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Abstract 

Vertebrates exhibit patterned epidermis, exemplified by scales/interscales in 

mice tails and grooves/ridges on the human skin surface (microtopography). 

Although the role of spatiotemporal regulation of stem cells (SCs) has been 

implicated in this process, the mechanism underlying the development of such 

epidermal patterns is poorly understood. Here, we show that collagen XVII 

(COL17), a niche for epidermal SCs, helps stabilize epidermal patterns. Gene 

knockout and rescue experiments revealed that COL17 maintains the width of 

the murine tail scale epidermis independently of epidermal cell polarity. Skin 

regeneration after wounding was associated with slender scale epidermis, 

which was alleviated by overexpression of human COL17. COL17-negative skin 

in human junctional epidermolysis bullosa showed a distinct epidermal pattern 

from COL17-positive skin that resulted from revertant mosaicism. These results 

demonstrate that COL17 contributes to defining mouse tail scale shapes and 

human skin microtopography. Our study sheds light on the role of the SC niche 

in tissue pattern formation. 
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Introduction 

The skin is the body’s outermost organ and is composed of the multilayered 

epithelium, the epidermis, and the underlying dermis. The epidermis serves as 

a physical barrier to pathogens and prevents water leakage from the body 1. 

The epidermis is maintained by a fine-tuned balance between the proliferation 

and differentiation of epidermal stem cells (SCs), which reside in the epidermal 

basal layer 2. Epidermal SCs need niche proteins such as integrins and 

collagen XVII (COL17) for their proper function 3,4. Functional loss of these 

proteins leads to transient hyperproliferation of the developing epidermis due to 

disturbed SC maintenance 5-7. 

Vertebrates have distinct skin patterns. In some, the patterns are visible 

through melanin distribution in the skin (e.g., zebra and tiger stripes); in others, 

the allocation of skin components forms patterns (e.g., human microtopography, 

hair follicles (HFs), and fish scales). Murine tail skin serves as a robust model 

for examining epidermal pattern formation 8. The tail epidermis consists of scale 

(parakeratotic) and interscale (orthokeratotic) areas, which are arranged 

alternately. These scale and interscale areas are distinguished by the 

expression of keratin 31 (K31) and keratin 10 (K10), respectively 9. Label-
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retaining and lineage-tracing experiments have revealed that K10+ interscale 

epidermis is slow-cycling, whereas K31+ scale areas are fast-cycling. Two 

distinct stem cell populations (Dlx1+ and Slc1a3+) give rise to interscale and 

scale epidermis, respectively 10, although it is unclear how these cell 

populations are arranged into scale/interscale patterns. 

The expression of epidermal SC niche proteins, including integrins and 

COL17, shows alternate patterns in the human epidermis, where their 

expression is enriched in the epidermis facing the dermal protrusion but not in 

the epidermal rete ridges 11-13. Conversely, the scale/interscale patterns are 

absent in β1 integrin-null tail epidermis 14. These previous studies suggest the 

involvement of SC niche proteins in epidermal pattern formation. However, 

whether these SC niche proteins indeed regulate the epidermal patterns and 

the mechanisms underlying such regulation are unknown.  

Here, we demonstrate that COL17, an SC niche protein 7,15-17, helps in the 

formation of proper epidermal patterns in mice and humans. Interestingly, 

disturbed epidermal patterning through COL17 deletion is independent of 

aberrant epidermal cell polarity, but could involve wound-related skin changes. 
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Material and methods 

Animals 

C57BL/6 (wild-type, WT) mice were purchased from Clea (Tokyo, Japan). 

Col17a1-/-, K14-hCOL17 (h: human, a courtesy gift from Prof. Kim B 

Yancey), hCOL17+; Col17a1-/-, K5-Cre;aPKCλΔE5/ΔE5 (aPKCλ eKO), and 

Prkcz-/- (aPKCζ KO) were generated as previously described 18-21. 

aPKCλΔE5/ΔE5 and Prkcz+/- mice were used as aPKCλ eKO and aPKCζ KO 

controls, respectively. aPKCλ eKO and aPKCλΔE5/ΔE5 littermates were 

generated by mating aPKCλ eKO and aPKCλΔE5/ΔE5 mice. aPKCζ KO and 

Prkcz+/- littermates were generated by mating aPKCζ KO and Prkcz+/- 

mice. Littermate Col17a1+/- or Col17a1+/+ mice were used as Col17a1-/- 

or hCOL17+;Col17a1-/- control. Col17a1-/-, Col17a1+/-, and Col17a1+/+ 

littermates were generated by mating Col17a1+/- female and male mice. 

hCOL17+;Col17a1-/-, Col17a1+/-, and Col17a1+/+ littermates were 

generated by mating hCOL17+;Col17a1+/- and Col17a1+/- mice. K14-

hCOL17 and WT littermates were generated by mating K14-hCOL17 and 

WT mice. Female mice were used for the wound-healing experiments on 

WT mice. Otherwise, sex-matched mice were used in each experiment. 
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The institutional review board of the Hokkaido University Graduate School 

of Medicine approved all animal studies described below.  

 

Cell Culture 

hTERT-immortalized human primary keratinocytes (KerCT; ATCC, Manassas, 

VA, USA), and spontaneously transformed murine keratinocytes (PAM212) 22 

were cultured in serum-free keratinocyte growth medium (KGM; Lonza). The 

cells were transfected with 10 µM of human COL17A1 siRNA, murine Col17a1 

siRNA or the control (Mock) (Silencer Select siRNAs, Thermo Fisher Scientific, 

Waltham, Massachusetts, USA) using Lipofectamine 2000 (Thermo Fisher 

Scientific) and Opti-MEM (Thermo Fisher Scientific). The cells were analyzed at 

48 or 72 h after the knockdown procedure. 

 

Antibodies  

The following antibodies were used: polyclonal anti-K31 (Progen, hHa1), 

polyclonal anti-K10 (BioLegend, Poly19054), polyclonal anti-K6 (BioLegend, 

Poly19057), monoclonal anti-cytoplasmic COL17 (Abcam, Cambridge, MA, 

USA, ab186415/EPR14758). 

https://www.biolegend.com/en-us/search-results?Clone=Poly19054
https://www.biolegend.com/en-us/search-results?Clone=Poly19054
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Quantitative RT-PCR (qRT-PCR) 

RNA was isolated from the tail epidermis or cultured cells using the RNeasy 

Mini kit (QIAGEN, Hilden, Germany), and cDNA was synthesized using the 

SuperScript III First-Strand Synthesis System (Thermo Fisher Scientific, 

Waltham, MA, USA). qRT-PCR was carried out using the designated primers 

and fast SYBR Green (Thermo Fisher Scientific) in a STEP-One Plus sequence 

detection system (Applied Biosystems, Waltham, MA, USA). 

The following primers were used for the analysis: Forward primer and reverse 

primer are: murine Krt6a, CACGTTAAGAAGCAGTGTGCC and 

GCTCTGAGCACGGGATTCT; murine Krt6b, AGGAGTGCAGGTTGAATGGTG 

and AAAAAGAGAAGCGAGAGGACACA;  murine Krt16, 

TCCCAGCTCAGCATGAAAG and GAGCTGTGGATATTCTCGCCA; murine 

Krt17,  AGACAGAGAACCGCTACTGC and CGGGTGGTCACAGGTTCTTTT; 

murine Col17a1, GATGGCACTGAAGTCACCGA and 

TATCCATTGCTGGTGCTCCC; murine Cyc1,  

ATCGTTCGAGCTAGGCATGG and GCCGGGAAAGTAAGGGTTGA; human 

KRT17, CAGAGAACCGCTACTGCGTG and 
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GTCACCGGTTCTTTCTTGTACTG; human KRT16, 

GCTCAGCATGAAAGCATCCC and GACCTCGCGGGAAGAATAGG; human 

KRT6A, AGTGCAGGCTGAATGGCGAA and TGGGACCGAGAGCTAGCAGA; 

human KRT6B, TTCATCGACAAGGTGCGGT and 

CAGCTCCGAGTCCAGACGAC; human COL17A1, 

TCAACCAGAGGACGGAGTCA and TCGACTCCCCTTGAGCAAAC; human 

RNA18SN1 (18S), GGCGCCCCCTCGATGCTCTTAG and 

GCTCGGGCCTGCTTTGAACACTCT.     

 

Immunofluorescence staining 

Paraffin sections were deparaffinized and boiled in citrate or EDTA buffer for 20 

min in a microwave oven. Frozen sections or cultured cells were fixed in 4% 

paraformaldehyde (PFA) for 10 min at room temperature (RT), or cold acetone 

or used without fixation. After washing with PBS, sections were treated with 

blocking buffer (0.5% fish skin gelatine, 5% goat serum, 4% BSA in PBS) for 1 

h. The samples were incubated with primary antibodies at 4 °C overnight and 

were subsequently incubated with secondary antibodies conjugated with Alexa 

fluor 488, Alexa fluor 647, or FITC at RT for 1 h. Nuclei were stained with 4’,6-
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diamidino-2-phenylindole (DAPI). Images were obtained using confocal 

microscopy (FV1000, Olympus, Tokyo, Japan; LSM-710, Zeiss, Germany) or 

fluorescence microscopy (BZ-9000, Keyence, Osaka, Japan). 

 

Whole mount staining 

Tail skin was incubated in 5 mM EDTA/PBS on a shaker at 37 °C for 4 h to 

separate the epidermis from the dermis. Epidermal sheets were fixed in 4% 

paraformaldehyde (PFA) for 1h at RT. After blocking, epidermal sheets were 

incubated with primary antibodies overnight at RT, and then washed in 0.2% 

Tween/PBS. Samples were subsequently incubated with secondary antibodies. 

After washing, epidermal sheets were mounted on glass slides in Mowiol 

solution. The images of whole mount stained samples were obtained using 

FV1000 confocal laser scanning microscope (Olympus, Tokyo, Japan) or 

BZ9000 fluorescence microscope (Keyence, Osaka, Japan). The size and 

shape of the scales near the midline of the tail epidermis were analyzed using 

ImageJ (NIH, Bethesda, MD, USA). When the scales of the littermates were 

compared, the area, length, and width of the scales were normalized to the 
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whole tail equivalents to exclude the effects of the organismal size of each 

mouse. 

 

Wound healing experiments 

The surface of the tail skin (epidermis and papillary dermis, approximately 5 × 4 

mm in size) was removed using a scalpel from 1-month-old (1MO) WT mice or 

K14-hCOL17 mice to produce superficial skin wounds (Supplementary Fig. 

5A). The wounded skin was collected and analyzed when the healing process 

was complete (typically 4–6 weeks after wounding) and at a later time point (3 

months after wounding). 

 

Junctional epidermolysis bullosa (JEB) skin analysis 

Photographs of the skin of a JEB patient 23 who was compound heterozygous 

for c.1179del (p.Ala394Leufs*9) and c.4159C>T (p.Gln1387*) in COL17A1 

(NM_000494.4) were taken by TG-5 (Olympus). Three revertant mosaicism 

spots and three adjacent diseased skin areas from the upper arm were further 

analyzed as described below. Although the fingerprints have been absent in 

other JEB patients with COL17A1 p.Arg1303Gln mutations 24-26, the patient in 
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our study maintained his fingerprints. This discrepancy is probably due to the 

difference of the COL17A mutations. The institutional review board of the 

Hokkaido University Graduate School of Medicine approved all human studies 

described above (ID: 13-043). The study was conducted according to the 

principles of the Declaration of Helsinki. The participant provided written 

informed consent. 

 

Quantification of the skin microtopography 

We selected several regions like the one surrounded by the red circle in the left 

panels of Supplementary Fig. 6A and 6B for Diseased skin and Reverted skin. 

We converted the image inside each circle to a grayscale image and calculated 

the two-dimensional autocorrelation function 27 (right panels in Supplementary 

Fig. 6A and 6B). Using the two-dimensional autocorrelation function, the 

characteristic direction of the epidermal pattern was detected by determining 

the direction in which the autocorrelation in the range of a distance less than 1 

mm is the largest. The one-dimensional autocorrelation function was calculated 

(Supplementary Fig. 6C, 6D) in the direction perpendicular to the characteristic 

direction, represented by the red lines in the right panels in Supplementary 
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Fig. 6A and 6B. The peak height (Δ) of the one-dimensional autocorrelation 

function in the range of distance less than 1 mm was adopted to quantify the 

regularity of the pattern. In the case where no peak was detected, the peak 

height was set to zero. The above-mentioned image analyses were performed 

with ImageJ NIH (Bethesda, Maryland, USA; https://imagej.nih.gov/ij/) by 

preparing a plug-in. 

 

Statistical analysis  

Statistical analysis was performed using GraphPad Prism (GraphPad Software, 

La Jolla, CA, USA). p-values were determined using Welch’s t-test, Student’s t-

test, or Mann-Whitney test. p-values are indicated as *0.01<p<0.05, 

**0.001<p<0.01, ***0.0001<p<0.001, ****p<0.0001. The values are shown as 

violin plots. Violin plots show median (dashed line) and quartiles (dotted line). 
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RESULTS 

COL17 deficiency alters scale shape in the tail skin  

We first characterized the scale/interscale patterning of Col17a1-/- 19 tail 

epidermis. We selected the time point of 1MO, when the scales became mature 

8 (Supplementary Fig. 1). Immunofluorescence of the tail sections showed K10+ 

interscale and K31+ scale alternate patterns in both Col17a1-/- and controls (Fig. 

1A; Supplementary Fig. 2A). We then examined the scale shape by whole skin 

imaging. We defined the length and width of a scale as the diameter of the 

anterior-posterior (AP) and lateral-medial (LM) axes, respectively (Fig. 1B). Since 

the length and width of whole tail samples varied among the mice 

(Supplementary Table 1), we normalized the scale length/width by dividing them 

by each mouse tail length/width to exclude the effects of organismal size in the 

analysis. Whole-mount imaging showed that the scale size was smaller and the 

shape was more slender (shorter on the LM axis) in the Col17a1-/- tail epidermis 

than in the littermate controls (Fig. 1C-1F, Supplementary Fig. 2B). The shorter 

scale width in Col17a1-/- explains the smaller size of Col17a1-/- scales because 

their length was comparable to that of the controls (Fig. 1G, 1H). Although the 

basal cell number of maximum diameter on the AP axis was comparable between 
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Col17a1-/- and control scales, the cell number on the LM axis was smaller in 

Col17a1-/- scales than in control scales (Supplementary Fig. 2C), implying the 

altered alignment of the basal cells in Col17a1-/- scales. As the C57BL/6 (WT) 

scale shape was wider at P14 (postnatal day 14) than at 1MO (Fig. 1I), the 

slender scale shape in Col17a1-/- mice was not due to the delayed development 

of the mice. Col17a1-/- tails were generally smaller but not more slender than 

those of controls (Supplementary Table 1), excluding the involvement of 

organismal proportions in Col17a1-/- slender scales. Transgenic rescue by the 

expression of hCOL17 under the keratin 14 (K14) promoter in Col17a1-/- mice 19 

reversed the slender scale phenotype (Fig. 2A-2C). These data indicate that 

COL17 helps to define the scale proportion.  

 

aPKC deregulation does not phenocopy Col17a1-/- scale shape 

Atypical protein kinase C (aPKC) is a key regulator of epithelial polarity 28, and 

the epidermis expresses two aPKC isoforms (aPKCλ and aPKCζ) 29. The 

ablation of aPKCλ in the epidermis (K5-Cre;aPKCλΔE5/ΔE5, aPKCλ eKO) and 

Col17a1-/- mice share premature aging phenotypes such as gray hair and hair 

loss 15,19,21,28. This phenotypic similarity has been proposed to be a 
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consequence of the interaction between COL17 and the aPKC complex 30. We 

asked if the destabilized aPKC accounts for the slender scale shape of 

Col17a1-/- mice (Fig. 3A-3F). Whole-mount imaging showed that the scale size 

was smaller in aPKCλ eKO than in littermate controls, but its scale proportion 

(width/length ratio) was wider than that of controls (Fig. 3A, 3C, 3D), which is in 

contrast to the slender scales of Col17a1-/- mice (Fig. 2). aPKCζ knockout 

(aPKCζ KO, Prkcz-/-) mice, which have no apparent skin phenotype 20, showed 

slightly larger scales, while the width/length ratio did not exhibit significant 

change (Fig. 3B, 3E, 3F). These results indicate that the aberrant cell polarity in 

Col17a1-/- epidermis 17,30 is not involved in altering the scale shape. 

  

Expression of wound-induced keratins is pronounced in Col17a1-/- tail 

epidermis 

One of the factors that may affect scale shape is the cytoskeleton of epidermal 

keratinocytes. Keratin 6, 16, and 17 (K6/K16/K17) are the well-known keratins 

expressed upon physical injury. We reasoned that these wound-induced 

keratins might be enriched in Col17a1-/- epidermis at steady state because 

COL17 deficiency leads to epidermolysis bullosa in humans 31 and shows skin 
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fragility in mice 19. Quantitative PCR revealed that the gene expression of these 

wound-induced keratins was higher in Col17a1-/- tail epidermis (Fig. 4A). In 

addition to gene expression, immunofluorescence analyses showed ectopic K6 

expression in Col17a1-/- tail epidermis at 1MO. K6 expression in Col17a1-/- tail 

epidermis was also observed during the developmental stages (P1 and P14; 

Fig. 4B-4D). These data indicate that keratin profiles are skewed towards the 

wound-induced subsets in Col17a1-/- epidermis. In contrast, human or murine 

cultured keratinocytes knocked down for COL17A1 or Col17a1 did not result in 

the expression of wound-induced keratins at the mRNA or protein level 

(Supplementary Fig. 3-4), suggesting that this phenotype is dependent on the 

in vivo setting. Rather, KRT16 and Krt6b expression was reduced in human and 

murine knockdown experiments, respectively, for unknown reasons. 

  

Scale shape becomes slender after skin regeneration, and COL17 

overexpression rescues the phenotype 

The expression of wound-induced keratins in Col17a1-/- epidermis led us to ask 

whether wounding itself alters the tail scale shape upon skin regeneration (Fig. 

5A-5F). The regenerated tail epidermis (4 to 6 weeks after wounding) exhibited 
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a more slender scale shape than the non-lesional areas (Fig. 5A, 5C, 5D), 

recapitulating the Col17a1-/- scale (Fig. 2). The slender scale phenotype in the 

regenerated epidermis was not reversed 3 months after wounding 

(Supplementary Fig. 5B-5D). To see that additive COL17 prevents the 

alteration of the scale shape in the regenerated epidermis, we utilized K14-

hCOL17 transgenic mice, which overexpress hCOL17 under the K14 promoter. 

The scale shape of the regenerated K14-hCOL17 skin was not as slender as 

that of the regenerated WT skin (Fig. 5B, 5E, 5F). These results suggest that 

COL17 prevents wound-induced scale deformation.  

 

COL17 influences human skin microtopography 

We finally asked whether the presence or absence of COL17 also affects 

epidermal patterning in humans. Although scale/interscale epidermal patterns in 

mouse tails are not conserved, skin surface patterns consisting of grooves and 

ridges are visible in humans. We took advantage of the revertant mosaicism in 

epidermolysis bullosa (EB), in which the mutated genes are corrected 

spontaneously 32,33. We compared COL17-negative (diseased) and COL17-

positive (revertant) skin from a junctional EB (JEB) patient with COL17A1 
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mutations 23 (Fig. 6A-6C, Supplementary Fig. 6). The diseased skin surface 

appeared coarse, while the revertant skin was smooth (Fig. 6B). We calculated 

the autocorrelation functions of these skin images to quantify the skin 

microtopography and found that the diseased skin shows a distinct pattern from 

the revertant skin (Fig. 6D). These findings demonstrate that COL17 is a 

deterministic factor of epidermal patterning in mice and humans.  
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Discussion 

COL17 is a hemidesmosomal protein that anchors basal keratinocytes to the 

dermis. COL17 stabilizes hemidesmosomes by binding to various basement 

membrane zone proteins including BP230 34,35, α6 integrin 36, β4 integrin 35,37-39, 

plectin 35,40, laminin-332 25,41, and type IV collagen 42,43. As a consequence, 

COL17 deficiency results in epidermolysis bullosa 19,31. Recently, COL17 has 

also been highlighted as an SC niche protein of HFs and epidermis, and its 

deficiency destabilizes epithelial SC maintenance 7,15-17. Our study provides 

new insights into COL17 biology. Col17a1-/- mice have slender tail scales and 

are characterized by the expression of wound-induced keratins in the epidermis. 

In line with this, the regenerated epidermis after wounding shows slender tail 

scales. Human COL17 overexpression reverses the alteration of scale shapes 

upon wounding (Fig. 7).  

Epidermal cell polarity regulates symmetrical and asymmetrical cell 

division of basal keratinocytes 44-46 and is regulated by the aPKC complex 47-49. 

Increased asymmetrical cell division in aPKCλ eKO epidermis 28 and possible 

stem cell depletion explain the smaller scales in aPKCλ eKO mice (Fig. 3). 

Although COL17 interacts with the aPKC complex 30 and helps maintain 
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epidermal cell polarity 17,30, Col17a1-/- did not exhibit proportionally small scales 

as seen in aPKCλ eKO mice. This phenotypical difference indicates that the 

slender scale phenotype in Col17a1-/- mice is independent of aberrant cell 

polarity. 

A limitation of our study is that it does not explain which contributes more 

to the altered epidermal patterns in Col17a1-/- mice: epidermal SC instability or 

weakened epidermal-dermal adhesion. As the HF abnormality of Col17a1-/- 

mice becomes apparent at 3 months old 15, it is not very likely that HFs are 

involved in the phenotypes of epidermal patterns at 1 month old in our study. 

Furthermore, the hard palate in the oral mucosa, where HFs are absent, shows 

an epithelial pattern of fast- and slow-cycling stem cells 50, recapitulating the 

epidermal pattern of the tail skin. Thus, HFs might not be essential for epithelial 

pattern formation. 

Among various skin patterns, fingerprints, also called dermatoglyphics, 

are the most well-characterized in humans. Fingerprints show an alternate 

pattern of epidermal ridges and grooves. Loss of fingerprints has been 

described in EB patients, including Kindler syndrome 51,52 and junctional EB with 

COL17A1 p.Arg1303Gln mutation 24-26. Our study has also demonstrated that 
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the presence of COL17 alters human skin microtopography (Fig. 6). These 

facts corroborate the role of COL17 in epidermal patterning and highlight 

COL17 as a therapeutic target for wound-induced skin deformations.  

Human skin microtopography is not identical to mouse tail scale patterns 

because humans lost their tails after evolutionarily branching off from other 

primates. It has not been determined whether human skin ridges or grooves 

correspond to the fast- or slow-cycling areas that characterize mouse tails. 

However, the data that COL17 absence disturbs proper skin patterning in both 

humans and mice point to the involvement of COL17 in regulating skin surface 

texture across species. 

Wound repair in mouse back skin requires wound contraction 53; however, 

the contribution of wound contraction has been regarded as minimal in the tail 

skin 54. Recent studies suggest that two-thirds of tail wound healing is due to 

epithelial regeneration, while wound contraction explains the remainder 55. We 

believe that wound contraction does not play a major role in the slender scale 

phenotype in the regenerated tail skin (Fig. 5) for the following reasons: 1) the 

scale shape in the regenerated skin would become proportionally small rather 

than slender if the wound contraction affected this phenotype, and 2) the 
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slender scale phenotype in the regenerated skin is rescued by K14-driven 

human COL17 overexpression, which might not influence wound contraction 

because the transgene expression is confined to the epidermis. The slender 

scales in Col17a1-/- mice most likely represent wound-related skin changes that 

involve the expression of wound-induced keratins in Col17a1-/- epidermis (Fig. 

4). However, the mechanisms by which wound-related skin changes affect 

epidermal patterning need further investigation.   

In conclusion, our study highlights the unrecognized role of COL17 in 

epidermal patterning. We propose that COL17 modulation can be utilized to 

prevent epidermal deformation upon wounding. 
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Figure legends 

Fig. 1. Slender tail scales of Col17a1-/- mice.  

(A) Images showing K31 and K10 staining of Col17a1-/- and control tail skin 

samples at 1MO (n=4). Scale bar: 500 μm. (B) Schematic of distribution of 

scales in mouse tail epidermis. (C) K31 whole mount staining images of 

Col17a1-/- and littermate control tail epidermis at 1MO (n=3). Scale bar: 

500 μm. (D) Phase-contrast images of Col17a1-/- and littermate control tail 

epidermis at 1MO (n=4). Scale bar: 500 μm. (E-H) Quantification of the size and 

shape of tail scales. Scale area (E), width/length (F), length (G), and width (H) 

of Col17a1-/- and littermate control tail scales at 1MO are shown (n=298 scales 

from three control and 413 scales from three Col17a1-/- mice). (I) Width/length 

ratio of tail scales in P14 and 1MO WT mice (n=148 scales from three P14 WT 

mice and 123 scales from three 1MO WT mice). ****p<0.0001, Welch’s t-test. 
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Fig. 2. Restoration of the scale shape in Col17a1-/- tail epidermis by 

human COL17 overexpression. 

(A) Whole mount phase-contrast imaging of hCOL17+;Col17a1-/- and littermate 

control (hCOL17-;Col17a1+/+ or hCOL17-;Col17a1+/-) tail epidermis at 1MO 

(n=3). Scale bar: 500 μm. (B, C) Quantification of the size and shape of tail 

scales. Scale area (B) and width/length (C) of hCOL17+; Col17a1-/- and 

littermate control tail scales at 1MO are shown (n=266 scales from three control 

and 359 scales from three hCOL17+; Col17a1-/- mice). The raw data used for 

Fig. 2C are shown in Supplementary Table 2. *0.01<p<0.05, Welch’s t-test. 
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Fig. 3. Small, but not slender, tail scales of aPKCλ eKO mice. 

(A) Whole mount phase-contrast imaging of aPKCλ eKO and littermate control 

tail epidermis (n=3). Scale bar: 500 μm. (B) Whole mount phase-contrast 

imaging of aPKCζ KO and littermate control tail epidermis (n=3). Scale bar: 

500 µm. (C-F) Quantification of the size and shape of tail scales. Scale area 

and width/length of aPKCλ eKO (C, D) and aPKCζ KO (E, F) tail scales at 1MO 

are shown (n=226 scales from three control mice and 357 scales from three 

aPKCλ eKO mice, n=300 scales from three control mice and 317 scales from 

three aPKCζ KO mice). The raw data used for Fig. 3F are shown in 

Supplementary Table 3. ****p<0.0001, *0.01<p<0.05, Welch’s t-test. 
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Fig. 4. Expression of wound-induced keratins in Col17a1-/- tail epidermis. 

 (A) Gene expression of Krt6a, Krt6b, Krt16, and Krt17 in the tail epidermis of 

Col17a1-/- and littermate control at 1MO (n = 7). *0.01<p<0.05, Student’s t-test. 

(B-D) K6 staining of Col17a1-/- and littermate control at P1 (B, n = 3), P14 (C, n 

= 3), and 1MO (D, n = 3). Scale bar: 100 μm.  
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Fig. 5. Slender tail scales after skin regeneration and COL17 transgenic 

rescue.  

(A-B) Whole mount phase-contrast imaging of WT (A) and K14-hCOL17 (B) tail 

epidermis 4-6 weeks after wounding (n=4 (WT) and 6 (K14-hCOL17), 

respectively). Scale bar: 500 μm. (C-F) Quantification of the size and shape of 

tail scales. Scale area and width/length of WT (C, D) and K14-hCOL17 (E, F) 

tail scales after skin regeneration are shown (n=542 scales from unwounded 

areas and 467 scales from regenerated areas from four WT mice, n=424 scales 

from unwounded areas and 440 scales from regenerated areas from six K14-

hCOL17 mice). ****p<0.0001, Welch’s t-test. 
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Fig. 6. Distinct epidermal patterns of COL17-positive and negative human 

skin. 

(A) The upper arm of a junctional epidermolysis bullosa patient who is 

compound heterozygous for c.1179del (p.Ala394Leufs*9) and c.4159C>T 

(p.Gln1387*) in COL17A1 (NM_000494.4). The revertant skin areas are circled 

by dotted lines. (B) Representative images of the diseased and revertant skin. 

Scale bar: 3 mm. These images are exemplified in Supplementary Fig. 6. (C) 

COL17 labeling of the diseased and revertant skin. Scale bar: 100 μm. (D) 

Quantification of skin microtopography (n=75 spots (radius: 3 mm) from three 

skin areas, respectively). The degree of regularity on the epidermal pattern was 

quantified by the peak height of the autocorrelation function (Supplementary 

Fig. 6). ***0.0001<p<0.001, Mann-Whitney test. 
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Fig. 7. COL17-related epidermal patterning. 

A graphical abstract of the study. COL17 deficiency or wounding leads to 

slender scale epidermis, which is reversed by overexpression of human COL17 

in the epidermis. 
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