

HOKKAIDO UNIVERSITY

Title	Methyloradius palustris gen. nov., sp. nov., a methanol-oxidizing bacterium isolated from snow
Author(s)	Miyadera, Takeshi; Kojima, Hisaya; Fukui, Manabu
Citation	Archives of Microbiology https://doi.org/10.1007/s00203-021-02559-1
Issue Date	2021-09-03
Doc URL	http://hdl.handle.net/2115/86672
Rights	This is a post-peer-review, pre-copyedit version of an article published in Archives of Microbiology. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00203-021-02559-1
Туре	article (author version)
File Information	Archives of Microbiology_10.1007_s00203-021-02559-1.pdf

1 Methyloradius palustris gen. nov., sp. nov., a methanol-oxidizing

2	bacterium isolated from snow
3	
4	Takeshi Miyadera ^{1,2} , Hisaya Kojima ^{*2} and Manabu Fukui ²
5	
6 7	1. Graduate School of Environmental Science, Hokkaido University, Kita-10, Nishi-5, Kita-ku, Sapporo, 060-0810, Japan
8 9	2. The Institute of Low Temperature Science, Hokkaido University. Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
10	
11	*Corresponding author
12	Tel/fax number: +81 11 706 5460
13	E-mail: kojimah@lowtem.hokudai.ac.jp
14 15	The Institute of Low Temperature Science, Hokkaido University. Kita-19, Nishi-8, Kita- ku, Sapporo 060-0819, Japan
16	
17	
18	

20 Abstract A novel methylotrophic bacterium, strain Zm11^T, was isolated from reddish brown 21 snow collected in a moor in Japan. Cells of the isolate were Gram-stain-negative, motile 22 and rod-shaped (0.6-0.7 \times 1.2-2.7 μ m). Growth was observed at 5–32°C with an 23 optimum growth temperature of 25–28°C. The pH range for growth was 5.4–7.8 with an 24 25 optimum pH of 6.8. The strain utilized only methanol as carbon and energy sources for aerobic growth. The major cellular fatty acids (>40% of total) were summed feature 3 26 $(C_{16:1}\omega7c \text{ and/or } C_{16:1}\omega6c)$ and $C_{16:0}$. The predominant quinone was Q-8, and major 27 28 polar lipids were phosphatidylethanolamine and phosphatidylglycerol. The complete genome of strain Zm11^T is composed of a circular chromosome (2,800,413 bp), with 29 30 G + C content of 46.4 mol%. Phylogenetic analyses were conducted based on the 16S rRNA gene sequence and conserved proteins encoded in the genome. The results of 31 analyses indicate that strain Zm11^T is a member of the family *Methylophilaceae* but 32 does not belong to any existing genus. On the basis of its genomic and phenotypic 33

properties, strain $\text{Zm}11^{\text{T}}$ (= DSM111909^T = NBRC114766^T) is proposed as the type strain of a new species in a new genus, *Methyloradius palustris* gen. nov., sp. nov.

37	D	eclai	ratic	ons
51		cerui		

38 Funding

39	This study was supported by JSPS KAKENHI, Grant Number 18H03351 to
40	Fukui.
41	
42	Conflicts of interest
43	The authors declare that there are no conflicts of interest.
44	
45	Availability of data and material
46	The bacterial strain described in this study, strain Zm11 ^T , has been deposited to
47	DSMZ and NBRC, as DSM111909 ^T and NBRC114766 ^T , respectively. Its complete
48	genome sequence is available in the GenBank/EMBL/DDBJ, with accession number of
49	AP024110. The accession numbers for the 16S rRNA gene of strain $\text{Zm}11^{\text{T}}$ is LC647199.
50	
51	Code availability

52

Not applicable

54 Introduction

Methylotrophic bacteria can grow on organic single-carbon (C1) compounds (e.g., 55 56 methane, methanol and methylated compounds without C-C bond) as sole sources of energy and carbon. They oxidize methanol to formaldehyde by methanol dehydrogenases 57 (MDHs), which can be classified into two types: MxaFI-type and XoxF-type. The MxaFI-58 type MDH is Ca²⁺-dependent heterotetrameric ($\alpha_2\beta_2$) enzyme, consisting of two large 59 60 subunits (MxaF) and two small subunits (MxaI) (Ghosh et al., 1995; Xia et al., 1992). On the other hand, XoxF-type MDH is dimer of XoxF, distantly related to MxaF (sharing 61 62 approximately 50% amino acid sequence identity) (Chistoserdova, 2011). The XoxF-type MDH was identified as the first rare earth-dependent enzyme (Pol et al., 2014), and 63 various studies have been carried out to characterize this notable enzyme (Chu & 64 Lidstrom, 2016; Taubert et al., 2015; Wu et al., 2015). 65

Some bacterial families are known to consist of genera of methylotrophs. One of
such families, the family *Methylophilaceae* currently consists of six genera, *Methylophillus, Methylobacillus, Methylovorus, Methylotenera, Novimethylophilus* and *Pseudomethylobacillus* (Doronina et al., 2014; Lv et al., 2018; Sheu et al., 2019). All
known members of this family are non-methane-oxidizing methylotrophs that utilize

methanol or methylamine aerobically. In this study, a novel methylotrophic bacterium
belonging to the family *Methylophilaceae* was isolated and characterized.

73

74 Materials and methods

75

76 Enrichment and isolation

The novel isolate, strain Zm11^T was obtained from the reddish brown snow collected 77 in Ozegahara moor (N 36° 55' 02" N 139° 11'26" W) in Japan. To establish the first 78 79 enrichment, 0.2 mL of melted snow was inoculated into 10 ml of DSMZ medium 921, prepared in a serum bottle (approximately 70 ml volume) sealed with a butyl rubber 80 stopper. Into the head space filled with air, 20 ml of methane was added by using a sterile 81 syringe to make pressurized conditions. The grown culture was transferred to the same 82 83 medium twice, resulting in enrichment of organisms related to methane-oxidizing bacteria and other methylotrophs. To isolate the enriched methylotroph, carbon source was 84 changed to 1% (v/v) methanol from methane. Finally, a pure culture of strain $Zm11^{T}$ was 85 86 obtained by repeated serial dilution in the same medium supplemented 0.1% yeast extract (w/v). In these procedures of enrichment and isolation, the cultures were incubated in the 87 88 dark at 22°C. The culture purity was checked by microscopy and repeated sequencing of the 16S rRNA gene fragments amplified with universal PCR primer pairs (Lane, 1991). 89

91 Phenotypical characterizations

92 Cell morphology was examined by phase-contrast microscopy (Axioplan 2; Zeiss).
93 The Gram staining test was carried out using a kit (Sigma-Aldrich). Catalase activity was
94 assessed by pouring 10% H₂O₂ solution onto a pellet of cells. Oxidase activity was carried
95 out using an oxidase test reagent (bioMérieux).

96	For chemotaxonomic analyses, strain Zm11 ^T was grown with DSMZ medium
97	921 supplemented 1% (v/v) methanol at 28°C. The analyses of cellular fatty acids, polar
98	lipids and respiratory quinones were carried out by Techno Suruga Laboratory (Shizuoka,
99	Japan). The cellular fatty profile was obtained with the Sherlock Microbial Identification
100	System (MIDI) version 6.0 (database; TSBA6). Polar lipids and respiratory quinones
101	were analyzed with TLC and HPLC, respectively (Bligh & Dyer 1959; Minnikin et al.
102	1979).

Effects of temperature on growth were examined with the medium 921 supplemented with methanol, by culturing at 0, 5, 8, 10, 13, 15, 18, 22, 25, 28, 30, 32, 35, 37°C. The other tests for phenotypic characterization were all conducted at 22°C. Utilization of growth substrates was tested with K medium, consisting of the following constituents (per litre); 2.0 g KH₂PO₄, 2.0 g (NH₄)₂SO₄, 0.5 g NaCl, 0.1 g MgSO₄ • 7H₂O,

108 0.002 g FeSO₄ • 7H₂O (pH was adjusted to 7.4). The medium was supplemented with one 109 of the following substrates (% w/v); glucose (0.1 and 0.5), fructose (0.1), sucrose (0.1), lactate (0.1), malate (0.1), succinate (0.1), acetate (0.1), propionate (0.1), pyruvate (0.1), 110 glycerol (0.1), ethanol (0.1, 0.5 and 1.0), methylamine (0.1 and 0.3), dimethylamine (0.1) 111 112 and yeast extract (0.1). Methane-dependent growth was tested in a closed bottle whose headspace was filled with mixture of air and methane (30% v/v). Effect of NaCl 113 114 concentration on growth was tested by altering concentration of NaCl in K medium, to 0, 0.05, 0.5, 1.0, 2.0 and 3.0% (w/v). Effect of pH on growth was tested with modified 115 116 version of the K medium buffered with 20 mM MES, adjusted to varying initial pH 117 ranging from 4.6 to 8.6 (0.2-unit intervals). Nitrate reduction during aerobic growth was tested by culturing in the medium 921 supplemented with KNO₃ and methanol, followed 118 by chrometric detection of nitrite. 119

120

121 Genomic characterization

Genomic DNA of strain Zm11^T was extracted using Wizard Genomic DNA purification kit (Promega). Whole genome sequencing was performed using the Illumina NextSeq and Nanopore GridION platforms. A hybrid assembly was performed using Unicycler (Ver 0.4.7). Completeness of the assembled genome was estimated by CheckM

126	ver 1.1.2 (Parks et al., 2015). The genome sequence was annotated with DFAST
127	(Tanizawa et al., 2018). In the annotated genome, genes encoding MDH-related proteins
128	were identified by BLASTP searches. The amino acid sequences encoded by the
129	identified genes were aligned with reference sequences of MDHs, by using the MAFFT
130	alignment tool (https://www.genome.jp/tools-bin/mafft) followed by manual inspection.
131	The alignment was imported to the program MEGA X (Kumar et al., 2018), to construct
132	a maximum likelihood tree by using the Le_Gascuel_2008 model with gamma
133	distribution (Le & Gascuel, 2008).
134	As genome relatedness indices between $\text{Zm}11^{\text{T}}$ and related strains, values of
135	average nucleotide identity (ANI) and average amino acid identity (AAI) were calculated
136	by using tools provided by Kostas lab (http://enve-omics.ce.gatech.edu/), with the ANIb
137	algorithm (Goris et al., 2007). In addition, digital DNA-DNA hybridization (dDDH)
138	values were calculated using Genome-to-Genome Distance Calculator (GGDC) provided

139 by DSMZ (Meier-Kolthoff et al., 2013), applying the formula 2.

140

141 Phylogenetic analyses

The 16S rRNA gene sequence of strain Zm11^T identified in the genome was aligned
with those of type strains in the family *Methylophilaceae*, by using CLUSTALW version

144	2.1(Larkin et al., 2003). Based on the resulting alignment, evolutionary distances were
145	computed by using Kimura's two-parameter model with gamma distribution and invariant
146	sites, using the MEGA X. Phylogenetic trees were constructed with the maximum-
147	likelihood, neighbor-joining and minimum evolution methods, available in the MEGA X.
148	A genome-based taxonomic classification of strain Zm11 ^T was conducted with the
149	Genome Taxonomy Database (GTDB), based on 120 conserved proteins (Parks et al.,
150	2018). Taxonomic position of the strain Zm11 ^T in the GTDB (release 95) was identified
151	using GTDB-Tk (Chaumeil et al., 2020).
152	
153	Results and Discussion
153 154	Results and Discussion
153 154 155	Results and Discussion Physiological and chemotaxonomic characteristics
153 154 155 156	Results and Discussion Physiological and chemotaxonomic characteristics The fundamental characteristics of strain Zm11 ^T are summarized in Table 1
153 154 155 156 157	Results and Discussion Physiological and chemotaxonomic characteristics The fundamental characteristics of strain Zm11 ^T are summarized in Table 1 and presented in the species description. Cells of strain Zm11 ^T were motile, rod-shaped,
153 154 155 156 157 158	Results and Discussion Physiological and chemotaxonomic characteristics The fundamental characteristics of strain Zm11 ^T are summarized in Table 1 and presented in the species description. Cells of strain Zm11 ^T were motile, rod-shaped, 0.6–0.7 µm in width, 1.2–2.7 µm in length (Fig. S1). The cells were oxidase-positive
153 154 155 156 157 158 159	Results and DiscussionPhysiological and chemotaxonomic characteristicsThe fundamental characteristics of strain Zm11 ^T are summarized in Table 1and presented in the species description. Cells of strain Zm11 ^T were motile, rod-shaped,0.6–0.7 μm in width, 1.2–2.7 μm in length (Fig. S1). The cells were oxidase-positiveand weakly positive for catalase. In the cellular fatty acid profile of the strain, summed
 153 154 155 156 157 158 159 160 	Results and Discussion Physiological and chemotaxonomic characteristics The fundamental characteristics of strain Zm11 ^T are summarized in Table 1 and presented in the species description. Cells of strain Zm11 ^T were motile, rod-shaped, 0.6–0.7 µm in width, 1.2–2.7 µm in length (Fig. S1). The cells were oxidase-positive and weakly positive for catalase. In the cellular fatty acid profile of the strain, summed feature 3 (C _{16:1} ω 7c and/or C _{16:1} ω 6c) and C _{16:0} were predominant, accounting for 47%
 153 154 155 156 157 158 159 160 161 	Results and Discussion Physiological and chemotaxonomic characteristics The fundamental characteristics of strain Zm11 ^T are summarized in Table 1 and presented in the species description. Cells of strain Zm11 ^T were motile, rod-shaped, 0.6–0.7 µm in width, 1.2–2.7 µm in length (Fig. S1). The cells were oxidase-positive and weakly positive for catalase. In the cellular fatty acid profile of the strain, summed feature 3 (C _{16:1} ω 7 c and/or C _{16:1} ω 6 c) and C _{16:0} were predominant, accounting for 47% and 40% of total, respectively. As other components, C _{10:0} 3-OH (4.3%), C _{14:0} (1.4%)

163	were $C_{16:1}\omega 5c$ and summed feature 8 ($C_{18:1}\omega 7c$ and/or $C_{18:1}\omega 6c$). The strain had
164	phosphatidylethanolamine and phosphatidylglycerol as major polar lipids (Fig. S2).
165	Diphosphatidylglycerol and lyso-phosphatidylethanolamine were also detected along
166	with some unidentified polar lipids. In the analysis of respiratory quinone, only
167	ubiquinone 8 (Q-8) was detected.
168	The strain $\text{Zm}11^{\text{T}}$ grew at 5–30°C, with optimum growth at 25–30°C. Its pH
169	range for growth was 5.4–7.8, and optimum pH was 6.8. The strain grew in the presence
170	of 0.5% or lower concentrations of NaCl, with optimal growth with 0.05% NaCl. No
171	growth was observed in the presence of 1% or higher concentrations of NaCl.
172	As sole carbon and energy sources, methanol supported growth of strain
173	Zm11 ^T . The other substrates tested, including sugars, organic acids, amines, glycerol,
174	ethanol and methane, did not support of the strain. During the aerobic growth on
175	methanol, nitrate reduction to nitrite was observed, as reported in related organisms
176	(Table 1).
177	
178	Genomic features
179	To reconstruct the complete genome of strain Zm11 ^T , 6,474,292 DNBSEQ
180	reads and 44,750 GridION reads were subjected to hybrid assembly. As a result, a single

181	circular chromosome was generated with coverage of 635-fold. The size of chromosome
182	was 2,800,413 bp, and its G+C contents was 46.4% (Table 2). The completeness of the
183	genome was estimated to be 100%.
184	In the genome of strain Zm11 ^T , 2576 protein-coding sequences were predicted. The
185	genome harbors two copies of the 16S rRNA gene with the identical sequence. The 16S
186	rRNA gene sequence indicated the highest sequence identities to species of
187	Methylobacillus and other genera in the family Methylophilaceae, but the identities
188	were lower than 96%. Phylogenetic position of strain $Zm11^T$ in this family is shown in
189	Fig. 1. The values of ANI and AAI between the strain Zm11 ^T and genome-sequenced
190	strains in the family Methylophilaceae are shown in Table 2. The ANI values (76–77%)
191	are clearly lower than 95–96%, the proposed threshold for species delineation (Richter
192	& Rosselló-Móra, 2009). The low values of dDDH (19–22%) also indicated that strain
193	Zm11 ^T are distinct from the strains listed in Table 2.
194	Among putative proteins encoded in the genome of strain Zm11 ^T , those related
195	to MDHs were subjected to phylogenic analysis. In the genome, four genes encoding
196	putative MDHs were identified. As shown in Fig. S3, one of them encodes MxaF-type
197	MDH and the others encode XoxF-type MDH with distinct amino acid sequences,
198	respectively.

201	Phylogenetic relationships between strain $Zm11^T$ and type strains of related species
202	with validly published names are shown in Fig. 1. In the maximum likelihood tree of
203	16S rRNA gene, strain Zm11 ^T represents sister group of a clade consisting of the genera
204	Methylotenera and Pseudomethylobacillus. This result was also observed in trees
205	generated with different approaches, neighbor-joining and minimum evolution methods
206	(data not shown). The phylogenetic trees consistently indicated that strain $Zm11^T$ is a
207	member of the family Methylophilaceae but does not belong to any existing genera.
208	To draw conclusion about taxonomy based on whole genomic data, the genome of
209	strain Zm11 ^T was analyzed with the GTDB. As a result, this organism was classified
210	into a genus distinct from all existing genera with validly published names. The
211	genome-based phylogenetic tree is shown in Fig. S4. All these results mean that a novel
212	genus should be created to accommodate strain Zm11 ^T .
213	On the basis of these results, strain $\text{Zm}11^{\text{T}}$ is proposed as the type strain of a novel
214	species of a new genus, with the name Methyloradius palustris gen. nov., sp. nov.

216 Description of *Methyloradius* gen. nov.

- 217 Methyloradius (Me.thy.lo.ra'di.us. N.L. pref. methylo-, pertaining to the methyl radical;
- 218 L. masc. n. radius, a staff, rod; N.L. masc. n. Methyloradius, methyl-oxidizing rod).
- 219 Grows by oxidation of methanol as carbon and energy source. Aerobic and neutrophilic.
- 220 Gram-stain-negative. Major cellular fatty acids are summed feature 3 ($C_{16:1}\omega$ 7c and/or
- 221 $C_{16:1}\omega_{6c}$) and $C_{16:0}$. Q-8 is the sole respiratory quinone. Phosphatidylethanolamine and
- 222 phosphatidylglycerol are major polar lipids. Belongs to the family Methylophilaceae. The
- 223 type species is *Methyloradius palustris*.

224 Description of *Methyloradius palustris* sp. nov.

- 225 Methyloradius palustris (pa.lus'tris. L.masc. adj. palustris marshy, swampy)
- In addition to properties listed in the genus description, cells are motile, rod-shaped, 0.6-
- 227 0.7 μ m long and 1.2-2.7 μ m wide. Catalase-positive and oxidase-positive. Uses oxygen
- as electron acceptor. Temperature range for growth is 5–32°C, with an optimum of 25–
- 229 28°C. Growth occurs at pH 5.4–7.8, with an optimum of pH 6.8. G + C content of genomic
- 230 DNA of the type strain is 46.4 mol%. Does not grow on glucose, fructose, sucrose, lactate,
- 231 malate, succinate, acetate, propionate, pyruvate, glycerol, ethanol, methylamine,
- 232 dimethylamine, yeast extract or methane.

233	The type strain $\text{Zm}11^{\text{T}}$ (= DSM 111909 ^T = NBRC114766 ^T) was isolated from snow
234	collected in Japan. The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA
235	gene and complete genome of strain Zm11 ^T are LC647199 and AP024110, respectively.
236	
237	Acknowledgments
238	This study was conducted as part of the 4th Oze Scientific Research, and
239	supported by JSPS KAKENHI, Grant Number 18H03351 to Fukui. We thank A.
240	Shinohara for technical assistance.
241	
242	Reference
243	Agafonova NV, Kaparullina EN, Doronina NV, Trotsenko YA (2017) Methylobacillus
244	caricis sp. nov., an obligate methylotroph isolated from roots of sedge (Carex sp.).
245	Microbiology 86:737-744. https://doi.org/10.1134/S0026261717060042
246	Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can
247	J Biochem Physiol 37:911–917. https://doi.org/10.1139/o59-099
248	Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH (2020) GTDB-Tk: a toolkit to classify
249	genomes with the genome taxonomy database. Bioinformatics 36:1925-1927.

250 https://doi.org/10.1093/bioinformatics/btz848

- 251 Chistoserdova, L (2011) Modularity of methylotrophy, revisited. Environ Microbiol
- 252 13:2603–2622. https://doi.org/10.1111/j.1462-2920.2011.02464.x
- 253 Chu F, Lidstrom ME (2016) XoxF acts as the predominant methanol dehydrogenase in
- the type I methanotroph *Methylomicrobium buryatense*. J Bacteriol 198:1317–1325.
- 255 https://doi.org/10.1128/JB.00959-15
- 256 Doronina N, Kaparrullina E, Trotsenko Y. (2014) The family Methylophilaceae In: The
- 257 Prokaryotes—Alphaproteobacteria and Betaproteobacteria. Rosenberg, E., DeLong,
- 258 E. F., Lory, S., Stackebrandt, E., Thompson, F.(eds), 869-880.
- 259 https://doi.org/10.1007/978-3-642-30197-1_243
- 260 Doronina NV, Trotsenko YA, Kolganova TV, Tourova TP, Salkinoja-Salonen MS (2004)
- 261 Methylobacillus pratensis sp. nov., a novel non-pigmented, aerobic, obligately
- 262 methylotrophic bacterium isolated from meadow grass. Int J Syst Evol Microbiol
- 263 54:1453–1457. https://doi.org/10.1099/ijs.0.02956-0
- 264 Doronina NV, Gogleva AA, Trotsenko YA (2012) Methylophilus glucosoxydans sp. nov.,
- 265 a restricted facultative methylotroph from rice rhizosphere. Int J Syst Evol Microbiol
- 266 62:196–201. https://doi.org/10.1099/ijs.0.024620-0

268	description of the genus Methylovorus. Int J Syst Evol Microbiol 55:903-906.
269	https://doi.org/10.1099/ijs.0.63111-0
270	Doronina NV, Ivanova EG, Trotsenko YA, Pshenichnikova A, Kalinina E, Shvets V
271	(2005) Methylophilus quaylei sp. nov., a new aerobic obligately methylotrophic
272	bacterium. Syst Appl Microbiol 28:303–309.
273	https://doi.org/10.1016/j.syapm.2005.02.002
274	Doronina NV, Kaparullina EN, Trotsenko YA (2011) Methylovorus menthalis, a novel
275	species of aerobic obligate methylobacteria associated with plants. Microbiology
276	80:713-719. https://doi.org/10.1134/S0026261711050043
277	Ghosh M, Anthony C, Harlos K, Goodwin MG, Blake C (1995) The refined structure of
278	the quinoprotein methanol dehydrogenase from Methylobacterium extorquens at 1.94
279	å. Structure 3:177–187. https://doi.org/10.1016/S0969-2126(01)00148-4
280	Gogleva AA, Kaparullina EN, Doronina NV, Trotsenko YA (2011) Methylobacillus
281	arboreus sp. nov., and Methylobacillus gramineus sp. nov., novel non-pigmented
282	obligately methylotrophic bacteria associated with plants. Syst Appl Microbiol
283	34:477-481. https://doi.org/10.1016/j.syapm.2011.03.005

Doronina NV, Ivanova EG, Trotsenko YA (2005) Phylogenetic position and emended

Gogleva AA, Kaparullina EN, Doronina NV, Trotsenko YA (2010) *Methylophilus flavus*sp. nov. and *Methylophilus luteus* sp. nov., aerobic, methylotrophic bacteria associated
with plants. Int J Syst Evol Microbiol 60:2623–2628.
https://doi.org/10.1099/ijs.0.019455-0

288 Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007)

289 DNA-DNA hybridization values and their relationship to whole-genome sequence

- similarities. Int J Syst Evol Microbiol 57:81–91. https://doi.org/10.1099/ijs.0.64483-
- 291 0
- Govorukhina N, Trotsenko Y (1991) *Methylovorus*, a new genus of restricted facultatively
 methylotrophic bacteria. Int J Syst Evol Microbiol 41:158–162.
- 294 https://doi.org/10.1099/00207713-41-1-158
- Jenkins O, Byrom D, Jones D (1987) *Methylophilus*: a new genus of methanol-utilizing
 bacteria. Int J Syst Evol Microbiol 37:446–448. https://doi.org/10.1099/0020771337-4-446

Kalyuzhnaya MG, Beck DAC, Vorobev A, Smalley N, Kunkel DD, Lidstrom ME,
Chistoserdova L (2012) Novel methylotrophic isolates from lake sediment,
description of *Methylotenera versatilis* sp. nov. and emended description of the genus

303 Kalyuzhnaya MG, Bowerman S, Lara JC, Lidstrom ME, Chistoserdova L (2006)
 304 *Methylotenera mobilis* gen. nov., sp. nov., an obligately methylamine-utilizing

- 305 bacterium within the family *Methylophilaceae*. Int J Syst Evol Microbiol 56:2819–
- 306 2823. https://doi.org/10.1099/ijs.0.64191-0
- 307 Kaparullina EN, Agafonova NV, Trotsenko YA, Doronina NV (2018) Methylophilus

308 *aquaticus* sp. nov., a new aerobic methylotrophic bacterium isolated from a freshwater

309 reservoir. Microbiology 87:672–80. https://doi.org/10.1134/S0026261718050119

- 310 Kaparullina EN, Trotsenko YA, Doronina NV (2017) Methylobacillus methanolivorans
- 311 sp. nov., a novel non-pigmented obligately methylotrophic bacterium. Int J Syst Evol
- 312 Microbiol. 67:425–431. https://doi.org/10.1099/ijsem.0.001646
- 313 Kumar S, Stecher G, Li M, Knyaz C, Tamura K. (2018) MEGA X: molecular evolutionary
- 314 genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549.
- 315 https://doi.org/10.1093/molbev/msy096
- Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt, E., Goodfellow, M., (Eds.),
- 317 Nucleic acid techniques in bacterial systematics., John Wiley & Sons, Ltd, New York,

318 pp. 115–175.

319	Larkin MA,	Blackshields C	J , 1	Brown	NP,	Chenna	R,	McGettigan	PA,	McWilliam	H,
								0			

- 320 Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG
- 321 (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948.
- 322 https://doi.org/10.1093/bioinformatics/btm404
- 323 Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol
- 324 Evol 25:1307–1320. https://doi.org/10.1093/molbev/msn067
- 325 Lv H, Sahin N, Tani A (2018) Isolation and genomic characterization of
- 326 Novimethylophilus kurashikiensis gen. nov. sp. nov., a new lanthanide-dependent
- 327 methylotrophic species of *Methylophilaceae*. Environ Microbiol 20:1204–1223.
- 328 https://doi.org/10.1111/1462-2920.14062
- 329 Lv H, Sahin N, Tani A (2020) Methylotenera oryzisoli sp. nov., a lanthanide-dependent
- 330 methylotrophic bacteria isolated from rice field soil. Int J Syst Evol Microbiol
- 331 70:2713–2718. https://doi.org/10.1099/ijsem.0.004098
- 332 Madhaiyan M, Poonguzhali S, Kwon SW, Sa TM (2009) Methylophilus rhizosphaerae sp.
- 333 nov., a restricted facultative methylotroph isolated from rice rhizosphere soil. Int J
- 334 Syst Evol Microbiol 59:2904–2908. https://doi.org/10.1099/ijs.0.009811-0

335	Madhaiyan M, Poonguzhali S, Senthilkumar M, Pragatheswari D, Lee KC, Lee JS (2013)
336	Methylobacillus rhizosphaerae sp. nov., a novel plant-associated methylotrophic
337	bacterium isolated from rhizosphere of red pepper. Antonie Van Leeuwenhoek
338	103:475-484. https://doi.org/10.1007/s10482-012-9828-6
339	Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species
340	delimitation with confidence intervals and improved distance functions. BMC
341	Bioinformatics 14:60-14. https://doi.org/10.1186/1471-2105-14-60
342	Minnikin DE, Collins MD, Goodfellow M (1979) Fatty acid and polar lipid composition
343	in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol
344	47:87–95. https://doi.org/10.1111/j.1365-2672.1979.tb01172.x
345	Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA,
346	Hugenholtz P (2018) A standardized bacterial taxonomy based on genome phylogeny
347	substantially revises the tree of life. Nat Biotechnol 36:996-1004.
348	https://doi.org/10.1038/nbt.4229
349	Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM:
350	assessing the quality of microbial genomes recovered from isolates, single cells, and

metagenomes. Genome Res 25:1043-1055. https://doi.org/10.1101/gr.186072.114

352	Pol A, Barends TRM, Dietl A, Khadem AF, Eygensteyn J, Jetten MSM, Op den Camp
353	HJM (2014) Rare earth metals are essential for methanotrophic life in volcanic
354	mudpots. Environ Microbiol 16:255-264. https://doi.org/10.1111/1462-2920.12249
355	Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the
356	prokaryotic species definition. Proc Natl Acad Sci 106:19126-19131.
357	https://doi.org/10.1073/pnas.0906412106
358	Sheu C, Cai CY, Sheu SY, Li ZH, Chen WM (2019) Pseudomethylobacillus aquaticus
359	gen. nov., sp. nov., a new member of the family Methylophilaceae isolated from an
360	artificial reservoir. Int J Syst Evol Microbiol 69:3551–3559.
361	https://doi.org/10.1099/ijsem.0.003661
362	Tanizawa Y, Fujisawa T, Nakamura Y (2018) DFAST: a flexible prokaryotic genome
363	annotation pipeline for faster genome publication. Bioinformatics 34:1037-1039.
364	https://doi.org/10.1093/bioinformatics/btx713
365	Taubert M, Grob C, Howat AM, Burns OJ, Dixon JL, Chen Y, Murrell JC (2015) XoxF
366	encoding an alternative methanol dehydrogenase is widespread in coastal marine
367	environments. Environ Microbiol 17:3937-3948. https://doi.org/10.1111/1462-

368 2920.12896

- a genus for methanol-utilizing bacteria. Int J Syst Bacteriol 36:502-511.
- 371 https://doi.org/10.1099/00207713-36-4-502
- 372 Wu ML, Wessels HJCT, Pol A, Op den Camp HJM, Jetten MSM, van Niftrik L, Keltjens
- 373 JT (2015) XoxF-Type methanol dehydrogenase from the anaerobic methanotroph
- 374 *"Candidatus* Methylomirabilis oxyfera". Appl Environ Microbiol 81:1442–1451.
- 375 https://doi.org/10.1128/AEM.03292-14
- 376 Xia ZX, Dai WW, Xiong JP, Hao ZP, Davidson VL, White S, Mathews FS (1992) The
- 377 three-dimensional structures of methanol dehydrogenase from two methylotrophic
- 378 bacteria at 2.6-A resolution. J Biol Chem 267:22289–22297.
- 379 https://doi.org/10.1016/S0021-9258(18)41668-7
- 380 Yordy J, Weaver T (1977) *Methylobacillus*: a new genus of obligately methylotrophic
 381 bacteria. Int J Syst Bacteriol 27:247–255. https://doi.org/10.1099/00207713-27-3-247

Table 1. Characteristics of strain Zm11^T and those of genera in the family *Methylophilaceae*. ND means not determined. SF3 stands for summed feature 3 ($C_{16:1}\omega_7c$ and/or $C_{16:1}\omega_6c$). Data were taken from the following references: *Methylobacillus* (Agafonova et al., 2017; Doronina et al., 2004; Gogleva et al., 2011; Kaparullina et al., 2017; Madhaiyan et al., 2013; Urakami & Komagata, 1986; Yordy & Weaver 1977), *Methylophilus* (Doronina et al., 2012; Doronina et al., 2005; Gogleva et al., 2010; Jenkins et al., 1987; Kaparullina et al., 2018; Madhaiyan et al., 2009), *Methylotenera* (Kalyuzhnaya et al., 2006; Kalyuzhnaya et al., 2012; Lv et al., 2020), *Methylovorus* (Doronina et al., 2005; Doronina et al., 2011; Govorukhina & Trotsenko, 1991), *Novimethylophilus* (Lv et al., 2018); *Pseudomethylobacillus* (Sheu et al., 2019).

		$Zm11^{T}$	Methylobacillus	Methylophilus	Methylotenera	Methylovorus	Novimethylophilus	Pseudomethylobacillus
Temperature for growth (°C)	Range	5-32	10–52	10–37	4–30	10-45	15–40	15–30
	Optimum	25–26	19–42	19–37	18–40	24–40	28	25
pH for growth	Range	5.4–7.8	6–10.5	4–10	4.2-8.5	4.2-8.5	6–9	6–8
	Optimum	6.8	6.5–9.5	6.5-8.5	5.8–7.5	5.8–7.5	7	7
NaCl conc. for growth (%)	Range	0–0.5	0–3	0-0.50	ND	ND	0–2	0–0.5
	Optimum	0.05	0.05-2.00	0.05	ND	ND	0.05	ND
Nitrate reduction		+	variable	variable	-	ND	+	+
Major fatty acid (>10%)		C _{16:0} , SF3	C _{16:0} , SF3	C _{16:0} , SF3, C _{16:0} 2-OH, C _{10:0} 3-OH, C _{17:0} cyclo	C _{16:0} , SF3	C _{16:0} , SF3, C _{17:0} cyclo	C _{16:0} , SF3	C _{16:0} , SF3
GC contents (mol	%)	46.4	50.5-61.5	47.9–54.5	42.6–54.3	54.5-57.2	56.1	58.3

Stars in	A	Genome size	G+C content	ANI	AAI	dDDH
Strain	Accession number	(Mbp)	(%)	(%)	(%)	(%)
Zm11 ^T	AP024110	2.800	46.4	-	-	-
Methylobacillus flagellatus $\mathbf{K}\mathbf{T}^{\mathrm{T}}$	NC_007947	2.972	55.7	76.88	67.50	19.6
Methylobacillus glycogenes JCM 2850 ^T	NZ_BAMT00000000	3.249	53.4	76.41	64.25	18.7
Methylobacillus rhizosphaerae $Ca-68^{T}$	NZ_FZOA0000000	2.368	52.4	76.77	67.42	20.3
Methylovorus glucosetrophus SIP3-4	NC_012969	2.996	54.9	77.28	69.16	19.6
$Methylotenera\ mobilis\ JLW8^T$	NC_012968	2.548	45.5	76.78	65.50	21.6
Methylotenera versatilis 301^{T}	NC_014207	3.060	42.6	76.25	65.65	20.6
Methylophilus methylotrophus DSM 46235^{T}	NZ_ARJW00000000	2.860	49.6	76.25	61.45	20.3
$Methylophilus rhizosphaerae CBMB127^{T}$	NZ_FNFX00000000	2.761	51.4	76.47	61.48	19.1
Methylophilus medardicus M-51	NZ_CP040946.1	2.063	49.8	77.37	61.36	21.1
Novimethylophilus kurashikiensis La2-4 ^T	NZ_BDOQ0000000	3.689	56.1	76.25	62.64	19.4
Pseudomethylobacillus aquaticus H-5 ^T	NZ_RJVP00000000	2.550	58.3	77.22	67.57	19.3

Table 2. Genome relatedness between strain Zm11^T and genome-sequenced strains in the family *Methylophilaceae*

Figure legends

Fig. 1. Maximum likelihood tree showing phylogenetic position of strain Zm11T within the family *Methylophilaceae*, based on the 16S rRNA gene sequences. All positions containing gaps and missing data were eliminated and there were 1295 positions in the final dataset. Bar, substitutions per site. Numbers on nodes represent percentage values of 1000 bootstrap resampling.

Methyloradius palustris gen. nov., sp. nov., a methanoloxidizing bacterium isolated from snow

Takeshi Miyadera^{1,2}, Hisaya Kojima² and Manabu Fukui²

¹ Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan

² The Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan

Fig. S1. Phase-contrast micrograph of strain Zm11T. Scale bar represents 2 µm..

Fig. S2. Polar lipid profile of strain Zm11^T. PG, phosphatidylglycerol; PE, phosphatidylethanolamine; LPE, lyso-phosphatidylethanolamine; DPG,diphosphatidylglycerol; PL, unidentified phospholipids; UL, unidentified polar lipids.

0.50

Fig. S3. Phylogenic tree of MDHs encoded by genes predicted in the genome of Zm11^T (prefixed with ZMTM). All positions containing gaps and missing data were eliminated and there were a total of 838 positions in the final dataset. Bar, substitutions per site. Numbers on nodes represent percentage values of 1000 bootstrap resampling.

0.10

Fig. S4. Position of strain Zm11^T in genome-based phylogenic tree, bac120 tree of GTDB. Names of genera are according to the GTDB taxonomy.