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Abstract
Modeling solute transport in heterogeneous porous media faces two challenges: scale 
dependence of dispersion and reproducing mixing separately from spreading. Both are cru-
cial since real applications may require km scales whereas reactions, often controlled by 
mixing, may occur at the pore scale. Methods have been developed in response to these 
challenges, but none has satisfactorily characterized both processes. In this paper, we pro-
pose a formulation based on the Water Mixing Approach extended to account for velocity 
variability. Velocity is taken as an independent variable, so that concentration depends on 
time, space and velocity. Therefore, we term the formulation the Multi-Advective Water 
Mixing Approach. A new mixing term between velocity classes emerges in this formula-
tion. We test it on Poiseuille’s stratified flow using the Water Parcel method. Results show 
high accuracy of the formulation in both dispersion and mixing. Moreover, the mixing pro-
cess exhibits Markovianity in space even though it is modeled in time.

Keywords  MAWMA · Water mixing · Mixing · Heterogenity · Transport · Dispersion

 *	 Joaquim Soler‑Sagarra 
	 quim.soler@upc.edu

1	 Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya (UPC), 
Jordi Girona 1‑3, 08034 Barcelona, Spain

2	 Associated Unit: Hydrogeology Group (UPC-CSIC), Barcelona, Spain
3	 Institute of Enviromental Assessment and Water Research (IDAEA), CSIC, c/ Jordi Girona 18, 

08034 Barcelona, Spain
4	 International Center for Numerical Methods in Engineering (CIMNE), Universitat Politècnica de 

Catalunya (UPC), Barcelona, Spain
5	 Present Address: CETAQUA, Carretera d’esplugues 75, 08940 Cornellà de Llobregat, Spain
6	 Present Address: Altair Engineering, Avinguda Diagonal 682, 08034 Barcelona, Spain

http://orcid.org/0000-0002-8819-2320
http://crossmark.crossref.org/dialog/?doi=10.1007/s11242-022-01795-3&domain=pdf


	 J. Soler‑Sagarra et al.

1 3

1  Introduction

Solute transport in homogeneous media is well reproduced by the advection–dispersion 
equation (ADE). However, this is not the case in real aquifers because they are heterogene-
ous (Le Borgne et al. 2008a, b; Gjetvaj et al. 2015; Willmann et al. 2008), which leads to 
a commonly observed nonequilibrium (Alcolea et al., 2008; Vogel et al. 2006). Observed 
transport is termed anomalous (i.e., non-Fickian). Anomalous transport is evidenced by 
the scale dependence of dispersivity (Lallemand-Barres and Peaudecerf 1978), or by tail-
ing in concentration breakthrough curves (Valocchi 1985; Carrera 1993). But beyond con-
servative transport, accurate representation of anomalous transport is critical for simulat-
ing chemical reactions (Battiato et al. 2009; Sadhukhan et al. 2014; Scheibe et al. 2015; 
Soler-Sagarra et al. 2016; Tartakovsky et al. 2009). The main limitation of the ADE lies on 
not distinguishing between dispersion (solute spreading) and mixing (solute diffusion and 
dilution). The two processes are linked, but they are different (Dentz and Carrera 2007). In 
contrast to dispersion, mixing is a direct cause of chemical reactions (Cirpka and Valocchi 
2007; Rezaei et al. 2005; De Simoni et al. 2005, 2007; Soler-Sagarra et al. 2022; Tartako-
vsky et al. 2008; Cirpka 2002; Herrera et al. 2017). The ADE employs Fick’s law (Fick 
1855) to characterize both processes and must, therefore, be considered inadequate for 
reactive transport (Carrera et al. 2022). A new formulation is needed to reproduce advec-
tion, dispersion and mixing (de Dreuzy et al. 2012; de Dreuzy and Carrera 2016).

A large number of particle-based methods have been proposed as alternatives to the 
ADE (Benson and Meerschaert 2009; Bijeljic and Blunt 2006; Le Borgne et  al. 2008a; 
Delay et  al. 2005; Lester et  al. 2014; Painter and Cvetkovic 2005; Russian et  al. 2016; 
Schmidt et al. 2017; Sole-Mari et al. 2020). All of them are relevant to anomalous trans-
port. But, while they have yielded new insights on transport, none of them considers mix-
ing explicitly. An essential such insight is that velocity transitions after every step can be 
viewed as a correlated random process. This process is Markovian when transitions are 
made not after a fixed time step, but after particles have covered a fixed spatial distance 
(Le Borgne et al. 2008b). The fact that velocities may change after a fixed spatial step is 
consistent with a fixed heterogeneity structure. We conjecture that this is a good basis for 
alternative transport formulations.

The difficulty in representing mixing lies in its close relationship with spreading. Veloc-
ity variations produce stretching of lamellas, which enhances mixing by increasing the con-
tact area between different waters (Le Borgne et al. 2015). The fact that velocity variations 
occur at all scales and that they control mixing suggest using velocity as a new dimension 
of the state variable (like time and space), which leads to a phase space formulation. That 
is, concentration at any representative volume will be given by a velocity-dependent distri-
bution representing not so much uncertainty as actual variability (e.g., concentration at the 
leading edge of a plume will be larger at high-velocity paths than at low-velocity paths).

The success of Markovian formulations further suggests representing velocity vari-
ability as a Markov process. Markovian processes are typically represented by means of 
a transition matrix Mvs

p
 (or transition probability density for continuous representations of 

velocity), which expresses the probability, p, of a particle to change the velocity state v 
given constant steps in space phase s (De Anna et al. 2013; Kang et al. 2011, 2014, 2015, 
2017). Transitions may occur either because of heterogeneity along a flow line, which do 
not produce mixing, or because of water particles diffusion between adjacent flow tubes, 
which is the mixing mechanism associated with plume stretching. A proper representation 
of mixing should distinguish these two types of transitions.
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In this paper, we propose a phase space formulation for transport that acknowledges veloc-
ity transitions driven by both heterogeneity along flowlines and by diffusion across. The solu-
tion method is based on the Water Mixing Approach (WMA) (Soler-Sagarra et  al. 2022), 
because our ultimate motivation is reactive transport (RT).

2 � Governing Equations

The ADE is the most widely used formulation for transport. The ADE expresses the solute 
mass balance when transport is driven by advection and dispersion.

where � [–] is porosity, c = c(x, t) is concentration [M/L3], t [T] is time, v [L/T] is velocity 
and r [M/L3/T] is the sink/source term per unit volume of water, possibly including reac-
tive terms. Dispersion (second term in the right-hand side, RHS, of Eq. (1)) is defined by 
means of Fick’s law, where D [L2/T] is the hydrodynamic dispersion tensor. Soler-Sagarra 
et al. (2022) reinterpreted the dispersion flux in this equation as a bidirectional exchange of 
waters and obtained an equivalent form of the ADE as a Water Mixing Approach (WMA). 
Using the concept of water mixing is appropriate when the different species have similar 
physical parameters because it reduces RT to reactive mixing calculations. The WMA is 
formulated as

where the term qDc represents solute exchange driven by water dispersion and mixing. 
That is, qD [L3/L2/T] represents water flux exchange with respect to the mean water flux, 
which is accounted for in the advection term. Soler-Sagarra et al. (2022) discuss in detail 
the meaning of qDc . The challenge is how to write this exchange term so that it represents 
separately dispersion and mixing.

Kang et al. (2017) proposed a phase space formulation for heterogeneous domains to find 
an alternative to ADE. Phase space formulations express state variables not only as dependent 
on time and space, but also on velocity. The formulation was originally presented for pore-
scale models using particle probabilities, p. However, it can be easily extended to Darcy scale 
and written it in terms of concentrations, c = c(x, v, t) [M/L3] by using basic definitions to 
write p = c�∕M , where M is the total solute mass. With these definitions, Kang et al. (2017) 
can be rewritten as

where l [L] is the characteristic length, gvs [T/L] is the transition probability density of 
jumping from v′ to v after a l space step and c� = c(x, v�, t) the concentration at v′ . Thus, the 
formulation implies a distribution of (velocity-dependent) concentrations at every location 
and time. Equation (3) can be viewed as a mass balance equation, where the first term in the 
RHS expresses advective changes, the last term includes sink and sources, and the second 
and third terms represent mass losses and gains, respectively, due to velocity transitions 
(i.e., losses due to particles that transit from v to another velocity and the reverse gains). 

(1)�
�c

�t
= −�v∇c + ∇ ⋅ (D∇c) + �r

(2)�
�c

�t
= −�v∇c + ∇ ⋅

(
qDc

)
+ �r

(3)
�c

�t
= −v∇c −

v

l
c + ∫

v�

gvs
(
v|v�

)v
l
c�dv� + r
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This way, dispersion is explicitly represented in a natural way. The problem with this rep-
resentation is that it does not distinguish between diffusion transitions (purple arrow in 
Fig. 1) and advection transitions (green arrow in Fig. 1). This is inappropriate since it does 
not allow treating mixing and dispersion as separate processes. To overcome this limita-
tion, we propose to (a) restrict transitions caused by heterogeneity to advection transitions 
(i.e., changes in velocity along streamlines, like defined by green arrow in Fig. 1) which 
express dispersion explicitly, and (b) simulate diffusion separately. Furthermore, we use the 
WMA formulation proposed by (Soler-Sagarra et al. 2022) to define the mixing process, so 
as to facilitate generalization to reactive transport.

It is important to notice that qDc exchanges in Eq. (2) are now restricted to molecular dif-
fusion exchanges, because the effect of velocity fluctuations is already included in Eq. (3)). 
Treating these exchanges as water exchanges may sound confusing since diffusion is com-
monly associated with solute fluxes, rather than water exchanges. In reality, water is exchanged 
by diffusion at a rate comparable to that of solutes (Harris and Woolf 1980). Furthermore, 
without entering into this debate (see Soler-Sagarra et al. (2022) for details), the formulation 
of Eq. (2) is equivalent to Fickian diffusion if qD = �Dw∕LD , where Dw [L2/T] and LD [L] are 
water molecular diffusion coefficient and the characteristic diffusion scale, respectively. We 
are writing Eq. (3) per unit volume of water, which is more convenient than per unit volume of 
medium (as in Eq. (2)). Therefore, we will write these exchanges as vDmc , where the subscript 
emphasizes that we only include diffusive exchanges.

The new formulation is obtained by restricting Eq. (3) to advective transitions and Eq. (2) 
as to diffusion term

(4)
�c

�t
= −v∇c −

v

l
c + ∫

v�

gvs
(
v|v�

)v
l
c�dv� + ∇ ⋅

(
vDmc

)
+ r

Fig. 1   Scheme of particle transport processes through continuum heterogeneous domain. The left image 
is a computed velocity field. The right-top image displays the advection path of two particles. The right-
bottom image shows the diffusion possibilities of a single particle
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Equation  (4) is not a complete formulation yet. Velocity transitions occur due to 
advection and diffusion (Fig. 1). Since we are still restricting gvs to characterize velocity 
transitions along streamlines, we need a new transition term for velocity changes driven 
by diffusion (purple arrow in Fig. 1). Advection changes characterized by gvs are Marko-
vian in space (Le Borgne et al. 2008b), but diffusion driven exchanges should be Marko-
vian in time. The two transitions must be described independently. Diffusion transitions 
require adding two terms to (3), which yields

where f vt
(
v|v′

)
 [T/L/T] is the probability density of the rate of mixing transitions between 

velocity states. The fourth term on the RHS define the diffusion process in space domain 
(orange arrow in Fig.  1), while the fifth and sixth expresses the diffusive mass balance 
in velocity domain (purple arrow in Fig. 1). Since we are assuming diffusion to be inde-
pendent of the solute, then f vt is also solute independent, so that this equation is a WMA 
equation. Therefore, we term this formulation Multi-Advective Water Mixing Approach 
(MAWMA). Note that we consider the requirements highlighted by De Dreuzy and Carrera 
(2016): adequate separation of advection, diffusion and dispersion.

Assessing the validity of the MAWMA, Eq.  (5), could be arduous. Given that the 
novel processes presented are the fifth and sixth terms on the RHS, we make three sim-
plifications for testing:

(a)	 Flow is assumed stratified. This implies that no velocity transition occurs due to advec-
tion, which leads to neglecting the second and third terms on the RHS of the Eq. (5). 
We further assume that all strata carry the same flow rate (i.e., high-velocity strata 
are narrower than low-velocity strata) to simplify space and velocity discretization 
(Fig. 2b)

(5)

�c

�t
= −v∇c −

v

l
c + ∫

v�

gvs
(
v|v�

)v
l
c�dv� + ∇ ⋅

(
vDc

)

+ ∫
v�

f vt
(
v|v�

)
c�dv� − ∫

v�

f vt
(
v�|v

)
cdv� + r

Fig. 2   Scheme of stratified 
models using three velocity 
classes: a Random Walk Particle 
b Isochronal Water method using 
Water Mixing Approach formula-
tion and c Water Parcels method 
using Multi-Advective Water 
Mixing Approach formulation



	 J. Soler‑Sagarra et al.

1 3

(b)	 Diffusion is only considered transverse to the main flow direction. Adding this to the 
stratified flow leads to velocity changes because of diffusion (Bolster et al. 2011; Dentz 
and Carrera 2007; Taylor 1953). The fourth term of the RHS may therefore be ignored. 
Transverse mixing has been proven to be of paramount importance when chemical 
reactions are involved (Werth, et al. 2006)

(c)	 A Lagrangian formulation is adopted for advection by using material derivative d ⋅ ∕dt 
to minimize numerical dispersion and mixing (Batlle et al. 2002; Bell and Binning 
2004; Cirpka et al. 1999; Ramasomanana et al. 2012; Soler-Sagarra et al. 2022; Zhang 
et al. 2007).

These three simplifications allow us to rewrite Eq. (5) as

Time, space and velocity should be discretized and integrated in Eq. (6).

3 � Methodology

This section describes the method to solve Eq. (6) and to test the solution by comparison 
with existing methods. We first describe how to discretize velocity and how to build an 
isochronal mesh. Then, we describe the RW and Isochronal Water (IW) methods, which 
are used for comparison purposes. We finally describe the proposed solution approach and 
how to compute the velocity transition matrix Mvt

w
 for each method that will be used by the 

Water Parcel (WP) method based on MAWMA.

3.1 � Water Velocity Discretization

Velocity in the domain may be discretized adopting Eulerian or Lagrangian distribution. 
The Eulerian distribution yields the probability density function (pdfE) of velocity sam-
pled randomly in space. Discretizing pdfE with equal Eulerian probability velocity classes 
yields classes with the same water volume. The Lagrangian distribution pdfL is obtained by 
sampling the velocity equidistantly along streamlines (s-Lagrangian velocities according to 
Dentz et al. (2016)). Even in a stationary flux field, the pdfE and pdfL might be dynamic for 
a set of solute particles that are transported (Puyguiraud et al. 2019). However, in the Water 
Mixing concept, the water is transported instead of solute. As a result, pdfE and pdfL are 
stationaries in a stationary flow field. Discretizing pdfL determines velocity classes with 
the same flux (i.e., same injection probability, see Fig. 2c). The pdfL is related to pdfE as 
(Dentz et al. 2016):

where vmean is the mean of the pdfE. Discretizing velocities in classes with the same flux 
implies that low velocities are more probable than high velocities in the domain (Gotovac 
et al. 2009), which is realistic but contrasts sharply with Eulerian equi-probable discretiza-
tion. Lagrangian discretization is the appropriate one in our case because Eq. (6) is written 
in Lagrangian form. We discretize velocities in Nv classes, whose boundaries are:

(6)
dc

dt
= ∫

v�

f vt
(
v|v�

)
c�dv� − ∫

v�

f vt
(
v�|v

)
cdv� + r

(7)pdfL(v) =
v ⋅ pdfE(v)

vmean
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where cdf−1
L

 is the inverse of the Lagrangian cumulative distribution function. Once the 
boundaries are set, a representative class velocity vm is calculated as the mean of this inter-
val as:

The probability pm of the velocity class m in the domain (i.e., volumetric fraction of 
domain occupied by the class) is:

Note that pm is inversely proportional to vm because the classes were chosen with identi-
cal Lagrangian probability, whereas the Eulerian pdf is inversely proportional to velocity 
[Eq. (7)].

3.2 � Isochronal Mesh

The term isochronal mesh stands for a streamline-oriented mesh that advects the entire 
volume of water in a cell (we term it parcel) to the cell downstream within the stream 
tube. The stream tubes widths are proportional to the velocity classes probabilities, pm . The 
length ∆xm of the cells in the stream tube associated with velocity class m is calculated as:

where Δt is the time step. Note that the mesh is built once the simulation time step is 
known unlike most meshes. Figure 2b shows a scheme of the isochronal mesh. The veloc-
ity classes are equally flux because a single stream tube is associated with each class. 
Moreover, all the water parcel of this isochronal mesh has the same volume because as the 
probability pm is inversely proportional to its velocity vm (see Fig. 2b).

3.3 � Random Walk Method

A number of particles Np are injected in the domain in a time step Δt . The particles are flux 
weighted distributed along the domain width a. The solute mass mp associated with each 
particle is calculated as:

where cinj is the concentration of injection. Note that the numerator in the right-hand side 
of Eq. (13) is the total mass injected during a time step. Each particle is advected with the 

(8)vm+1∕2 = cdf−1
L

(
m

Nv

)
∀m = 1,… ,Nv

(9)vm−1∕2 = cdf−1
L

(
m − 1

Nv

)
∀m = 1,… ,Nv

(10)vm =
∫ vm+1∕2
vm−1∕2

v ⋅ pdfL(v)dv

∫ vm+1∕2
vm−1∕2

pdfL(v)dv
= Nv

vm+1∕2

�
vm−1∕2

v ⋅ pdfL(v)dv

(11)pm
(
vm

)
= cdfE

(
vm+1∕2

)
− cdfE

(
vm−1∕2

)

(12)Δxm = vm ⋅ Δt

(13)mp =
cinj ⋅ vmean ⋅ Δt ⋅ a ⋅ �

Np
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analytical velocity v(y), and their position coordinates (xp, yp) at the end of a time steps 
k + 1 are calculated as:

where �(t) ∼ N(0, 1) is a white noise with a Gaussian distribution.
The transition matrix Mvt

p
 can be computed by counting the velocity class transitions. For 

every particle and time step, a unit is added to position (l, m) of Mvt
p
 , where the column m 

is the velocity class of the position yk
p
 and the row l is the velocity class of yk+1

p
 . When all 

transitions have been made, the matrix is scaled by columns. That is, every (l, m) component 
is divided the sum of column m, so that it represents the probability of a particle to end the 
time step in class l if it started in class m. This Mvt

p
 matrix differs from the classic transition 

matrix Mvs
p

 (De Anna et al. 2013; Le Borgne et al. 2008b; Kang et al. 2011, 2014, 2015, 2017) 
because Markovianity is applied in time t instead of space s. This choice reflects that Mvt

p
  

accounts for diffusion transitions, which are naturally Eulerian. As we will see in Sect. 3.5, 
the WP method uses a Mvt

w
 matrix, which refers to the exchange of waters instead of particles. 

If all cells contain the same water volume, the two matrices are identical. Soler-Sagarra et al. 
(2021) discuss transition matrix algebra, including how to obtain Mvt

w
 from Mvt

p
.

To calculate concentrations, we use the isochronal mesh described in Sect. 3.2. The con-
centration of a cell i at time k is given by

where Npi is the number of particles inside the cell and Vw is its water volume.

3.4 � Isochronal Water Model (WMA)

The isochronal structured water (IW) method is based on the Lagrangian form of the WMA 
(Eq. (2) with the advection term moved to the left-hand side so as to get the material deriva-
tive) and uses the isochronal mesh detailed in Sect. 3.2. The mesh is discretized in cells with 
the same water volume (parcel). Once the spatial discretization is set, Eq. (2) can be written in 
matrix form like:

where S is the storage matrix, ck
A
 is the vector of concentrations at all parcels after advec-

tion, θ is the time weight parameter ( 0 ≤ θ ≤ 1 ), and P [1/T] is the transition rate matrix 
that in Eq.  (2) accounts for both mixing and spreading. However, here it only accounts 
for mixing (diffusion) because of the stratified flow conditions. The concentration can be 
expressed as:

(14)xk+1
p

= xk
p
+ v

(
yk
p

)
⋅ Δt

(15)yk+1
p

= yk
p
+
√
2DΔt ⋅ �(t)

(16)ck
i
=

mp ⋅ Npi

Vw

(17)S
ck+1 − ck

A

Δt
= θPck+1 + (1 − θ)Pck

A

(18)ck+1 = Mst
w
ck
A
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where Mst
w
= (S − θΔtP)−1(S + (1 − θ)ΔtP) is the transition matrix of water volumes in 

space s at time phase t. The vector ck
A
 is obtained for every cell i, considering the isochronal 

property of the mesh which advects the entire parcel of the upstream cell i-, as:

Note that if all species have the same transport parameters, Eqs. (18) and (19) can be 
viewed as the transport of water parcels instead of individual solutes and the concentrations 
would be attributes of these parcels. Soler-Sagarra et al. (2022) demonstrate the immediate 
extension from this scheme to a reactive transport method.

To obtain the transition matrix Mvt
w

 that WP method uses, Eqs. (17) and (18) are per-
formed in velocity phase v instead of space phase s. The later implies that the diagonal of S 
contains the probability of each velocity class and P the transition rate between classes. In 
the stratified case, it can be viewed as any entire stream tube of the Fig. 2b is considered as 
a single element.

3.5 � Water Parcel Model (MAWMA)

We now describe the Water Parcel (WP) method used to solve Eq.  (6). Other methods 
might also be used. The spatial domain is discretized in parcels (Fig. 2c) with the same 
water volume as the IW method (Fig. 2b). The parcel discretization covers the entire water 
domain, in saturated conditions (as it is the case). Like in IW, the concentration is only 
considered an attribute of each parcel. Each water parcel is associated with a centroid that 
determines its position in both x axis and velocity state (see Fig. 2c). Centroids are injected 
and displaced through the domain like a single solute particle.

The velocity state of each parcel is assigned randomly after injection (as discussed in 
Sect. 3.1, all classes are equally probable) and leads to an unstructured mesh unlike IW 
(see Fig.  2b, c). We integrate along the y coordinate for simplicity and for demonstra-
tion purposes. That is, we perform a dimension reduction, so that concentration in Eq. (6) 
depends solely on x and v. As shown in Fig. 2, this simplification might look trivial as it 
suggests that we are substituting the y coordinate by v. Note, however, that we assume that 
we do not know the vertical structure of velocity, but only its velocity distribution and 
transition probabilities. Figure 2c shows the parcel shape dependence on velocity state. As 
suggested by the tub lines of IW (see Fig. 2b), the longitudinal axis of our water parcels 
is proportional to their velocities, while their width is inversely proportional (see Fig. 2c). 
Another explanation is that the distance traveled Δx is proportional to the velocity v at the 
same time step Δt (explained in Sect. 3.4). As a consequence, the water parcels with low 
velocity tend to cram longitudinally (i.e., number of low-velocity water parcels per unit 
length is inversely proportional to velocity). This ensures an adequate representation of the 
entire distribution of velocities.

The simulation proceeds by integrating Eq. (6) in time steps. Therefore, the question is 
how to reproduce mixing between the parcels (i.e., the first two terms in the RHS). We use 
the finite volume method. The discretized form of (6) for every parcel i in velocity class l is

where Nmi is the number of parcels of velocity class m connected to parcel i. Fvt
lm

 is the 
volume of water exchanged between velocity classes l and m per unit time. k is time steps 

(19)ck
A,i

= ck
i−

(20)Vwi

ck+1
i

− ck
i

Δt
=

Nv∑

m≠l

Nmi∑

j

aijF
vt
lm
ck
j
−

Nv∑

m≠l

Nmi∑

j

ajiF
vt
ml
ck
i
, i ∈ Il
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number and Il is the domain associated with the velocity class l. Finally, aij is the fraction 
of this flux that will be exchanged between parcels i and j which could be either equi-
distributed or weighted by contact area. The latter is assumed here. As in WMA, this is an 
exchange process, which implies that Fvt

lm
= Fvt

ml
 and aij = aji. The expression of a concentra-

tion in time step k + 1 can be obtained.

Two remarks can be made regarding this expression: (a) �lm = Δt ⋅ Fvt
lm
∕Vwl is a water 

mass mixing ratio, similar to the one of Soler-Sagarra et al. (2022) but applied to exchanges 
of velocity class. �lm is term at the lm-th position of the water transition matrix Mvt

w
 

obtained in Sects. 3.3 or 3.4; (b) the self-water mixing ratio of the l velocity must satisfy 
�ll = 1 −

∑Nv

m
�lm

m≠l
 with the result that 

∑Nv

m
�lm = 1 ; (c) several methods can be used to com-

pute water transition matrix Mvt
w

 . The one in Sect. 3.4 is only valid for stratified flow, but 
the ones here (Eq. (21)) and by counting diffusion transitions in a RW (Sect. 3.3) are gen-
eral. Regardless of how the mixing ratios are computed, the proposed method leads to a 
water mixing equation.

Note that the mixing of parcels depends on their velocity class. However, the unstruc-
tured mesh does not ensure mass conservation in the mixing process such as �ij = �ji , 
which diminishes exchanges of water volume. This is why mass conservation is imposed 
after a first calculation of lambdas by defining �ij = �ji = max

{
�ij, �ji

}
.

Although chemical reactions are not the objective of this work, they are the ultimate 
goal of our research. By using the water mass mixing ratio formulation, the link with 
chemical processes is immediate (Soler-Sagarra et al. 2022).

The proposed WP method uses the transition matrix Mvt
w

 for just diffusion. Le Borgne 
et al. (2008b) demonstrated Markovianity in space using a similar transition matrix, Mst

p
 , 

which accounted for both advection and diffusion. Since diffusion is Markovian in time, 
the question can be raised if their conclusion was an artefact of small diffusion or Mvt

w
 is 

also Markovian in space, which needs to be tested. The computation of these matrices is 
quite intensive. We can only hope that they can eventually be parametrized as a function 
of geological understanding and flow regime. But this requires much work beyond fully 
ascertaining the validity of the proposed method.

4 � Applications

The efficiency of the MAWMA formulation, solved with the WP method described in 
Sect. 3.5, is tested by comparison with the RW and IW methods, described in Sects. 3.3 
and 3.4, respectively. Comparisons are made in terms of mixing and spreading indicators 
in Sect. 4.1, where we also test whether WP results are sensitive to the way matrix Mvt

w
 was 

computed (from RW or IW). In Sect. 4.2, the Markovianity in space is tested by comparing 

(21)ck+1
i
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i
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the RW method with a Markov chain model. For comparisons, we consider the stratified 
velocity distribution v in parallel planes (planar Poiseuille flow)

where vmean is the mean velocity of the distribution, y is the vertical position and a is the 
half distance between the planes. Owing to the horizontal symmetry of the case, we only 
model the half domain y = {0, a} (Fig. 2). We focus on the time evolution, especially at 
times earlier than the dispersion time scale τD, which denotes the typical time for the mac-
rodispersive spreading of the solute.

Moreover, we considered a continuous injection of solute instead of an instantaneous 
injection used by other authors (Bolster et al. 2011; Dentz and Carrera 2007). Simulation 
details are shown in Table 1. The WP was simulated using the KRATOS framework (Dad-
vand et al. 2010). The RW simulations were performed as proposed by Dentz and Carrera 
(2007), using a flux weighted injection at every time step.

4.1 � Statistical Indicators of Mixing and Spreading

Mixing and spreading must be tested. Mixing can be assessed by the global mixing rate 
(i.e., average value of the mixing factor, ∇tcD∇c ). However, Le Borgne et al. (2010) pro-
posed a far simpler and more robust and stable quantification by means of the scalar dissi-
pation rate (Pope 2000), which measures the time derivative of the concentration variance, 
but requires no solute flux at the boundaries. We extend in here (Appendix A) the continu-
ous injection case,

where Ω is the simulation domain, Γ is its boundary and cinj is the injection concentra-
tion. The global mixing rates computed with the three models are plotted in Fig. 3a. Only 
a slight mismatch is observed at the earliest times. Some oscillations are observed at early 

(23)v = (3∕2)vmean

(
1 − (1 − y∕a)2

)

(24)�D =
a2

Dw

(25)�(t) = ∫
Γ

c�v
(
cinj −

c∕2
)
dΓ −

1

2 ∫
Ω

�
�
(
c2
)

�t
dΩ

Table 1   Transport problem parameters and simulation details

Transport problem

vmean 1 m/s Dw 0.5 m2/s cinitial 0 mol/(mwater)3

a 1 m � 0.5 cinjection 1 mol/(mwater)3

Simulation

Δt 4 · 10–3 s

WP IW RW

Nv 30 Nv 10 cunitari 103 particles

2 ⋅ 10−4(mwater)
3

Vw parcel 3.3 · 10–5 (mwater)3 Vw parcel 2 · 10–4 (mwater)3
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times for the RW and WP solutions. These oscillations may be attributed to the fact that 
concentrations are calculated from the particle positions (Fig. 2a) in the IW mesh (Fig. 2b). 
Despite oscillations, the same overall behavior is displayed by all the models.

The global mixing rate typically displays a diminishing monotonous behavior for Dirac 
delta injections (Bolster et al. 2011; Le Borgne et al. 2010). In our case, we observe an initial 
increase, resulting in a bell shape which peaks at 0.1 �D . Thus, two regimes are distinguished. 
At early time, mixing is enhanced in response to the increase in longitudinal dispersion, which 

Fig. 3   a Scalar dissipation rate and b apparent dispersion for continuum injection. Dashed black line and 
yellow line display the analytical solution of the apparent dispersion (Haber and Mauris 1988) and the 
asymptotic dispersion (Aris 1956), respectively
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stretches the contact area between the invading and the resident waters. This stretching phe-
nomenon has already been observed in instantaneous injection (Le Borgne et al. 2013, 2014, 
2015). However, it is the continuous injection what causes the dissipation rate to increase. 
After the peak, mixing decreases as the front approximates macrodispersion regime because 
the concentration becomes smooth. A similar behavior can be observed for finite size initial 
conditions (Kapoor and Kitanidis 1998).

As for dispersion, the adopted continuous injection makes it inappropriate the traditional 
definition (rate of growth of the second spatial moment). Therefore, we computed the spatial 
variance of the concentration gradient distribution instead of the concentration distribution. 
Other methods could have been used including a fit to the 1D analytical solution or correcting 
the spatial second moment with the uniform injection. We integrate vertically the concentra-
tion to obtain its correlation with the x coordinate. The (apparent) dispersion Dapp is

where �2
∇c

 is the variance of the vertically integrated concentration gradient. The analytical 
solution of the temporal dispersion evolution Da (Haber and Mauris 1988) and its asymp-
totic value Dasy (Aris 1956) are also computed.

The results are plotted in Fig.  3b. Although the WP dispersion oscillates (owing to the 
unstructured character of the mesh) a satisfactory agreement is again observed. As in the dis-
sipation rate, at least two different regimes of the solute distribution may be distinguished: 
(a) a linear increase in the variance is observed. This confirms the stretching phenomenon 
described above; (b) an asymptotic macrodispersion regime is attained close to 0.1�D . The 
transition regime roughly coincides with the scalar dissipation rate, suggesting a link between 
both behaviors. Indeed, spreading enhances mixing in the earlier regime. In the later regime, 
solute plume extension is limited since sufficient mixing occurs.

4.2 � Markovianity in Space

Although solute only changes its velocity class because of the mixing process (which is Mark-
ovian in time), we can calculate the transition matrix in space Mvt

p
 (Le Borgne et al. 2008b) 

from the particle RW model. We believe that they are also Markovian in space, which is con-
sistent with (Le Borgne et al. 2008b). We tested the Markovianity by comparing the transi-
tion probabilities with the ones obtained from a Markov chain model. The transition model 
must satisfy the Chapman–Kolmogorov equation (Risken 1996), which reads for the transition 
matrices M(x) of a discrete Markov chain such as

with x, Δx > 0. The latter implies

(26)Dapp(t) =
1

2

�
(
�2
∇c

)

�t

(27)Dasy =
4

210

a2v2

Dw

(28)Da(t) =
2

105
v2�D − 18v2�D

∞∑

n=1

(n�)−6 × exp

(
−(n�)2

t

�D

)

(29)M(x + Δx) = M(x)M(Δx)
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Although the agreement is not exact (Fig.  4), the particles satisfactorily reproduce the 
Markov chain results. We can therefore conclude that mixing is Markovian not only in time, 
but also in space. This result suggests that we can calculate transport using time steps simula-
tions, which are more adequate to model mixing.

5 � Conclusions

We present a new formulation for solute transport in heterogeneous cases, termed MAWMA. 
The formulation aims to reproduce diffusive mixing and dispersion. The formulation is an 
extension of WMA by making the transport state dependent on velocity as well as on time and 
space.

Water parcel models were employed for numerical solution of the proposed equation. Each 
parcel was associated with its centroid, which defines its velocity and position at a given time. 
We tested the velocity transition produced by mixing applying a water transition matrix in 
time Mvt

w
 . This differs from the solute transition matrix in space Mvs

w
 used in the correlated 

CTRW model.
The formulation was tested on a Poiseuille’s stratified flow case. MAWMA was compared 

to WMA and Random Walk methods in terms of global mixing and dispersion. A good agree-
ment was observed. Moreover, mixing shows Markovianity in space even when it is modeled 
with constant time steps. The results suggest that MAWMA will perform well for high hetero-
geneity cases using a matrix Mst

w
 for advection transitions.

Appendix A: Dissipation Rate in Continuum Injection

Several works have contributed to the use of the scalar dissipation rate to measure global mix-
ing (Pope 2000; Le Borgne et al. 2010; Hidalgo et al. 2012; Jha et al. 2011; Nicolaides et al. 
2015). To address the continuous injection case, we start with the basic definition

(30)M(nx) = Mn(x)

(A1)�(t) = ∫
Ω

∇cD∇cdΩ

Fig. 4   Comparison of Parti-
cle Random Walk model and 
Markov model in distance for the 
return probability. The Markov 
model is defined for spatial incre-
ment of x = 0.02
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then we apply Green’s first identity

where n is the unit vector normal to boundary Γ. We substitute the second term of 
the RHS of equation (A2) by using the ADE ∇ ⋅ (D∇c) = �(�c∕�t) + q∇c

We can employ again Green’s first identity to the third term of the RHS

We use the flow equation ��∕�t = −∇q in the fourth term of the RHS and regroup 
the equation

We now consider the inlet boundary condition qcinj = −(qc − D∇c) ⋅ n|Γ

Note that n has a sign opposite to that of the flux because the inlet boundary faces 
backwards. This is why q = −q ⋅ n|Γ . Given the latter and assuming that porosity is con-
stant, we end up with
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