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Abstract

Before conducting a survey, researchers frequently ask themselves how large the resulting sample of
respondents needs to be to answer their research questions. In this guideline, we discuss how sample
size calculation is a�ected by the sampling design. We give practical advice on how to conduct sample
size calculation for complex samples.
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1. Introduction

Before conducting a survey, researchers need to decide what sample size they need to answer their re-
search question. The sample size needs to be large enough to be able to precisely estimate a statistic of
interest for the target population and/or perform statistical tests. While more respondents are preferable
for any statistical analysis, the sample size is limited by practical constraints like survey costs or time
constraints (Groves, 2005).

To decide on the minimum sample size that is needed for an analysis, one must be sure which variable(s)
to include in the analysis and which tests to perform. The minimum sample size might be very di�erent
depending on the survey variables and their distribution. For surveys including di�erent survey ques-
tions, sample size analysis should be conducted for each variable and the largest minimum sample size
should be chosen for the survey. The minimum sample size in general depends on the kind of analysis
that is conducted (e.g., estimate a mean or proportion, conduct specific statistical tests), the desired con-
fidence level and statistical power, the distribution of the outcome in the population. Whereas the former
can be set by the researcher, the latter is fixed but in most applications unknown.

Among other, the minimum sample size depends on the sampling design. Roughly speaking, sampling
designs that result in a higher variance of the point estimator will likely need a higher sample size. Sample
size calculation for simple random samples (srs) has been extensively covered in the literature (see for
example Gelman & Hill, 2006; Valliant, Dever, & Kreuter, 2013) and many R packages are available to
perform the calculation, for example pwr (Champely, 2020). The very comprehensive online tool G*Power
(Faul, Erdfelder, Buchner, & Lang, 2009; Faul, Erdfelder, Lang, & Buchner, 2007) should also be mentioned.
The list of tools to conduct sample size calculation for srs is by far not complete, there are too many to
name them all here.

For sample size calculation of complex sampling designs1, we refer for example to the online sample size
calculator from UK sample (https://uksamples.co.uk/sample-size-calculator) or PracTools (Valliant, De-
ver, & Kreuter, 2021). These tools make use of the intra-class correlation coe�icient (ICC) as a measure of
similarity within an (observed) cluster and/or the design e�ect of a particular sample design to calculate
the minimum sample size. While sample size calculation is an easy task in theory, in practice, it is o�en
hard to decide which ICC or design e�ect to assume for a specific study.

In this guideline, we start by discussing the role of the ICC and the design e�ect when conducting sam-
ple size calculation for complex sampling designs and its e�ect on the minimum needed sample size as
compared to srs. To guide the decision on which design e�ect to assume for a specific survey, we compile
design e�ects from the ESS that readers can use as a reference. Since a specific survey is, however, not
always comparable to a general purpose survey such as the ESS, we furthermore give a summary of rules
of thumb that can be found in the literature to give the reader an insight on what the “bare minimum” of
the sample size for a particular research question is supposed to look like.

2. Sample Size for Estimating Means and Proportions (in Complex Sam-
pling Designs)

Let us assume we are interested in learning about a population variableY with observation yi for element
i . The population variable is characterized by the mean (Ȳ ) and variance (var(Y )) which are unknown.
We thus want to conduct a survey to estimate the mean of y based on a sample with observations yi

1By complex sampling designs we mean all types of sampling designs that are not simple random samples.
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(i = 1 : : : n) where n is the sample size. The estimated mean is given by ȳ2. To account for the variability
due to sampling, we want to put a confidence interval (CI) around the point estimate ȳ . In our case, we
specify a confidence level of ¸ = 0:05.

The CI for ȳ is given by3:
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n−1 is the survey based estimator for var(y). For
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For all factors kept constant, larger n lead to higher precision of ȳ and a smaller CI. Half the length of the
CI is given by

e = z1−¸
2

p
ˆvar(y)√
n

(3)

The choice of the maximal width of the CI (2*e) heavily depends on the research question. Let us for ex-
ample consider a researcher wants to forecast whether certain political parties will pass the 5% threshold
to enter the German Bundestag. For larger parties that are expected to receive for example 20% of the
votes, a broader CI can be tolerated to evaluate whether they are above 5% or not. For smaller parties, a
higher precision and thus smaller CI will be needed.

The idea of sample size calculation for estimating means and proportions is to determine the minimum
sample size that is needed to receive a desired precision and thus maximal width of the CI. For srs, this is
simply done by solving for n (Gabler & Häder, 2015):

nsrs ≥ (
z1−¸

2

e
)2 ˆvar(y): (4)

In practice, the variance of y is not known before the survey is conducted. The choice of the variance can
be informed by variances (or standard deviations) found in comparable studies or by a pretest conducted
before the main study. Analyzing proportions, assuming the proportion to be 0:5 (and thus the variance
to be 0:25) can be used as a worst-case scenario. For continuous variables no such worst-case bounds
exist for the mean or the variance.

Sample size calculation heavily depends on the estimated variance of y which is a component of the
estimated variance of ȳ . Keeping all other factors constant, a higher variance implies a higher minimum
sample size to receive a certain width of the CI.

2The correct estmimation of the survey mean depends on the sampling design.
3Please note that the confidence interval for proportions is build analogously.
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The above formulas (2) to (4) do only hold for srs. For more complex sampling designs, one way to
compute the sample size is to integrate the design e�ect (de�) in the calculation (Lynn, Häder, & Gabler,
2006) as the variance of an estimator is a�ected by the complex sampling design (Gabler & Häder, 2015).
In general, cluster sampling and sampling with unequal inclusion probabilities increases the variance of
ȳ . Stratification, on the other side can reduce the variance of ȳ .

To determine the minimum sample size in a complex sampling design, the design elements need to be
taken into account. For a complex sample, the design e�ect is given by:

def f =
varcomplex(ȳ)

varsrs(ȳ)
(5)

where varcomplex(ȳ) is the variance of ȳ under a complex sampling design and varsrs(ȳ) is the variance
of ȳ under simple random sample.

For clustered samples and samples with unequal inclusion probabilities the def f is generally larger or
equal to one (def f ≥ 1). Stratification can lead to def f ≤ 1. The e�ect of stratification is assumed to be
small and is usually not accounted for when determining def f (Lynn et al., 2006).

The design e�ect needs to be estimated and according to Gabler, Häder, & Lahiri (1999) and Kish (1987) a
model based approach can be applied to account for clustering and/or unequal inclusion probabilities:

[def f = n

PG
g=1 ngw

2
g

(
PG

g=1 ngwg )2
∗
ˆ
1 + (b̄ − 1)ICC

˜
(6)

= \def fw ∗\def fc

The design e�ect is the product of the design e�ect due to unequal inclusion probabilities (\def fw ) and
the design e�ect due to clustering (\def fc ) (see Gabler et al. (1999), Kish (1987)). The ng are the number of
observations in the g th weighting class with n =

PG
g=1 ng , G is the number of weighting classes,wg are

the weights in the g th weighting class and b̄ is the mean cluster size. The intra-class correlation coe�i-
cient (ICC) is a measure describing how similar the observations within the same cluster are (Gabler et al.,
1999). The ICC equals 1 if all cluster members are equal but is usually found to be small for general pop-
ulation surveys (Kalton, Brick, & Lê, 2005). The equation illustrates the relationship between the ICC and
the variance of an estimate for a particular variable. More similarity of elements within the clusters with
respect to the variable of interest leads to a higher ICC and ceteris paribus to a higher variance (as com-
pared to a simple random sample). Hence, to obtain a particular variance (and width of the confidence
interval) the sample size would need to be higher as under srs with a higher ICC (Campbell, Grimshaw, &
Steen, 2000).

To account for the complex survey design, the sample size is given by:

ncompl = nsrs ∗[def f

where nsrs is the sample size calculated for simple random sample. Note that [def f is also usually not
known before the survey has been conducted but may be estimated by a similar survey that has been
conducted before.
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3. Practical Advice

To determine the minimum sample size needed to achieve a specific width of the CI or to perform a sta-
tistical test we either need to know about the population parameters of interest or to make strong as-
sumptions about them. For a complex survey design, additional assumptions need to be made about
the parameters that are used to estimate de�. These parameters are in most applications hard to deter-
mine.

For the means and variances it might be helpful to consult o�icial statistics or other surveys asking a
similar question to get an idea on which values to expect. For large-scale surveys usually a field test is
conducted. Information from the field-test data can be used to determine the sample size for the main
study. Concerning the design e�ect, it is helpful to determine what design e�ects have been found in
studies with similar sampling scheme.

3. 1 Design E�ects Found in Other Surveys

Usually, the design e�ect is not known in practice and it can be very hard to determine which size is
realistic. Information about design e�ects are o�en hard to find because researchers rarely report the
design e�ect of their particular survey. One way to obtain such an estimation of the expected design
e�ect could be to contact persons that already conducted a survey with a similar design (in the same
country). As an alternative, a rough estimate could for example be obtained from sources such as the
European Social Survey (ESS). In their seventh round, the ESS reported in detail about their model based
design e�ects approximation for several participating countries and displayed their average estimated
design e�ects (Koen Beullens, 2014). An abbreviated version can be found in Table 1.

Countries Frame Stages ICC def fc def fp def f

Belgium O�icial 2 0.05 1.19 1 1.19
Finnland O�icial 1 0 1 1 1
France Random Walk 4 0.04 1.4 1.2 1.68
Germany O�icial 2 0.04 1.58 1.1 1.738
Portugal Random Walk 3 0.065 1.6 1.25 2
UK Postal 5 0.043 1.39 1.27 1.7653

Table 1: ESS Round 1: Design e�ects for di�erent countries.

The estimates presented in Table 1 are only an approximation of the mean design e�ect for a general
purpose survey. As already stated in the previous section, the actual design e�ect is always measured as
the proportion of the variance of the estimator of a variable of interest under a complex survey design and
its counterpart under simple random sample. Hence, there are two important factors to keep in mind,
when searching for an approximation to plan the sample size for ones own survey:

1. the sampling design of the survey for which the sample size should be calculated

2. the (population) variance of the variable of interest (if it is a single purpose survey). In case of a
multipurpose survey, one should calculate the necessary sample size for each relevant variable
and decide on the largest.

Gabler, Häder, & Lynn (2006) already demonstrated for the first round of the ESS how the design e�ect
may di�er for di�erent sampling designs (within a particular country) and di�erent variables of interest.
Table 2 displays an abbreviated version of the original results published by Gabler et al. (2006) for the
German case.
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Variable of interest Design e�ect: S1 Design e�ect: S2 Design e�ect: S3

Persons in household 1.87 1.85 1.74
Years of education 3.25 2.8 2.88
Discriminated by religion 1.22 1.05 1.08
Le�-right-sacle 1.7 1.65 1.58
Satisfaction with life 2.06 1.74 1.81
Religiosity 1.94 1.75 1.75
Political activism 3.26 2.83 2.89

Table 2: ESS Round 1: Three approximations of the design e�ects for di�erent sampling designs.

To illustrate how the design e�ect di�ers by sampling design, the authors contrast the design e�ect they
found for the ESS to simulated design e�ects that would have been realized with alternative designs.
Design e�ect “S1” in Table 2 refers to a sampling design with unequal probabilities of inclusion, design
e�ect “S2” to a simulated sampling design with equal inclusion probabilities within domain/stratum and
design e�ect “S3” to a simulated design where the sample size within stratum is proportionally allocated
to a stratum’s population size that was applied in ESS round 1 for Germany. As one can see, even within
the same sample design, the actual design e�ect di�ers between the variables of interest. Moreover, the
di�erences between the variables are larger than the di�erences between the designs. In their original
study, Gabler et al. (2006) used the second and third approximation of the design e�ect to showcase
the potential of underestimation for the design e�ect when a di�erent sampling design (than the origi-
nal) is assumed. Therefore, they recommend to use the most conservative approximation that assumes
unequal probabilities of inclusion on an individual level.

Since approximations of the design e�ect for a given country with a given sample design and a given
variable of interest is o�en hard to come by, a general rule of thumb may also be to orient oneself on
multi-purpose surveys that reported their design e�ects (such as the ESS) and err on the conservative
side. Hence, for a survey of the German population, one could use the reported design e�ect of 1.74 and
round it to 2 in order to obtain the required sample size. Please keep in mind that this is only a rough
approximation that should be adjusted if better information is available.

3. 2. Rules of Thumb

Multiplying the required sample size under simple random sample with the (model based approxima-
tion) of the design e�ect of previous surveys can already be understood as a simplification that helps
incorporating the sample design in the process of sample size estimation. However, there are several,
more broad-stroked rules of thumb that may help to guide the decision on the appropriate sample size.
We discuss the most common and most applicable ones in the following sections. Please keep in mind
that these are only rough generalizations. If more/ better information is available, one should use these
to get a more appropriate sample size estimation.

Rule of 30 (or 50 or 100)

The so called rule of 30 states that the sample size for each (sub-) group the researcher wants to examine
should equal at least 30 elements. So if, for example, one is interested in the distribution of a variable of
interest in dependence of gender, the survey should contain at least 30 male and 30 female participants.
If the subgroups are divided by age-class, each of those should contain at least 30 observations. This
particular rule is based on the guidelines stipulated by Roscoe (1975). Although that number seems to
be arbitrary at first, the reasoning could be determined by the Central Limit Theorem. For most distribu-
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tions of sample means it can therefore be assumed that due to the degrees of freedom, a sample size (or
subgroup size) of 30 or more is su�icient for the Central Limit Theorem to hold, meaning the distribution
approaches normal distribution (Memon et al., 2020).

However, such generalizations should always be taken with care, since there are numerous factors that
might also impact the quality of ones (subgroup-) analysis. When, for example, conducting a multivariate
regression, another rule of thumb stipulates that the number of observations should be at least 10 times
greater than the number of variables in the model (Roscoe, 1975).

Moreover, that generalization does not take variables of interest into account that are highly skewed. In
that case, 30 might still not be su�icient. Hence, that number should be taken as a “bare minimum” that
may su�ice but is not applicable for every scenario. Therefore, one might also encounter the recommen-
dation of 50 or even 100 observations for every subgroup. Even though these numbers seem equally
arbitrary, the resulting sample size is estimated more conservatively, which would in term be beneficial
for ones analyses.

Sample Size Depending on the Prevalence of “Desired” Observations

Given the previous rule of thumb, it might be rather obvious that the sample size should also consider
the prevalence of particular outcomes (or groups) within a particular population. If a subgroup for which
analyses are to be made or which should be compared to another subgroup is of a much smaller propor-
tion within the survey’s target population, the sample size needs to be larger in order to obtain su�icient
observations within the smaller subgroup.

Green’s Procedure

The recommendation of Green (1991) is aimed to give a rule of thumb to determine the sample size, when
model estimation will be performed using multiple independent variables. His initial suggestion is to aim
for a sample size that is

n ≥ 50 + 8k ,

where k refers to the number of independent variables used in the model estimation. However, if the
researcher is interested in testing individual predictors (rather than the entire model and its coe�icient
of determination (R2)), then Green suggests to base the sample size decision on

n ≥ 104 + k .

Moreover, if both is supposed to be tested, the author argues to calculate both sample sizes and decide
on the larger one (Green, 1991; Memon et al., 2020).

Please note that when conducting the analyses of subgroups, the sample size refers to the necessary size
for each of these groups. Furthermore, it can still be argued that if a larger sample size is achievable, a
researcher will detect smaller e�ect sizes with a greater power (VanVoorhis & Morgan, 2001). Additionally,
parameters that are highly skewed may still require to base the model on a larger sample.

Further Rules of Thumb

Other suggestions to determine the sample size are frequently also based on the number of predictors
within multivariate models. For instance, the so called 10-times-rule of Barcley et al. (1995) proposes that
within a structural equation model, the sample size should at least be ten times as much as the largest
number of structural paths that are directed at a particular path of the models construct (Memon et al.,
2020).
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Others are based onffl2-comparison and argue that the minimum number of observations per cell should
be at least five, while the minimum size for the entire comparison should be at least 20. A rule of thumb
for factor analysis states that at least 300 observations with at least 50 per factor are required (VanVoorhis
& Morgan, 2001).

As for multilevel models, a common recommendation is to base the sample size on at least 30 groups
containing a minimum number of elements of 30. Alternatively, this rule of thumb has been adjusted to
a 50/20 ratio (Memon et al., 2020).

4. Conclusion

Even though sample size calculation is an easy task in theory, there are severe practical challenges that
researchers must tackle. Even for a simple random sample, the minimum size heavily relies on popula-
tion information that are in many cases not available to the researcher. This is even more true for complex
samples which show even more unknowns. In this guideline we try to give researchers conducting sur-
veys practical guidance on how to gather information on these parameters and on rules of thumb that
can be applied if no other information is available.
Please note that for all the rules of thumb that have been discussed here, one should value them as mere
heuristics. The most appropriate of the above mentioned rules of thumb would be the application of
prior design e�ects from earlier studies with the same design. In case of the remaining suggestions, it
has to be noticed that they are o�en based on strong assumption, such as that the variable(s) of interest
are normally distributed. A circumstance that is o�en not met, when surveying a population. Therefore
we suggest to apply these rules with caution and use them as a suggested bare minimum sample size.
Moreover, we suggest if multiple of these rules apply, to decide on the one that yields the largest sample
size.

7



References
Campbell, M., Grimshaw, J., & Steen, N. (2000). Sample size calculations for cluster randomised trials.

Journal of Health Services Research & Policy, 5(1), 12–16. https://doi.org/10.1177/1355819600005001
05

Champely, S. (2020). Pwr: Basic functions for power analysis. Retrieved from https://CRAN.R-project.or
g/package=pwr

Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using g* power 3.1:
Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160.

Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G* power 3: A flexible statistical power analysis
program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–
191.

Gabler, S., & Häder, S. (2015). Stichproben in der Theorie. Mannheim, GESIS – Leibniz-Institut Für Sozial-
wissenscha�en (GESIS Survey Guidelines).

Gabler, S., Häder, S., & Lahiri, P. (1999). A model based justification of kish’s formula for design e�ects for
weighting and clustering. Survey Methodology, 25, 105–106.

Gabler, S., Häder, S., & Lynn, P. (2006). Design e�ects for multiple design samples. Survey Methodology,
32(1), 115–120.

Gelman, A., & Hill, J. (2006). Sample size and power calculations. In Analytical Methods for Social Re-
search. Data analysis using regression and multilevel/hierarchical models (pp. 437–456). https://doi.
org/10.1017/CBO9780511790942.026

Green, S. B. (1991). How many subjects does it take to do a regression analysis. Multivariate Behavioral
Research, 26(3), 499–510. https://doi.org/10.1207/s15327906mbr2603_7

Groves, R. M. (2005). Survey errors and survey costs (Vol. 581). John Wiley & Sons.
Kalton, G., Brick, J. M., & Lê, T. (2005). Chapter VI estimating components of design e�ects for use in

sample design. In S. F. No. 96. United Nations: Department of Economic & S. A. S. Division (Eds.),
Household sample surveys in developing and transition countries. Citeseer.

Kish, L. (1987). Weighting in De�2. The Survey Statistician, 17(1), 26–30.
Koen Beullens, K. D. andCaroline. V., Geert Loosveldt. (2014). Quality matrix for the european SocialSur-

vey, round 7. European Social Survey Round 7.
Lynn, P., Häder, S., & Gabler, S. (2006). Design e�ects for multiple design samples. Survey Methodology,

32(1), 115–120.
Memon, M. A., Ting, H., Cheah, J.-H., Thurasamy, R., Chuah, F., & Cham, T. H. (2020). Sample size for survey

research: Review and recommendations. Journal of Applied Structural Equation Modeling, 4(2), i–xx.
https://doi.org/10.47263/jasem.4(2)01

Roscoe, J. T. (1975). Fundamental research statistics for the behavioral sciences (2. ed). Retrieved from
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+226871045&sourceid=
fbw_bibsonomy

Valliant, R., Dever, J. A., & Kreuter, F. (2013). Practical tools for designing and weighting survey samples
(Vol. 1). Springer.

Valliant, R., Dever, J. A., & Kreuter, F. (2021). PracTools: Tools for designing and weighting survey samples.
Retrieved from https://CRAN.R-project.org/package=PracTools

VanVoorhis, C. W., & Morgan, B. L. (2001). Statistical rules of thumb: What we don't want to forget about
sample sizes. Psi Chi Journal of Psychological Research, 139–141. https://doi.org/10.24839/1089-
4136.jn6.4.139

8

https://doi.org/10.1177/135581960000500105
https://doi.org/10.1177/135581960000500105
https://CRAN.R-project.org/package=pwr
https://CRAN.R-project.org/package=pwr
https://doi.org/10.1017/CBO9780511790942.026
https://doi.org/10.1017/CBO9780511790942.026
https://doi.org/10.1207/s15327906mbr2603_7
https://doi.org/10.47263/jasem.4(2)01
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+226871045&sourceid=fbw_bibsonomy
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+226871045&sourceid=fbw_bibsonomy
https://CRAN.R-project.org/package=PracTools
https://doi.org/10.24839/1089-4136.jn6.4.139
https://doi.org/10.24839/1089-4136.jn6.4.139

	1. Introduction
	2. Sample Size for Estimating Means and Proportions (in Complex Sampling Designs)
	3. Practical Advice
	3. 1 Design Effects Found in Other Surveys
	3. 2. Rules of Thumb
	Rule of 30 (or 50 or 100)
	Sample Size Depending on the Prevalence of ``Desired'' Observations
	Green's Procedure
	Further Rules of Thumb


	4. Conclusion
	References

