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Abstract 

Signal-transducing adaptor protein (STAP)-2 is one of the STAP family adaptor proteins 

and ubiquitously expressed in a variety types of cells. Although STAP-2 is required for 

modification of FcεRI signal transduction in mast cells, other involvement of STAP-2 in 

mast cell functions is unknown, yet. In the present study, we mainly investigated 

functional roles of STAP-2 in IL-33-induced mast cell activation. In STAP-2-deficient, 

but not STAP-1-deficient, mast cells, IL-33-induced IL-6 and TNF-α production was 

significantly decreased compared with that of wild-type mast cells. In addition, STAP-

2-deficiency greatly reduced TLR4-mediated mast cell activation and cytokine 

production. For the mechanisms, STAP-2 directly binds to IKKα after IL-33 

stimulation, leading to elevated NF-κB activity. In conclusion, STAP-2, but not STAP-1, 

participates in IL-33-induced mast cells activation. 
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5 
 

Introduction  

 IL-33, one of the IL-1 family members, is a key cytokine for the development 

of Th2 immune responses. IL-33 is produced by damaged/stressed epithelial cells and 

cooperates with IL-25 to activate innate lymphoid cells (ILC2) [1-3]. Activated ILC2 

then produce IL-5 and IL-13, resulting in driving generation of Th2 immune responses 

[1, 4, 5]. IL-33-deficient mice have been reported to be resistant to Schistosoma 

mansoni-induced pulmonary granuloma formation, which is dependent on a typical 

Th2-like immune responses [6]. The mice also show less severity of allergic immune 

responses, such as allergic rhinitis and airway inflammation [7]. Thus, IL-33 is likely to 

be a suitable target to generate a new therapeutic strategy for allergic disorders. 

Mast cells (MCs) are an important cell type for IgE-mediated allergic 

inflammatory reactions, such as anaphylaxis. High affinity IgE receptor (FcεRI) is 

expressed on cell surface of MCs, and aggregation of IgE-bound FcεRI results in the 

secretion of granules containing histamine and proteases as well as the production of 

cytokines, such as IL-6 and TNF-α [8]. MCs are also activated by some stimuli except 

IgE, including neuropeptides, bacterial/virus components, and allergic inflammation-

related cytokines [9]. IL-33 receptor, ST2, is expressed on MCs, and IL-33 accelerates 

mast cell cytokine production and mast cell-mediated allergic inflammatory reaction 
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[10-14]. IL-33 also activates human mast cells to promote maturation, survival, 

adhesion, and cytokine production [15, 16]. In addition, IL-33 is a key cytokine to 

amplify both IgE-dependent and -independent human mast cell activation [17]. 

 Signal-transducing adaptor protein (STAP) family consists of two members, 

STAP-1 and STAP-2 [18-21]. STAP-2 is an important protein to regulate immune 

responses and tumorigenesis [22]. STAP-2, which is expressed in mast cells, negatively 

regulates degranulation and cytokine production through affecting FcεRI signal 

transduction [23]. STAP-2 also participates in TLR4 signal transduction and LPS-

induced macrophage activation through direct binding to MyD88 [24], which is also an 

important adaptor protein for the IL-33 signal pathway [25, 26]. However, it remains 

unknown whether STAP-2 is involved in IL-33-induced mast cell activation and how 

STAP-2 affects ST2 signal transduction in mast cells. The aims of this study are to 

investigate effects of STAP-2 on IL-33-induced mast cell activation. 

 

Materials and Methods 

Mice 

Balb/c and C57BL/6 mice were purchased from SANKYO LABO SERVICE CO. Inc. 

(Hokkaido, Japan). Balb/c-background STAP-2-deficient (STAP-2 KO) and C57BL/6-
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background STAP-1 deficient (STAP-1 KO) mice were previously generated [27, 28]. All 

animal studies were approved by the Hokkaido University animal ethics committee. All 

mice were housed and bred in the Pharmaceutical Sciences Animal Center of Hokkaido 

University under specific pathogen-free conditions. 

 

Antibodies 

APC anti-mouse c-Kit (clone: 2B8), FITC anti-mouse FcεRIα (clone: MAR-1), PE anti-

mouse ST2 (clone: DIH4) and PE anti-mouse TLR4 (clone: MTS510) mAbs were 

purchased from BioLegend (San Diego, CA). Anti-phospho Akt, anti-Akt, anti-phospho 

IKKα/β and anti-phospho NF-κB p65 Abs were purchased from Cell Signaling 

Technology (Beverly, MA). Anti-Myc (clone: 9E10) and anti-FLAG (clone: M2) mAbs 

as well as anti-Myc polyclonal Ab were purchased from Sigma-Aldrich (St. Louis, MO). 

Other antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). 

 

Generation of bone marrow-derived cultured mast cells 

Femoral bone marrow cells were cultured in 10% FCS RPMI1640 containing 3 ng/mL 

recombinant mouse IL-3 (TONBO biosciences, San Diego, CA, USA) for 4-6 weeks to 

generate bone marrow-derived cultured mast cells (BMMCs). The purity of FcεRI+c-Kit+ 
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BMMCs was more than 90 % after culturing. 

 

Cell culture and establishment of stable transfectants 

Ba/F3 cells are cultured in RPMI1640 containing 10% FCS and 10% IL-3 condition 

medium. ST2-, STAP-2- and ST2/STAP-2-overexpressing Ba/F3 cells were generated 

using pEC-ST2-FLAG and pBabe-Myc-STAP-2 plasmids. After selection using 

puromycin (3 μg/mL) and G418 (1 mg/mL), drug-resistant Ba/F3 cells were cloned by 

limiting dilution methods. Expression FLAG-tagged ST2 and Myc-tagged STAP-2 in the 

clones was detected by FACS analysis and western blotting, and generated clones were 

used for the experiments. 

 

Flowcytometric analysis 

Flowcytometric analysis was performed as previously described [27]. 

 

Cytokine production 

BMMCs were stimulated with indicated concentrations of IL-33 (TONBO biosciences) 

and LPS (Sigma-Aldrich) for 24 h. IL-6, TNF-α and IL-13 levels in supernatants were 

measured using ELISA kits (IL-6 and TNF-α; BioLegend, IL-13; Affymetrix, San Diego, 
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CA). 

 

Western blotting 

Western blot analysis was performed as previously described [27]. For 

immunoprecipitation, cell lysates were incubated with primary Ab, followed by 

incubation with nProtein A SepharoseTM 4 Fast Flow (GE Healthcare Bio-Sciences) or 

Protein G Resin (GenScript Japan Inc., Tokyo, Japan). After beads were washed, the 

beads were boiled in 1x SDS sample buffer and co-immunoprecipitated proteins were 

detected by western blotting. Actin was detected as a loading control. 

 

Statistical analysis 

Statistical analysis was performed using GraphPad Prism 6.02. Mann-Whitney U-test was 

employed. Data were considered significant at p<0.05. Data were shown mean + SEM. 

 

Results 

STAP-2, but not STAP-1, is important for IL-33-induced mast cells activation. 

We first confirmed surface expression levels of ST2 on cultured mast cells by 

FACS analysis. STAP-2 KO BMMCs expressed similar levels of ST2 on their surface to 
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WT BMMCs (Figs. 1A, B). To investigate effects of STAP-2 on IL-33-induced cytokine 

production, we stimulated WT and STAP-2 KO BMMCs with IL-33, and measured IL-

6, TNF-α and IL-13 levels in supernatant. Although BMMCs produced these cytokines 

after IL-33 stimulation, the levels of IL-6 and TNF-α were significantly reduced in IL-

33-stimulated STAP-2 KO BMMCs compared with WT BMMCs (Figs. 1C, D). Also, 

IL-13 production tended to reduce in STAP-2 KO BMMCs (Fig. 1E). Because STAP-1 

is another STAP family member and involved in certain immune responses [28], we 

compared cytokine production of STAP-1 KO BMMCs with WT BMMCs to figure out 

the contribution of STAP-1 for IL-33-induced mast cell activation. Levels of IL-6, TNF-

α and IL-13 in culture supernatant of IL-33-activated STAP-1 KO BMMCs were 

comparable to those of WT BMMCs (Figs 1F-H). Taken together, these results indicated 

that STAP-2 has an unique function for IL-33-induced mast cell activation. 

 

STAP-2 has nonredundant role for TLR4-mediated mast cells activation. 

IKKα underlies in both ST2- and TLR4-signaling pathways. Because STAP-2 

binds to IKKα and because STAP-2 deficiency results in reduction of LPS-mediated 

macrophage activation [24], we evaluated the role of STAP-2 for LPS-induced mast cell 

activation. We first confirmed that the expression levels of TLR4 on STAP-2 KO 
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BMMCs were same as those on WT BMMCs (Figs. 2A, B). To investigate effects of 

STAP-2 on LPS-induced cytokine production, we stimulated WT and STAP-2 KO 

BMMCs with LPS, and measured IL-6, TNF-α and IL-13 levels in supernatant. The 

production of IL-6 was significantly reduced in STAP-2 KO BMMCs compared with 

WT BMMCs (Fig. 2C). The levels of TNF-α and IL-13 tended to reduce in STAP-2 KO 

BMMCs compared with WT BMMCs (Figs. 2D, E). In contrast, STAP-1 KO BMMCs 

produced similar levels of IL-6, TNF-α and IL-13 in supernatant compared with WT 

BMMCs (Figs 2F-H). Taken together, these results indicated that STAP-2 has a 

nonredundant function for TLR4-mediated cell activation in mast cells. 

 

STAP-2 enhances for IL-33-induced signal transduction. 

To investigate molecular mechanisms by which STAP-2 regulates IL-33 

signaling, we compared ST2 signal transduction between IL-33-stimulated WT and 

STAP-2 KO BMMCs by western blotting. Phosphorylation levels of NF-κB p65, 

IKKα/β and Akt were reduced in STAP-2 KO BMMCs compared with WT BMMCs 

after stimulation with IL-33 (Fig. 3A). To investigate whether STAP-2 directly regulates 

ST2 signal transduction or not, we prepared ST2-, STAP-2- and ST2/STAP-2-

overexpressing Ba/F3 cells whose ST2 expression was confirmed by FACS analysis. 
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ST2 was expressed on ST2- and ST2/STAP-2-overexpressing, but not mock-transfected, 

Ba/F3 cells (Fig. 3B). Using these transfectants, we found that NF-κB signal pathway 

was further enhanced in ST2/STAP-2-overexpressing Ba/F3 cells compared with ST2- 

and STAP-2-overexpressing Ba/F3 cells after IL-33 stimulation (Fig. 3C).  

We next analyzed direct interaction of STAP-2 with ST2 or IRAK4, which is 

involved in IL-33 signal transduction. As shown in Fig. 3D, neither ST2 nor IRAK4 

were immunoprecipitated with STAP-2 in 293T cell preparations, although a positive 

control BRK was immunoprecipitated with STAP-2 as previously shown [29]. This 

result suggested that STAP-2 has no ability to directly bind to ST2 or IRAK4. We 

finally examined the interaction of STAP-2 with IKKα using ST2- and ST2/STAP-2-

overexpressing Ba/F3 cells to investigate whether STAP-2 had ability to bind to IKKα 

in response to IL-33. Without the IL-33 stimulation, no association of STAP-2 with 

IKKα was observed. When the cells were stimulated with IL-33, we observed direct 

interaction of STAP-2 with IKKα in ST2/STAP-2-, but not ST2-, overexpressing Ba/F3 

cells (Fig. 3E). Correctively, these results suggested that STAP-2 enhances IL-33-

induced activation of NF-κB signal pathway by inducing interaction of STAP-2 with 

IKKα after IL-33 stimulation. 
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Discussions 

In this study, we described that STAP-2, but not STAP-1, is involved in IL-33-

induced mast cell cytokine production. Mehanistic analysis revealed that STAP-2 

interacts with IKKα in IL-33-stimulated cells. These results indicate that STAP-2 has a 

nonredundant roles for ST2-mediated mast cell activation. 

Mast cells are one of the important cell types for pathogenesis of allergic diseases, 

such as bronchial asthma and food allergies. IL-33 is critical for mast cell activation and 

mast cell-mediated allergic inflammation. Indeed, IL-33 induces cytokine production in 

mast cells, and this IL-33/mast cell/cytokine axis plays important for airway inflammation 

[11, 13, 14, 16]. Proportions of IL-33-positive cells in lungs from patients with bronchial 

asthma are higher than normal subjects [30]. Thus, IL-33 is believed to be a suitable 

therapeutic target for allergic diseases. In the present study, we demonstrated that STAP-

2 deficiency results in decrease of IL-33-induced mast cell activation. Although details 

inducing machinery are not figured out yet, STAP-2 may directly affect canonical NF-κB 

signaling because 1) phosphorylation of NF-κB p65 and IKKα/β is reduced in STAP-2 

KO BMMCs, 2) phosphorylation of these molecules are increased in ST2/STAP-2-

overexpressing Ba/F3 cells, 3) STAP-2 binds to IKKα in IL-33-stimulated ST2/STAP-2-

overexpressing Ba/F3 cells.  
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STAP family consists of two members, STAP-1 and STAP-2. We previously 

reported that STAP-2 is required for FcεRI-mediated signal transduction and basophil 

activation [27]. However, our preliminary results suggest that STAP-1 is dispensable for 

FcεRI-mediated basophil activation (data not shown), implicating that STAP-2 has 

nonredundant function of FcεRI signaling in basophils. The effects on B cell receptor-

mediated B cell activation are also limited to STAP-2, but not STAP-1 (In preparation). 

In this study, IL-33-induced mast cell activation is reduced by STAP-2-, but not STAP-

1-, deficiency, suggesting that STAP-2 has a nonredundant role for IL-33 signaling in 

mast cells. STAP-2-restricted function is also observed when BMMCs were stimulated 

with LPS. Although it is unknow yet why only STAP-2 affects ST2 and TLR4 signal 

pathways in mast cells, a proline-rich domain within STAP-2 might be involved in its 

nonredundant function in mast cells because STAP-1 has no proline-rich domain [18-21]. 

This will be the subject of future studies. 

In this report, we showed direct interaction of STAP-2 with IKKα in ST2/STAP-

2-overexpressing Ba/F3 cells upon stimulation with IL-33. We have previously reported 

that STAP-2 phosphorylation is important for regulation of STAT3 and STAT5 activity 

[21, 29, 31, 32], BCR-ABL-dependent cell growth [33], its interaction with Pyk2 [34] 

and EGFR-mediated tumor growth [35]. Although we examined phosphorylation of 
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STAP-2 in IL-33-stimulated ST2/STAP-2-overexpressing Ba/F3 cells, no 

phosphorylation of STAP-2 in the cells was observed (data not shown), suggesting that 

STAP-2 phosphorylation is not required for IL-33-induced NF-κB signal transduction. 

In summary, our study demonstrated that STAP-2 deficiency results in reduction 

of cytokine production from mast cells upon IL-33 stimulation. For the mechanisms, we 

propose that STAP-2 interacts with IKKα after IL-33 stimulation. Thus, we suggest that 

STAP-2 is essential for promoting IL-33-induced mast cell activation and allergic 

inflammation.  
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Figure Legends 

Fig. 1. Cytokine production in STAP-2 KO mast cells upon stimulation with IL-33. 

(A) Expression of ST2 on WT and STAP-2 KO BMMCs. Gray-filled and black line 

histograms are unstained and stained BMMCs, respectively. (B) Mean fluorescence 

intensity of the ST2 expression on WT and STAP-2 KO BMMCs. White and black bars 

are WT and STAP-2 KO BMMCs, respectively. Data shown are mean + SEM of 4 

independent experiments (WT = 4, KO = 6). (C-E) Levels of IL-6 (C), TNF-α (D) and 

IL-13 (E) in supernatants of WT and STAP-2 KO BMMCs after stimulation with IL-33 
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for 24 h. White and black bars are WT and STAP-2 KO BMMCs, respectively. Data 

shown are mean + SEM of 5 (IL-6), 4 (TNF-α) and 6 (IL-13) independent experiments 

(IL-6; n = 10, TNF-α; n = 8, IL-13; n = 11). (F-H) Levels of IL-6 (F), TNF-α (G) and IL-

13 (H) in supernatants of WT and STAP-1 KO BMMCs after stimulation with IL-33 for 

24 h. White and gray bars are WT and STAP-1 KO BMMCs, respectively. Data shown 

are mean + SEM of 3 (IL-6) and 2 (TNF-α & IL-13) independent experiments (IL-6; n = 

6, TNF-α; n = 4, IL-13; n = 3). *; p<0.05, **; p<0.01 by Mann-Whitney U-test. ns = no 

significance 

 

Fig. 2. Cytokine production in STAP-2 KO mast cells after LPS stimulation. 

(A) Expression of TLR4 on WT and STAP-2 KO BMMCs. Gray-filled and black line 

histograms are unstained and stained BMMCs, respectively. (B) Mean fluorescence 

intensity of the LPS expression on WT and STAP-2 KO BMMCs. White and black bars 

are WT and STAP-2 KO BMMCs, respectively. Data shown are mean + SEM of 3 

independent experiments (n = 3). (C-E) Levels of IL-6 (C), TNF-α (D) and IL-13 (E) in 

supernatants of WT and STAP-2 KO BMMCs after stimulation with LPS for 24 h. White 

and black bars are WT and STAP-2 KO BMMCs, respectively. Data shown are mean + 

SEM of 4 (IL-6 & TNF-α) and 5 (IL-13) independent experiments (IL-6; n = 6, TNF-α; 
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n = 6, IL-13; n = 7). (F-H) Levels of IL-6 (F), TNF-α (G) and IL-13 (H) in supernatants 

of WT and STAP-1 KO BMMCs after stimulation with LPS for 24 h. White and gray bars 

are WT and STAP-1 KO BMMCs, respectively. Data shown are mean + SEM of 4 (IL-6 

& TNF-α) and 3 (IL-13) independent experiments (IL-6; n = 8, TNF-α; n = 8, IL-13; n = 

6). *; p<0.05, **; p<0.01 by Mann-Whitney U-test. ns = no significance 

 

Fig. 3. STAP-2 enhances NF-κB signaling by direct binding to IKKα in response to IL-

33 

(A) Comparison of activation of NF-κB and Akt signaling between WT and STAP-2 KO 

BMMCs upon stimulation with IL-33. (B) Expression of ST2 on transfected Ba/F3 cells. 

Gray-filled, black normal line and black thick line histograms are mock-transfected, ST2- 

and ST2/STAP-2-overexpressing Ba/F3 cells, respectively. (C) Comparison of activation 

of NF-κB pathway among mock-transfected, ST2-, STAP-2- and ST2/STAP-2-

overexpressing Ba/F3 cells after IL-33 activation. (D) Myc-tagged STAP-2 vector was 

cotransfected with either FLAG-tagged IRAK4, ST2 or BRK vector into 293T cells. 

Binding of STAP-2 to FLAG-tagged proteins was analyzed by immunoprecipitation, 

followed by western blotting. (E) Interaction of Myc-tagged STAP-2 with endogenous 

IKKα in ST2- and ST2/STAP-2-overexpressing Ba/F3 cells in the presence or absence of 
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IL-33 stimulation. Arrowhead shows coimmunoprecipitated IKKα. All data shown are 

representative of 2-3 independent experiments. 
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