) (d)

Figure 14: Biogas combustion cases for all fuel injectors and against swirl numbers: (a) combustion efficiency and maximum temperature inside
combustor; (b) pattern factor and mean temperature at combustor exit; (c) CO and NO emission through combustor exit; (d) combustion efficiency
and pattern factor.
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(a) (b)

(c) (d)

(e)

Figure 15: Comparative performance analysis of natural gas (NG) and biogas (BG) combustion with suitable trade-off cases indicated by green
squares: (a) combustion efficiency, (b) combustion heat generation, (c) pattern factor, (d) CO emission, (e) NO emission at the combustor exit
against swirl number and for all fuel injectors.
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