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Abstract

One of the current challenges of the aerospace industry is the exploration of new
lightweighting structures to reduce fuel consumption and limiting the environmen-
tal impact. The use of numerical methods concerning topology optimization tech-
niques allows the obtaining of such weight reduction, also minimizing both design
time and costs, and hence accelerating the design process. Nevertheless, current
structural optimization leads to the apparition of complex shapes and volumes with
unintuitive holes, thus needing the use of additive manufacturing constraints - min-
imum length scales and overhanging - to ensure manufacturability.

Considering the background exposed above, the aim of this project is to study the
feasibility of heuristic designs concerning lightweighting structures, materialized
with additive manufacturing and considering 3D printing constraints. The design
stage will be developed by means of topology optimization techniques, applied to
anisotropic filtering.

The methodology employed has considered all details concerning Computational
Solid Mechanics (CSM) techniques used in structures optimization, as well as addi-
tive manufacturing techniques, different case studies definition and their feasibility
study. More specifically, in the context of CSM, the use of Finite Element Methods
(FEM) in the classical elastic problem is reviewed, as well as current topology op-
timization techniques, so as to implement FEM in optimization algorithms. Thus,
theoretical basis in additive manufacturing techniques are reviewed, along with the
mathematical formulation of length scale and overhang constraints. Lastly, the pro-
gramming stage is performed by previously defining the working environment, con-
sisting in the use of Object-Oriented Programming within the git Version Control
System, and hence establishing the computational domain definition for all cases,
the meshing process and the simulation setup.

In the end, the present project has accomplished the main objectives, giving a posi-
tive answer to the creation of lightweighting structures and fulfillment of 3D print-
ing constraints. Indeed, FEM combined with topology optimization techniques has
led to the obtaining of optimized designs, fulfilling an objective function and a set
of constraints, considering both design variables approaches, density and level set.
Besides, an additional shape functional has been defined as a penalty contribution
to the main cost function in order to fulfill 3D printing constraints - the anisotropic
perimeter - being the evolution of the standard isotropic one, both applied to total
and relative perimeters. This shape functional self-penalizes length scale constraints
and keeps control in overhanging phenomena by orienting the topologies with the
definition of a virtual anisotropic stiffness matrix. Results obtained show that the
apparition of local features with small length scales has been avoided when includ-
ing either isotropic or anisotropic perimeter as a penalty term. Furthermore, vertical
tendency orientation of topologies has been generally obtained with the anisotropic
cases, along with penalization of horizontal features.

Overall, this project has become clearly relevant for the exploration of new lightweight-
ing structures, achieving weight reduction with topology optimization techniques.
Further exploration remains in the course of PhD professionalization, specially when
considering phase-field models, high-performance computing and large-scale opti-
mization inside the non-linear regime.
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Resumen

Entre los retos actuales de la industria aeroespacial se halla la exploración de nuevas
estructuras ultraligeras con la finalidad de reducir el consumo de combustible y
limitar el impacto ambiental. El uso de métodos numéricos mediante técnicas de
optimización topológica permite obtener dicha reducción de peso, minimizando el
tiempo de desarrolo del diseño y sus costes. Sin embargo, los últimos avances en
optimización estructural llevan a la aparición de formas complejas y volúmenes con
agujeros poco intuitivos. Por lo tanto se requieren limitaciones por fabricación adi-
tiva (mínimas longitudes de escala y overhaning) para asegurar fabricación.

Con los antecedentes previamente expuestos, el propósito del presente proyecto es
el estudio de la fiabilidad de diseños heurísiticos para estructuras ultraligeras, mate-
rializados mediante fabricación aditiva y considerando restricciones por impresión
3D. La fase de diseño se desarrollará mediante técnicas de optimización topológica,
aplicados a filtración anisotrópica.

La metodología empleada considera todos los detalles del uso de las técnicas de
Computational Solid Mechanics (CSM) para optimización estructural, así como técni-
cas de fabricación aditiva, la definición de diferentes casos de estudio y su análisis de
fiabilidad. Concretamente, en el contexto de CSM se revisa el uso de los Métodos de
Elementos Finitos (FEM) en el problema elástico, junto a las técnicas de optimización
topológica actuales, para lograr la implementación de FEM en algoritmos de opti-
mización. Posteriormente se revisa la base teórica de técnicas de fabricación aditiva,
junto a la formulación matemática de las restricciones por mínima escala y overhang-
ing. Finalmente, se procede a la fase de programación, donde se define el dominio
computacional para cada caso de estudio, el proceso de mallado y la configuración
de la simulación.

Finalmente, el presente proyecto ha cumplido con los objetivos principales, dando
respuesta positiva a la creación de estructuras ultraligeras y cumplimiento de re-
stricciones por impresión 3D. En efecto, la unión de FEM con las técnicas de opti-
mización topológica ha llevado a la obtención de diseños optimizados, verificando
una función objetivo y un conjunto de restricciones, y considerando dos variables
de diseño: density y level set. Además, se ha definido una función adicional que con-
tribuye como penalización a la función objetiva principal - el perímetro anisotrópico
-, con la finalidad de cumplir las restricciones por impresión 3D, siendo una evolu-
ción del perímetro estándar y ambos aplicados para perímetros totales y relativos.
Dicho funcional auto penaliza longitudes de escala y mantiene control en fenómenos
de overhanging orientando las toplogías con la definición de una matriz de rigidez
anisotrópica virtual. Los resultados obtenidos muestran cómo se evade la apari-
ción de topologías de baja escala, empleando tanto el perímetro isotrópico como el
anisotrópico. Además, las topologías adquieren una tendencia vertical en su ori-
entación para los casos anisotrópicos, junto a la penalización de topologías horizon-
tales.

En conjunto, el proyecto ha resultado ser relevante para la exploración de nuevas
estructuras ultraligeras, obteniendo reducción de peso mediante técnicas de opti-
mización topológica. Se requiere más investigación en el curso de una tesis doctoral,
especialmente considerando modelos de phase-field, high-performance computing y op-
timizaciones de larga escala dentro del régimen no lineal.
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Chapter 1

Objectives and scope of the project

In this project all the knowledge acquired throughout the Master’s Degree in Aerospace
Engineering is gathered in order to complement it in the study of lightweighting
structural design considering 3D printing constraints, also including the program-
ming stage and its feasibility study. Therefore, the level of detail in which the project
will be defined shall be initially presented in this section.

On one hand, the aim and scope definition will give an overall perspective regarding
all work packages that will be developed in the project, along with the correspond-
ing level of detail studied. On the other hand, the project justification will define the
reason to carry out all the work by taking into account where the innovative factor
is headed, ending with a brief definition of basic requirements that will define the
most important specifications to fulfill during the development of the project.

1.1 Aim

The aim of this project is to study the feasibility of heuristic designs concerning
lightweighting structures, materialized with additive manufacturing and consider-
ing 3D printing constraints. The design stage will be developed by means of a fi-
nite element method based code, specifically applied to topology optimization tech-
niques. The existing base algorithm will be initially reviewed, so that new code will
be added in the field of topology optimization applied to anisotropic filtering.

1.2 Scope

With the purpose of defining properly the scope all main elements in which the
project is divided shall be identified. From this design and feasibility study, the
following aspects are found:

• The details concerning which Computational Solid Mechanics (CSM) tech-
niques will be employed throughout structures optimization.

• Additive manufacturing techniques.

• Case studies definition.

• Programming stage.
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• Feasibility study.

• Time and costs management.

1.2.1 Computational Solid Mechanics

The techniques employed in the context of CSM will gather the following topics:

• Use of Finite Element Method (FEM) algorithms in the field of the classical
elastic problem.

• Theoretical basis review of Topology Optimization techniques: density and
level set, gradient formulation, filtering, optimizers, methods, shape function-
als and interpolation schemes.

• Isotropic and anisotropic perimeter constraints within topology optimization
simulations.

• Finite Element implementation in Topology Optimization techniques: unfitted
mesh, incremental scheme and the Diffusion-Reaction equation.

• Optimization algorithms.

1.2.2 Additive manufacturing

Since the project is dealing with 3D printing constraints, a review of the state of
art concerning additive manufacturing must be carried out in order to include its
basis inside the code’s mathematical formulation, specifically in the aspects depicted
below.

• Theoretical basis review in additive manufacturing techniques.

• Length scale constraints.

• Overhang constraints.

1.2.3 Case studies definition

Although topology optimization can be employed for any generic structure, sub-
jected to a set of forces and displacements constraints, some case studies are defined
such that the feasibility of the implemented code can be assessed through weight
minimization criteria and fulfillment of additive manufacturing constraints, from
all possible candidates. The case studies considered are the following:

• Cantilever beam in 2D (benchmark case).

• Bridge in 2D.

• Arch in 2D.

• Microstructure case in 2D.
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1.2.4 Programming stage

The programming stage will represent the most durable part of the project, since it
defines the code that will be developed from scratch regarding structural optimiza-
tion within anisotropic filtering. The following aspects will be assessed, which in
part includes some theoretical background (programming environment) and thus
the programming stage itself.

• Programming environment. Definition of Object-Oriented Programming, Uni-
fied Modeling Language utility, test-driven development philosophy, code lan-
guage and git environment. A detailed description of the whole environment
is exposed in Appendix A.

• Computational domain definition for all cases.

• Meshing process.

• Simulation setup and code programming.

1.2.5 Feasibility study

Once the code is finished, with the corresponding results of all simulations devel-
oped, the following points are assessed in order to decide whether the implemented
code would have been able to virtually produce a lightweighting structure fulfilling
3D printing constraints.

• Analysis of results:

– Code verification with pure perimeter.

– Objective functions minimization.

– Fulfillment of additive manufacturing constraints.

• Numerical study: a comparison between different numerical methodologies.

1.2.6 Time and costs management

Finally, inside the field of the project management part, a detailed budget of all the
work developed will be prepared, taking into consideration both human and addi-
tional (related with software license costs) resources. Besides, the project impact will
be assessed.
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1.3 Justification

The exploration of new lightweighting structures is the current challenge in the
aerospace industry, mainly due to the minimization of the aircraft’s total weight
in order to reduce fuel consumption and, therefore, achieving a limitation of the
environmental impact, when it comes to green aviation. Nowadays, the main goal
consists in reducing fuel emissions up to 50% by 2050, which is directly related with
weight reduction on the structure, leading to an increase of the energy efficiency,
as long as it did not imply the initial mechanical behaviour and performance of the
structure detriment. Thus, lightweighting designs are currently achieved by means
of structures with low-density materials or structures with less material, hence jus-
tifying the importance of topology optimization techniques. [1]

Moreover, the use of numerical methods concerning topology optimization tech-
niques also allows the minimization of both design time and costs. In recent years,
it has been an increase of industrial companies from a wide range of engineering
areas that employs numerical methods to accelerate the preliminary design stage
of a determined project. In fact, the use of commercial software inside the field
of Computational Fluid Dynamics and Computational Solid Mechanics is useful to
take decisions quickly regarding the evolution of the design rather than study such
decisions experimentally, prior to the final prototype manufacturing. The addition
of topology optimization techniques in these powerful numerical methods just up-
grade this feature completely by allowing companies to obtain a final product that,
apart from presenting the capabilities initially defined, these are obtained with a
complete minimization of the material in the structure, hence implying a noticeable
reduction of the manufacturing cost.

Nonetheless, current structure optimization leads to the apparition of complex shapes
and volumes with unintuitive holes. Here is when it comes the use of additive man-
ufacturing techniques to test these new designs, since functional components are
currently fabricated with these techniques in a quick way and efficiently, from a
CAD model that is sliced into a set of layers. During the manufacturing process both
the geometry creation and part functionality will be crucial, mainly due to the lack
of flexibility during overhanging regions extrusion, thus introducing the use of 3D
printing constraints for anisotropic materials. This shall complement the optimiza-
tion algorithm to propose compatible solutions for 3D printing processes. Additive
manufacturing also would allow the customer to cut down the manufacturing time
cost by process planning reduction. [2]

Topology optimization can also be complemented with the micro-structured mate-
rials philosophy. Microstructures present periodical material disposition such that
high performance is achieved with minimum mass. Nevertheless, such properties
are mainly defined through material cells topologies, and therefore current research
is guided towards finding an effective method for microstructures optimization, us-
ing optimization methods such as homogenization, solid isotropic material with pe-
nalization (SIMP), evolutionary structural optimization or the level set method. [3]

At this point, apart from the topology optimization techniques justification itself, the
finite element method base algorithms employed within these techniques also have
a clear motivation in current research developments. Indeed, the Finite Element
Method is a powerful numerical tool to solve a mathematical formulation of a phys-
ical problem, subjected to a set of hypotheses, now applicable to the virtual creation
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of heuristic structural designs, depending on manufacturing conditions and con-
straints. However, FEM algorithms is commonly found in physical problems where
the unknowns and external excitations are linked through a coefficient matrix that
only depends on independent properties as it occurs in structural cases, but unlike
it happens it fluid flow problems, where the coefficient matrix of the fluid shall de-
pend on the own unknowns of the problem, relatively hard to implement and hence
showing the reason of using Finite Volume Methods instead, with a lower level of
complexity.

Finally, the last motivation of this project consists in the use of the Object-Oriented
Programming technique to implement all the required code, since it represents an ex-
cellent way to get familiar with collaborative projects where programming tools are
used, such as the Git Environment. With all exposed, gathering these programming
techniques and topology optimization methods, the work exposed in this project
would allow the further exploration of future lines of research in the course of PhD
professionalization.

1.4 Requirements

The main key requirements that the programmed code must satisfy are the follow-
ing:

1. Able to obtain an optimized lightweighting structure, given a reference one,
minimizing the corresponding cost function.

2. Able to satisfy all constraints imposed, such as additive manufacturing con-
straints.

3. Able to adapt to any type of initial structural shape.

4. Able to be used to 2D problems.

5. Able to compute the corresponding result with minimum computational cost.

6. Able to be combined with further improvements of the generic code repository.
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Chapter 2

Lightweighting structures design
with topology optimization
techniques

In this chapter all the numerical basis required to design lightweighting structures
considering additive manufacturing constraints is presented. Indeed, the possibil-
ity to obtain a structure with less volume and within an optimized shape, given
a reference one, and by means of a numerical simulation is the main challenge of
this project. Nevertheless, it is also required that the final design ensures manufac-
turability. Therefore, both minimum length scales and overhang constraints will be
included inside the numerical optimization algorithm.

More specifically, the use of Finite Element Methods (FEM) in linear static elastic
problems is reviewed, so as to couple this technique to the field of topology op-
timization. Hence, the mathematical formulation of these techniques is exposed,
along with typical design variables employed and different shape functionals serv-
ing as an objective function or a constraint of the optimization problem. Later, the
numerical methodology, as well as interpolation schemes, regularization of the de-
sign variable and the definition of shape and topological derivatives will be pre-
sented. Finally, all types of solvers available inside the field of topology optimization
are exposed.

2.1 Introduction to topology optimization

Prior to define all the theoretical basis regarding topology optimization techniques,
in Appendix B the revision of the physical and mathematical formulation of the
Finite Element Method is provided.

2.1.1 Mathematical formulation

Topology optimization is a numerical approach based in Finite Element Method al-
gorithms with the purpose to design new structures on any scale. Such techniques
consider a reference or initial non-optimized structure from which new designs will
be created, taking into consideration a set of constraints and the objective function
governing the optimization case. Although these new designs would still keep sim-
ilarity with the non-optimized structure, the weight will be reduced by the creation
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of voids near to the less stressed areas of the structure, allowing the material to still
be able to withstand the same distribution of external forces. Therefore, structures
with less mass and accomplishing with the same capabilities would be computation-
ally created. Besides that, the assessment of new materials, which would be useful
candidates for the new design, may also be designed via Topology Optimization
techniques.

Topology optimization deals with an optimization problem, thus an objective func-
tion and a set of constraints are required to formulate the mathematical model. Nev-
ertheless, as the system is always in equilibrium for any possible optimized can-
didate, the structural matrix equation will be fulfilled. The general mathematical
formulation is shown

PTO :


min J(χ, u)

s.t K(χ) · u = F(χ)
gi(χ, u) ≤ 0


J → Objective (or cost) function

χ → Solid/void vector
u → Displacement vector

K → Global stiffness matrix
F → Force vector

gi → Problem constraint.

(2.1)

Although there is a large variety of objective functions to discuss (shape functionals),
as well as constraints, the first problem usually defined inside the field of topology
optimization is known as the minimum compliance problem (maximum global stiff-
ness) under simple resource constraints [4].

Consider a mechanical continuum element defined inside a domain Ωmat, which is a
subset of a larger reference domain Ω in R2 or R3. The reference domain is defined
to allow the original definition of applied loads and boundary conditions, and it
will be enclosed by a boundary. Hence, referring to Ω, we can define the optimal
design problem as finding the optimal choice of the characteristic function χ that
parametrizes Cijkl(χ), variable over the domain. The bilinear form and the linear
form of the equilibrium equation is introduced,

a(u, v) =
∫

Ω
Cijkl(x)ϵij(u)ϵkl(v) · dΩ (2.2)

l(u) =
∫

Ω
du · dΩ +

∫
ΓT

tu · dS. (2.3)

Besides, we need a limit of resource. For instance, this can be expressed as
∫

Ωmat
1dΩ ≤

V, thus indicating at which extent the volume shall be reduced during the heuristic
optimization. Therefore, considering the finite element discretization of the domain,
the minimum compliance problem (MC) takes the final form exposed in Equation
(2.4).

PMC :


minx f T · u

s.t K(x) · u = F(x)
x ∈ [0, 1]∫

Ωmat
1dΩ ≤ V

 (2.4)
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2.1.2 Density vs Level Set approach

In the design of the optimized topology from a given structure, the placement of
material in space must be determined, such that the classification of nodes into ma-
terial points or void points could be carried out (black-white rendering of an image).
Hence, considering the reference domain Ω, the optimal subset Ωmat of material
points must be determined. In mathematical form, the set of admissible elasticity
matrices consists of those tensors satisfying

Cijkl = IΩmat C
0
ijkl , IΩmat =

{
1 if x ∈ Ωmat

0 if x /∈ Ωmat

}
, (2.5)

where C0
ijkl is the elasticity matrix for the given material distribution, thus defin-

ing Cijkl [4]. Nevertheless, a distributed, discrete valued design problem has been
formulated, and this presents some incompatibilities when considering differential
calculus operators near the boundary between black and white values. Therefore,
the characteristic function χ is usually replaced by its continuous counterpart ρ, that
may be understood in turn as a density of the domain.

Density approach. One popular possibility and efficient to penalize intermediate
values of density is the so-called Solid Isotropic Material with Penalization (SIMP-
model), which is defined in Equation (2.6). The density interpolates between the
material properties 0 and the reference elasticity matrix as

Cijkl = ρ(x)pC0
ijkl , p > 1∫

Ω ρ(x) · dΩ ≤ V
. (2.6)

In SIMP, a value of p > 1 is chosen so that intermediate densities (grey colors) are un-
favourable in the optimal design. When the volume constraint is activated through-
out the problem resolution, SIMP proposes a value of p ≥ 3 concerning the auto-
penalization phenomenon. Moreover, it exists a large variety of methods apart from
SIMP, applied to density as design variable and considering both constrained and
unconstrained problems.

Level set approach. Nevertheless, there are a second group of methodologies related
to the concepts of shape and topological derivative, which are used to monitor the
so-called level set design variable. For instance, and as it will be discussed later, the
Hamilton-Jacobi and SLERP are some of the methods applied to level set [5].

The level set ψ(x) is a continuous function that defines the classification of a nodal
material into Ωmat or void depending on its sign, thus avoiding the apparition of
grey values which are present in density as design variable. The level set defines the
black/white characteristic function χ, as depicted in Equation (2.7).

χ = 1 − H(ψ) =

{
1 if ψ ≤ 0
0 if ψ > 0

}
(2.7)

where H(ψ) represents the Heaviside function. The minimum compliance problem
within level set as design variable is exposed in Equation (2.8).
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PMC :


minχ,u f T · u

s.t K(χ) · u = F(χ)
χ ∈ {0; 1}

 . (2.8)

Finally, a reduced formulation can also be proposed if a relationship between u =
f (χ) might be established within the equilibrium equation depending on the reso-
lution scheme, thus defining this formulation in Equation (2.9).

PMC :


minχ f T · u(χ)

s.t K(χ) · u(χ) = F(χ)
χ ∈ {0; 1}

 (2.9)

2.1.3 Shape functionals

Although the minimum compliance problem is a common topology optimization
case applied to structures, there are a large variety of different objective functions
and constraints that might be considered for different optimization processes. Among
them, below the most common ones to consider are provided. [6]

Volume

This functional is generally used as constraint within the minimum compliance prob-
lem in order to reduce the new design weight and cost. In Equation (2.10) the defini-
tion of volume constraint is depicted, where Ω is the whole reference domain, ρ(x)
the distribution of continuous material density between 0 and 1 on the reference
domain and V the desired geometric volume.

V ≥
∫

Ω
ρ(x) · dΩ (2.10)

Compliance

As it has been presented at the beginning of current section, the minimum com-
pliance problem is typical among researchers due to its compatibility with current
algorithms and accuracy of results. Given the external nodal force vector and the
displacement vector of the finite element system, the compliance is obtained as

c = f T · u (2.11)

where u is the solution of the equilibrium equation.

Perimeter

The perimeter is usually employed as an additional contribution to the compliance
objective function, this is
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J = c + α · P (2.12)

where α ∈ [0, 1] is some parameter that defines the degree of perimeter contribution
into the optimization problem (typically, α ≃ 0.1). By including some dependence on
the perimeter in the minimum compliance problem, the formation of small geomet-
rical scales in beams is avoided, thus guaranteeing manufacturability. The perimeter
is defined as

P =
1
2ϵ

∫
Ω
(1 − ρϵ)ρ · dΩ (2.13)

where ϵ stands for the minimum mesh size. The perimeter definition also penalizes
gray regions defined by the density design variable ρ and its regularized (filtered)
version ρϵ, since near these values the perimeter function is maximum.

Orthotropic effective properties

When dealing with microstructures, such as a set of fibers embedded by a matrix,
the homogenized two-dimensional elasticity tensor C for orthotropic materials in
matrix form must be considered, as [7]

C =

C1111 C1122 C1112
C1122 C2222 C2212
C1112 C2212 C1212

 . (2.14)

For the case of orthotropic symmetry, the effective properties - Young’s, bulk and
shear moduli, along with the Poisson’s ratio - are related explicitly to the compo-
nents of the compliance tensor expressed in matrix form C−1, as

C =

C−1
1111 C−1

1122 0
C−1

1122 C−1
2222 0

0 0 C−1
1212

 =

 1
E1

− ν12
E1

0
− ν21

E2

1
E2

0
0 0 1

G

 (2.15)

where E1, E2 are the effective Young’s moduli along orthotropic main directions and
G is the effective in-plane shear modulus. Since the elasticity matrix is a symmetric
matrix, the compliance matrix is also a symmetric one, thus ν12 and ν21 Poisson’s
ratio satisfies

ν21

E2
=

ν12

E1
. (2.16)

Therefore, some shape functional defined as h(C) - participating in the cost function
as J(Ω1) = h + λ |Ω1|

V (where λ is a fixed Lagrange multiplier which imposes the
volume ratio constraint) - shall be defined in order to obtain microstructures with
optimized effective properties. This is

h(C) = αT
h C−1βh (2.17)
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where αh and βh are two vectors which define the contribution of effective properties
to be minimized.

Stress norm

The stress is usually obtained from the displacement vector computed in the finite
element system, and it is usually quantified with Von Mises criteria. Stress based
optimization cases imply the treatment of local quantity and also highly nonlinear
values regarding the design variables. One solution to assess these difficulties con-
sists in transforming the stresses to a global measure [8]. Two global stress functions
are found in the literature - the Kreisselmeier-Steinhauser (KS) and the Park and
Kikuchi (KK) functions -, which are defined in Equations (2.18) and (2.19), respec-
tively.

GKS =
1
q

ln
N

∑
i=1

e
q

fVM,i(σ)
fVM,max(σ) (2.18)

GKK =

[∫
Ω

(
fVM,i(σ)

fVM,max(σ)

)q

· dΩ
] 1

q

(2.19)

where fVM is the Von Mises stress function and q a parameter that defines the differ-
ence between the original function and the global approximation.

Eigenvalues

The consideration of inherent free vibrations within the optimal structure is also a
crucial topic to assess, for instance when considering aeroelastic phenomena. Now,
it is wanted to maximize the objective function, defined as the first or fundamental
eigenvalue of the structure, max (λmin). The eigenvalue problem typically reads to
the expression as find (λ, u) such that [9]

(K(x)− λM(x)) · u = 0 (2.20)

2.1.4 Filtering

The filtering problem consists in the replacement of the elastic properties depen-
dence on the density based characteristic function ρ by the dependence of a filtered
and smooth version, defined as (F ⊛ ρ), and related with the regularized density
ρ̂. Therefore, by defining a filter operator, the unfiltered field of the density design
value would lead to a purely black and white design [10].

The filter operator is applied at any point of the domain and it is related with a
characteristic radius of filter range, R f > 0. The filter function F is defined such that:

• The filter acts inside a domain of infinite set of functions which first derivative
is continuous in R2.
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• Supp(F) ⊂ BR. I.e, all space coordinates related to function F such that F ̸= 0
are a subset of the open ball of centre 0 and radius R f .

•
∫

BR
F · dΩ = 1

The filtering operation is defined as the convolution product of F with the character-
istic function, as seen in Equation (2.21).

(F ⊛ ρ)(x) =
∫

R2
F(x − y) · ρ(y) · dy (2.21)

Thus, the regularized density reads to a smooth and differentiable variable. Lastly,
the filter function F(x) can be defined with several options, employing mainly those
previously studied by Amstutz, Dapogny and Ferrer. [11]

The Kernel operator P0

The first proposed operator P0 is the orthogonal projection from the original char-
acteristic function space L2(D) into the subspace of regularized density V0, as seen
in

P0h = ∑
k

1
|Tk|

(N0
k , h)L2(D)N

0
k (2.22)

where Tk is each of the triangles conforming a triangular mesh and N0
k is each of the

functions that N0
k ≡ 1 on Tk and Nk ≡ 0 on Tk′ , k ̸= k′. This filter is understood as a

self-adjoint.

The Kernel operator P1

Another operator P1 : L2(D) → V0 is defined by Equation (2.23).

P1h =
K

∑
k=1

(Qk, h)L2(D)N
0
k (2.23)

where Qk is defined as

Qk =
1

∑3
i=1(N1

j , 1)L2(D)

3

∑
i=1

N1
j . (2.24)

This filter is not self-adjoint from the original domain into itself, but allows to take
into consideration the neighborhood of any finite element within the structural do-
main.

The PDE Filter

Finally, the PDE operator Lell
τ : L2(D) → V0 is defined in Equation (2.25).
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Lell
τ = P0qτ,h (2.25)

where qtau,h is precisely defined as

qτ,h =
J

∑
i=1

(
J

∑
j=1

Rij(N1
j , h)L2(D)

)
N1

i , where R = (ϵ2K + M)−1, (2.26)

solution of a structural Partial Differential Equations set, where K and M are the
stiffness and mass matrices, respectively. This filter is not self-adjoint operator from
the original domain into itself, and its smoothing effect is controlled at the same time
by the mesh size. Besides, it is expected to obtain large grayscale areas by using the
PDE filter.

2.1.5 Methods

Prior to define the algorithm of all different optimizers and solvers that will rep-
resent the backbone for the topology optimization techniques, below some general
definitions to be considered are exposed.

Shape and topological derivatives definition

The solid shape embedded in a fixed computational domain, and defined within a
black-and-white design, is optimized either by considering a steepest descent heuris-
tic or based on the notions of shape and topological derivatives. This will represent
also a tool complementary with the filtering process, useful when a finer mesh is
employed and thus smaller scales shall appear during the optimization process and
these must be avoided in order to ensure manufacturability. Under these assump-
tions, the relaxed and filtered version of an optimal design problem is consistent
with the original black-and-white shape and topology optimization problem. Specif-
ically, if the gradient of regularized cost function of the topology optimization prob-
lem is computed in the whole computational domain, hence it shall converge to the
known shape derivative of J (when restricted to the boundary) or to its topological
derivative (when restricted to inside the domain). [11]

Shape derivative. The shape derivative of the cost function with respect to the char-
acteristic function DS J(χ) gives the information of how the cost function increases
by moving the internal boundaries in such a way that holes become greater. Let θ
indicate the magnitude of change of the boundary. Therefore, a helpful Taylor expan-
sion expression gives us an idea of how the shape derivative works,

J1(χ) = J0(χ) + θ · DS J(χ) (2.27)

where J1 and J0 represents the cost function after and before the boundary variation,
respectively. This expression reads to a linear approximation of the variation of the
cost function for small changes in the boundary. Moreover, the precise definition of
the shape derivative is shown in Equation (2.28), proposed by Amstutz, Dapogny
and Ferrer as [11]
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DS J =
∫

Γ gS
Ωθ · n · ds

where gS
Ω = γΩ∇ΓuΩ · ∇ΓuΩ −

(
1

γΩ

) (
γΩ

∂uΩ
∂n

)2
+ l.

(2.28)

Topological derivative. The topological derivative of the cost function with respect
to the characteristic function DT J(χ) gives the information of how the cost function
increases by inserting a new infinitesimal hole in some black region, without moving
the boundaries (i.e changing the topology of the design). If one lets θ to indicate the
magnitude of the hole insertion, the same Taylor expansion than in Equation (2.27)
can be used to define analogously how the cost function changes in function of θ and
DT J.

More precisely, considering some function f (ϵ) such that f (ϵ) → 0 (for instance,
f (ϵ) = πϵ2), one defines preliminarily the topological derivative as shown in Equa-
tion (2.29) [12].

DT J = lim
ϵ→0+

J1(χ)− J0(χ)

f (ϵ)
(2.29)

For a given Young’s modulus and Poisson’s ratio of matrix Ωϵ\B̄ϵ and the inclusion
Bϵ, represented as Em, νm and Ei, νi, respectively, hence a fourth-order polarization
tensor is defined as

P = p1I + p2 I ⊗ I. (2.30)

Therefore, the topological derivative at some point is defined as DT J = σ : P :
∇su. Again, Amstutz, Dapogny and Ferrer proposed the precise definition of the
topological derivative,

DT J = −(γ1 − γ0)k(χ)∇uΩ(x) · ∇uΩ(x) + l ∀ x ∈ Ω(χ). (2.31)

Finally, both derivatives have some properties at the optimal point of the design,
useful for developers to propose strategies for solvers definition. These properties
are shown in Equation (2.32).


DT J ≤ 0 if χ = 1
DS J = 0 if x ∈ Γ
DT J ≥ 0 if χ = 0

 (2.32)

Density interpolation schemes

Regarding the use of density as design variable approach, it was mentioned pre-
viously that intermediate values (grey region) must be penalized, focusing on low
density values rather than larger ones. These strategies are known as interpolation
schemes and in the literature we found mainly two approaches: the SIMP and SIMP-
ALL schemes. [6]

The so-called Solid Isotropic Material with Penalization (SIMP) method auto-penalizes
the material properties as shown in Equation (2.33).
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Cijkl = ρ(x)pC0
ijkl p > 1 (2.33)

Typically, the most common heuristic sets p ≃ 3 to give accurate results. Never-
theless, it is also common to compute the penalization factor according the Hashin-
Shtrikman (HS) bounds for two-phase materials accomplishment, as shown in

p(ν) = max
{

2
1 − ν

,
4

1 + ν

}
. (2.34)

Moreover, SIMP-ALL material interpolation (proposed by Ferrer) is based on the in-
terpolation between the upper bound (matrix) and lower bound (void inclusion) of
Hashin-Shtrikman bounds, depicted as (µ+, κ+) and (µ−, κ−), respectively. This ap-
proach employs the topological derivative to compute a rational function (see Equa-
tion (2.35)) which interpolates µ and κ in function of the density and some coeffi-
cients that shall be determined assessing a set of constraints.

κ(ρ) = a2ρ2+a1ρ+a0
b1ρ+1

µ(ρ) = c2ρ2+c1ρ+c0
d1ρ+1

(2.35)

κ(1) = κ+ κ(0) = κ−

µ(1) = µ+ µ(0) = µ−

κ′|ρ=1 = DT J+ κ′|ρ=0 = DT J−

µ′|ρ=1 = DT J+ µ′|ρ=0 = DT J−
(2.36)

2.1.6 Optimizers

Unconstrained solvers

Unconstrained solvers deal with a minimization problem with no additional con-
straints besides both box constraints and final volume fraction achievement. The
most common algorithms employed to solve these problems is the steepest descent
algorithm, so as to find a local optimum with exploitation of the neighborhood of
solutions, rather than exploration.

The steepest descent solver will try to improve a starting solution iteratively, since
we will try to find the element of the neighborhood of the solution with best value for
the cost function at each step. Once we arrive to some step where the cost function is
not reduced by exploring the whole neighborhood, thus the last value of the design
variable is selected as the local optima at this point of the topology optimization
process.

Consider the minimization problem

PUS :
{

minx f (x)
}

x ∈ Rn (2.37)

clearly, the optimality condition is achieved when ∇ f (x∗) = 0, where the gradient
also is defined inside Rn. Therefore, the steepest descent algorithm at step k + 1 is
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depicted in Equation (2.38), after defining the use of a line search parameter t enough
small to ensure the descent process.

xk+1 = xk − t · ∇ f (xk) (2.38)

Inside the field of topology optimization, three unconstrained solvers are found.
First of all, the known Projected Gradient is a steepest descent based heuristic em-
ployed during optimization processes with density as design variable. Specifically,
this solver ensures compliance with box constraints by adding an infinite penaliza-
tion when ρ is larger than 1 or less than 0,

minρ f (ρ) + δ[0,1](ρ). (2.39)

Furthermore, the steepest descent algorithm is slightly modified by imposing alter-
nating direction heuristic, as depicted in Equation (2.40).

ρk+1 = ρk − t · ∇ f (ρk)
ρk+1 = max(0, min(1, ρk+1))

(2.40)

Moreover, the SLERP is another unconstrained optimizer usually employed in topol-
ogy optimization processes, but using now the level set as design variable. Here, the
term topological derivative DT J(x) is recovered, since this could be directly related
with the level set due to the nature of its sign in function of the characteristic func-
tion values, at the optimality condition (i.e DT J(x) ∥ ψ). For instance, by taking
||ψ|| = 1, hence a fixed point algorithm is proposed,

ψk+1 = αkψk + βkDT J(x(ψk))
where αk, βk are taken s.t ||ψ|| = 1.

(2.41)

During the monitoring of convergence between the level set function and the topo-
logical derivative, a parameter θ is defined as the angle between ψk and DT J(x(ψk)),
which must tend to zero.

Finally, the Hamilton-Jacobi optimizer is the third unconstrained solver, which also
uses the level set as design variable. Now the term shape derivative DS J(x) is recov-
ered in order to be used as the gradient which is multiplied by the line search factor,
as exposed in Equation (2.42).

ψk+1 = ψk − t · DS J(xk) (2.42)

PDE constrained solver

The PDE constrained optimizer is an extension to constrained optimization prob-
lems. It deals with the resolution of the monolithic problem governed by the density
and the displacement vector as design variables, in the particular case where the
minimization statement is a PDE Constraint Optimization Problem, meaning that
given some field the density or the displacement vector, the other one can be com-
puted. Let a(ρ, u, v) and l(v) represent the variational formulation for the internal
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and external forces of the equilibrium equation, respectively. Thus, the monolithic
problem formulation reads as

PMC :


minρ,u l(v)

s.t a(ρ, u, v) = l(v)
0 ≤ ρ ≤ 1

 . (2.43)

Nevertheless, a canonical formulation is obtained by transforming previous formu-
lation into a reduced one, imposing a relationship u = u(ρ). Under this assumption,
the adjoint problem formulation is employed in order to compute the gradient of the
cost function and therefore to propose a gradient-based algorithm.

Consider Equation (2.44), where the adjoint problem is defined as

{
minx,y J(x, y)

s.t A(x) · y = b(x)

}
→ with A invertible →

{
minx J(x, A−1(x) · b(x))

}
. (2.44)

In order to solve the minimization problem, the gradient computation of J is defined
as

∇x J =
∂J
∂x

+
∂J
∂y

∂y
∂x

. (2.45)

By manipulating with elementary calculus the derivative ∂y
∂x , one gets the expression

depicted in

∂y
∂x

= A−1(x) ·
[
−∂A(x)

∂x
A−1(x)b +

∂b(x)
∂x

]
. (2.46)

Combining all expressions above, the gradient of J is completely formulated in
Equation (2.47) in function of a new parameter p.

∇x J =
∂J
∂x

+ p ·
[
−∂A(x)

∂x
y +

∂b(x)
∂x

]
with A(x)p =

∂J
∂y

(2.47)

Finally, below is exposed the whole algorithm of the PDE constrained optimizer.

1. Compute the state, primal variable y - Equation (2.48).

A(x) · y = b (2.48)

2. Solve the adjoint - Equation (2.49).

A(x) · p =
∂J
∂y

(x, y) (2.49)

3. Compute the gradient of J - Equation (2.50).
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∇x J =
∂J
∂x

+ p ·
[
−∂A(x)

∂x
y +

∂b(x)
∂x

]
(2.50)

4. Update x - Equation (2.51).

xk+1 = xk − α · ∇J with α s.t J(xk+1) < J(xk) (2.51)

General constrained solvers

Constrained solvers deal with a minimization problem with the inclusion of addi-
tional constraints that the design variable must fulfill, i.e c(x) = 0. This new set of
equation justifies the use of Lagrange multipliers to solve the minimization prob-
lem. In fact, although the Lagrange factors are not the unkowns of interest for us,
we will need to compute them in order to cover the whole solution of the system.
This phenomenon is called the dual problem and it is presented in Equation (2.52).
A parametrization of objective function f with the constraints and Lagrange multi-
pliers is presented.

{
minx f (x)

s.t c(x) = 0 (λ)

}
→ D(λ) = min f (x) + λT · c(x) = min L(x, λ) (2.52)

where L(x, λ) is usually known as the Lagrangian. We will want to minimize the
Lagrangian in function of the design variable and later to maximize the resulting
expression for λ, since this implicitly allows to fulfill the constraints,

max(D(λ)) = maxλ minx f (x) + λT · c(x)
∂L
∂λ ≡ ∂D

∂λ = c(x) = 0
. (2.53)

The optimum λ∗ obtained will give the information of how important is the con-
straint. Finally, in Equation (2.54), it is depicted the optimality condition that must
be fulfilled in the topology optimization process. Besides, the expressions for the
evolution of design variables and Lagrange multipliers are exposed

∂L
∂x = ∂ f

∂x + λ ∂L
∂x = 0 Primal Opt.Cond.

∂L
∂y = c(x) = 0 Dual Opt. Cond.

(2.54)

xk+1 = xk − t · ∂L
∂x (xk, λ) s.t L(xk+1) < L(xk)

λk+1 = λk + c(xk) s.t |c(xk+1)| < |c(xk)|
. (2.55)

Inside the Swan’s git repository, four types of constrained solvers are found as shown
in Table 2.1. The first one, Augmented Lagrangian, is simultaneously divided into
two variants: Alternating Primal-Dual and Dual Nested In Primal. Both cases need
the definition of an unconstrained solver using density or level set, complementary
to the constrained optimizer. Nevertheless, the remaining solver typologies do not
need the additional use of an unconstrained solver.
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Solver Definition Unconstr. solver
Augmented Lagrangian Similar to the standard Lagrangian,

with the inclusion of squared terms
(quadratic penalty function). Two
variants of this approach are con-
sidered: Alternating Primal-Dual
and Dual Nested In Primal

ρ / ψ

MMA The MMA Optimizer is an algo-
rithm available in MATLAB, usu-
ally employed as a black box.

Not needed.

IPOPT The Interior Point Optimizer is an
algorithm available in MATLAB for
non-linear large size problems.

Not needed.

Fmincon This optimizer includes several al-
gorithms from other solvers, with
the IPOPT one between them. It is
also a MATLAB implementation of
constrained multi-variable solver.

Not needed.

TABLE 2.1: General constrained solvers used in topology optimiza-
tion techniques.

Finally, below it is provided a summary of the numerical optimization of the only
dependent optimizer Augmented Lagrangian. First of all, the Lagrangian function
is now defined as indicated in Equation (2.56). [13]

L(x, λ, ρ) = f (x) + λc(x) +
ρ

2
c(x)2 (2.56)

Therefore, the quadratic penalty term is included in the topology optimization prob-
lem definition, as shown in Equation (2.57).

{
maxλ minx

(
f (x) + λc(x) + ρ

2 c(x)2)
s.t c(x) = 0

}
(2.57)

In this case, the optimality conditions read ∇ f (x) + [λ + ρc(x)]∇c(x) = 0. Line
search methods are used to find an optimizer iteratively, obtaining a better solution
from an initial guess, and terminating the algorithm once the variable satisfies the
optimality conditions and the constraints. The continuity of improvement on the
current iterate is guaranteed if following expressions are satisfied.

∇c(xk)
T pk ≃ 0 (2.58)

∇ f (xk)
T pk < 0 (2.59)
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2.2 Numerical methodology

2.2.1 Unfitted mesh method

Topology optimization of structures deals with a combination of several domains,
which are enclosed by a larger reference domain Ω in R2 or R3. Initially, the original
structure may be defined inside all Ω, but as the algorithm process evolves, the
characteristic function will assign void values to some control volumes. Besides,
it might appear some boundary control volumes with a combination of black and
white values. Here is where the term cut mesh appears.

The known unfitted finite element method variant will be employed when dealing
with cut meshes, so as to facilitate computations on complex geometries of the struc-
ture for boundaries and interfaces treatment, as well as the discretization of PDEs on
surfaces. [14]

In the unfitted mesh method, the boundary of the material domain will be repre-
sented on a background grid, related with the reference domain Ω, by means of the
density or a level set function. The starting point consists in discretizing the different
geometries.

First of all, an arbitrary geometric description is immersed in the background grid,
typically a structured mesh in order to facilitate data handling and communication.
Hence, to describe stationary boundaries on this mesh, we will now focus on level
set, for instance. The location of the boundary is defined by the zero level set of a
function ψ : Rn → R, as depicted in Equation (2.60).


ψ(x) < 0 if x ∈ Ωmat

ψ(x) = 0 if x ∈ Γ
ψ(x) > 0 if x ∈ Ωvoid

 (2.60)

Now, the interface is approximated by sub-triangulation of cut elements. The values
of the level-set function in element nodes are employed to classify elements into one
of the following three categories: fully contained in Ωmat (all nodes with negative
level set value), fully contained in Ωvoid (all nodes with positive level set value) and
intersected by Γ (some nodes with positive or negative level set values). For the last
category, a sub-triangulation of the element is performed in order to apply standard
quadrature rules. In Figures 2.1 and 2.2 this procedure is exposed.

FIGURE 2.1: Sub-triangulation of triangular elements. Cells fully con-
tained in Ωmat are marked with 0, cells fully contained in Ωvoid are
marked with 2, and cells that are intersected are marked with 1. [14]
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FIGURE 2.2: Example of resulting unfitted mesh for ψ(x) = x2 + y2 −
1 of circular Ωmat. [14]

Only linear intersections of the zero level-set with elements is considered, obtaining
one straight line segment per intersected elements by linear interpolation between
the level set values in the nodes connected to the facet. Hence, a sub-triangulation is
built for each cut cell part, as shown in Figure 2.3. Later, new sub-triangle elements
are classified in inner or outer elements depending on the level set value, see Figure
2.4.

FIGURE 2.3: Straight intersections in 2D, along with the correspond-
ing cell flags and sub-triangulation. [14]

FIGURE 2.4: Cell sub-triangulation for (a) Ωmat and (b) Ωvoid example.
[14]

Finally, integrals over sub-triangulation will be evaluated by using two mappings:
the linear affine mapping (χp) and the mapping between reference element and the
parent cell (χw). χp transforms a quadrature rule defined on the reference element in
function of quadrature points and weights into a quadrature rule on the sub-triangle
element, as seen in Figure 2.5. Besides, χw is employed to map the quadrature points



2.2. Numerical methodology 23

defined on the physical sub-triangle element to its location in the reference domain
of the whole parent.

FIGURE 2.5: Schematics of integration over the sub-triangulation.
[14]

In Figure 2.6 typical nomenclature referring to each typologies inside the overall
mesh is exposed. Note that a classification into inner and cut elements is analogous
between the 2D mesh and the 1D boundary cut mesh.

FIGURE 2.6: Summary of the nomenclature used for different mesh
typologies.

2.2.2 The Diffusion-Reaction equation

When both the compliance and the perimeter appear in the objective function, a
mathematical formulation for the methodology must be defined. In this case, the
general diffusion-reaction equation will fit with the topology optimization model.
[15]

Consider the optimization problem

min
ui∈Ω;∑ ui=1

{∣∣∣∣∣ f − l

∑
i=1

ciui

∣∣∣∣∣+ α

2c

l

∑
i=1

F(ui)

}
. (2.61)

In previous expression, for numerical difficulties purposes it is desirable to replace
F with an alternative model Fϵ, dependent on the perimeter minimum mesh size ϵ
parameter, so as to allow the problem to be solved by approximating its minimizers.
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One way for choosing Fϵ is the well-known Modica-Mortola method, as shown in
Equation (2.62).

Fϵ =
∫

Ω

1
ϵ

W(u(x)) + ϵ|∇u(x)|2dx (2.62)

where the double well potential W : R → [0,+∞) satisfies continuity conditions,
W(t) = 0 if and only if t ∈ {0, 1} and there exist L > 0 and T > 0 such that
W(t) ≥ L|t| ∀ t ∈ R with |t| ≥ T.

Another way for choosing this functionals is exposed in Equation (2.63).

F̄ϵ(u) = in fv∈H1(Ω)

∫
Ω

ϵ|∇v|2 + 1
ϵ
(v2 + u(1 − 2v))dΩ (2.63)

The infimum in the definition of Fϵ is attained in some virtual function v ∈ H1(Ω).
This justifies the uniqueness of this function, as Fϵ solves the Euler-Lagrange PDE
depicted in Equation (2.64), in the weak sense.

{
−ϵ2∆v + v = u in Ω

∂nv = 0 on ∂Ω

}
(2.64)

Thus, the known definition of the perimeter is obtained, in function of the minimum
mesh size. At this point, there are two possibilities to define at which boundaries
the perimeter will contribute as a penalty term to the cost function: total and rel-
ative perimeter. In the case of total perimeter, both the boundary of background
mesh with black values and the transition regions between black and white values
inside the domain will be taken into consideration, so as defining Robin boundary
conditions at ∂Ω. Regarding relative perimeter, only the transition region between
black and white values inside the domain is considered, thus defining Neumann
boundary conditions at ∂Ω.

2.2.3 Incremental scheme

During topology optimization some numerical issues will appear if the final opti-
mization constraints are imposed directly in one step, thus defining the need to use
several steps, where the objective function will be updated at the beginning of each
one with sudden changes, and hence it will be optimized through the evolution of
each step. Typically, each step can represent a determined reduction in the volume
fraction, among others applications. For instance, considering an optimization prob-
lem where the volume is reduced an amount 50% in 10 steps, thus at each step the
objective function will be minimized through sequential reductions of 5% related to
the volume.

Therefore, an incremental optimization scheme is implemented, which calculates the
target values for the constraints at each step by using Equation (2.65). [6]

xk = x0 + t(x∗ − x0) (2.65)
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Where xk stands for the target value at step k, t ∈ [0, 1] is the interpolation factor and
x0, x∗ are the initial and target value for the constraint, respectively.

In Figure 2.7 the cost function related to a minimum compliance problem exam-
ple is represented in terms of the number of iterations, in order to expose how the
incremental scheme approach works. Clearly, 3 steps are employed since 3 unex-
pected jumps are produced at iterations 0, 35 and 140, approximately. At each of
these jumps the volume is reduced a certain targeted value. Besides, for each step
the solver is trying to find the best material configuration such that the cost function
becomes as low as possible. Thus, inside the minimization process of each jump, the
volume remains constant.

FIGURE 2.7: Incremental scheme example applied to the minimum
compliance problem of a 2D cantilever beam with 3 steps.

In swan’s code the following parameters can be controlled at each step: target vol-
ume, minimum mesh size parameter in the perimeter function, target homogenized
elasticity matrix and tolerances values. For each parameter a mathematical law for
its evolution can be defined separately, although the volume typically evolves as a
linear function.

Lastly, there are different available interpolation laws for the interpolation factor,
mainly the following ones: linear, exponential, potential and free. Nevertheless, the
linear and potential laws are the ones more extended in its use. Let N to denote
the total number of steps, k the current and t0 the interpolation value at the first
step. Hence, in Equations (2.66), (2.67), (2.68) and (2.69), the mathematical expres-
sions for the linear, exponential, potential and free interpolation laws are depicted,
respectively.

tk =

{
1 N = 1

t0 +
1−t0
N−1 (k − 1) N > 1

}
(2.66)
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tk =

{
1 N = 1

t
N−k
N−1
0 N > 1

}
(2.67)

tk =

{
1 N = 1

1 − (1 − t0)
(

N−k
N−1

)p
N > 1

}
∀ p ≥ 1 (2.68)

tk =

{
1 k = N
0 otherwise

}
(2.69)

2.3 Additive manufacturing in topology optimization

2.3.1 Additive manufacturing

The Additive Manufacturing (AM) technology is referred as 3D CAD data printing
technology, which creates new industrial designs layer-by-layer by means of liquid,
wire, sheet and powdered materials, and without a need of subsequent processing
tasks. Therefore, different prototypes can be obtained with a reduced manufacturing
time, near 100% of material utilization and a relative geometric freedom of design.
[16]

The most widely used materials in AM are polymers, although in recent years metals
and ceramics have also been introduced due to its capability to withstand higher
loads and temperatures. Nevertheless, ceramics models are difficult to manufacture
when complex geometries are involved. Regarding AM applicability, its industrial
development has located it in a large variety of sectors, such as consumer products,
electronics, motor vehicles, medical devices, aerospace and architecture.

From the CAD model to the actual part, AM technology is divided into the following
steps:

• CAD model design. The output model must be a 3D or surface representation
of the real design.

• Conversion for AM accepted file type. STL is the standard file type, which
translates the CAD model to a controlled-size mesh of triangles.

• Transfer STL files to AM machine, after verifying size and build orientation.

• AM machine setup of parameters to achieve the tolerances of the design (layer
thickness, orientation, energy, timing and roller speeds).

• Build phase.

• Removal of the part, following the corresponding safety protocols.

• Post-processing of AM parts (curing, sintering and cleaning).

A large variety of AM systems have been introduced to the commercial market,
which classification is proposed by the ASTM F42 into the seven areas exposed be-
low.
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Powder bed fusion

Powder bed fusion (PBF) systems employ an electron beam or a laser source to melt
and fuse powdered materials together in a selective manner, see Figure 2.8. These
processes involve repetition of deposition layer after layer, by means of different
mechanisms, such as a roller or a blade, and a hopper for fresh material supply.

FIGURE 2.8: Powder bed fusion (PBF) methods. [16]

Directed energy deposition

Directed energy deposition (DED) is a harder system used to add additional mate-
rial to current parts. The DED process consists of a multi axis arm nozzle, which
provides melted material on the desired surface, and from any angle. The process is
typically employed with metals in wire or powder form. Material cooling rates are
relatively fast, between 1000-5000 Celsius/second.

Material extrusion

Fused deposition modelling (FDM) is an extrusion process where material is drawn
through a nozzle and hence deposited layer by layer, after the material is heated, see
Figure 2.9. The base platform can move vertically after each new layer is provided,
whereas the nozzle moves horizontally. In FDM the material must be deposited
through the nozzle under constant pressure and continuous stream in order to assure
the quality of the final product. Moreover, layers are bonded either by the use of
chemical agents or temperature control.

FIGURE 2.9: Metal extrusion process. [16]
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Vat polymerization

Vat polymerization employs liquid photopolymer resin, out of which the part is
manufactured layer by layer. Ultraviolet light is used to cure or harden the resin,
whereas the base platform moves the part downwards after the cure process of each
new layer is completed, see Figure 2.10. In this process, support structures will often
be added, since the system employs liquid to form objects during the build phase.

FIGURE 2.10: Vat polymerization process. [16]

Binder jetting

The binder jetting system uses two materials: a powder one (build material) and
a binder (liquid), which acts as an adhesive between powder layers. A print head
moves along the horizontal plane of the machine and provides alternating layers of
the build material and the binding one, see Figure 2.11. After each layer is com-
pleted, the platform is lowered. Although this process is faster than others, addi-
tional post-processing may add significant time to the overall process due to the
binding material characteristics.

FIGURE 2.11: Binder jetting process. [16]
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Material jetting

Material jetting manufactures parts similarly to a 2D ink jet printer. Material is jetted
onto the build platform in a continuous or Drop on Demand (DOD) manner, see
Figure 2.12. Therefore, the material solidifies in the platform and the model is built
layer by layer. Material is provided from a nozzle moving horizontally across the
build platform, and hence the layers are cured using ultraviolet light. The number
of materials available to use is limited, since this shall be deposited in drops.

FIGURE 2.12: Material jetting. [16]

Sheet lamination process

Sheet lamination processes include ultrasonic additive manufacturing (UAM) and
laminated object manufacturing (LOM), which produce aesthetic and visual models
following the means depicted below.

• The UAM system employs sheets or ribbons of metal, bounded together by
means of ultrasonic welding. CNC machining will be required during the pro-
cess.

• The LOM employs a similar layer by layer approach but uses paper as material
and adhesive instead of welding. Cross hatching method is used during the
process to allow for easy removal after the part is manufactured.

2.3.2 AM Length Scale constraints

Topology Optimization techniques can be applied to create new designs and there-
fore manufacture them by means of AM technology. Nevertheless, some additional
constraints must be taken into consideration in order to assure actual manufactura-
bility. One of these restrictions is known as the minimum length scale constraint.

Consider an initial design which is being optimized through the minimum compli-
ance problem. Since topology optimization are heuristic-based algorithms, a large
variety of solutions may exist if the numerical problem is not enough constrained.
Therefore, regarding the actual compliance minimization problem, the tendency of
the algorithm near the final volume fraction achievement would consist in the cre-
ation of several internal bars. Besides, the compliance function becomes lower as
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the number of internal bars increases. Thus, the optimality condition is virtually
achieved at an infinite number of bars. Numerically, this is translated to the obtain-
ing of a large number of bars inside the initial domain. Indeed, in order to keep
several bars inside a fixed domain it will be necessary to decrease their length scales
(i.e to reduce the thickness of bars). Here is where the minimum length scale con-
straint will become relevant, since AM technology would not be able to create a new
design of any value for the minimum length scale, mainly due to its sensitivity dur-
ing material deposition, among others (see Figure 2.13).

FIGURE 2.13: Comparison of the minimum feature sizes in metal
printing via various AM technologies. [17]

Hence, a remedy to decide at which number of bars stop for the final volume fraction
is needed. There are several ways to proceed depending in the type of design vari-
able or whether the length scale is controlled as a shape functional or a constraint.

Perimeter as objective function penalty term

Now, we recall from Section 2.1.3 the use of Perimeter as a contribution to the com-
pliance shape functional in order to avoid the formation of small geometrical scales
in structures. The overall cost function is exposed

J = f T · u +
α

2ϵ

∫
Ω
(1 − ρϵ)ρ · dΩ (2.70)

where α ∈ [0,+∞) is some parameter that defines the degree of perimeter con-
tribution into the optimization problem and ϵ stands for the minimum mesh size.
Basically, the perimeter is a penalization of grey regions defined by the density, or
the regularized density. Indeed, a design with a large variety of internal bars would
consist of a larger region dominated by grey values. Therefore, the minimum length
scale of the model would become greater by introducing the perimeter contribution
to the cost function, thus minimizing the grey region inside the model and conse-
quently increasing the geometric scales.
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A relationship between the length scale and parameter α is not possible to be ob-
tained by means of an explicit expression, neither with a numerical algorithm. This
is due to the strongly dependence of the perimeter regarding the mesh employed,
the accuracy of the numerical simulation, the final fraction volume and the ϵ pa-
rameter incremental scheme. Thus, given a simulation set-up, different designs are
obtained by changing the value of α, iteratively.

FIGURE 2.14:
Minimum com-
pliance problem
example applied
to a cantilever

beam.

FIGURE 2.15:
Isotropic perime-
ter penalization
applied to the
cantilever beam

example (left).

Penalty functional with level set

The previous procedure to control the length scale of the optimized structure was
monitored by including a penalty term in the compliance function, without con-
trolling directly the desired value of the length scale. Nevertheless, enforcing the
minimum thickness as a single penalty functional approach is exposed below, us-
ing the level set as design variable and introducing a parameter to set the minimum
length, dmin.

Following the idea proposed in [18] by Feppon, the minimum thickness require-
ment is imposed with the minimization of the penalty functional PMinT(Ω), assuring
minimum thickness under constraints on the volume and compliance of shapes, as
depicted in Equation (2.71).

PML :


min PMinT(Ω)

s.t C(Ω) ≤ gmax
Vol(Ω) ≤ Vmax

 (2.71)

Where the shape functional, compliance of shape constraints and volume constraints
are defined in Equations (2.72), (2.73) and (2.74), respectively.

PMinT(Ω) = −
∫

Ω
d2

Ω max(dΩ + dmin/2, 0)2dx (2.72)

C(Ω) =
∫

Ω
(2µϵ + λTr(ϵ) · I) : ϵdx (2.73)

Vol(Ω) =
∫

Ω
dx (2.74)
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FIGURE 2.16:
Optimized shape
without including
minimum thick-
ness constraint.

[18]

FIGURE 2.17:
Optimized
shape with
minimum thick-
ness constraint
(dmin = 0.1). [18].

Constraint functional with density

Here it is proposed a procedure to guarantee minimum length requirements by im-
posing an additional constraint, rather than a contribution to the objective function.
This new approach limits the design’s perimeter with the computation of the total
variation of density field, |∂ΩS|, defining the perimeter as a measure of the boundary
of the solid region. [19]

Indeed, an upper bound constraint on the perimeter excludes the apparition of mi-
croscopic perforations in the solution. The total variation of density field deals with
a SIMP continuous interpolation model for density as design variable, approach-
ing the perimeter as the amount of transitional material is forced to zero. The total
variation of the density function is depicted

|∂ΩS| =
∫

Ω\ΓJ

gh(∇ρ, ξ)dΩ +
∫

ΓJ

j(< ρ >, ξ)dΓ ≤ P̄ (2.75)

where ξ and < ρ > accounts for a smoothing parameter circumventing numerical
problems and the jump in ρ across ΓJ , respectively. Besides, gh and j are functions
defined in Equations (2.76) and (2.77), respectively, using parameter h as the size of
a finite element.

gh(w, ξ) =

[
(1 + 2ξ)wTw +

ξ2

h2

] 1
2

− ξ

h
(2.76)

j(r, ξ) =
[
(1 + 2ξ)r2 + ξ2] 1

2 − ξ (2.77)

Constraint functional with a density based projection method

Finally, here it is depicted another procedure to guarantee minimum length scales
by means of an additional geometric constraint, using a robust formulation based in
the projection method, guaranteeing well-convergence of results and without large
gray scale areas. Therefore, this will represent the most recommended approach to
impose a length scale requirement in a design, since this procedure shall guarantee
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such scales not only inside the black region, but also length scales inside the void
domain. Besides, this approach would also solve local features convergence issues
due to mesh refinement, so as to ensure manufacturing tolerant designs.

The following projection method is based in the density as design variable and it fol-
lows a filtering-threshold topology optimization scheme, defining a 3-field scheme
with the design variable ρ, a filtered version ρϵ and a projected version ρP. Note that
the design variable shall come from an adjoint sensitivity analysis, thus defining an
optimization problem strongly dependent on the mesh size.

Considering the neighborhood set Ni within a filter domain of an element i, thus
Zhou et. al. propose the expression to filter the design variable exposed in Equation
(2.78). [20]

ρϵ,i =
∑j∈Ni

w(xj)Vjρj

∑j∈Ni
w(xj)Vj

(2.78)

Where w(xj) = R f − |xi − xj| is a weighting function of a filter with radius R f . Be-
sides, Vj stands for the volume of neighbour element j and xi, xj for the cell coordi-
nates of considered element i and neighbour element j. Thus, a threshold projection
into the 0/1 space is defined as a function of previous filtered density ρP = f (ρϵ), as
shown in Equation (2.79), proposed by Wang et. al. [21]

ρP,i =
tanh(βη) + tanh(β(ρϵ,i − η))

tanh(βη) + tanh(β(1 − η))
(2.79)

In previous expression, β represents a Heaviside steepness factor and η the projec-
tion threshold. The key idea is as follows: for a given threshold η and sufficiently
large value of β hence,

• All ρϵ,i > η verifies that ρP,i = 1.

• All ρϵ,i < η verifies that ρP,i = 0.

Some special cases are deduced from these conditions. Indeed, for η = 0 a dilation
of the domain is produced, guaranteeing minimum length scales at the solid region,
whereas for η = 1 an erosion of the domain appears, guaranteeing minimum length
at the void region. Therefore, an initial problem may be produced here, as it is
not possible to control both solid and void length scales at a first instance. Hence,
minimum length scales will be imposed separately for an inflection region at solid
and void phase, defining a threshold interval (ηmin, ηint, ηmax). Specifically,

• Given a value η = ηmax, hence all ρϵ,i > ηmax will define an inflection region
where ρP,i = 1 and ∇ρϵ,i = 0.

• Given a value η = ηmin, hence all ρϵ,i < ηmin will define an inflection region
where ρP,i = 0 and ∇ρϵ,i = 0.
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FIGURE 2.18: Density filtering of solid and void phases and their
Heaviside projections. [21]

Typically, for a given value of η∗ ∈ (0, 0.5), the threshold interval is defined as
ηmin = η∗, ηint = 0.5, ηmax = 1 − η∗ (see Figure 2.18). In order to identify previ-
ous inflection regions, the structural indicator functions exposed in Equations (2.80)
and (2.81) are employed, so as to impose the minimum length requirements in solid
and void phases, respectively.

Isolid = ρP · exp
{
−c · |∇ρϵ|2

}
(2.80)

Ivoid = (1 − ρP) · exp
{
−c · |∇ρϵ|2

}
(2.81)

The workable range of steepest parameter c has been previously studied, and this
shall be defined as c ∈ [0.4, 1.4] ·

(R
h

)4
, where h is the mesh element size. [20] For

instance, c = r4 would provide effective results to the optimization problem.

Thus, the geometric constraints defined in Equations (2.82) and (2.83) will be in-
cluded through the definition of the optimization problem, for solid and void phases
respectively. In these expressions, n stands for the total number of elements.

gsolid =
1
n ∑

i∈N

Isolid
i · [min((ρϵ,i − ηmax), 0)]2 ≤ ϵ (2.82)

gvoid =
1
n ∑

i∈N

Ivoid
i · [min((ηmin − ρϵ,i), 0)]2 ≤ ϵ (2.83)
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Where ϵ > 0 is a residual parameter. Lastly, the minimum length scales problem is
defined in Equation (2.84).

PMLS :



minρ f T · u(ρ)
s.t K(ρ) · u(ρ) = F(ρ)

Vf ≤ V∗

gsolid ≤ ϵ

gvoid ≤ ϵ
ρ ∈ [0, 1]


(2.84)

2.3.3 AM Overhang constraints

The use of perimeters in 3D printing is also useful concerning one of the significant
problems in AM technology, overhanging - see Figure 2.19.

FIGURE 2.19: Overhanging phenomena. [15]

If in some region of the part the angle between the vertical axis and tangent vectors
to the object is larger than 45 degree, hence it may happen that new layers do not
stick firmly together, leading to the apparition of small bulges. In this case, the tool
known as anisotropic perimeter will play an important role to overcome this issue.

The known anisotropic total variation of the characteristic function with respect to the
elastic conductivity of the material is the main tool to define the functionals com-
puting the anisotropic perimeter [15]. These functions are unique and solve the Euler-
Lagrange PDE in the weak sense.

{
−ϵ2∇(A · ∇u) + u = g in Ω

∂An u = 0 on ∂Ω

}
(2.85)

where A corresponds to the elastic conductivity matrix. In general, A is a symmet-
rical matrix defined in 2D or 3D. The main purpose of this matrix will be to define
virtually in which direction the material has the maximum stiffness intensity, so as
to prioritize the direction where the bars emerging from the minimum compliance
problem will be placed.

Nevertheless, in practice A may be defined as a diagonal matrix, where each term
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defines the stiffness intensity penalty in each main direction of the coordinate sys-
tem. Therefore, the component with the maximum stiffness would define the direc-
tion tendency of the bars obtained from the optimization process. Thus, one may
rotate such matrix later with the corresponding Euler angles in order to orientate
these bars in a determined direction. In practice, when avoiding overhanging phe-
nomena one wants to prioritize the orientation along the vertical axis, hence using a
conductivity matrix similar to the one depicted in Equation (2.86) for a 2D problem.

A =

[
1 0
0 100

]
(2.86)

Regarding the topology optimization algorithm, the elastic conductivity matrix will
be employed prior to compute the left hand side stiffness matrix, after selecting the
type of filter to use during the resolution of the diffusion-reaction PDE. In this step,
the known elementary anisotropic stiffness matrix will be defined as shown in Equa-
tion (2.87).

Kel =
∫∫∫

Ω
BT · A · B · dΩ (2.87)

In order to extend the anisotropic perimeter to any direction of the domain, below is
exposed the required mathematical formulation. Let Ω to represent a 2-dimensional
domain referenced with a global axis system XY. Let also α to represent the rotation
of a local axis system X′Y′ with respect to the global one, as depicted in Figure 2.20.
Therefore, a local matrix A′ is defined such that the topologic bars resulting from the
optimization process are oriented along the local axis X′ (see an instance in Equation
(2.88)).

FIGURE 2.20: Global and local axis system representation to orientate
the resulting topology.

A′ =

[
100 0
0 1

]
(2.88)

Nevertheless, as the algorithm work with the global axis system, we will need the
matrix A2D(α) defined in the global system. As it is not trivial to rotate directly a
matrix, let v′ and n′ to represent a local vector and a local normal vector, respectively,
combined with A′ as shown in Equation (2.89).
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v′ = A′ · n′ =

[
v′x
v′y

]
(2.89)

Previous expression applies analogously to their corresponding global measures.
Now, in Equation (2.90) the relationship between v and v′ is represented in function
of a rotation matrix. Note that, as the rotation matrix is orthonormal, hence the
inverse of it is directly the same matrix transposed.

v =

[
vx
vy

]
=

[
v′x · cos α − v′y · sin α

v′x · sin α + v′y · cos α

]
v =

[
cos α − sin α
sin α cos α

]
·
[

v′x
v′y

]
= R · v′

v′ = RT · v

(2.90)

Analogously, one finds the relationship between n and n′, see Equation (2.91).

n′ = RT · n (2.91)

Combining expressions (2.90) and (2.91) with (2.89), we have

v = R · A′ · RT · n. (2.92)

Finally, the global elastic conductivity matrix is defined in Equation (2.93).

A2D(α) = R(α) · A′ · RT(α) (2.93)
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Feasibility study

In this chapter the feasibility of Topology Optimization techniques regarding the cre-
ation of new structures with less volume and within an optimized shape is verified,
along with the fulfillment of additive manufacturing constraints.

Specifically, the considered case studies where the numerical approach is assessed
are firstly exposed, as well as an independent anisotropic perimeter validation. Be-
sides, for each case study all variants regarding isotropy, perimeter and design vari-
able are simulated, thus obtaining eight simulations for each part, in general. Lastly,
a comparison between the numerical methodology implemented with SIMP and
SIMP-ALL is introduced, among other target parameters.

3.1 Case studies definition

3.1.1 Cantilever beam

The classic cantilever beam in 2D is a benchmark case, consisting of a rectangular
box initially filled with material (i.e χ = 1 at all the reference domain), clamped at
the left side and with a vertical point load applied at the middle of right side, as
depicted in Figure 3.1.

FIGURE 3.1: Cantilever beam computational domain. Initial case rep-
resentation with density.
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The clamped nodes are constrained in all degrees of freedom. Furthermore, the hori-
zontal and vertical length of the box have been chosen as 2 and 1 length units, respec-
tively. Besides, 150 and 75 divisions have been implemented in the horizontal and
vertical sides, respectively, in order to obtain quadrilateral elements and later apply-
ing triangulation to each one, thus obtaining a mesh with 22052 elements, shown in
Figure 3.2. The aim of this case study is to find the optimal topology by minimizing
the compliance with an isotropic/anisotropic perimeter penalty, using level set and
density as design variables.

FIGURE 3.2: Cantilever beam mesh (reference domain).

3.1.2 Bridge

The bridge case in 2D consists of a rectangular box initially filled with material,
clamped at two set of nodes: one located in the left end of the lower edge and another
in the right end of the lower edge. Besides, a vertical point load is applied at the
middle of upper edge, as seen in Figure 3.3.

FIGURE 3.3: Bridge computational domain. Initial case representa-
tion with density.
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The clamped nodes are constrained in all degrees of freedom. Besides, the horizontal
and vertical length of the box have been chosen as 6 and 1 length units, respectively.
The mesh has been computed with GiD software, with a total number of elements of
137138 (see Figure 3.4). The aim of this case study is to find the optimal topology by
minimizing the compliance with an isotropic/anisotropic perimeter penalty, using
level set and density as design variables.

FIGURE 3.4: Bridge mesh (reference domain).

3.1.3 Arch

The arch case in 2D consists of a rectangular box initially filled with material, clamped
at two set of nodes: one located near the left end of the lower edge and another near
the right end of the lower edge. Besides, a vertical distributed load is applied at the
middle of lower edge, as seen in Figure 3.5.

FIGURE 3.5: Arch computational domain. Initial case representation
with density.
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The clamped nodes are constrained in all degrees of freedom. Besides, the horizontal
and vertical length of the box have been chosen as 2 and 1 length units, respectively.
The mesh has been computed with GiD software, with a total number of elements of
183570 (see Figure 3.6). The aim of this case study is to find the optimal topology by
minimizing the compliance with an isotropic/anisotropic perimeter penalty, using
level set and density as design variables.

FIGURE 3.6: Arch mesh (reference domain).

3.1.4 Microstructures

In general, microstructures in 2D deal with a square domain with a geometric inclu-
sion inside it as an initial case (for instance, a circle inclusion), representing the shape
of a fiber inside a matrix, among similar examples. Conditions at the edges are set
to periodic boundary conditions, thus implying that the square domain is indeed an
unit cell part from a larger structure, as it occurs in composite materials. In Figure
3.7 the computational domain is shown.

FIGURE 3.7: Microstructure computational domain. Initial case rep-
resentation with level set.
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Furthermore, the vertices of the square are constrained in all degrees of freedom,
and no external load is applied on the domain. The mesh employed is composed of
20000 triangular elements, depicted in Figure 3.8.

FIGURE 3.8: Micro mesh (reference domain).

The aim of this case study is to find the optimal topology by minimizing some or-
thotropic effective properties with an isotropic/anisotropic perimeter penalty, using
level set and density as design variables. Specifically, in Table 3.1 some benchmark
cases regarding different effective properties to optimize are depicted.

Case Parameters

Bulk (I)
αh = [1, 1, 0]
βh = [1, 1, 0]

Bulk (II)
αh = [1, 0.5, 0]
βh = [1, 0.5, 0]

Shear
αh = [0, 0, 1]
βh = [0, 0, 1]

Shear - Bulk
αh = [1, 1, 0.5]
βh = [1, 1, 0.5]

TABLE 3.1: Orthotropic effective properties optimization cases.

Moreover, a last case consisting in the minimum Poisson’s ratio problem can be also
defined using αh = [1, 0, 0] and βh = [0,−1, 0]. Nevertheless, the corresponding
shape functional is not the same as the expression defined in Equation (2.17). In-
stead, a rational expression is employed for this exceptional case,

h(C) =
αT

h C−1βh

αT
h C−1αh

+
βT

h C−1αh

βT
h C−1βh

(3.1)
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3.2 Results

3.2.1 Anisotropic perimeter validation

Prior to solve each optimization case study, an individual validation of the anisotropic
perimeter tool is performed, so as to check if the expected behaviour is achieved
given a set of inputs regarding both orientation and scaling factor, applied to a pure
minimum perimeter problem.

First of all, consider a generic conductivity matrix with a scale factor ka in Equa-
tion (3.2), expressed in its local coordinates system and setting the priority to obtain
topologies aligned at local X-axis, with respect to the second main inertia direction.

A′ =

[
ka 0
0 1

]
(3.2)

Thus, the global conductivity matrix can be obtained by rotating the local matrix
with the desired fiber orientation α, as seen in Equation (3.3).

A2D(ka, α) =

[
cos α − sin α
sin α cos α

]
·
[

ka 0
0 1

]
·
[

cos α sin α
− sin α cos α

]
(3.3)

For the pure minimum perimeter problem, by including previous conductivity ma-
trix in the definition of the anisotropic stiffness matrix when solving the diffusion-
reaction PDE with the anisotropic filter, hence the anisotropic perimeter tool would
be finally defined. Consider then the optimization problem expressed in Equation
(3.4).

PMP :


minχ Pera

ϵ(χ)
s.t
∫

Ω χ = 0.75
χ ∈ {0; 1}

 . (3.4)

Hence, the same mesh defined as for the microstructure case will be employed (see
Figure 3.8), along with a void square inclusion of 25% of the total volume as the
initial case, as depicted in Figure 3.9.

FIGURE 3.9: Initial case of the minimum perimeter problem.
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The corresponding results for different orientation angles and scale factors are ex-
posed in Figure 3.10.

FIGURE 3.10: Anisotropic perimeter optimization for different
topologies orientation and scale factor values.

The converged topologies obtained for each case clearly validates the accurate func-
tioning of the anisotropic perimeter. First of all, in first row it is depicted the result
for different orientation angles at the minimum scale factor, ka = 1. Equivalently,
the standard isotropic perimeter is recovered, and this can be observed as the initial
square has been transformed into a perfect circle with the same area as the square,
regardless the imposed orientation angle. Indeed, the circle is the shape that mini-
mizes the perimeter of a certain volume of material, at isotropic conditions.

Moreover, for any orientation angle, the circle turns into an ellipse with higher ec-
centricity as the scale factor increases, until converging into a perfect aligned fiber
when ka → ∞. These results also validate the anisotropic perimeter performance,
since now the square is transformed into an ellipse, which optimizes the perimeter
of the given volume of material, but also taking advantage of the material virtual
stiffness matrix.

Lastly, as the orientation angle of topologies changes, the major axis orientation of
the obtained ellipse also does and it is completely aligned with the local X-axis of
the conductivity matrix A′, which forms the same angle with the global X-axis as the
angle defined by the user regarding topologies orientation. Therefore, a control to
impose overhang constraints has been clearly established.

All case studies presented in next sections will employ ka = 100 and α = 90◦, so as
to fulfill overhang control in the vertical direction.
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3.2.2 Cantilever beam

FIGURE 3.11:
Isotropic total
perimeter with

density.

FIGURE 3.12:
Anisotropic total
perimeter with

density.

FIGURE 3.13:
Isotropic relative
perimeter with

density.

FIGURE 3.14:
Anisotropic rel-
ative perimeter

with density.

FIGURE 3.15:
Isotropic total
perimeter with

level set.

FIGURE 3.16:
Anisotropic total
perimeter with

level set.

FIGURE 3.17:
Isotropic relative
perimeter with

level set.

FIGURE 3.18:
Anisotropic rel-
ative perimeter

with level set.
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Case: Stage 1
Cantilever optUnconstr optConstr filter nSteps maxIter Vi Vf

Pure
Compliance

(density)

Projected
Gradient

Dual Nested
In Primal

P1 1 2000 1 0.5

Pure
Compliance

(level set)
SLERP

Dual Nested
In Primal

P1 1 2000 1 0.5

TABLE 3.2: Settings of different cantilever beam cases (stage 1).

Case: Stage 2
Cantilever Cost optUnconstr optConstr filter nSteps maxIter Vi Vf
Isotropic

total
perimeter
(density)

c
+
P

- MMA P1 10 200 0.5 0.5

Anisotropic
total

perimeter
(density)

c
+

0.02P
- MMA P1 10 200 0.5 0.5

Isotropic
relative

perimeter
(density)

c
+
P

- MMA P1 10 200 0.5 0.5

Anisotropic
relative

perimeter
(density)

c
+

0.02P
- MMA P1 10 200 0.5 0.5

Isotropic
total

perimeter
(level set)

c
+
P

SLERP
Dual Nested

In Primal
P1 10 200 0.5 0.5

Anisotropic
total

perimeter
(level set)

c
+

0.01P
SLERP

Dual Nested
In Primal

P1 10 100 0.5 0.5

Isotropic
relative

perimeter
(level set)

c
+
P

SLERP
Dual Nested

In Primal
P1 7 140 0.5 0.5

Anisotropic
relative

perimeter
(level set)

c
+

0.01P
SLERP

Dual Nested
In Primal

P1 10 100 0.5 0.5

TABLE 3.3: Settings of different cantilever beam cases (stage 2).

The results of all variants regarding the cantilever beam case study are shown above,
along with the settings configuration defined for each case.
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As the cantilever beam is mainly submitted to a bending load, it is relatively com-
plex to obtain a converged solution directly with a single stage simulation using
both compliance and a vertical anisotropic perimeter penalty inside the cost func-
tion. Therefore, a 2-stage simulation has been performed for each of the 8 variants
(also including the isotropic cases, for convenience), as their settings are depicted in
Tables 3.2 and 3.3. In stage 1, the cantilever beam is optimized with a minimum com-
pliance problem algorithm, without keeping control in overhang and length scales.
As the code deals with two design variables, hence just two different simulations for
the pure compliance shall be carried out: density and level set. Thus, the final con-
verged result from the minimum compliance problem is numerically stored and this
serves as the initial case of stage 2, where the cantilever beam is postprocessed us-
ing now both the compliance and a perimeter penalty inside the cost function, so as
to filter small length scales and horizontal topologies, keeping the volume constant
throughout this process. Notice that the factor multiplying the perimeter penalty
term might be different for each of the 8 variants in order to obtain a well-converged
result. Lastly, all variants are solved with SIMP-ALL as the interpolation method.

In Figures 3.11 and 3.12 the results related with isotropic total perimeter and anisotropic
total perimeter are shown for the density as design variable, respectively. Regard-
ing the isotropic case, no local features with small length scales are appearing in
the solution. In fact, just one reinforcing bar is acting in the bottom side of the box
mesh. Besides, the relationship between the degree of contribution of compliance
and perimeter shape functionals is 1:1, which is relatively high. Therefore, regions
near nodes with imposed displacement or force converge with curved boundaries,
as it is the best way to optimize locally the perimeter. In relation with the anisotropic
case, two bars with a vertical tendency orientation have appeared at the top side of
the box mesh, reinforcing the beam with optimal resources since a virtual anisotropic
stiffness matrix has been imposed with a priority in the global Y-axis. Furthermore,
previous curved boundaries have converged into vertical ones, fitting again with
the box mesh boundary. Finally, it is surprising how for the density case the con-
verged results are not symmetric with respect the beam’s axis, probably due to the
non-symmetry of the mesh.

In Figures 3.13 and 3.14 the results related with isotropic relative perimeter and
anisotropic relative perimeter are shown for the density as design variable, respec-
tively. Results are very similar to their total perimeter complementary cases, with
two main differences. Firstly, as now only the interior perimeter accounts to the
penalization term of the cost function, the boundaries of the beam adjacent to the
boundary of box mesh obtained from the pure compliance case always remain in
such position, hence obtaining now abrupt variations at interfaces between the bound-
aries of the inner mesh and the inner cut mesh. Secondly, and as a consequence of
the first difference, local reinforcing bars appearing in both variants have been pe-
nalized more severely, obtaining minor length scales.

In Figures 3.15 and 3.16 the results related with isotropic total perimeter and anisotropic
total perimeter are shown for the level set as design variable, respectively. These
cases converge into a solution symmetric with respect to the beam’s axis. Regarding
the isotropic case, again no local features with small length scales appear. Neverthe-
less, in relation with the anisotropic case, previous reinforcing bars have converged
into ones slightly aligned vertically, and also with a higher thickness, thus satisfying
the anisotropic perimeter penalty term.

Finally, in Figures 3.17 and 3.18 the results related with isotropic relative perimeter
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and anisotropic relative perimeter are shown for the level set as design variable,
respectively. Again, results are very similar to their total perimeter complementary
case, but with abrupt variations at the inner mesh and inner cut mesh interfaces.
Nevertheless, now the penalization of interior perimeter is so notorious that even an
internal reinforcing bar has been removed for the isotropic case.

3.2.3 Bridge

FIGURE 3.19:
Isotropic total
perimeter with

density.

FIGURE 3.20:
Anisotropic total
perimeter with

density.

FIGURE 3.21:
Isotropic relative
perimeter with

density.

FIGURE 3.22:
Anisotropic rel-
ative perimeter

with density.

FIGURE 3.23:
Isotropic total
perimeter with

level set.

FIGURE 3.24:
Anisotropic total
perimeter with

level set.

FIGURE 3.25:
Isotropic relative
perimeter with

level set.

FIGURE 3.26:
Anisotropic rel-
ative perimeter

with level set.
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Case: Stage 1
Bridge optUnconstr optConstr filter nSteps maxIter Vi Vf
Pure

Compliance
(density)

Projected
Gradient

Dual Nested
In Primal

P1 1 2000 1 0.5

Pure
Compliance

(level set)
SLERP

Dual Nested
In Primal

P1 10 2000 1 0.5

TABLE 3.4: Settings of different bridge cases (stage 1).

Case: Stage 2
Bridge Cost optUnconstr optConstr filter nSteps maxIter Vi Vf

Isotropic
total

perimeter
(density)

c
+

0.1P
- MMA P1 10 100 0.5 0.5

Anisotropic
total

perimeter
(density)

c
+

0.1P
- MMA P1 10 100 0.5 0.5

Isotropic
relative

perimeter
(density)

c
+

0.1P
- MMA P1 10 100 0.5 0.5

Anisotropic
relative

perimeter
(density)

c
+

0.1P
- MMA P1 10 100 0.5 0.5

Isotropic
total

perimeter
(level set)

c
+

0.3P
SLERP

Dual Nested
In Primal

P1 10 100 0.5 0.5

Anisotropic
total

perimeter
(level set)

c
+

0.3P
SLERP

Dual Nested
In Primal

P1 10 100 0.5 0.5

Isotropic
relative

perimeter
(level set)

c
+

0.3P
SLERP

Dual Nested
In Primal

P1 10 100 0.5 0.5

Anisotropic
relative

perimeter
(level set)

c
+

0.3P
SLERP

Dual Nested
In Primal

P1 10 100 0.5 0.5

TABLE 3.5: Settings of different bridge cases (stage 2).

The results of all variants regarding the bridge case study are shown above, along
with the settings configuration defined for each case.
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Again, the same 2-stage simulation strategy as the cantilever beam case has been
performed for each of the 8 variants, as their settings are depicted in Tables 3.4 and
3.5. In stage 1, the bridge is optimized with a minimum compliance problem algo-
rithm. Similarly to the cantilever beam, just two different simulations for the pure
compliance shall be carried out depending on the design variable: density and level
set. Thus, the final converged result from the minimum compliance problem is nu-
merically stored and this serves as the initial case of stage 2, where the bridge is
postprocessed using now both the compliance and a perimeter penalty inside the
cost function. Notice that the factor multiplying the perimeter penalty term might
be different for each of the 8 variants in order to obtain a well-converged result.
Lastly, all variants are solved with SIMP-ALL as the interpolation method.

In Figures 3.19 and 3.20 the results related with isotropic total perimeter and anisotropic
total perimeter are shown for the density as design variable, respectively. Regard-
ing the isotropic case, just two reinforcing bars with high thickness are acting in the
middle of the structure, avoiding the formation of small features. In relation with
the anisotropic case, these cross bars have disappeared, inducing the formation of
two vertical pillars, as it is the best material distribution due to the imposed vir-
tual anisotropic stiffness matrix, with a priority in the global Y-axis. Furthermore,
Dirichlet nodes have converged also into vertical topologies that are linked with the
main pillars. Finally, note that both cases are symmetric with respect the boundary
conditions set-up.

In Figures 3.21 and 3.22 the results related with isotropic relative perimeter and
anisotropic relative perimeter are shown for the density as design variable, respec-
tively. Results are very similar to their total perimeter complementary cases. How-
ever, note again that as now only the interior perimeter accounts to the penalization
term of the cost function, abrupt variations are obtained at interfaces between the
boundaries of the inner mesh and the inner cut mesh. Also, penalization is acting
more severely in the anisotropic case, where the bridge is even split in two structures
symmetrically.

In Figures 3.23 and 3.24 the results related with isotropic total perimeter and anisotropic
total perimeter are shown for the level set as design variable, respectively. These
cases converge into a solution symmetric with respect to the bridge’s vertical axis.
Regarding the isotropic case, again no local features with small length scales appear,
obtaining a very similar solution as with density, but including reinforcing bars with
less thickness. Nevertheless, in relation with the anisotropic case, previous reinforc-
ing bars have converged into ones slightly aligned vertically with higher thickness,
instead of the formation of two pillars, thus satisfying the anisotropic perimeter
penalty term. Note also that in the middle part of the bottom edge of the box mesh
a penalization of a horizontal bar has been produced, splitting this region of the
bridge’s base in two parts.

Finally, in Figures 3.25 and 3.26 the results related with isotropic relative perime-
ter and anisotropic relative perimeter are shown for the level set as design variable,
respectively. As usually, results are very similar to their total perimeter complemen-
tary case, but with abrupt variations at the inner mesh and inner cut mesh interfaces.
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3.2.4 Arch

FIGURE 3.27:
Isotropic total
perimeter with

density.

FIGURE 3.28:
Anisotropic total
perimeter with

density.

FIGURE 3.29:
Isotropic relative
perimeter with

density.

FIGURE 3.30:
Anisotropic rel-
ative perimeter

with density.

FIGURE 3.31:
Isotropic total
perimeter with

level set.

FIGURE 3.32:
Anisotropic total
perimeter with

level set.

FIGURE 3.33:
Isotropic relative
perimeter with

level set.

FIGURE 3.34:
Anisotropic rel-
ative perimeter

with level set.
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Case: Stage 1
Arch optUnconstr optConstr filter nSteps maxIter Vi Vf
Pure

Compliance
(density)

Projected
Gradient

Dual Nested
In Primal

P1 1 2000 1 0.15

Pure
Compliance

(level set)
SLERP

Dual Nested
In Primal

P1 4 2000 1 0.15

TABLE 3.6: Settings of different arch cases (stage 1).

Case: Stage 2
Arch Cost optUnconstr optConstr filter nSteps maxIter Vi Vf

Isotropic
total

perimeter
(density)

c
+

0.01P
- MMA P1 10 200 0.15 0.15

Anisotropic
total

perimeter
(density)

c
+

0.01P
- MMA P1 10 200 0.15 0.15

Isotropic
relative

perimeter
(density)

c
+

0.01P
- MMA P1 10 200 0.15 0.15

Anisotropic
relative

perimeter
(density)

c
+

0.01P
- MMA P1 10 200 0.15 0.15

Isotropic
total

perimeter
(level set)

c
+
P

SLERP
Dual Nested

In Primal
P1 10 100 0.15 0.15

Anisotropic
total

perimeter
(level set)

c
+
P

SLERP
Dual Nested

In Primal
P1 10 100 0.15 0.15

Isotropic
relative

perimeter
(level set)

c
+
P

SLERP
Dual Nested

In Primal
P1 10 100 0.15 0.15

Anisotropic
relative

perimeter
(level set)

c
+
P

SLERP
Dual Nested

In Primal
P1 10 100 0.15 0.15

TABLE 3.7: Settings of different arch cases (stage 2).

The results of all variants regarding the arch case study are shown above, along with
the settings configuration defined for each case.
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The same 2-stage simulation strategy as previous cases has been performed for each
of the 8 variants, as their settings are depicted in Tables 3.6 and 3.7. In stage 1, the
arch is optimized with a minimum compliance problem algorithm. Just two different
simulations for the pure compliance shall be carried out depending on the design
variable: density and level set. Thus, the final converged result from the minimum
compliance problem is numerically stored and this serves as the initial case of stage
2, using now both the compliance and a perimeter penalty inside the cost function.
Notice that the factor multiplying the perimeter penalty term might be different for
each of the 8 variants in order to obtain a well-converged result. Lastly, all variants
are solved with SIMP-ALL as the interpolation method.

In Figures 3.27 and 3.28 the results related with isotropic total perimeter and anisotropic
total perimeter are shown for the density as design variable, respectively. Regard-
ing the isotropic case, one vertical reinforcing bar has appeared at the middle, along
with two additional crossed bars at each side, symmetrically. In relation with the
anisotropic case, the cross bars with highest horizontal orientation have disappeared,
inducing the increase in thickness of the vertical bar, as it is the best material distri-
bution due to the imposed virtual anisotropic stiffness matrix. Lastly, the anisotropic
case is also symmetric with respect the vertical axis.

In Figures 3.29 and 3.30 the results related with isotropic relative perimeter and
anisotropic relative perimeter are shown for the density as design variable, respec-
tively. Results are very similar to their total perimeter complementary cases. Nev-
ertheless, abrupt variations are obtained at interfaces between the boundaries of the
inner mesh and the inner cut mesh because only the interior perimeter accounts to
the penalization term of the cost function, hence avoiding curve boundaries near
Neumann nodes.

In Figures 3.31 and 3.32 the results related with isotropic total perimeter and anisotropic
total perimeter are shown for the level set as design variable, respectively. These
cases also converge into a solution symmetric with respect to the arch’s vertical axis,
except to the formation of a very small feature, possibly meaning that a higher pe-
nalization coefficient is needed. Regarding the isotropic case, no local features with
small length scales are appearing, obtaining two crossed reinforcing bars with high
thickness. However, in relation with the anisotropic case, previous reinforcing bars
have converged into ones slightly aligned vertically in the lower side, but splitting
the whole arch in two parts, thus satisfying the virtual stiffness in Y-axis. Indeed, the
arch is a case study highly sensitive to a vertical anisotropic perimeter constraint.

Finally, in Figures 3.33 and 3.34 the results related with isotropic relative perimeter
and anisotropic relative perimeter are shown for the level set as design variable,
respectively. Again, results are very similar to their total perimeter complementary
case, but with abrupt variations at the inner mesh and inner cut mesh interfaces.
Also, previous small hole now is fulfilled in the isotropic case, probably due to now
only the interior perimeter accounts to the penalty term.
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3.2.5 Microstructures

FIGURE 3.35:
Isotropic total
perimeter with

density (bulk I).

FIGURE 3.36:
Anisotropic total
perimeter with

density (bulk I).

FIGURE 3.37:
Isotropic total
perimeter with
level set (bulk II).

FIGURE 3.38:
Anisotropic total
perimeter with
level set (bulk II).



3.2. Results 55

FIGURE 3.39:
Isotropic total
perimeter with

density (shear).

FIGURE 3.40:
Anisotropic total
perimeter with

density (shear).

FIGURE 3.41:
Isotropic total
perimeter with
level set (shear-

bulk).

FIGURE 3.42:
Anisotropic total
perimeter with
level set (shear-

bulk).
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Case: Single stage
Micro Cost optUnconstr optConstr filter nSteps maxIter Vi Vf

Isotropic
total

perimeter
in Bulk I
(density)

h
+

0.052P

Projected
Gradient

Dual Nested
In Primal

P1 3 2000 1 0.6

Anisotropic
total

perimeter
in Bulk I
(density)

h
+

0.052P

Projected
Gradient

Dual Nested
In Primal

P1 3 2000 1 0.6

Isotropic
total

perimeter
in Shear
(density)

h
+

0.052P

Projected
Gradient

Dual Nested
In Primal

P1 3 2000 1 0.6

Anisotropic
total

perimeter
in Shear
(density)

h
+

0.052P

Projected
Gradient

Dual Nested
In Primal

P1 3 2000 1 0.6

Isotropic
total

perimeter
in Bulk II
(level set)

h
+

0.1P
SLERP

Dual Nested
In Primal

P1 8 2000 1 0.6

Anisotropic
total

perimeter
in Bulk II
(level set)*

h
+

0.1P
SLERP

Dual Nested
In Primal

P1
8/
10

2000/
150

1/
0.6

0.6/
0.6

Isotropic
total

perimeter
in Shear-Bulk

(level set)

h
+

0.1P
SLERP

Dual Nested
In Primal

P1 8 2000 1 0.6

Anisotropic
total

perimeter
in Shear-Bulk

(level set)*

h
+

0.1P
SLERP

Dual Nested
In Primal

P1
8/
10

2000/
150

1/
0.6

0.6/
0.6

TABLE 3.8: Settings of different micro cases. Anisotropic cases la-
beled with * consist of two stages which values are separated by s1/s2.
First stage is the same simulation as their complementary isotropic
cases. Second stage is a postprocess of the result obtained from first

stage, considering the anisotropic stiffness matrix.

The results of all variants regarding the microstructures case study are shown above,
along with the settings configuration defined for each case.
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In this case, just a single stage simulation strategy has been followed, which related
cost functions are depicted in the Cost column of Table 3.8, along with other settings.
This is because microstructures might allow the formation of very small features
that implies the use of a larger number of iterations to obtain a converged result.
Therefore, a penalty is crucial in these cases. Thus, the unit cell is optimized with a
minimum compliance problem algorithm, combined also with a perimeter penalty
term. Notice that the factor multiplying the perimeter penalty term might be differ-
ent for each of the 8 variants in order to obtain a well-converged result. Neverthe-
less, there are two anisotropic cases (anisotropic total perimeter in Bulk II with level
set, and anisotropic total perimeter in Shear-Bulk with level set) which use a 2-stage
simulation strategy, the first one considering their related isotropic equivalent case
in the cost function, and hence the second case considering the anisotropic perime-
ter, where the final converged result from first stage is numerically stored and this
serves as the initial case of stage 2. Lastly, all variants are solved with SIMP-ALL
as the interpolation method. Note that all obtained results fulfill periodic boundary
conditions, as a microstructure unit cell.

In Figures 3.35 and 3.36 the results related with isotropic total perimeter and anisotropic
total perimeter are shown for the density as design variable and the Bulk I orthotropic
case, respectively. Regarding the isotropic case, no local features with small length
scales are appearing in the solution. The solution yields a black value distribution
such that both main directions (horizontal and vertical) are optimized in material.
In relation with the anisotropic case, the two previous vertical topologies have been
split into two parts, as a virtual anisotropic stiffness matrix has been imposed with
a priority in the global Y-axis, hence implying the material capability to withstand
loads in the vertical direction with less cross section area, and satisfying the Bulk I
optimization case simultaneously.

In Figures 3.37 and 3.38 the results related with isotropic total perimeter and anisotropic
total perimeter are shown for the level set as design variable and the Bulk II or-
thotropic case, respectively. Regarding the isotropic case, some local features with
small length scales are appearing in the solution. Besides, the solution now yields a
black value distribution such that the horizontal direction has more priority over the
vertical one in terms of material distribution. In relation with the anisotropic case,
the small features have dissapeared and the rest of reinforcing bars have converged
into vertical topologies.

In Figures 3.39 and 3.40 the results related with isotropic total perimeter and anisotropic
total perimeter are shown for the density as design variable and the Shear orthotropic
case, respectively. Regarding the isotropic case, no local features with small length
scales are appearing in the solution. Besides, the solution yields a black value distri-
bution such that the material is able to withstand pure torques, with double symme-
try. In relation with the anisotropic case, horizontal features are severely penalized,
whereas vertical ones have increased in its thickness.

In Figures 3.41 and 3.42 the results related with isotropic total perimeter and anisotropic
total perimeter are shown for the level set as design variable and the Shear-Bulk or-
thotropic case, respectively. Regarding the isotropic case, some local features with
small length scales are appearing in the solution. The solution yields a black value
distribution such that the material is optimized in both main directions, and also
with the capability to withstand torsional loads. In relation with the anisotropic
case, small features have been penalized, whereas the other ones have increased in
its thickness. It is noticeable the fact that no vertical orientation is produced of main
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topologies, meaning that these converged orientations are needed in order to fulfill
the shear contribution requirement.

3.2.6 Numerical methodologies comparison

SIMP vs SIMP-ALL

Finally, in this section a comparison between different numerical methodologies re-
garding interpolation methods and the target parameter ϵ is presented. First, the
SIMP and SIMP-ALL interpolation methods are compared.

Consider the cantilever beam case study with the following settings configuration:

• Cost function, J = c + 10−4P (isotropic).

• Design variable: density.

• Optimizers: Projected Gradient (unconstrained) + Dual Nested In Primal (con-
strained).

• Filter: P1.

• 4 steps with 2000 maximum total iterations.

• Vf = 0.5.

The solution with a single stage simulation for three different methods - SIMP with
an exponent p = 2, SIMP with an exponent p = 3 and SIMP-ALL- are presented in
the following figures.

FIGURE 3.43: Converged solution of the cantilever beam example
with the interpolation SIMP method (p = 2).

FIGURE 3.44: Converged solution of the cantilever beam example
with the interpolation SIMP method (p = 3).
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FIGURE 3.45: Converged solution of the cantilever beam example
with the interpolation SIMP-ALL method.

In previous results one checks the strong dependence of the exponential parameter
of the SIMP method, recalling that such parameter accounted for the degree of gray
regions penalization. Therefore, the solution related with p = 2 shows a cantilever
beam with any cross reinforcing bars, since with this exponential order gray regions
are not penalized with the same importance as the SIMP-ALL method, hence imply-
ing that the later regularization induced in a larger region of black values. Moreover,
the solution with p = 3 yields a design variable distribution very similar to the one
obtained with the most generic SIMP-ALL method, since with a cubic expression
gray regions are severely penalized. Besides, it is justified the reason of selecting
p = 3 in SIMP method as a heuristic model for optimization problems.

High ϵ vs low ϵ

Lastly, in second place the target parameter ϵ influence in optimization problems is
assessed, due to its crucial importance.

Recall the definition of the perimeter shape functional in Equation (3.5).

P =
1
2ϵ

∫
Ω
(1 − ρϵ)ρ · dΩ (3.5)

One shall check that ϵ dependence accounts for terms 1
2ϵ and ρϵ. More specifically,

the smaller the ϵ, the poorer the shape and topological derivatives due to the regular-
ized density. Nevertheless, the smaller the ϵ the greater the contribution of perimeter
inside the optimization problem.

When dealing with a cost function where both compliance and perimeter are par-
ticipating, it is desirable to impose a ϵ enough small to ensure enough penalty of
perimeter constraints. Thus, one option is to set ϵ as the minimum mesh size ∆h
(employed throughout all previously analyzed case studies). Nevertheless, if this
target parameter is even smaller, no changes in the topology may be observed as
the topological derivative would have lost its sense, although the penalty term was
noticeable. Hence, some agreement must be established such that the selected ϵ is
enough small to ensure the appearance of perimeter as a penalty term, and enough
large to avoid the meaningless of the topological derivative.

Therefore, a small case study is proposed below, considering the pure minimum
perimeter problem applied to the microstructure with a void square inclusion of
30% of volume, similar to the one that has been previously studied in Section 3.2.1.
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The initial case is submitted to the minimum perimeter problem in two different
cases: one with a single step and ϵ = 2∆h; another with a single step and ϵ = 20∆h.
Final results are depicted below.

FIGURE 3.46: Converged solution of the microstructure example with
ϵ = 2∆h.

FIGURE 3.47: Converged solution of the microstructure example with
ϵ = 20∆h.

Note how the solution which uses the small value of ϵ has converged into a square
with curved boundary, rather than the circle, which is clearly the shape that mini-
mizes the interior perimeter given a certain quantity of material. This is because the
topological and shape derivatives are so poor that the steepest descent algorithm
finds a wrong local minimum before transforming the domain into a circle. Never-
theless, with the case of larger ϵ hence the solution converges into a perfect circle.
Although ϵ = 20∆h is relatively high, regarding this particular case this does not
matter, since the perimeter is not acting as a penalty term to the compliance. Large ϵ
considers larger regularization and thus the problem becomes more global, helping
the optimizer on finding better results. However, for real optimization problems ϵ
must be selected carefully, as well as its target parameter evolution over computa-
tional steps.
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Chapter 4

Project impact

4.1 Environmental impact

The intangibility of this project directly implies the definition of an environmental
impact to be relatively complex, since the exposed development in previous chapters
has been based in a pure theoretical field, showing the obtained results via numerical
simulations. Nevertheless, some aspects regarding the complementary part of the
design, Additive Manufacturing, can be mentioned.

Due to the rapid prototyping achieved by means of Additive Manufacturing tech-
niques and following the growing interest in environmentally benign manufactur-
ing, researchers compared their performance with more conventional routes such as
machining or injection molding processes. Most studies focus on energy consump-
tion, which for Additive Manufacturing unit processes this energy is 1 to 2 orders of
magnitude higher compared to conventional routes. Therefore, from environmen-
tal perspective, this consumption shall be compensated by functional improvements
during the use stage of manufactured parts. However, when assessing potential fuel
consumption reduction coefficients, the application of lightweighting components
in aircrafts only implies environmental benefits if significant weight reduction can
be reached. [22]

4.2 Economic impact

Indeed, this project contributes positively to the economic impact of all industries
that shall obtain benefits from topology optimization techniques, combined with
Additive Manufacturing. More specifically, the heuristic designs obtained, consist-
ing of complex shapes and unintuitive holes, can only be created by means of Ad-
ditive Manufacturing with a reasonable cost. Furthermore, although such processes
are usually applied only to thermoset materials, researchers are currently investigat-
ing new machinery to allow the creation of these designs with new kind of materials,
such as metals.

Moreover, since topology optimization reduces the weight of an initial design, hence
implying a reduction of the quantity present inside its bill of materials, the structural
cost also is reduced, allowing companies to offer products with the same capabilities
and with a minimum production cost.

Finally, related to the budget of this project, this has been relatively low, as seen in
Section 5.1. Specifically, the total budget of this project is 11412.00 e.
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4.3 Safety considerations

Regarding safety considerations, few aspects can be taken into account, more related
to future lines of investigation.

The resulting manufacturing of the optimized parts must be tested with a real ex-
periment, under the same load distribution and constraints as the numerical exper-
iment, in order to assure the capability of the design and material to withstand the
related stress distribution.

Lastly, recall the importance to fulfill Additive Manufacturing constraints. There-
fore, it is mandatory to check the sensitivity of the machine previous to perform the
numerical optimization, so as to ensure manufacturability by controlling the mini-
mum length scale. Besides, the part shall be printed in the same orientation as how
overhang constraints where assessed numerically.
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Chapter 5

Budget and project schedule

5.1 Budget

The budget of this project, which gives dimension to its initial inversion, has in-
cluded the following kind of costs: Human Resources, Software and other individ-
ual fixed costs.

More specifically, in Tables 5.1, 5.2 and 5.3, the Human Resources Plan, Software and
fixed costs are depicted, respectively.

Finally, in Table 5.4 the total budget of the project is computed.

Human Resources Plan
ID Components Hours Cost/u (e) Cost (e)

1.1
Project management. Costs relative to
project development time.

300.0 20.00 6000.00

Total 6000.00

TABLE 5.1: Cost of project Human Resources. Own elaboration.

Software
ID Components Cost (e)
2.1 Permanent licenses. 3100.00

2.1.1 Matlab & Simulink. 2000.00
2.1.2 GiD Simulation. 1100.00

Total 3100.00

TABLE 5.2: Cost of Softwares. Own elaboration.
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Fixed costs
ID Components Hours Cost/u (e) Cost (e)

3.1 Material. - - 2000.00
3.1.1 Computer - - 1500.00
3.1.2 Office material - - 500.00
3.2 Additional costs. - - 312.00
3.2.1 Light 300.0 0.17 51.00
3.2.2 Telephony 300.0 0.38 114.00
3.2.3 Commuting 300.0 0.49 147.00

Total 2312.00

TABLE 5.3: Individual fixed costs. Own elaboration.

Total budget
ID Components Cost (e)
1 Human Resources Plan. 6000.00
2 Software. 3100.00
3 Fixed costs. 2312.00

Total 11412.00

TABLE 5.4: Total budget cost. Own elaboration.

Thus, a total budget of 11412.00 e is obtained.

5.2 Schedule

Moreover, in next page the Gantt Chart followed throughout this project is attached.
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Chapter 6

Conclusions

6.1 Project conclusions

The present project has accomplished the main objectives planned in the beginning.
The feasibility of designs under additive manufacturing constraints - and consider-
ing numerical topology optimization techniques - has been properly analyzed, so as
to validate the anisotropic perimeter implementation and giving a positive answer
to the creation of lightweighting structures and the related fulfillment of 3D printing
constraints. More specifically, the methodology followed and the results obtained
have led to the key points depicted hereunder.

The programming environment defined for this project has been useful through-
out all stages, using the test-driven development philosophy, along with Object-
Oriented Programming techniques to obtain higher reusability dynamism of all im-
plemented objects, unlike traditional successor functions, and thus overall optimiz-
ing code development time. Besides, Git Version Control System has been helpful to
manage multiple versions of the Swan project, hence combining the code developed
with further improvements of the generic code repository.

Moreover, the use of Finite Element Methods in structural problems allows the cre-
ation of a robust numerical approach that gives a modelization of a mathematical
model, under a set of loads and constraints. Therefore, such numerical methodology
combined with topology optimization has led to the obtaining of a heuristic model
that creates new designs which weight have been reduced by the creation of voids
near the less stressed areas, fulfilling an objective function and a set of constraints,
considering two main design variables: density and level set.

Therefore, in order to fulfill additive manufacturing constraints - overhang and min-
imum length scales requirements - an additional shape functional has been defined
as a penalty contribution to the main objective function (mainly the compliance and
orthotropic effective properties): the anisotropic perimeter tool, being the evolution
of the standard (isotropic) perimeter. Both perimeter approaches lead to the reso-
lution of a Diffusion-Reaction equation. Hence, two possibilities to define at which
boundaries the perimeter contributes appear, being total (Robin boundary condi-
tions) and relative (Neumann boundary conditions) perimeter.

The known anisotropic perimeter solves both length scale and overhang constraints,
so as to allow manufacturability with additive manufacturing technology. On one
hand, considering the perimeter as objective function penalty term self-penalizes the
creation of boundaries (gray regions), thus avoiding the formation of small geomet-
rical scales.
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On the other hand, defining an anisotropic stiffness matrix by including a conduc-
tivity matrix in the integration of Kel has defined virtually in which direction the
material has the maximum stiffness intensity, hence keeping control in overhanging
phenomena by orienting the topologies mainly in the vertical direction.

Regarding the results obtained, first the anisotropic perimeter has been validated by
means of a pure minimum perimeter problem, where a square shape has converged
into an ellipse with higher eccentricity as the anisotropic scale factor increased, and
which major axis orientation is related with the virtual anisotropic stiffness matrix
eigenvectors. Lastly, in relation with the case studies, the apparition of local fea-
tures with small length scales has been avoided when including either isotropic or
anisotropic perimeter as penalty term. Furthermore, vertical tendency orientation of
topologies has been generally obtained in relation with the anisotropic cases, along
with the penalization of horizontal features. It is also worth mentioning the fact that
interior perimeter cases severely penalizes the obtained topologies, when compared
with their total perimeter complementary cases, even splitting the initial configura-
tion in two parts, as it occurs in the bridge and arch case studies. It must be high-
lighted also the importance of selecting an accurate interpolation method for any
case study, as well as the target parameters settings to allow the precise functioning
of shape and topological derivatives, whereas the perimeter acts as a non-negligible
penalty term.

Overall, this project has become clearly relevant for the exploration of new lightweight-
ing structures and the ulterior limitation of current environmental impact at all
industrial sectors, as the aerospace industry. Indeed, the use of numerical meth-
ods concerning topology optimization techniques and additive manufacturing con-
straints shall allow the minimization of both design time and costs. Besides, as the
code has been written to be compatible with collaborative projects, further explo-
ration of future lines of research will be allowed in the course of PhD professionaliza-
tion, specially when considering phase-field models, high-performance computing
and large-scale optimization inside the non-linear regime.

6.2 Future lines of research

Although the main objectives of this project have been successfully accomplished
in order to obtain heuristic designs computationally, some aspects in which future
work is needed must be taken into consideration. More specifically:

• To expand the anisotropic perimeter code to optimize 3D structures.

• To implement the minimum length scale constraint functional with a density
based projection method, inside the Swan project.

• To implement adaptive algorithms where white values does not account for the
stiffness matrix of the structure (continuous refactoring of the stiffness matrix),
along with selective geometry methods.

• To test experimentally the resulting manufacturing of the optimized parts, un-
der the same boundary conditions as the numerical experiment.

• To move further and design optimal structures in the non-linear regime, spe-
cially when considering plasticity and damage models.
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Appendix A

Programming Environment

Prior to gain knowledge inside the field of topology optimization methods, in this
chapter a definition of the programming environment which will be used through-
out the project evolution is provided. The importance of developing this code fol-
lowing the guidelines and techniques depicted in the following sections is crutial,
above all taking into consideration that all the work carried out shall be able to be
combined with future code.

Therefore, the Object-Oriented Programming technique is employed, along with the
test-driven development philosophy and the Unified Modeling Language represen-
tation method, which will schematize the code algorithm at user level. Finally, an
introduction to the Git Environment will be exposed.

A.1 Object-Oriented Programming

Software technology has been used since the 1950s in order to solve a complex prob-
lem by means of an assembled machine language. Over the last five decades, the
evolution of software technology has defined two different types of programming
techniques, firstly a procedure-oriented and hence an object-oriented programming.
[23]

Procedure-Oriented Programming. Regarding the first improvement or phase, de-
fined as Procedure-Oriented Programming (POP), the complex problem is solved
by following a cartesian-based method, where the main program is divided into a
sequence of secondary tasks that shall be done in order to obtain the last result. Be-
sides, these new tasks may be also divided into smaller tasks, even related with sev-
eral predecessors, and thus keeping this procedure working until atomic tasks are
reached. At software technology level, these tasks are known as functions. Hence,
atomic functions are activated separately in such a way that more complex functions
can be accessed until the main program is completely solved. This hierarchical de-
composition technique is the most common one to maintain a first contact with a
determined programming language, as it is simple to implement.

In Figure A.1 a common algorithm decomposition scheme is depicted. Although
this programming technique is widely used at user level, POP presents a clear dis-
advantage in relation with its exploitation to external programmers. Therefore, a
procedure-oriented code has a lack of dynamism when considering its reusability.
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FIGURE A.1: Typical hierarchical decomposition of procedural ori-
ented algorithms. [23]

Furthermore, in this multi-functional problem some data shall be placed locally in-
side each function as volatile variables, and also other data may be defined globally,
such that all the functions can access it. Therefore, a clear drawback appears when
considering the vulnerability of global data to an inadvertent change by a function.
Thus, the motivating factor aiming to eliminate some of conventional programming
disadvantages defined the second improvement, also with the purpose of incorpo-
rating the best POP features with other new powerful concepts.

Object-Oriented Programming (OOP). Treats data as a critical element, since it does
not allow it to be placed freely around the complex problem decomposition, hence
locating data closely to the function that operate on it. In fact, OOP allows the de-
composition into a number of entities called objects and thus stores properties and
functions around these objects. In Figure A.2 the organization scheme of OOP is ex-
posed. The public functions associated with a certain object can access its properties,
as well as the functions of other objects.

FIGURE A.2: Data and functions organization in Object-Oriented Pro-
gramming. [23]

This new programming technique implies a higher reusability dynamism, since some
of the objects into which a program is divided may be also complement the composi-
tion of another program, unlike traditional successor functions. In fact, a determined
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object does not serve a specific complex problem, and it shall be used for a large va-
riety of complex problems, relatively similar between them. This feature helps to
optimize code development time regarding reusability and tangibility by external
programmers. Other features of OOP are the following:

• Main focus on data rather than procedure.

• Properties and functions structures characterize the object to which they be-
long.

• Some part of data can be hidden.

• It is possible to create multiple instances of an object without any interference.

• OOP can be easily upgraded from small to large problems.

In Object-Oriented Programming there are two concepts extensively used: Objects
and Classes. Objects consists in the basic run time entities in an OOP system, and
they shall be chosen so that real-world objects are matched. The complex problem is
analyzed throughout objects and the communication rule between them, being able
to interact without knowing details of each other’s code. Moreover, Classes are the
basic reflection of a certain collection of brother objects. In fact, objects are variables
of the type class. Once a class is defined, any number of objects belonging to that
class can be created with different purposes and properties.

Finally, OOP is not the right of any specific programming language and it can be im-
plemented using languages such as C and Python. Nevertheless, in this project the
language used is MATLAB, as it is a C-based one, hence offering an easier interface
to implement all the code since C is a language specially designed to support OOP.

A.2 Test-driven development philosophy

During the development of any complex project by means of a coupled object-oriented
code, it is important to obtain a composition of objects with a high degree of reusabil-
ity, thus implying the creation of objects without any duplicated set of functions per-
forming the same task in different classes. Therefore, the goal is to obtain clean code
that works. [24]

Clean code that works improves the lives of programmers, as it is a predictable way
to develop. The method that allows users to get clean code without taking into
consideration the addition of possible imperceptible sources of errors is called Test-
Driven Development (TDD). This development style will be used throughout the
evolution of this project.

The two simple rules in TDD consists in writing new code for a failing automated
test, and hence eliminating duplication. The development environment must pro-
vide rapid response to small changes by providing feedback between decisions. Fi-
nally, such two rules imply an order to the programming tasks, as listed below:

• Red: creation of a test that does not work.

• Green: making the test to work quickly.

• Refactor: elimination of all the duplication created during the Green step.
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A.3 Unified Modeling Language

The last step to clearly define the Programming Environment, beyond the creation of
a set of objects that together solve the initial complex problem, consists in exposing
the way in which these objects are communicating between them, at user level.

Unified Modeling Language (UML) is a graphical language officially defined by the
Object Management Group with the purpose of providing visualization, specifica-
tion, construction and documentation of objects inside a software system. UML of-
fers a standard way to schematize all system functions, along with programming
language statements, database schemes and reusable components. Hence, UML rep-
resents basically the projection into the complex problem system. Additionally, these
diagrams might be developed in different abstraction levels depicting the most im-
portant ideas in each one of the level. [25]

The development of an UML involves both structural and behavioral modeling. On
the one hand, structure diagrams aim to schematize the static aspect of a system,
defining for instance diagrams of each of the classes and objects. On the other hand,
behavioral diagrams are used to represent the dynamics aspects of a system, such as
interaction diagrams, which aim to define the sequence, communication and inter-
action between classes. By using interaction diagrams, it is easier to understand the
control flow within components.

In Figure A.3 a class representation scheme is depicted. This representation illus-
trates the structural or static viewpoint of a system. Furthermore, it also clearly
defines the template for creating its corresponding objects.

FIGURE A.3: Class representation example. [25]

Moreover, the most important relationships between these elements, exposing either
physical or logical relations, are association and dependency. Association shows the
physical structure of things, whereas dependency states which entity is using the in-
formation and services of another entity. In Figure A.4 an example is shown consid-
ering these relationships, applied to an enterprise data synchronization system. As-
sociation relationships are depicted with a continuous arrow, whereas dependency
is defined with a non-continuous arrow.
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FIGURE A.4: Class diagram of enterprise data synchronization sys-
tem. [25]

Finally, other common instance-level relationships that may appear in a generic
UML class diagram are defined below:

• Inheritance: a super type class represents the specialized form of other sub-
classes that share the properties and functions from the predecessor class, but
may define an additional function, depending on the specific purpose. There-
fore, an instance of the subtype class is also an instance of the superclass. This
is depicted with a hollow-triangle ended arrow (the arrow’s origin contains
the subclass and the hollow triangle the superclass).

• Aggregation: variant of the association relationship, being more specific. An
aggregation occurs when a class is a collection of other classes in its input. This
is represented as a hollow diamond shape on the containing class with a single
line to the contained one.

• Composition: a determined class calls at some function an instance of another
class. This is represented with a filled diamond shape on the containing class,
connected with a single line to the contained one.

• Association: structural relationship specifying that objects of one class are con-
nected to objects of another class if needed (data-driven view). This is repre-
sented with a dotted line with arrows on both sides, connecting two classes.
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A.4 Git Environment

A.4.1 Version Control Systems

Git is a Version Control System (VCS) which is able to manage multiple versions of
a collaborative project, by tracking each change to the different files, offering a way
to undo or roll back each project stage. [26]

With Git, multiple people can work on their copy of the project, referred as branches,
so that their work can be finally merged into the main version when the team mem-
bers are satisfied with the work. Specifically, the following functionalities are found:

• Go back and forth between multiple versions.

• Review differences between versions.

• Check file change history.

• Review changes made by others.

The main feature of Git is its Three States system, more specifically:

• Working directory - current snapshot in which developer is working on.

• Staging area - modified files are marked in their current version.

• Git directory - history database.

Therefore, one may modify the corresponding files in order to add them to the stag-
ing area, thus taking the snapshot and finally adding them to the database.

Lastly, the present project’s source code is stored in GitHub server repository Swan-
Lab/Swan. [27] Now, during this project, the main characteristics and utilities that
Git has in order to fulfill its functionalities are presented.

A.4.2 Branches

A branch is just the developer independent copy of the project at a certain time,
being the main feature behind code reviews. In this copy, many changes might be
made such that other people’s work will not result affected. Branches are usually
created in order to develop new features of the master code.

Furthermore, the main or master code is itself the production branch, where future
customers would be able to obtain the last stable version of the software. There-
fore, several development branches are created from the master one, where all the
progress and commits will be recorded, and keeping the branch updated with mas-
ter. These patching branches continuously live and die with a pull request into
the master branch. It is very important to remark that a developer must not com-
mit never to the master branch directly, since making pull requests from patching
branches allow the project directive team to review and test all changes before merge
them into the master code.
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Lastly, although branches are mainly created to work locally, it is also possible and
advisable to push them to remote, so that these branches will be published to the re-
mote repository and everyone inside the project will be able to see the corresponding
progress.

A.4.3 Commits

When working inside a patching branch, the new files created to define the corre-
sponding features are set to untracked files by default. These files will remain ignored
until the developer decide to stage and commit them. Besides, when a existing file
tracked by git is modified, this is classified as modified/staged until the developer
again commit it in order to take a snapshot of the entire project at this instant.

Thus, as it has been exposed earlier during the development of this section, a commit
is defined as a snapshot of the entire project at a certain time. Commits allow git to
compare different versions of the project by just identifying the code lines which are
different between such versions, without recording specifically individual changes
done to the files. Commits also contain information about the author and time. All
commits have an heredity link with previous ones, so that the ensemble of all the
parentage is also known as the branch.

A.4.4 Pull requests

Pull requests consist in submitting a permission to apply all the commits in a branch
to another branch (usually, the master branch). The pull concept is completely the
opposite of push, hence the permission asked deals with executing the pull action on
a remote repository. Nevertheless, it is also necessary to later merge the branches
together, which is also included in the permission. Thus, a pull request just allows
the developers to finally include their work in the master branch. This assures that
every fix committed in the patching branches is tested and reviewed.
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Appendix B

The Finite Element Method

B.1 The Finite Element Method

B.1.1 The linear static elastic problem

Structural static analysis does not take into consideration time as an independent
variable and it is useful when deflections are constant or change slowly. These qua-
sistatic problems may include steady inertia loads and also exclude plastic action. In
this section a formulation for the linear static elastic problem will be provided, along
with the relationship with its properties. Firstly, an abstraction of the general solid
element into a bar and beam element will be performed in order to introduce the
problem, and hence the behaviour of a generic 3D solid element will be provided.

The importance to study bars and beams prior to the generic 3D element, in addi-
tion to providing a simple introduction to linear static analysis, deals with the ini-
tial modeling of a complicated structure, which may give useful information before
building the most realistic model with a small effort. Bars and beams are already
separate elements, just differing in how the internal distribution of forces is defined.
Bar elements are hinged together at connection points resisting only axial forces,
whereas beam elements are welded at such connection points, thus resisting axial
forces, transverse forces and bending moments.

The elastostatics applied to a uniform prismatic bar of length L with Young Modulus
E and cross-sectional area A are easily calculated from the elementary expression for
stretching a bar an amount δ = FL/(AE). [28]

FIGURE B.1: Nodal forces due to deformation of a two-node bar ele-
ment. (a) Node 1 displaced u1. (b) Node 2 displaced u2. [28]

Following the scheme depicted in Figure B.1, a node is located at each end, allowing
only axial displacements. If each of these nodes are displaced separately, one gets the
force that shall be applied to nodes, such that the displacement state is guaranteed,
as shown in Equation (B.1).
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F11 = F21 =
AE
L

u1 and F12 = F22 =
AE
L

u2 (B.1)

Therefore, allowing both nodes to displace simultaneously and considering the pos-
itive sign convention when forces are oriented to the right, the equivalent resultant
forces F1 and F2 applied to the bar at both nodes are shown in Equation (B.2).

[
F11 −F12
−F21 F22

]
·
[

1
1

]
=

[
F1
F2

]
(B.2)

AE
L

[
1 −1
−1 1

]
·
[

u1
u2

]
=

[
F1
F2

]
(B.3)

Or equivalently, as depicted in Equation (B.3). In this last expression the square
matrix, including the factor AE/L, is defined as the element stiffness matrix Kel for
a single bar element. Hence, the expression is also written as Kel · u = F.

The methodology already provided for bars can produce a stiffness matrix only for
simple elements. For most elements, such as beams, a general or formal procedure
shall be used instead. As exposed in [28], the general expression to compute an
element stiffness matrix is depicted in Equation (B.4),

Kel =
∫

Ω
BT · C · B · dV (B.4)

where B is the strain-displacement matrix, C the constitutive matrix and Ω the ele-
ment domain in which the stiffness is computed. In fact, this expression states that
internal work stored inside the element is due to elastic strain energy. In the particu-
lar case of a plane beam element, C = EI, where I is the centroidal moment of inertia
related to its cross-sectional area. Besides, for beams the strain energy depends on
curvature d2v/dx2, being v = v(x) the lateral displacement of a plane beam element.

The interpolation of lateral displacement of the plane beam elements from its nodal
degrees of freedom (related to in-plane bending and transverse shear force) is pro-
posed in Equation (B.5),

v =
[
N1 N2 N3 N4

]
·


v1
θz1
v2
θz2

 = N · d (B.5)

where each Ni is defined as shape functions, which describe how the displacement
changes with the local coordinate when the corresponding degree of freedom is
unity, while the other is zero. A relationship between matrices N and B can be set
through spatial derivative of shape functions. In Figure B.2 the definition of each
shape function is provided for a simple plane beam element.
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FIGURE B.2: (a) Simple plane beam element within its nodal degrees
of freedom. (b) Nodal loads related to degrees of freedom. (c-f) De-
flected shapes and shape functions associated with activation of each

degree of freedom. [28]

Hence, curvature of the beam element is obtained in Equation (B.6).

d2v
dx2 =

[
d2

dx2 N
]
· d = B · d (B.6)

Using now Equation (B.4) with all the definitions exposed, one gets the element
stiffness matrix for a simple plane beam element, shown in Equation (B.7).

Kel =


12EI/L3 6EI/L2 −12EI/L3 6EI/L2

6EI/L2 4EI/L −6EI/L2 2EI/L
−12EI/L3 −6EI/L2 12EI/L3 −6EI/L2

6EI/L2 2EI/L −6EI/L2 4EI/L

 (B.7)

Thus, considering for instance a 2D beam element, which is a combination of a bar el-
ement and a simple plane beam element, now the structure withstands axial stretch-
ing, transverse shear force and bending in one plane. By combination of Equations
(B.3) and (B.7), the stiffness matrix of a 2D beam element is depicted in Equation
(B.8).

Kel =



AE/L 0 0 −AE/L 0 0
0 12EI/L3 6EI/L2 0 −12EI/L3 6EI/L2

0 6EI/L2 4EI/L 0 −6EI/L2 2EI/L
−AE/L 0 0 AE/L 0 0

0 −12EI/L3 −6EI/L2 0 12EI/L3 −6EI/L2

0 6EI/L2 2EI/L 0 −6EI/L2 4EI/L



u1
v1
θz1
u2
v2
θz2
(B.8)
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Lastly, the term 3D Solid will be used to mean a three-dimensional solid that is un-
restricted as to shape, loading, material properties and boundary conditions. Hence,
all six possible stresses (three normal and three shear) must be taken into considera-
tion, as shown in Figure B.3.

FIGURE B.3: (a) Three-dimensional stress state. (b) 8-node hexahe-
dron element. (c) Degrees of freedom at any node. [28]

Furthermore, the displacement field involves all three translational components. 3D
models are the hardest to prepare, thus defining the most general case of analysis.
Nevertheless, they also are the ones demanding the highest computer resources.

In Equation (B.9) the strong form of elastostatics problem is depicted.

∂σij
∂xj

+ fi = 0 in Ω
ui = ûi on Γi

u
σijnj = t̂i on Γi

σ

(B.9)

Where a constitutive relation for these 3D elements is also provided in Equation
(B.10).

σij = Cijklϵkl (B.10)

Noting that Cijkl is also referred to the constitutive matrix previously seen in Equa-
tion (B.4), or elasticity matrix. Using Voigt notation, the elasticity matrix for isotropic
materials (those ones which mechanical behaviour does not depend in the direction)
is exposed in Equation (B.11).

C =



λ + 2µ λ λ 0 0 0
λ λ + 2µ µ 0 0 0
λ λ λ + 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ



ϵ11
ϵ22
ϵ33
γ23
γ13
γ12

(B.11)

Where λ and µ are the Lame parameters, which are functions of the Young’s modu-
lus and the Poisson ratio ν, as seen in Equation (B.12).

λ =
νE

(1 + ν)(1 − 2ν)
µ = G =

E
2(1 + ν)

(B.12)
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Therefore, only the definition of matrix B remains to be completed in order to obtain
a general approximation for the element stiffness matrix of a solid element. In or-
der to complete the definition, the strain-displacement relations with displacement
components u, v and w are exposed in Equation (B.13).

ϵ11 = ∂u
∂x γ12 = ∂u

∂y + ∂v
∂x

ϵ22 = ∂v
∂y γ23 = ∂v

∂z +
∂w
∂y

ϵ33 = ∂w
∂z γ13 = ∂w

∂x + ∂u
∂z

(B.13)

Besides, displacements u within a solid element might be interpolated from nodal
displacements d, once again considering shape functions: u = N · d. As it will be
discussed later, the shape functions employed will differ depending on the type of
element chosen for constructing all the structure. Nevertheless, in Equation (B.14)
an interpolation between two nodes is provided.

u
v
w

 =

N1 0 0 N2 0 0 ...
0 N1 0 0 N2 0 ...
0 0 N1 0 0 N2 ...

 ·



u1
v1
w1
u2
v2
w2
...


(B.14)

Finally, substitution of u = N · d into the strain-displacement relations shown in
Equation (B.13) yields the strain-displacement matrix B, which in consequence com-
pletes the definition of the stiffness matrix for a 3D solid element, as depicted in
Equations (B.15) and (B.16), respectively.

ϵ = B · d (B.15)

Kel =
∫∫∫

Ω
BT · C · B · dxdydz (B.16)

The mathematical formulation for 2D solid elements in the XY plane is completely
analogous to the procedure depicted for 3D ones, defining the required basis to im-
plement plane stress in optimization problems.

B.1.2 Theoretical basis of Finite Element Methods

The Finite Element Method (FEM) is a numerical approach used to solve a large
variety of physical problems regarding engineering analysis and designs. This is
usually employed in structural problems, given a model with a determined set of
loads and constraints. Therefore, considering the idealization of the problem within
a set of hypothesis, a mathematical model is created leading to the formulation of
differential equations, also referred as the strong form formulation of the problem.
Thus, FEM techniques aim to compute the corresponding solution to this kind of
equations throughout a numerical procedure, taking into consideration that the so-
lution will only be representative of the mathematical model, the related hypothesis
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and the boundary conditions considered. [29]

The analysis process related to the Finite Element Method is defined through the
steps depicted below.

1. Physical problem definition. FEM is applicable to a large variety of struc-
tural problems. For instance stress and strain analysis (mechanical proper-
ties assessment), or main modal shapes and natural frequencies determination
(modal analysis).

2. Mathematical model definition. The governing differential equations of the
problem must be determined ( f (u,∇2u) = 0), stating hypothesis in relation
with the following topics:

• Geometry.
• Kinematics.
• Materials law.
• External loads.
• Boundary conditions. These conditions can define either a Dirichlet (im-

position of the unknown u) or Neumann (imposition of the unknown gra-
dient ∇u) constraint over a fragment of the domain’s boundary.

3. Finite Element Analysis. The structural domain is discretized into a number
of finite mesh elements, selecting the element shape, the mesh density and
the unknown parameter u to be solved. Besides, all these parameters shall be
representative of external loads and boundary conditions.

4. Results convergence study. Once the results corresponding to the differential
equation (i.e, the representative mathematical model) are obtained, probably
the u-field and its gradient would not represent the expected behaviour, since
the problem has been solved with a discretization into finite elements. Never-
theless, as the mesh density increases, the field obtained would fit better with
the exact solution. Therefore, considering a convergence criteria, while the re-
sults obtained do not satisfy the model validation, the domain must be meshed
again with a higher density of elements and then returning to step 3. Once the
convergence criteria is satisfied, the study would continue to step 5. An indica-
tive parameter of this kind of study is the error norm evolution between the
computed variable and a reference value, thus studying its stability in order to
optimize computational cost.

5. Interpretation of results. Once the differential equation is completely solved
by means of this numerical procedure, the related conclusions can be extracted.
Therefore, some future improvements might be proposed. Mainly, one can
consider to propose a harder mathematical model (step 2) either with a higher
degree of the differential equations or an extension of the considered space
dimensions. Moreover, it is also recommended to return again to step 1 and
redefine the physical problem, hence implying the reduction of some hypoth-
esis in order to obtain better feasibility in the design behaviour if the previous
mathematical model was completely optimized.

Considering all aspects shown above, it can be concluded that, given a physical
problem, the results obtained are effective and reliable when the following affirma-
tions are fulfilled:
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• The most effective mathematical model applied to the structural analysis fits
the hypothetical model that represents the true solution, with enough precision
and minimum computational cost.

• The mathematical model is reliable if the solution of the differential equation
could be predicted with the most hardest version of such model.

B.1.3 Finite Element Methods in structural problems

Once the theoretical basis of finite element methods is defined, along with the linear
static elastic problem, both concepts shall be coupled in order to extend the applica-
tion of finite element methods to solve the general elastostatics problem with solid
elements. Therefore, the strong form of this phenomenon must be considered again,
which is depicted in Equation (B.9). These differential equations are applied to a
continuous system, representative of a structural differential element equilibrium
(variables of state), which is complemented with the related boundary conditions.

The next step consists in finding a reformulation of the strong form since the direct
resolution method can not always be applied. This will be performed considering
the Galerkin formulation, the Virtual Works Principle and the numerical integration
within the Gauss domain. [30]

Inside the field known as variational formulation (weak formulation) the following
functions must be identified:

• Trial functions u verifying the same boundary conditions that state variables.
I.e, ui = ūi on Γi

u.

• Test functions v, which are the difference between two any trial functions, such
that they value is equal to zero at the region where boundary conditions are
set. I.e, vi = 0 on Γi

u.

Moreover, the Galerkin formulation aims to approximate both functions with a sim-
ilar procedure previously seen in Section B.1.1, using interpolating shape functions
between nodal values, as depicted in Equation (B.17).

u ≃ N · d

v ≃ N · c ∀c/ci = 0 on Γi
u

(B.17)

Considering again the strong form exposed in Equation (B.9), the Virtual Works Prin-
ciple states that all virtual state variables field, which is compatible with the connec-
tions, will verify that external and internal virtual work are of the same magnitude.
Therefore, the weak form formulation is obtained by integrating over the domain the
product of the strong form equation with the test functions, as depicted in Equation
(B.18).

∫
Ω

vi

(
∂σij

∂xj
+ fi

)
· dΩ = 0 →

∫
Ω

vi
∂σij

∂xj
· dΩ +

∫
Ω

vi fi · dΩ = 0 (B.18)
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As shown in [30], by applying integration by parts and considering the Divergence
theorem, one transforms the left integral of previous equation into the expression
exposed

∫
Ω

vi
∂σij

∂xj
· dΩ =

∫
Γ

vi(σijnj) · dΓ −
∫

Ω

∂vi

∂xj
σij · dΩ. (B.19)

Considering both Dirichlet and Neumann boundary conditions, previous expression
is transformed into

∫
Ω

vi
∂σij

∂xj
· dΩ =

nsd

∑
i=1

∫
Γi

σ

vi t̄i · dΓ −
∫

Ω

∂vi

∂xj
σij · dΩ (B.20)

where nsd indicates the problem dimension and Γi
σ the region on Neumann bound-

ary conditions are set. Inserting the preceding expression into Equation (B.18), and
considering the symmetry tensor condition ∂vi

∂xj
= [∇sv]ij, thus Equation (B.21) is

obtained.

∫
Ω
[∇sv]ijσij · dΩ =

nsd

∑
i=1

∫
Γi

σ

vi t̄i · dΓ +
∫

Ω
vi fi · dΩ. (B.21)

Finally, inserting the constitutive relationship σij = Cijkl [∇su]ij into previous expres-
sion, the complete weak formulation of the classic elastostatics problem is obtained,
as shown

∫
Ω
[∇sv]ijCijkl [∇su]ij · dΩ =

nsd

∑
i=1

∫
Γi

σ

vi t̄i · dΓ +
∫

Ω
vi fi · dΩ ∀vi/vi = 0 on Γi

u. (B.22)

The last step consists in applying the Galerkin formulation onto the weak form expres-
sion in order to obtain the well known matrix equation. This is:

∫
Ω

B · c · C · B · d · dΩ =
nsd

∑
i=1

∫
Γi

σ

N · c · t̄i · dΓ +
∫

Ω
N · c · f · dΩ. (B.23)

With a simple matrix product transformation, one gets Equation (B.24).

cT
(∫

Ω
BT · C · B · dΩ

)
· d = cT

(
nsd

∑
i=1

∫
Γi

σ

NT · t̄i · dΓ +
∫

Ω
NT · f · dΩ

)
(B.24)

Lastly, previous expression is analogous to the one depicted in Equation (B.25).

cT(K · d) = cT(F) → K · d = F (B.25)

Where K is the stiffness matrix, d the nodal displacements vector and F the external
forces vectors. Once again, it is obtained the same definition of the stiffness matrix
as in Equation (B.16). Besides, the definition of F is depicted in Equation (B.26). The
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vector of nodal forces is related to external loads, taking into consideration punctual,
surface and body forces.

F =
nsd

∑
i=1

∫
Γi

σ

NT · t̄i · dΓ +
∫

Ω
NT · f · dΩ (B.26)

Nevertheless, at this stage of the mathematical development Equation (B.25) is not
completed at a global point of view. Indeed, the whole domain may be composed
of several types of elements due to mesh refinement and the presence of several
distributed loads. Besides, different shapes shall be employed depending on the
geometry of the domain. Therefore, a re-definition of all parameters of the matrix
equation is provided in Equations (B.27) and (B.28).

K = Anel
e=1

(
Ke) = nel

∑
e=1

LeT · Kel
e · Le (B.27)

F = Anel
e=1 (Fe) =

nel

∑
e=1

LeT · Fe (B.28)

Where Le is a matrix consisting of integers 0 and 1 that establishes the relationship
between elemental nodal variables with the global nodal vector d. Once this as-
sembly process is performed, now the matrix equation can be represented in its
non-coupled form. This is performed since the original matrix equation is singu-
lar, hence not providing a direct resolution of the system of equations at this stage.
This is:

[
K f f K f r
Kr f Krr

]
·
[

d f
dr

]
=

[
Ff
Fr

]
+

[
0
R

]
(B.29)

where f represents the subset of free nodes and r the subset of restricted nodes. Equiv-
alently, each subset corresponds to those nodes related to Neumann and Dirichlet
boundary conditions, respectively. Therefore, each term of the type ϕij defines a sec-

ondary term, born from the selection of rows and columns exposed in subsets i and
j, respectively. Besides, R corresponds to the vector of reaction forces on Dirichlet
nodes. Thus, the unknowns of the matrix problem are d f and R.

In order to solve the system of equations, each non-coupled matrix equation is con-
sidered, as follows.

K f f d f + K f rdr = Ff → d f = K−1
f f · (Ff − K f rdr) (B.30)

Kr f d f + Krrdr = Fr + R → R = Kr f d f + Krrdr − Fr (B.31)

Now, matrix K f f is invertible.
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B.1.4 Evaluation of integrals via Gauss quadrature

Lastly, we need a procedure to compute both the stiffness matrix and external force
vector for each element, considering the integral definition (weak form). Since the
dimensions of the elements of the mesh are completely arbitrary for different case
studies, we will use an approach which allows to transform the elements into a ref-
erence domain, where K and F will be finally computed. This is known as the Gauss
quadrature approach. [30]

In general terms, let f : Ω̄e → R to represent some function that shall be evaluated
over the physical domain Ω̄e (see Equation (B.32)).

I =
∫

Ωe
f · dΩ (B.32)

The above integral must be computed in the parent domain by considering the follow-
ing change of variables: x = x(ξ). Considering elementary calculus, one transforms
previous expression into Equation (B.33).

I =
∫

Ωξ

Je(ξ) f (ξ) · dΩξ (B.33)

where dΩξ = dξdη for 2D problems, and dΩξ = dξdηdζ for 3D problems. Finally,
let ξg and wg (g = 1, 2...m) to represent the position and corresponding weight of
the g − th Gauss point. Therefore, the approximation of Equation (B.33) by Gauss
quadrature reads the expression depicted in Equation (B.34). One-dimensional Gaus-
sian rules are employed on each coordinate separately. In Appendix C, examples of
finite elements in the parent domain are shown.

∫
Ωξ

Je(ξ) f (ξ) · dΩξ ≃
m

∑
g=1

wg Je(ξg) f (ξg) (B.34)
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Appendix C

Finite elements in Gauss
quadrature

In this Appendix some examples of finite elements in the parent domain are shown
in order to establish the procedure required to apply Gauss quadrature during the
integration of the elementary stiffness matrix and external force vector. [30]

C.1 Bilinear quadrilateral element

FIGURE C.1: Bilinear quadrilateral element domain and local node
ordering. [30]

Matrix of shape functions: Equation (C.1).

Ne =
1
4
[
(1 − ξ)(1 − η) (1 + ξ)(1 − η) (1 + ξ)(1 + η) (1 − ξ)(1 + η)

]
(C.1)

Element boundary tractions vector: Equation (C.2).

Fe
dis =

||xe
2 − xe

1||
6

[
2 1
1 2

]
·
[

q̄(xe
1)

q̄(xe
2)

]
(C.2)
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2×2 Gaussian rule to integrate the stiffness matrix (4 Gauss points):

1. ξ1 =
(
− 1√

3
,− 1√

3

)
, weight w1 = 1.

2. ξ2 =
(

1√
3
,− 1√

3

)
, weight w2 = 1.

3. ξ3 =
(

1√
3
, 1√

3

)
, weight w3 = 1.

4. ξ4 =
(
− 1√

3
, 1√

3

)
, weight w4 = 1.

Gauss quadrature with m = 2 for integral evaluation of tractions loads:

1. ξ1 = − 1√
3
, w1 = 1.

2. ξ2 = 1√
3
, w2 = 1.

C.2 Linear triangular element

FIGURE C.2: Linear triangular element domain and local node order-
ing. [30]

Matrix of shape functions: Equation (C.3).

Ne =
[
1 − ξ − η ξ η

]
(C.3)

As in the case of quadrilaterals, edges of linear triangles are straight lines defined by
two nodes, thus obtaining the same expression for distributed loads, see Equation
(C.2).

1×1 Gaussian rule to integrate the stiffness matrix (1 Gauss point):

1. ξ1 =
( 1

3 , 1
3

)
, weight w1 = 1

2 .
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