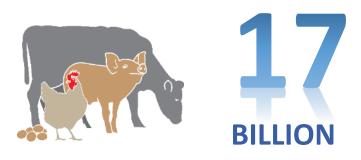


Livestock, Climate and System Resilience Alliance

Agroecological transformation of tropical livestock production through silvopastoral systems

Jacobo Arango et al.

Theme leader


j.arango@cgiar.org

TropenTag 2022, Prague, Czech Republic, 14–16 September 2022

The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT) is part of CGIAR – a global research partnership for a food-secure future.

Importance of sustainable Livestock production systems

The estimated total number of livestock worldwide

(including cattle, sheep, goats, pigs, chickens, and about a dozen lesser known species, like guinea fowl, yaks, and camels). About two-thirds of the world's total agricultural area

3.3 Bha Of grazing land

Total crop area

The value of livestock as a global asset reaches

In America Latina alone, have been degraded by overgrazing and other unsustainable production practices.

This negative impact is similar in most areas used for feed 70% of sweet water to agriculture, 22% to livestock

The annual contribution of livestock to climate change, which is about

Of total agricultural emissions

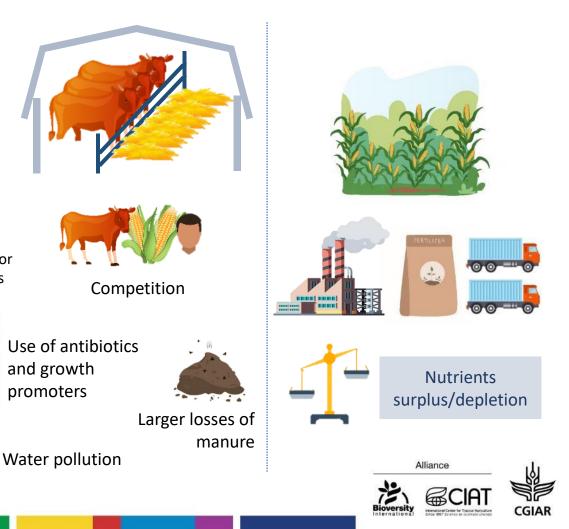
Peters et al., 2013

of all human-induced greenhouse gas emission

These includes emissions from deforestation to make way to pastures.

tCO₂eq

CGIAR


Importance of sustainable Livestock production systems

ANTI

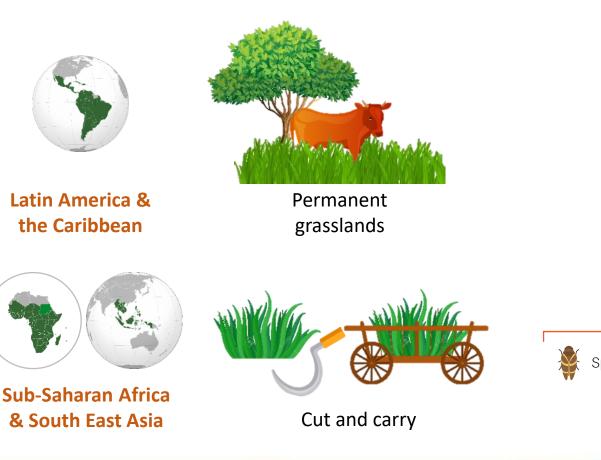
In **family farming**, livestock production mainly occurs in **mixed crop-livestock** systems

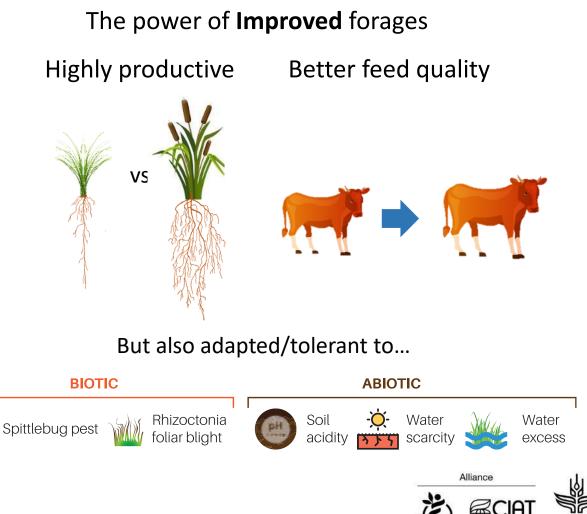
In specialized livestock production systems, crops and livestock are spatially decoupled

The agroecological framework

Agroecology

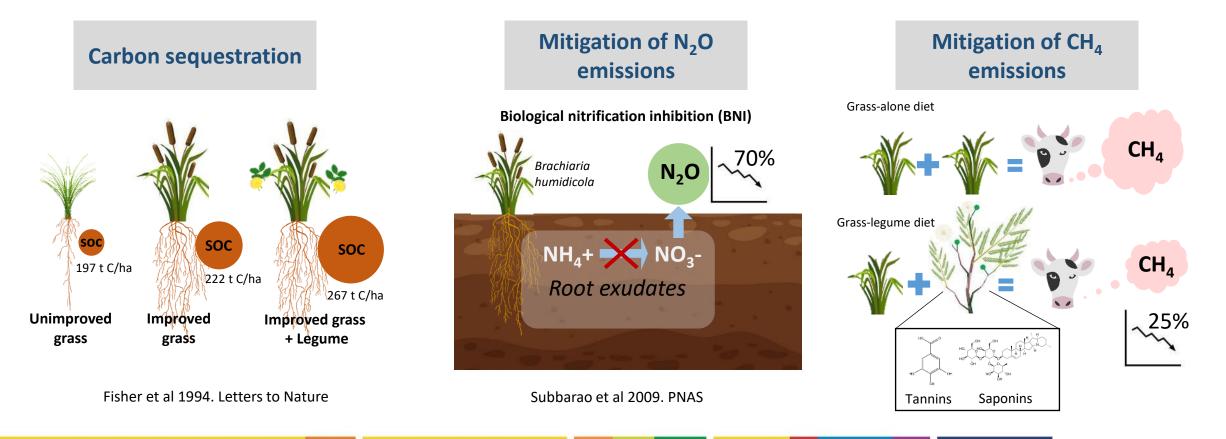
"A set of principles and practices intended to enhance the sustainability of a farming system, and it is a movement that seeks a new way of food production"


3 components:


- 1. Is a scientific discipline, studying the ecology of agricultural systems
- 2. Has evolved into a set of agricultural practices
- 3. Has turned into a movement that incorporates social justice, food sovereignity and the preservation of cultural identities

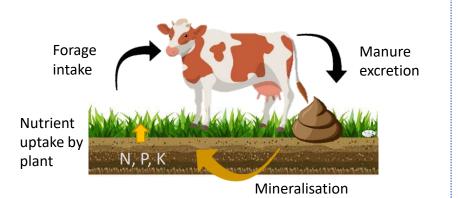
Ensuring system sustainability through integrating improved forages in mixed crop-tree-livestock systems in the tropics

In the Global **South**, livestock production takes place in a **variety** of production systems



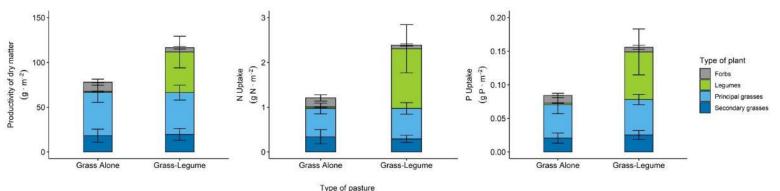
GIAR

Ensuring system sustainability through integrating improved forages in mixed crop-tree-livestock systems in the tropics


Gaviria et al 2021. Fron. Vet. Sci.

Sustainable intensification of (**improved**) forage-based systems, combining genetic, ecological and socioeconomic intensification processes, increases the efficiency of the systems, has the potential to improve livelihoods, and yields a range of environmental co-benefits.

1. Recycling


Use **local** renewable resources as much as possible and close as far as possible resource cycles of nutrients and biomass

2. Input reduction

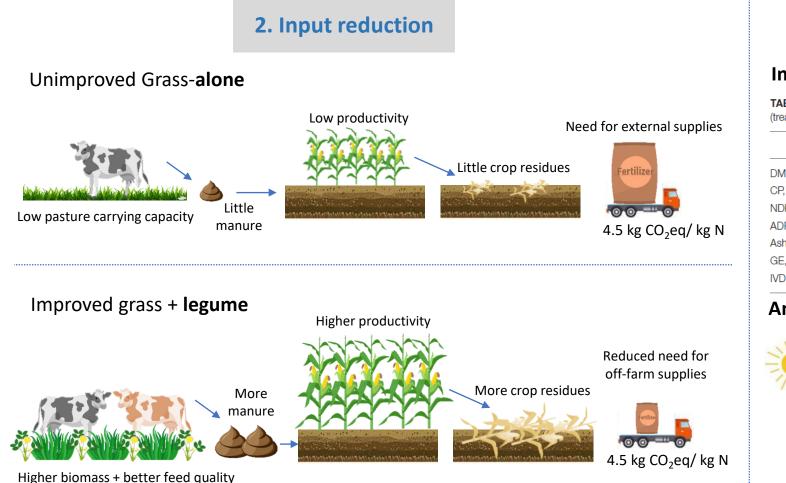
Reduced need for external inputs (feeds, agro-chemicals and water)

Biological N fixation (BNF) of tropical forage legumes

- The integration of legumes increased pasture **biomass** production by about 74%
- N and P **uptake** were improved by two-fold.
- The legumes derived about 80% of their N via symbiotic N₂ **fixation**.

Villegas et al 2020. Diversity

200 kg


Alliance

Arachis

pintoi

Urea/ha/yr

Gaviria et al 2020, Fron. Vet. Sci.

= higher carrying capacity

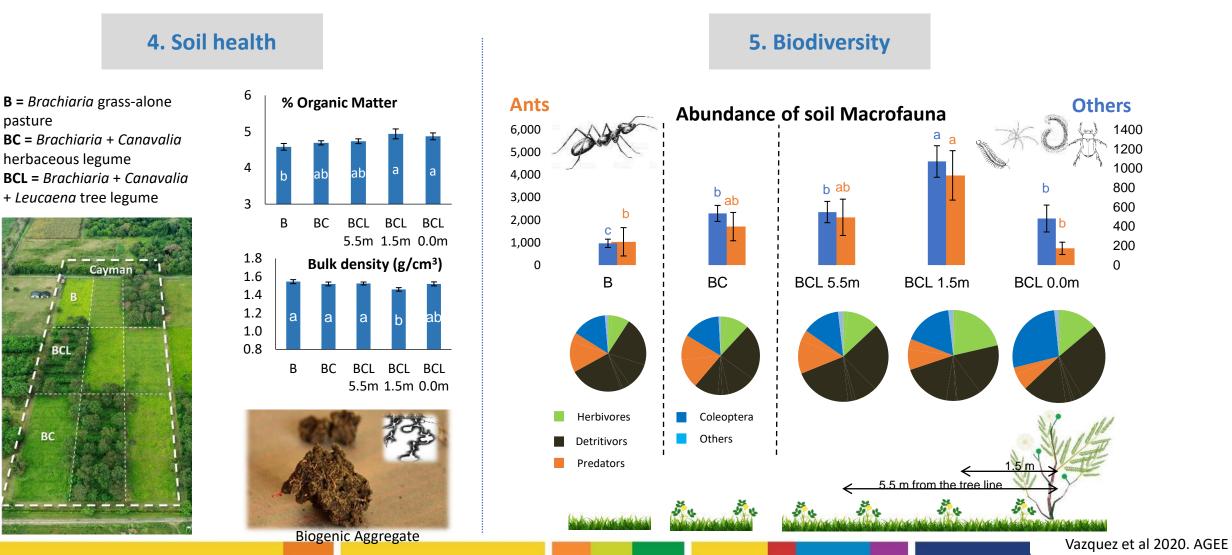
3. Animal health

Improved animal nutrition

TABLE 1 | The nutritional value of five different diets based on tropical-forages (treatments) evaluated offered to Brahman cattle steers.

	Cay1	Cay2	CayLI*	CayLd**	Hay	Higher
Л	391	213	211	238	632	protein,
P, g kg DM−1	44.5	83.3	96.2	128.5	62.3	digestibil
)F, g kg DM ⁻¹	709.8	682.2	638.5	580.9	612.6	and ener
)F, g kg DM ⁻¹	414.2	349.1	359.2	299.3	388.9	in grass-
h, g kg DM ⁻¹	118.3	121.4	124.5	175.6	140.3	legume d
, Mj kg DM ⁻¹	16.2	17.2	16.7	17.5	14.1	-
DMD, g kg ⁻¹	511	618	610	606	479	

Animal welfare



Shadow provided by trees or shrub legumes in **silvopastoral** systems

- Reduced heat stress/ water loss
- Rest areas
- Less walking around the paddock = energy loss

Charry et al 2016. Tropentag

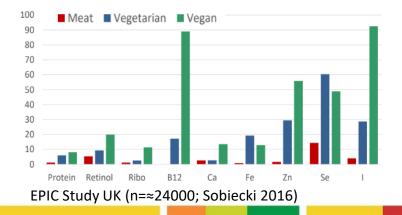
7. Economic diversification

Crop-tree-livestock systems

- Increased animal productivity (weight gain)
- Cattle (=savings)
- Timber
- Fruits
- Payment for ecosystem services
 - $\circ~$ C sequestration
 - \circ Water quality
 - Shadow
 - Biodiversity (insects, pollinators, birds)
- Ecotourism (bird watching)

9. Social values & diets

Animal source foods for human nutrition


İİİİİİİİ

2 billion people suffer malnutrition for micronutrients

800 million suffer caloric defficiencies

Global Nutrition Report, 2016

% of inadequate intake of nutrients in meat consumers, vegetarians, and vegans.

10. Fairness

Economic indicators improved in mixed pastures

Evaluated technologies	Grass-alone	Grass+legume
Net income system	356	695
(US\$ ha ⁻¹ y ⁻¹)		
NPV (US\$)	(473)-(288)	1,716-2,055
Prob NPV<0 (%)	72	0
IRR (%)	10-11	21-22
Payback period (years)	6	4
B/C ratio	0.96-0.98	1.12-1.13
Minimum area required to have	6.54	3.76
a profitable system (ha)		

Enciso et al 2019. TGFT

Consumers are willing to pay **price premiums** for "ecofriendly" and "animal welfare compliance" labels in the city of Cali, Colombia.

Table 1 WTP for "eco-friendly" and "animal welfare compliance" labeled beef

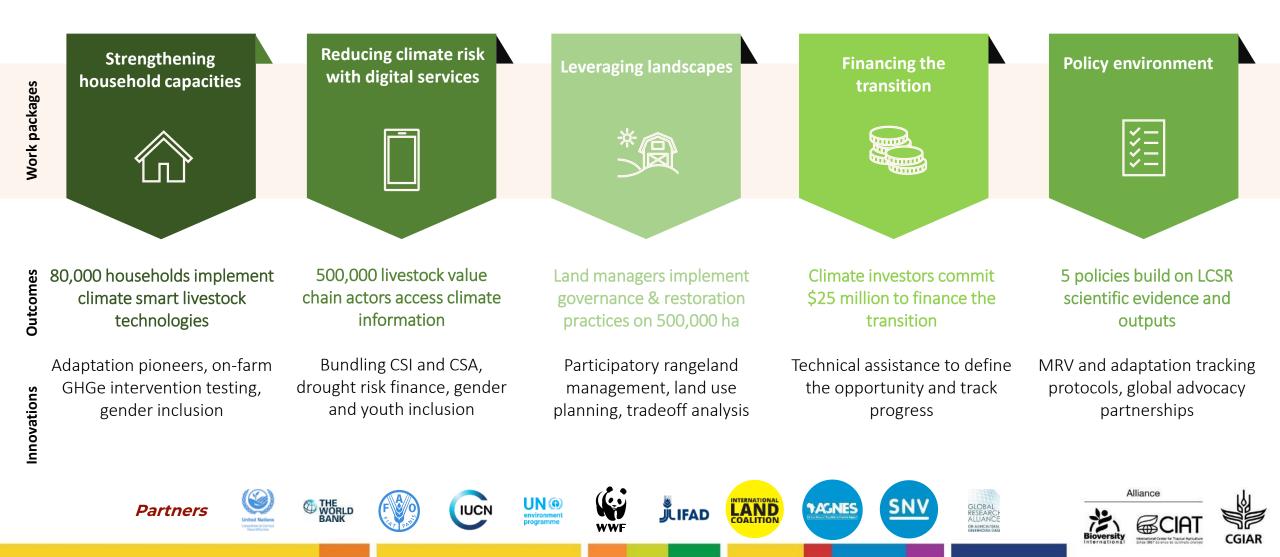
Label	No information		With information	
Eco-friendly	\$	0.74	\$	1.18
Animal Welfare	\$	0.83	\$	0.84

* Average WTP for conventional beef in samples: USD \$4.73/lb ** Prices in USD/lb of meat (USD/COP XRT 08/22/2016)

Outlook

There is increased research interest and understanding of the economic, social and agroecological dynamics related to improved forages and their integration in mixed croptree-livestock systems.

Knowledge gaps:


- Forage varieties tolerant to a wide range of biotic and abiotic stress factors
 - Boosted by state-of-the-art genomics and phenomics
- Multiple interacting impacts of improved forages at the food system level
 - Reduce agro-environmental trade-offs
 - Understand drivers of uptake of improved forages, especially within agroecological initiatives, is needed for guiding large-scale investments and supporting the decision-making processes around that.
- Influential communication targeting policymakers and the different publics
 - Raising awareness at different decision-making levels should aim to differentiate, label and promote livestock products derived from agroecosystems based on agroecological principles

CGIAR initiative on Livestock, Climate, and System Resilience (LCSR)

Livestock, Climate and System Resilience

Further reading

frontiers in Sustainable Food Systems

REVIEW published: 11 November 2021 doi: 10.3389/fsufs.2021.742842

Tapping Into the Environmental Co-benefits of Improved Tropical Forages for an Agroecological Transformation of Livestock Production Systems

An M. O. Notenbaert^{1*}, Sabine Douxchamps², Daniel M. Villegas³, Jacobo Arango³, Birthe K. Paul¹, Stefan Burkart³, Idupulapati Rao³, Chris J. Kettle^{4,5}, Thomas Rudel⁶, Eduardo Vázquez⁷, Nikola Teutscherova⁸, Ngonidzashe Chirinda⁹, Jeroen C. J. Groot¹⁰, Michael Wironen¹¹, Mirjam Pulleman³, Mounir Louhaichi¹², Sawsan Hassan¹³, Astrid Oberson⁵, Sylvia S. Nyawira¹, Cesar S. Pinares-Patino¹⁴ and Michael Peters¹

OPEN ACCESS

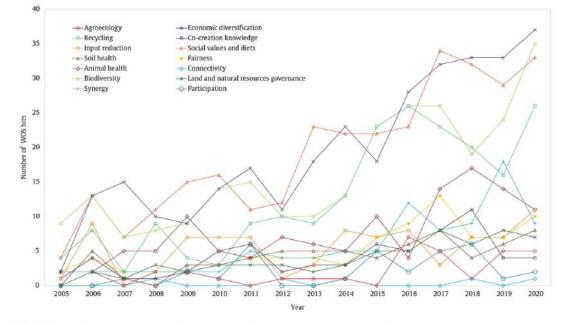


FIGURE 3 | Evolution of the interest of the scientific community for the different nexi between forages and principles.

Notenbaert AMO, Douxchamps S, Villegas DM, Arango J, Paul BK, Burkart S, [...] Peters M (2021) Tapping Into the Environmental Co-benefits of Improved Tropical Forages for an Agroecological Transformation of Livestock Production Systems. *Front. Sustain. Food Syst.* 5:742842. doi: <u>10.3389/fsufs.2021.742842</u>

Alliance

Livestock, Climate and System Resilience

Thanks!

Jacobo Arango j.arango@cgiar.org