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Abstract

Circular food systems are increasingly acknowledged for their potential to contribute to the

transition towards sustainable futures. In a circular food system, the use of finite and limited

resources is minimized, and nutrients in residual streams and inedible biomass for humans

are reused as inputs in the bioeconomy. Livestock has become relevant in this narrative for

upcycling nutrients contained in food by-products and grass resources into nutritious food

for humans without using human-edible resources. Evaluating on-going national sustainabil-

ity initiatives in the livestock sector is key to determine if circularity elements are already rep-

resented and to identify new opportunities and pathways for the future. In this paper we

synthetize the environmental actions promoted by different initiatives driving the sustainable

transformation of Colombian cattle production systems and assess the inclusion of circular-

ity elements in these actions. The proposed environmental actions were concentrated in the

conservation of remaining natural ecosystems, zero-deforestation and the sustainable

intensification of cattle production through silvopastoral and paddock rotational systems.

Circularity was addressed by some initiatives via the use organic fertilizers and the use of

manure as fertilizers or feedstock for bioenergy generation. However, given that cattle farm-

ing is often practiced in low-input systems where the collection of by-products for reutiliza-

tion (e.g., manure) is not always feasible, these actions are expected to have limited impact

in the sector. Silvopastoral systems can positively promote circularity by creating the condi-

tions for internal nutrient recycling via litterfall, biological nitrogen fixation, phosphorus solu-

bilization, and presence of beneficial insects. However, to avoid food-feed competition and

to remain circular, these should only be installed in agricultural areas unsuitable for crop pro-

duction. In areas where crops can grow, other production systems that prioritize the produc-

tion of plant biomass for human consumption (i.e., agrosilvopastoral systems, mixed crop-

livestock systems or forms of crop intercropping) should be considered.
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1. Introduction

Circularity is a model of production and consumption with potential to contribute to the

actions needed to restore food systems towards more sustainable futures. A circular food sys-

tem seeks to minimize the use of finite and limited resources such as arable lands or phospho-

rus, reduce nutrient losses along the food chain (i.e., production, processing, distribution,

consumption and waste disposal), and increase nutrient recovery to reuse it as food, feed, fer-

tilizer or biomaterials [1, 2]. By replacing greenhouse gas (GHG)-intensive raw inputs such as

mineral fertilizers and feeds with soil amendments and feeds originated from recovered mate-

rials, a circular food system can contribute to climate-resilient and low-emission practices [3,

4]. As the concept of circularity is rooted on the principle of preventing nutrient losses and

upcycling nutrients from residual streams, circularity can reduce food loss and waste and their

associated environmental impacts along food supply chains. In addition, given the recent dra-

matic increase in fertilizer and fuels prices caused by major supply chain disruptions (e.g.,

COVID-19, the war in Ukraine), adopting circular interventions that target the recovery and

valorization of residual organic streams could reduce the reliance on external inputs (e.g., fer-

tilizers, feeds) and increase countries’ self-sufficiency.

Livestock has become relevant in the narrative of circular food systems for its role in upcy-

cling the nutrients contained in residual streams and grassland biomass from non-arable

lands, into nutritious human edible foods and manure [5]. By doing so, livestock becomes a

source of food without competing with humans for food and land. To date, different modelling

studies have acknowledged the potential contribution of circular food systems to foster food

security and to lower livestock environmental footprints on human diets at regional (i.e., Euro-

pean Union) and global levels [6–8]. Policy instruments to guide the transition towards a cir-

cular food system are being created in Europe, and initiatives are being launched to increase

the development and implementation of circularity in other regions of the world [9, 10].

Despite the gaining momentum of circular food systems in parts of the global north and the

ongoing efforts to promote it worldwide, there is a need to determine how circularity is envi-

sioned and represented in the global south. This is relevant for designing and implementing

circular interventions in line with local contexts and to harmonize the new efforts with the

existing initiatives that aim to make local food systems more sustainable. In this review we

focus on the Colombian cattle sector, a main contributor to GHG emissions, but also a key sec-

tor on which Colombia substantially relies to meet its mitigation targets. Our review is struc-

tured as follows. First, we describe how cattle farming is structured in Colombia. Second, we

list and synthetize the main public and private initiatives setting the standards and directions

for the sustainable transformation of Colombian cattle systems. Third, based on the actions

promoted by the initiatives, we assess which circularity elements are present and discuss the

challenges and opportunities for a circular livestock sector in Colombia.

2. Cattle production systems in Colombia

Colombia is the fourth country with the largest livestock herd in the Americas (i.e., more than

28 million cattle heads), and the 14th worldwide [11, 12]. The Colombian livestock sector is

dominated by farms with less than 50 animals, representing more than 80% of the national cat-

tle herd [11]. However, land concentration is extreme, with 1% of landholders possessing 81%

of the agricultural productive land in 2014 [13]. In fact, many of the grazing lands and a sub-

stantial part of the cattle herd are the result of decades of land-grabbing via cattle ranching and

forced migration of smallholders [14–16].

Cattle is reared throughout the country, but the Andean, Caribbean and Orinoquia regions

hold more than 85% of the national herd and lands used for cattle ranching (see Fig 1A–1C).
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The sector is mainly oriented to beef production (43%), whereas milk only represents 12% of

the national herd. The remaining 45% is linked to dual-purpose activities, i.e., beef and milk

(45%) (Fig 1B). Most of the beef commercialized in Colombia comes from fattening farms,

representing 39% of the beef national herd [17]. Fattening farms depend mostly on cow-calf

farms for weaning calves, and at a lower extent on dual-purpose farms [18]. The different

growth stages along the cattle’s life cycle are usually carried out in different farms. This leads to

cattle being transported throughout the country, making it difficult to know where the animals

are coming from. In 2016, the Agricultural and Livestock Colombian institute (ICA for its

acronym in Spanish), was only able to trace 10% of the national cattle herd [19].

Most beef cow-calf and fattening farms are managed under low-input extensive grazing sys-

tems. Cattle mainly graze on natural pastures, receive limited supplementation of forages and

concentrates, and have low productivity [18]. Mineral supplementation (e.g., calcium, phos-

phorus, magnesium) is one of the few inputs commonly used throughout farms [20, 21]. In

Colombia, nearly 60% of the current grazing lands have low stocking densities, below 0.5 ani-

mal units (AU) ha-1, and only 13% more than 1 AU ha-1 (1 AU = 454 kg) [22]. Grasslands are

usually overgrazed [23], which not only leads to the degradation of soil and water resources

[24, 25] and low cattle productivities per unit of land, but may also contribute indirectly to fur-

ther deforestation [16].

Colombia has been researching and debating land-sharing and land-sparing approaches for

decades, to intensify current systems and conserve the remaining natural ecosystems [26, 27].

Fig 1. A. Map of Colombia and its regions. The map base layer was produced by Esri, USGS and NOAA and was obtained from https://server.arcgisonline.

com/ArcGIS/rest/services/World_Terrain_Base/MapServer. The terms of use for the map base layer in academic publications can be found at https://doc.

arcgis.com/en/arcgis-online/reference/static-maps.htm. B. Composition of cattle herd in Colombia per region and orientation type (i.e., meat in orange, dual-

purpose in green and milk in blue). Percentages indicate the contribution of each region and orientation type relative to the national herd. C. Agricultural land

use in millions of hectares in Colombia for 2019. Data obtained from [17].

https://doi.org/10.1371/journal.pclm.0000074.g001
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Even though Colombia hosts vast dry and humid natural savannahs where livestock farming

originated, most cattle farming takes place in pastures cultivated in biodiversity-rich areas

such as dry forest, lowland tropical forests, Andean páramos (i.e., montane grasslands and

shrublands) and cloud forests [28, 29]. Intensification is usually proposed to reduce the envi-

ronmental impact per unit of product, under the logic that a higher productivity would reduce

the individual product footprint. Examples of intensification recommendations for the local

Colombian context include the adoption of improved pastures with higher fertilization rates

than current ones [18], rotational grazing schemes [30], use of tropical forages with secondary

metabolites with potential to reduce methane emissions [31] and the adoption of silvopastoral

systems [32, 33]. Although it has been acknowledged that all these practices can have potential

to reduce the environmental footprint of the Colombian livestock sector [26, 34–36], several

barriers limiting their adoption exist, including high costs and risks, and limited access to

financial capital, technical assistance and information.

3. Initiatives and environmental interventions driving the

sustainable transformation of the Colombian cattle sector

3.1. Initiatives

Based on decades of experimental and applied research in the domain of sustainable cattle sys-

tems in the different Colombian agroecological zones, production systems and regions, multi-

ple initiatives have flourished and are being implemented to transform the Colombian

livestock sector (Table 1). These initiatives have been divided into two groups: voluntary sus-

tainability standards (VSS) and public policy instruments.

The VSS are rules related to a wide range of sustainability metrics that producers, traders,

manufacturers, retailers or service providers may be asked to follow in order to avoid harming

people and the environment during the processes they perform [37]. We identified five active

VSS schemes in Colombia, which included three product labels (i.e., GANSO, Angus Azul and

the Livestock Environmental Label), a public-private agreement (i.e., zero-deforestation agree-

ment) and a multi-stakeholder platform (i.e., Colombian Roundtable for Sustainable Cattle

Production (MGS-Col, for its acronym in Spanish)). Details on each VSS are presented in the

S1 Text. Although other large projects and initiatives have been implemented, we decided to

Table 1. Initiatives driving the sustainable transformation of the Colombian livestock sector.

Type Name Set by Monitored by Target

product

Impact

Voluntary Sustainability

Standards (VSS)

GANSO NGO Third party

(private audit)

Meat At least 15,000 ha (so far)

Angus Azul Company First party Meat At least 23,500 ha (so far)

Livestock Environmental Label Government Third party

(Incontec)

Meat and

milk

Recently launched, no tangible

impacts.

Zero deforestation agreement Government,

companies, NGO

Second or third

party

Meat and

milk

33 active members

Colombian Roundtable for Sustainable Cattle

Production

NGO, companies,

producers

No monitoring Meat and

milk

62 active members (43 from the

private sector)

Public policy Nationally Appropriate Mitigation Action for

Sustainable Bovine production (NAMA-

bovine)

Government Government Meat and

milk

Recently launched. Expects to cover

1.6–3.6 M ha and 11500–25300

farms.

National Policy for Sustainable Bovine

Production (GBS 2021–2050)

Government Government Meat and

milk

Recently launched. Expects to

transform the whole national cattle

sector by 2050.

https://doi.org/10.1371/journal.pclm.0000074.t001
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focus on these due to their implementation and readiness on a commercial scale or for having

direct influence on the entire sector.

In the policy arena, as of 2022, there are two main policy instruments that specifically focus

on the sustainable transformation of the Colombian cattle sector. One is the recently launched

Nationally Appropriate Mitigation Action for sustainable bovine production (NAMA-bovine)

[38]. It sets the actions needed to reduce GHG emissions and increase carbon storage in cattle

production systems to meet Colombia’s international commitment to reduce cattle-related

GHG emissions 15% to 33% by 2050 (i.e., equivalent to 5–11 Mt CO2eq year-1). Land-based

mitigation measures account for 70% of Colombia’s updated Nationally Determined Contri-

bution (NDC) target and the NAMA-bovine plays a key role to achieve it [39].

The other policy is the National Policy for Sustainable Bovine Production (PNGBS, for its

acronym in Spanish) 2021/2050 [40]. This policy is the result of a participatory process led by

the MGS-Col, that seeks to define the roadmap for 2021–2050 to modernize and reconvert

Colombian livestock systems towards low emission and climate-resilient systems [19].

3.2. Environmental actions proposed by the initiatives

The actions proposed to improve the sustainability of the Colombian cattle sector were classi-

fied into four groups: conservation and restoration of natural ecosystems and resources, land

use and feeds, soil health and fertilization and waste management (see Table 2 and S1 Table).

It is important to consider that not all actions have to be complied simultaneously. Some vol-

untarily sustainability standards (VSS) have minimum criteria to be certified, followed by a

continuous monitoring for the implementation of more environmental actions.

Table 2. List of environmental actions proposed by the different initiatives.

Voluntary Sustainability Standards Public policies

Actions GANSO Angus

Azul

Livestock

Environmental Label

Zero-deforestation

agreement

PNGBS NAMA—

Bovine

Conservation and restoration of existing natural ecosystems

and resources

Destine a portion of the farm area for conservation x x x x

Restore areas currently used by livestock either via natural

regeneration, agroforestry systems or reforestation

x x x x x

Halt deforestation x x x

Implement water use plans that optimize water use and reduce

losses

x x x

Protect natural water bodies from direct use by livestock x x x

Land use and feeds

Implement silvopastoril systems x x x x x x

Implement paddock rotation systems for forage production x x x x

Reduce methane enteric fermentation via livestock diets (feed

additives, improved digestibility)

x x

Produce all feed within the farm x

Soil health and fertilization

Implement soil conservation practices (e.g., keep vegetation cover,

use green manures).

x x x

Use of organic fertilizers x x

Organic waste management

Recover nutrients from organic waste (including manure) via

composting or anaerobic digestion

x x x

Implement a waste management plan for the collection, storage

and disposal of hazardous waste

x x

https://doi.org/10.1371/journal.pclm.0000074.t002
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3.2.1. Conservation and restoration of natural ecosystems and resources. One of the

outcomes of the land sharing and sparing debate has been to reduce the grazing areas devoted

to extensive cattle ranching with the aim to increase conservation areas [26]. In fact, most of

the initiatives consider the conservation of remaining natural ecosystem patches or their resto-

ration; however, they differ in what portion of the farm should be protected. For instance,

GANSO requires that at least 5% of the farm’s area should be conserved. In contrast, the Live-

stock Environmental Label establishes that the conservation area should represent a minimum

of 11% of the total area and, if the farm does not meet the minimum area, it must comply with

a transition agreement to reach the 11% thresholds in a three-year period.

Angus Azul mentions that in areas where the natural ecosystem has a canopy coverage of

less than 20%, the farm must have areas designated for the conservation or recovery of natural

ecosystems, equivalent to at least 20% of the livestock production area. NAMA-bovine pro-

motes the freeing of areas where cattle productivities are low for their ecological restoration. In

those cases in which the conservation is unfeasible due to insufficient area for natural ecosys-

tems, restoration of degraded lands is the preferred action. Restoration of lands for conserva-

tion can be performed via natural regrowth of vegetation and through the establishment of

silvopastoral systems or forest plantations. The use of silvopastoral systems as a restoration

strategy corresponds to the myriad environmental benefits they provide without decoupling

their production advantages [41].

It must be noted that all three schemes (i.e., GANSO, Angus Azul and the Livestock Envi-

ronmental Label) require that the farms that adhere must consider actions to protect water

resources from damage, pollution and losses. This is expected to be performed via the installa-

tion of channeling systems to drinkers, rainwater collection systems, and the installation of

physical barriers to prevent direct contact between livestock and natural water sources.

3.2.2. Land use and feeds. All initiatives analyzed promote the implementation of silvo-

pastoral systems (e.g., live fences, scattered trees, fodder hedges, semi-intensive and intensive

silvopastoral systems) and the application of rotational grazing systems as sustainable intensifi-

cation strategies. Both interventions are proposed to increase plant biomass per unit of area

with less external inputs. Silvopastoral systems, in particular, can lead to multiple environmen-

tal benefits for climate change mitigation and biodiversity, mainly via higher rates of carbon

sequestration in above- and below-ground biomass, temperature cooling, reduced methane

emissions from enteric fermentation (i.e., by provisioning forages that contain secondary

metabolites that modify ruminal fermentation) and improved landscape connectivity. For

instance, the soil carbon accumulation in silvopastoral systems established in the Colombian

Caribbean ranged from 60.6 to 65.1 t ha-1 year1, while in a traditional pasture system without

trees in the same area, the soil carbon accumulation was 38.3 t ha-1 year-1 [42].

In other Colombian region increases in total carbon stocks (i.e., sum of soil and biomass) of

0.57, 6.24 and 2.06 Mg C ha-1 yr-1 have been found for pasture, forage banks and silvopastoral

systems, respectively [43]. Silvopastoral systems, independently of their spatial extent, can

offer cooling benefits ranging from -0.32˚C to -2.4˚C per 10 metric tons of woody carbon per

hectare [44]. Secondary metabolites ingested by livestock via specific plant species can reduce

methane emissions by 20%-30%, although results can be very variable depending on the char-

acteristics of the metabolite [45, 46]. In addition, the NAMA-bovine scheme argues that silvo-

pastoral systems allow higher stocking rates; therefore, they can indirectly liberate grazing

lands for conservation purposes. In silvopastoral systems, depending on the intensification

level, stocking rates can range between 4 heads/ha-1 and 4.6 heads/ha-1, which is much higher

than the average 0.6 animal heads/ha that characterizes current extensive systems [41].

Although it is not a common practice, some initiatives allow the import of feeds and promote
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forage conservation practices to reduce grazing pressure. Only Angus Azul mentions that for-

ages should be produced within each farm.

3.2.3. Soil health and fertilization. GANSO, Angus Azul and the Livestock Environmen-

tal Label specifically propose adopting soil conservation practices. These include mulching,

using green manure and other organic fertilizers, practice conservation tillage and reducing

livestock transit in slopes, among others. Although not specifically mentioned, most of these

practices favor the proliferation of soil macrofauna such as dung beetles which play a key role

in nutrient management of pasture systems [47]. Only GANSO and the Livestock Environ-

mental Label recommend setting fertilization plans in amounts that are safe for the environ-

ment; however, no specific limits are set.

3.2.4. Waste management. The treatment of organic waste is only present in three of the

six initiatives and with limited scope. GANSO and the Livestock Environmental Label encour-

age the use of biological processes such as composting, vermicomposting, to be used as a soil

amendment or for energy production (i.e., biogas). They also encourage the adequate collec-

tion, storage and disposal of hazardous waste (i.e., veterinary medicines, agrochemicals, etc.).

They do not specify, however, which type of residues should be targeted and how these should

be collected. In contrast, NAMA-bovine is more specific on this, targeting the utilization of

manure collected in milking rooms as an organic fertilizer, and the collection of manure from

slaughterhouses, livestock exhibition and trading fairs to produce biogas and fertilizers (i.e., as

digestate).

4. Assessing circularity in sustainable interventions

Evaluating whether circularity is embedded in sustainable interventions currently promoted

by the different initiatives depends on what is considered to be circular. Here, we evaluate cir-

cularity from a nutrient and food-feed competition perspective based on the frameworks

developed by Harder et al. (2021) [2] and De Boer and Van Ittersum (2018) [1], respectively.

These frameworks were selected for approaching circularity with a food systems approach.

4.1. Nutrient-circularity in Colombian cattle systems

From a nutrient perspective, food systems’ circularity interventions seek to reduce nutrient

losses from residual streams by recovering those nutrients and reusing them in agricultural

production [2]. Nutrient circularity can have two interpretations depending on whether the

focus is on the inputs or the outputs. Input circularity relates to the share of nutrient needs

that are supplied with recirculated nutrients. Output circularity relates to the share of nutrients

in residual streams which are recirculated within or outside the system [2]. Applied to cattle

production systems, input nutrient circularity is mainly linked to the types of fertilizers and

animal feeds, whereas output circularity is linked to the use of manure and livestock carcass.

4.1.1. Input circularity–fertilizers. Fertilization in the Colombian cattle context is mainly

linked to the fertilization of pastures, as more than 95% of cattle farms are grass-based [17].

Most Colombian cattle systems are managed under extensive conditions and are characterized

by a low use of fertilizers [18, 48]. However, it is known that fertilization of pastures, combined

with other management measurements such as rotational grazing result in improved systems

that can intensify productivity per unit of land and, hence, break the extensive model that pre-

dominates currently [48].

Although the initiatives do not directly propose fertilization regimes, the use of circular fer-

tilizers is somehow covered under the term organic fertilizers, which are traditionally obtained

from recycled sources. GANSO refers to the use of chemical fertilizers and fertilization plans if

these are safe for the environment and suggests considering the use of organic fertilizers. The
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NAMA-bovine refers to the use of bedding material, composted manure and digestates

obtained from slaughterhouses, livestock fairs and exhibition events to fertilize pastures. In the

PNGBS, the current use and promotion of mineral fertilizers instead of organic fertilizers is

criticized; however, there are no clear actions proposed to promote organic fertilizers in cattle

production systems.

Silvopastoral systems, proposed by all initiatives, intrinsically contribute to circularity, as

the whole system is based on taking advantage of the internal nutrient recycling processes

occurring between trees, shrubs, pastures, and animals to minimize the use of external inputs

[41, 49]. For instance, in silvopastoral systems, nitrogen-fixing shrubs such as Leucaena leuco-
cephala can fix atmospheric nitrogen at rates ranging from 77 kg ha-1 to 250 kg ha-1 [50, 51].

Phosphorus, a limiting mineral in most acidic tropical soils due to Al and Fe immobilization

can be solubilized and made available for plant uptake when the mycorrhiza and microbiota

related to specific trees and shrubs are planted in high densities [52]. In addition, as silvopas-

toral systems support mixed dung beetle assemblages and other macrofauna, the relocation of

cow manure (i.e., transport of manure above or below ground) and the incorporation of

organic matter to the soil is favored [53, 54].

4.1.2. Input-circularity feeds. Input-circularity associated with cattle feed is linked to the

use of agricultural streams such as crop residues and food processing by-products as part of

cattle diet rations. In Colombia most cattle production systems consume pastures and forages

in the 23.5 million ha of area currently utilized for cattle ranching [17]. Hence, the use of feeds

such as crop by-products, grains, legumes and tubers are not common. In certain specialized

dairy systems some by-products such as wheat bran, soybean husk, palm cake, dairy whey are

re-used as feed [55], whereas bone and blood meals are commonly reused as sources of cal-

cium and phosphorus for mineral supplementation to livestock. In this context, it is not sur-

prising that the use of circular external feeds is mainly absent and even discouraged by some

initiatives. For instance, Angus Azul, by demanding that all feeds be produced within the farm,

excludes the use of by-products produced in other lands (e.g., palm cake).

The use of circular feeds could have major relevance for the future sustainability of the

Colombian specialized dairy sector. Worldwide, highly productive specialized dairy systems

depend on high nutrient quality ingredients (i.e., concentrates based on cereals, grains, and

legumes) to sustain the high milk yields. LCA studies usually conclude that intensive systems

are the ones producing milk with the lowest footprint [48, 56, 57], as usually the GHG emis-

sions per unit of product are lower compared to other less intensified systems. Under this pro-

duction-oriented way of expressing the sustainability of food products (i.e., expressing impacts

per kg of product), high-yielding systems will be favored [58]. However, considering that high-

quality ingredients or the arable lands to produce them are not infinite, and that many of these

ingredients are human-edible, their use as animal feed contributes to food-feed competition,

an issue that environmental footprint metrics struggle to grasp in its full complexity [59].

Avoiding food-feed competition via the utilization of circular feeds is consequently key for the

transition towards future sustainable and food-secure food systems [60–62], and should be

incorporated in the sustainability agenda for Colombian dairy and monogastric livestock

systems.

4.1.3. Output-circularity manure. In most Colombian cattle systems, cattle urinate and

deposit excreta directly in extensive areas where they forage and rest. Although this guarantees

nutrient cycling, it is known that the presence of manure dungs can lead to the formation of

rejected patches, which limits grass intake as cattle refuse to graze in these areas [63]. This is

unlikely to be a limitation in most Colombian cattle systems due to low stocking densities, but

may need to be accounted for in intensive grazing systems to correctly estimate fresh grass

allowance [64]. Given that the collection of manure in grazing systems is unfeasible, the key to
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improving the recycling of manure nutrients in pastures relies on the proliferation of entomo-

fauna. Insects such as tunnelling dung beetles are vital for nutrient recycling and plant health

in pasture systems [47], and can also contribute to improve cattle health [65].

Some of the initiatives include circular practices for manure management while cattle are

not grazing. The NAMA-bovine accounts for the collection of manure in milking rooms,

slaughterhouses, livestock fairs and exhibition events. While the amount of manure excreted

per animal in these places is infimal compared to what is excreted in pasture lands, estimates

show that manure emissions reach nearly 4000 t CO2eq/year in the 233 slaughterhouses that

operate throughout the country, and 5000 t CO2eq/year in the 54 livestock fairs that take place

every year. NAMA-bovine suggests implementing circular practices such as composting and

anaerobic digestion to produce biogas and digestate, although it points out that the high

nitrous oxide emissions assumed for manure composting could lead to higher GHG emissions

than the reference scenario. “However, NAMA-bovine does not account for avoided emissions
and carbon sinks associated to compost use, which influences the net carbon balance of com-
posted animal manures substantially”.[3]. GANSO and the Livestock Environmental Label rec-

ommend managing the organic residues via circular practices such as composting,

vermicomposting and anaerobic digestion. However, in neither case it is specified if manure is

included, and if so, how it would be collected.

4.1.4. Output-circularity livestock carcass. Most cattle carcass and offal obtained in

slaughterhouses are utilized, independently of the degree of automation of the slaughter plant.

The skin, horns, hooves, bones, blood, the tassel of the tail, among others, are examples of left-

overs that are inputs for other industries as ingredients for animal feed (except for ruminants

to avoid the transmission bovine spongiform encephalopathy), leather, and human food (e.g.,

blood). Although the reuse of animal leftovers is a common practice, none of the initiatives,

except NAMA-bovine, which suggests producing bioenergy via anaerobic digestion, has a ded-

icated part to describe and suggest practices for the reuse of these animal parts.

4.2. Food-feed competition in Colombian cattle systems

In a circular food system food-feed competition (i.e., the use of human edible food as livestock

feed) is avoided by primarily using arable lands for the production of plant biomass for direct

human consumption. In such a system, livestock is solely fed on residual streams from food

production and grassland biomass from non-arable lands [1]. In that way, the production of

human edible food is maximized, and livestock plays a key role for the supply of macro and

micronutrients key for human nutrition without using additional arable land [5].

In Colombia, all the sustainable interventions promote the implementation of silvopastoral

systems in pasture lands currently used for cattle farming (Table 2). Only the Livestock Envi-

ronmental label, stated that silvopastoral systems should also include the production of

human-edible foods. The switch in land use from grasslands to silvopastoral systems is

expected to result in a series of positive environmental outcomes for climate change mitiga-

tion, nutrient cycling and biodiversity (see section 3.2.2). The land-use circularity framework

by De Boer and Van Ittersum (2018) does not refer specifically to silvopastoral systems as cir-

cular; however, if implemented in non-arable lands, these systems would be, in principle, cir-

cular and preferable than just having livestock grazing on pastures. The reason for this is that

silvopastoral systems, if adequately managed, can produce more plant biomass than pastures,

increase the amount of meat, milk and manure per unit of area as compared to pasture-based

systems, promote internal nutrient recycling and simultaneously supply wood, fruits and

diverse ecosystem services [32, 66].
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In Colombia, land devoted to livestock has increased in the last decade in most regions,

while the land destined to crops has remained relatively constant, except in the Pacific region

(Fig 2). The grazing lands devoted to livestock are not only linked to areas where crops cannot

grow, but are also the result of decades of land-grabbing via cattle ranching, forced migration

of smallholders and deforestation [14]. By 2010, 39% of the grazing area in Colombia was cov-

ered with introduced grasses, 19% was present in pasture-crop-natural area mosaics, 7.5% was

covered with shrublands, and 34% corresponded to natural grasslands [22]. While most of the

attention has focused on identifying grazing areas where livestock should be excluded due to

low productivities, high environmental impacts and illegal use of lands [22, 67], there has been

less interest in quantifying which areas with current livestock use could incorporate crops.

From a food-feed competition circularity point of view, this is a relevant knowledge gap that

needs to be fulfilled. Such an output would allow comparing the consequences in terms of

food security, GHG emissions and the environment of implementing other land uses that pri-

oritize food production for direct human consumption instead of pastures and cattle.

Previous Latin American experiences have shown that the establishment of cropping sys-

tems in grazing lands can lead to negative outcomes for food security and the environment

with the adoption of large-scale monocultures for bioenegy and feed purposes [69–71]. To

avoid such negative outcomes, it is important to implement circular food systems produced

under agroecological practices [72]. Agrosilvopastoral systems (i.e., land use that combines

Fig 2. National and regional land use within agricultural units from 2011 to 2019. Note the different units in the Y axis. Data were obtained from the 2019

agricultural national survey [68].

https://doi.org/10.1371/journal.pclm.0000074.g002
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crops, trees, shrubs, pastures and animals) can be promising alternative, as these can offer all

the environmental and productive benefits of silvopastoral systems and provide food for direct

human consumption keeping the synergies intrinsic to mixed crop-livestock systems. Other

options such as mixed crop-livestock systems and intercropping systems managed under agro-

ecological practices could also be considered [73, 74].

5. Conclusions

After decades of research and pilot projects, different initiatives that promote the sustainable

transformation of cattle systems have taken hold in Colombia. These include voluntary stan-

dard schemes that certify cattle products that meet minimum environmental criteria, and

national policies that aim to make the sector more sustainable. Among the environmental

actions proposed, those that stand out are the zero-deforestation agreement, the conservation

of remaining natural ecosystems and resources or their restauration, and the sustainable inten-

sification of cattle production systems via the implementation of silvopastoral systems and

paddock rotational systems.

While assessing the inclusion of nutrient circularity in the initiatives, we found that some of

them included circularity elements such as the use of organic fertilizers, and the collection and

use of manure. However, in the short-term these actions are expected to have limited impact

as the intensification of cattle farming is expected to occur mainly in low-input systems and in

a context where the collection of by-products for utilization (e.g., manure) is not always feasi-

ble. In such low-input systems, improved nutrient management and circularity will depend on

natural nitrogen fixation and phosphorus solubilization via shrubs and trees, and the presence

of beneficial insects such as dung beetles. Silvopastoral systems, the preferred sustainable

intensification action promoted by all initiatives, may contribute to climate change mitigation

and nutrient circularity via internal nutrient recycling. However, in some areas these systems

might not be circular from a food-feed competition perspective if they are installed in lands

suitable for crop production. The evaluation of areas with potential to be used for crop cultiva-

tion in current grazing areas has remained unattended in the sustainable land intensification

debate for Colombia. We propose that in these areas, pasture lands should be replaced with

agrosilvopastoral systems that integrate crops, trees, pastures and livestock. Quantifying the

extent of these areas is the first step and, thereafter, existing circular frameworks and models

could be useful to measure the impact of adopting circular land uses for food security, resil-

ience, livelihoods, and environmental sustainability.
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2018. Available: https://www.minagricultura.gov.co/Normatividad/Projects_Documents/

IDENTIFICACION GENERAL DE LA FRONTERA.pdf

68. DANE. Encuesta Nacional Agropecuaria—Serie histórica por departamento usos del suelo (2012 –II
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