




Livestock, Climate and System Resilience Alliance





### Effects of adopting improved forages on poverty alleviation in cattle systems: evidence from Colombia

**Enciso, Karen;** Bravo, Aura; Álvarez, Diego; Burkart, Stefan

September 14-16, 2022

The annual interdisciplinary conference on research in tropical and subtropical agriculture, natural resource management and rural development (TROPENTAG), September 14-16, Prague, Czech Republic

The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT) is part of CGIAR – a global research partnership for a food-secure future.

## Context, objective and methodology



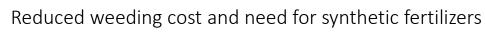
CGIA

### **Problem description**

- In Colombia, livestock is a source of nutrient-rich diets, workforce, and contributes to generating income for more than 600 thousand livestock producers.
- Although the cattle sector is one of the major contributors to greenhouse gas emissions, it is also heavily affected by the impacts of climate change, ultimately affecting producers' livelihoods
- The livestock sector in Colombia is crucial to stimulate economic growth, overcome poverty, and enhance food security.
- The adoption of improved forages as cattle feed has demonstrated improved productivity, hence higher incomes and a significant reduction of climate change-related risk on cattle farms, which ultimately improves producer welfare.
- However, research on livestock technologies that explicitly points to a causal effect between technology adoption and poverty reduction is **scarce**.

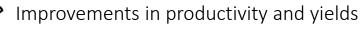


### Improved forages and poverty


### Improved forages:

Set of forage species (grasses and legumes) with wide adaptability to diverse climate and soil conditions, of high production and quality, and tolerant or resistant to pests and diseases in pastures.

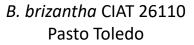
#### Poverty alleviation through adoption of improved forages:




Increased benefit/cost ratio



Workforce saved


Recovering of degraded land



Sale of products with added value and higher quality







Main challenges



P. *maximum* cv. Mombasa Pasto Guinea

- X To ensure proper handling and use of the technology (i.e., sowing date, fertilizer rate, weeding management, and other agronomic managements).
- X The obtainment of benefits depends on the number of years a farm has established the technology.
- X The magnitude of changes may be affected by location and farm-specific factors (e.g., climate, type of technology adopted, willingness of farmer to reinvest, etc.).



### **Objective and Dataset**

This study aims at measuring the **causal effect** of adopting improved forages in cattle systems on poverty indicators at the household level.

- The study uses a primary dataset collected in 2017 by CIAT and different Partners.
- Data were obtained through a multistage sampling procedure with **1,039 cattle households**
- A propensity score matching (PSM) model was used to assess the causal impact of technology adoption on producer welfare (PPI, HDDS)
- We considerer adopters at different levels: non-low adoption (>25%); partial-adoption (>50%); high-adoption (>75%); and full adoption (>99%).

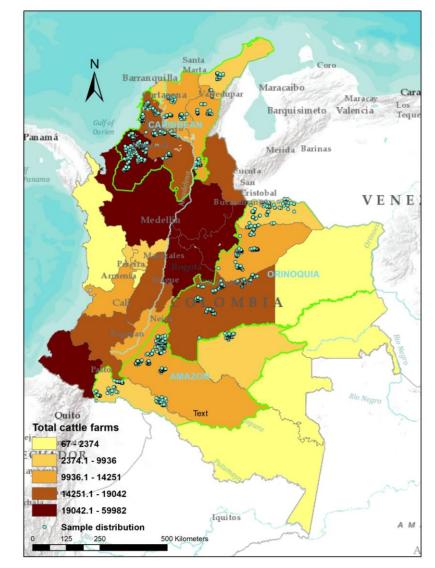



Figure 1. Spatial distribution of collected data



### **Materials and methods**

- Estimation of p-scores using a probit-logit model.
- Matching algorithm: teffects and psmatch2.

 Table 1. Commonly included determinant of adoption and the direction of change expected

| Category              | Variables                                                                                                   | Expected direction |  |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------|--------------------|--|--|
| Socio-demographics    | Age, education, gender, household size, dependency ratio                                                    | Mixed              |  |  |
| Farm characteristics  | m characteristics Geographic location, assess index, farm size, herd size, pasture area, area native forest |                    |  |  |
| Labor availability    | Family size, number of adults                                                                               | Mixed              |  |  |
| Institutional factors | Access to credit, extension-training, membership in farmers'<br>associations                                | Positive           |  |  |
| Tenure security       | Land tenure                                                                                                 | Positive           |  |  |
| Risk and shocks       | Presence of climate event, presence of armed conflict                                                       | Mixed              |  |  |
| Distance to market    | Distance to market                                                                                          | Negative           |  |  |

Alliance



# Results and conclusions



### **Results-Adoption of improved forages**

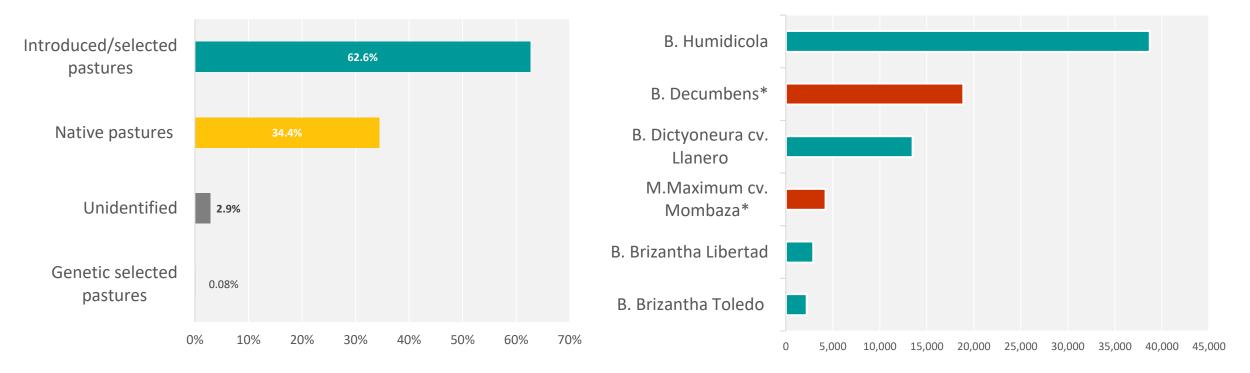



Figure 2. Adoption rate of improved/selected pastures

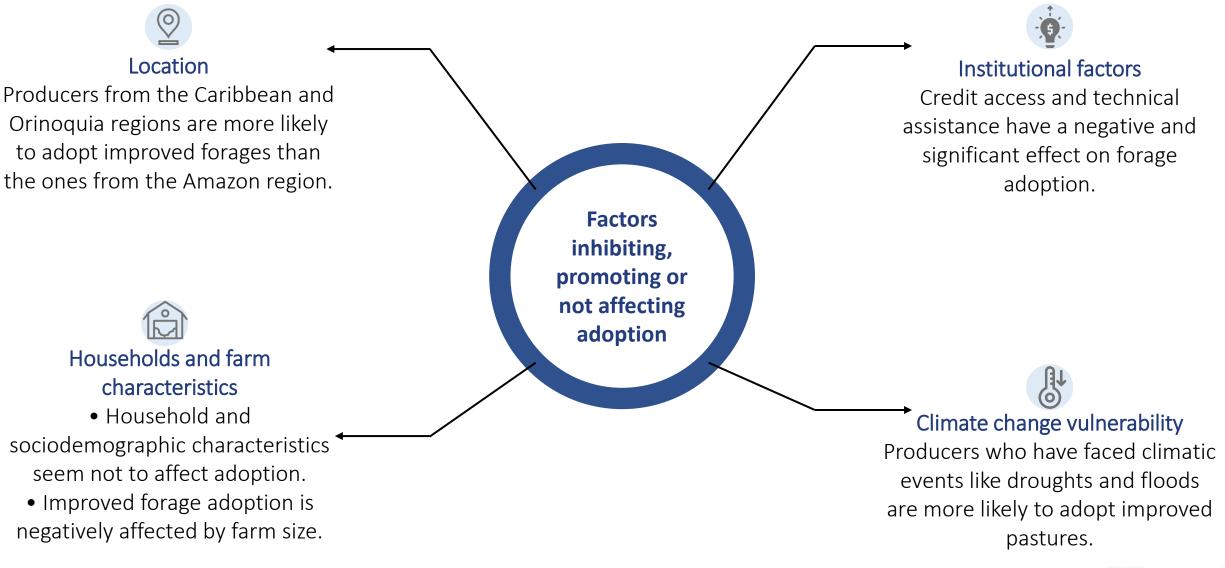
**Figure 3.** Adoption of improved pastures (Most representative varieties, hectares)

- Pastures released at the ends of the '80s and beginning of the '90s: 54.77% (First generation)
- Pastures released after of the '90s: **5.25%** (Second generation)



### **Results-Adoption of improved forages**

- Improved pastures have been established (on average) for over 17 years.
- In total, **18%** of improved pastures receive some form of fertilization.
- Better pasture managment conditions (fertilization) are concentrated among the adopters with higest adoption levels (>75%).
- Among the producers surveyed, only
   22% said they have access to credit (multiple destinations) and 20% to technical assistance.


**Table 2.** Carrying capacity according to different definitions ofimproved forages and level of adoption.

| Level of adoption | Native<br>pastures | First generation improved pastures <sup>1</sup> |      | Second generation improved pastures <sup>2</sup> |  |  |
|-------------------|--------------------|-------------------------------------------------|------|--------------------------------------------------|--|--|
| full              | 0,48               | 1,24                                            |      | 3,25                                             |  |  |
| high              | 0,61               |                                                 | 1,28 | 1,70                                             |  |  |
| partial           | 1,39               |                                                 | 1,25 | 1,62                                             |  |  |
| low               | 1,14               |                                                 | 0,57 | 1,57                                             |  |  |
| null              | 1,33               |                                                 | 0,67 | 0,88                                             |  |  |

<sup>1</sup> varieties released >80's-95: Decumbens, Humidicola, Llanero, La Libertad and Marandú; <sup>2</sup> varieties released after 1995: Toledo, Mulato I and II, Cayman, Mombasa and Tanzania.



### **Results- Probit model**





### **Results-Sample poverty characteristics**

| Adoption level       |                           | USD :          | 1.90 PPP | USD 3.10 PPP |           |  |
|----------------------|---------------------------|----------------|----------|--------------|-----------|--|
|                      |                           | Mean Std. Dev. |          | Mean         | Std. Dev. |  |
| Low-non adoption     | Adopters<br>Obs.: 779     | 24.62          | 20.52    | 22.14        | 22.82     |  |
| (>25%)               | Non adopters<br>Obs.: 262 | 23.95          | 20.71    | 21.67        | 23.18     |  |
| Partial adoption     | Adopters<br>Obs.: 595     | 24.91          | 20.47    | 22.39        | 22.83     |  |
| (>50%)               | Non-adopters<br>Obs.: 446 | 23.84          | 20.68    | 21.54        | 23.01     |  |
|                      | Adopters<br>Obs.: 421     | 24.61          | 19.94    | 21.89        | 22.07     |  |
| High adoption (>75%) | Non-adopters<br>Obs.: 620 | 24.34          | 20.98    | 22.12        | 23.46     |  |
|                      | Adopters<br>Obs.: 274     | 23.51          | 19.11    | 20.51        | 21.05     |  |
| Full adoption (>99%) | Non-adopters<br>Obs.: 767 | 24.79          | 21.05    | 22.56        | 23.52     |  |

Table 3. Probabilityof being underpoverty of adoptersand non-adopters ofimproved forages,according todifferent adoptionlevels.



### **Results-Causal effect on poverty**.

Table 4. Causal effect on poverty between adopters and non-adopters, under different levels of adoption.

| ATET<br>adopt_nod<br>ecumbens<br>(1 vs 0) | Non-low adoption (>25%)<br>Adopters= 779<br>Non-adopters= 262 |         | Partial adoption (>50%)<br>Adopters= 595<br>Non-adopters= 446 |         | High-adoption (>75%)<br>Adopters= 421<br>Non-adopters= 620 |         | Full adoption<br>(>99%)<br>Adopters= 274<br>Non-adopters= 767 |         |
|-------------------------------------------|---------------------------------------------------------------|---------|---------------------------------------------------------------|---------|------------------------------------------------------------|---------|---------------------------------------------------------------|---------|
|                                           | Coef.                                                         | P >   z | Coef.                                                         | P >   z | Coef.                                                      | P >   z | Coef.                                                         | P >   z |
| USD 1.90<br>PPP                           | -0.949                                                        | 0.558   | -1.508                                                        | 0.337   | -0.690                                                     | 0.618   | -3.008                                                        | 0.042   |
| USD 3.10<br>PPP                           | -1.360                                                        | 0.463   | -2.068                                                        | 0.249   | -1.360                                                     | 0.388   | -4.158                                                        | 0.013   |

• Adopting improved forages reduces the probability to fall under the poverty line. The effect is only significant at higher levels of technology adoption (full adoption).

• Cattle farmers who adopt improved forages for the whole pasture area in their farms, reduce their probability of living in poverty (4% and 3%, according to the poverty line).

### Conclusions

• The adoption of improved pastures, although considerable with respect to the total farm area, is dominated by **improved pastures released before the 90's** which are used with management deficiencies (fertilization).

• The variables technical assistance and access to credit seem to be discouraging the adoption of improved pastures.

 Improved adoption of forages is significantly influenced by location. Several factors can contribute, including agro-ecological conditions, institutional factors, and regulations.

• Producers were less likely to live below the poverty line with **full adoption** of improved forages.

• Better production indicators (e.g., stocking rate) and more frequent fertilization of pastures (although still at low levels) are highlighted at higher levels of adoption.

### Conclusions

 Although a positive effect was found with full adoption, the relationship between adoption and poverty reduction is complex: location, management practices, institutional conditions, the presence of climatic events, and other factors determine potential performance and thus improvement in adopters' incomes and welfare.

• We are working on robustness checks of our model, trying alternative specifications.

 Policies to promote the adoption of improved forage technologies in Colombia should aim for a complete adoption of the technological package. They should go beyond the establishment and seeking a broad area coverage and adequate management practices.

 Promoting improved forage adoption should be part of rural development programs/policies at the national level, aiming at reducing poverty and improving cattle producer households' welfare.













Livestock, Climate and System Resilience



Karen Enciso k.enciso@cgiar.org