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RESEARCH

Translational development of  ABCB5+ 
dermal mesenchymal stem cells for therapeutic 
induction of angiogenesis in non-healing 
diabetic foot ulcers
Andreas Kerstan1†, Kathrin Dieter2†, Elke Niebergall‑Roth3†, Sabrina Klingele3, Michael Jünger4, 
Christoph Hasslacher5, Georg Daeschlein4,21, Lutz Stemler6, Ulrich Meyer‑Pannwitt7, Kristin Schubert8, 
Gerhard Klausmann9, Titus Raab10, Matthias Goebeler1, Korinna Kraft2, Jasmina Esterlechner3, 
Hannes M. Schröder2, Samar Sadeghi3, Seda Ballikaya3, Martin Gasser11, Ana M. Waaga‑Gasser11,12, 
George F. Murphy13, Dennis P. Orgill14, Natasha Y. Frank15,16,17,18, Christoph Ganss2,3, 
Karin Scharffetter‑Kochanek19, Markus H. Frank13,17,18,20† and Mark A. Kluth2,3*†   

Abstract 

Background: While rapid healing of diabetic foot ulcers (DFUs) is highly desirable to avoid infections, amputa‑
tions and life‑threatening complications, DFUs often respond poorly to standard treatment. GMP‑manufactured 
skin‑derived  ABCB5+ mesenchymal stem cells (MSCs) might provide a new adjunctive DFU treatment, based on 
their remarkable skin wound homing and engraftment potential, their ability to adaptively respond to inflammatory 
signals, and their wound healing‑promoting efficacy in mouse wound models and human chronic venous ulcers.

Methods: The angiogenic potential of  ABCB5+ MSCs was characterized with respect to angiogenic factor expression 
at the mRNA and protein level, in vitro endothelial trans‑differentiation and tube formation potential, and perfusion‑
restoring capacity in a mouse hindlimb ischemia model. Finally, the efficacy and safety of  ABCB5+ MSCs for topical 
adjunctive treatment of chronic, standard therapy‑refractory, neuropathic plantar DFUs were assessed in an open‑
label single‑arm clinical trial.

Results: Hypoxic incubation of  ABCB5+ MSCs led to posttranslational stabilization of the hypoxia‑inducible tran‑
scription factor 1α (HIF‑1α) and upregulation of HIF‑1α mRNA levels. HIF‑1α pathway activation was accompanied 
by upregulation of vascular endothelial growth factor (VEGF) transcription and increase in VEGF protein secretion. 
Upon culture in growth factor‑supplemented medium,  ABCB5+ MSCs expressed the endothelial‑lineage marker 
CD31, and after seeding on gel matrix,  ABCB5+ MSCs demonstrated formation of capillary‑like structures comparable 
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Background
Diabetic foot ulcers (DFUs) are among the most common 
and potentially serious complications of diabetes mel-
litus, with an estimated 19% to 34% of diabetes patients 
developing a DFU during their lifetimes [1]. Around 40% 
of patients who have developed a DFU die within 5 years 
[2–4]. While a significant proportion of the mortality 
rates can be attributed to fatal cardio-vascular compli-
cations of diabetes [5–7], the ulcer contributes indepen-
dently to mortality due to inflammatory sequelae [4, 8, 
9]. Specifically, more than half of DFUs become infected 
[10], with roughly 20% to 50% of moderate-to-severe dia-
betic foot infections potentially leading to some grade of 
lower extremity amputation [1, 11–14]. Many patients 
who underwent a DFU-related amputation have a poor 
quality of life and a high risk of premature death [15].

While rapid healing is highly desirable to avoid infec-
tions, amputations and life-threatening complications 
[16–18], DFUs often respond poorly to standard treat-
ment. Reported healing failure rates range from roughly 
40% to 80% at 12 weeks and still from 15 to 70% at 1 year 
of treatment (Additional file 1: Table S1). Current treat-
ment guidelines advocate to consider adjunctive ther-
apy options for DFUs that have not achieved a 50% area 
reduction within 4 weeks [19–21] or failed to heal after 
4–6  weeks [22] of standard wound care. There are an 
increasing number of therapeutic efforts to speed the 
healing of DFUs, and the literature surrounding their use 
is evolving [23].

From a pathophysiologic perspective, dysfunctional 
wound healing in diabetes is closely linked to insuf-
ficient angiogenesis [24], caused by a chronic inflam-
matory disposition in concert with impaired cellular 
responses to tissue hypoxia [25–27]. A sustained, inter-
leukin (IL)-1β-driven prevalence of pro-inflammatory 
M1 macrophages associated with defective transition 
to reparative, granulation-promoting M2 macrophages 

[28–33] and an impaired activation of the hypoxia-
inducible transcription factor  1α (HIF-1α) pathway by 
local fibroblasts and endothelial cells [34–36] leading 
to deficient HIF-1α-dependent upregulation of multi-
ple angiogenic factors including vascular endothelial 
growth factor (VEGF) [34–38] ultimately result in a 
decreased amount of nascent microvasculature [39, 40].

In the light of a complex pathophysiology, mesenchy-
mal stem cells (MSCs), derived from various sources, 
including adipose tissue, bone marrow, peripheral 
blood and umbilical cord, have been extensively investi-
gated and considered a promising approach to adjunc-
tive DFU treatment [41–43], owing to their remarkable 
ability to adaptively respond to signals associated with 
tissue injury and inflammation by providing paracrine 
signals which alter the wound environment toward a 
pro-healing state or even directly participate in wound 
regeneration [43, 44]. MSCs, among others particularly 
adipose tissue-derived MSCs or stromal vascular frac-
tion cells, have been safely and successfully used alone 
or combined with dermal substitutes or autologous 
growth factors such as platelet-rich plasma to treat 
skin wounds and scars of various etiologies including 
diabetic and vascular ulcers, burn wounds, post-trau-
matic wounds [45, 46]. Owing to a wide range of immu-
nomodulatory capacities involving direct interactions 
with immune cells as well as various paracrine path-
ways [47], they are considered attractive candidates for 
the treatment of local and systemic inflammatory con-
ditions including even COVID-19 [48]. However, most 
of the investigated MSC therapies have not progressed 
beyond early-stage clinical trials [49], and translation of 
an MSC-based approach for the treatment of otherwise 
non-healing DFUs that is readily (off the shelf ) available 
and does not require an elaborate surgical procedure 
into clinical practice has not yet been achieved.

with human umbilical vein endothelial cells. Intramuscularly injected  ABCB5+ MSCs to mice with surgically induced 
hindlimb ischemia accelerated perfusion recovery as measured by laser Doppler blood perfusion imaging and 
enhanced capillary proliferation and vascularization in the ischemic muscles. Adjunctive topical application of  ABCB5+ 
MSCs onto therapy‑refractory DFUs elicited median wound surface area reductions from baseline of 59% (full analysis 
set, n = 23), 64% (per‑protocol set, n = 20) and 67% (subgroup of responders, n = 17) at week 12, while no treatment‑
related adverse events were observed.

Conclusions: The present observations identify GMP‑manufactured  ABCB5+ dermal MSCs as a potential, safe can‑
didate for adjunctive therapy of otherwise incurable DFUs and justify the conduct of a larger, randomized controlled 
trial to validate the clinical efficacy.

Trial registration: ClinicalTrials.gov, NCT03267784, Registered 30 August 2017, https:// clini caltr ials. gov/ ct2/ show/ NCT03 
267784

Keyword: ABCB5, Advanced‑therapy medicinal product, Angiogenesis, Chronic wound, Diabetic foot ulcer, 
Mesenchymal stem cells, Wound healing
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Recently, a skin-resident MSC population charac-
terized by expression of ATP-binding cassette sub-
family  B member  5 (ABCB5) has been found severely 
reduced in the dermis of diabetic db/db mice. This 
might imply that the function of this cell population is 
impaired under diabetic conditions, which, as a con-
sequence, might favor poor wound healing in diabe-
tes [50]. Conversely,  ABCB5+ MSCs were shown to 
respond to inflammatory milieus through multiple 
cell contact-dependent and paracrine mechanisms 
[51–53]. In a chronic wound model mimicking human 
chronic venous ulcers,  ABCB5+ MSCs shifted the M1 
macrophage prevalence toward an M2 phenotype via 
secretion of IL-1 receptor antagonist (IL-1RA) and 
rescued impaired angiogenesis in the wound bed [53]. 
These effects were associated with an acceleration of 
wound healing, which was also observed in human 
chronic venous ulcers treated with  ABCB5+ MSCs [54, 
55]. Very recently, angiogenesis- and healing-promot-
ing efficacy of  ABCB5+ MSCs was demonstrated also 
in a mouse diabetic wound model [50].

Dermal  ABCB5+ MSCs cells can be easily accessed 
from healthy human donors, expanded to a clinical 
scale and delivered as a good manufacturing prac-
tice (GMP)-conforming advanced-therapy medicinal 
product (ATMP) of proven purity, safety and toler-
ability [56, 57].  ABCB5+ MSCs display a spindle-like, 
fibroblastoid cell morphology and express the mini-
mal set of mesenchymal lineage markers CD73, CD90 
and CD105, in addition to CD29, CD44, CD49e and 
CD166, whereas no expression of the endothelial line-
age marker CD31, the dendritic cell marker CD34, the 
pan-hematopoietic lineage marker CD45, the mono-
cyte/macrophage marker CD14 and the B lymphocyte 
antigen CD20 was detectable by flow cytometry [51, 
53]. A consistent and significantly increased potential 
for adipogenic, osteogenic, and chondrogenic lineage 
differentiation delineates human  ABCB5+ MSCs from 
donor-matched  ABCB5– dermal fibroblasts [53]. Aim-
ing at developing  ABCB5+ MSCs for the treatment of 
human DFUs, we here characterize their angiogenic 
potential with respect to angiogenic factor expression 
at the mRNA and protein level, in  vitro endothelial 
trans-differentiation and tube formation potential, and 
in  vivo perfusion-restoring capacity. Building upon 
these results in conjunction with the existing evidence 
on the cells’ anti-inflammatory potential we have 
established three potency assays in order to deliver 
human skin-derived  ABCB5+ MSCs as an ATMP with 
standardized biological activity. Finally, this product 
was tested in a clinical trial in patients suffering from 
non-healing, standard treatment-refractory DFUs.

Methods
Expansion and isolation of human  ABCB5+ MSCs
Human  ABCB5+ MSCs were derived from skin sam-
ples obtained from patients undergoing abdomino-
plasties or other surgical interventions that provide 
left-over skin tissue after informed written consent was 
obtained. Cell production was carried out in an EU-
GMP grade  A cabinet in a grade  B clean room under 
laminar air flow following a validated GMP-conforming 
protocol as described previously [56]. In brief, after 
enzymatic digestion of the skin tissue, cells were cen-
trifuged and expanded as unsegregated culture by serial 
passaging upon adherence selection in an in-house 
MSC-favoring medium (Ham’s F-10 supplemented with 
fetal calf serum, L-glutamine, fibroblast growth factor 2 
(FGF-2), HEPES, hydrocortisone, insulin, glucose, and 
phorbol myristate acetate).  ABCB5+ cells were iso-
lated by antibody-coupled magnetic bead sorting using 
a mouse anti-human ABCB5 monoclonal antibody 
directed against the extracellular loop 3 of the ABCB5 
molecule [58] (Maine Biotechnology Services, Portland, 
Maine; GMP purification: Bibitec, Bielefeld, Germany), 
cryo-preserved in CryoStor® CS10 freeze medium 
(BioLife Solution, Bothell, WA) containing 10% dime-
thyl sulfoxide and stored in the vapor phase of liquid 
nitrogen.

Hypoxia studies
Induction of cell hypoxia
ABCB5+ MSCs (3 ×  105) were seeded in 750  µl MSC-
favoring medium in a culture dish and placed in a 
hypoxia chamber, which was flushed for 5  min with 
nitrogen-enriched gas (1%  O2, 4%  CO2, 95%  N2; Air 
Liquide, Düsseldorf, Germany) at a rate of 20–25  l/
min. During cultivation for up to 48 h, the chamber was 
flushed again after 1 h and 24 h.

HIF‑1α staining
ABCB5+ MSCs were centrifuged (Cytospin™; Thermo 
Fisher, Dreieich, Germany) onto coverslips, fixed with 
4% paraformaldehyde solution, permeabilized with 1% 
Triton™ X-100 (Sigma-Aldrich, Taufkirchen, Germany) 
in phosphate-buffered saline, blocked with 0.5% bovine 
serum albumin in phosphate-buffered saline, and 
stained for HIF-1α (for antibodies see Additional file 1: 
Table  S2). Nuclei were counterstained with 4’,6  diami-
dino-2 phenylindole (DAPI).

Quantitative real‑time polymerase chain reaction (qPCR)
Total RNA was isolated using the RNeasy® Micro 
Kit (Qiagen, Hilden, Germany) and reverse-tran-
scribed into cDNA using the Applied Biosystems™ 
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High-Capacity cDNA Reverse Transcription Kit 
(Thermo Fisher) and the Applied Biosystems™ SYBR 
Green Mastermix (Thermo Fisher) in a four-step pro-
cess run in a Mastercycler® Personal thermocycler 
(Eppendorf, Hamburg, Germany). PCR reactions 
were run in triplicate in an Applied Biosystems™ Ste-
pOne RealTime™ PCR System (Thermo Fisher). Primer 
sequences are provided in Additional file  1: Table  S3. 
Actin served as housekeeping gene. Primer quality and 
integrity of the amplified product was confirmed by 
melting curve analysis. Identity of the PCR products 
was confirmed by agarose gel electrophoresis. Relative 
quantification of transcript levels was determined using 
the  2−ΔΔCt algorithm.

Enzyme‑linked immunosorbent assay (ELISA)
VEGF concentration in the cell culture supernatant was 
measured using the Invitrogen VEGF Human ELISA 
Kit (Thermo Fisher), according to the manufacturer’s 
instructions. Assays were run in triplicate.

Trans‑differentiation studies
Angiogenic trans‑differentiation assay
ABCB5+ MSCs (1 ×  106) were seeded in 24-well culture 
plates and cultured for up to 96  h in culture medium 
supplemented with 200  ng/ml recombinant human (rh) 
VEGF (Sigma-Aldrich), 1000 ng/ml rhFGF-2 (CellGenix, 
Freiburg, Germany) and 1000  ng/ml rh platelet-derived 
growth factor-BB (PDGF-BB; R&D Systems, Wiesbaden, 
Germany). Trans-differentiation and proliferation activ-
ity were assessed by CD31 and Ki67 staining, respectively 
(for antibodies see Additional file  1: Table  S2). Nuclei 
were counterstained with DAPI. All experiments were 
performed in triplicates. Human umbilical vein endothe-
lial cells (HUVECs; 5 ×  105; Thermo Fisher) served as 
positive control.

Tube formation assay
ABCB5+ MSCs (1 ×  105/ml or 1.5 ×  105/ml) and 
HUVECs (0.5 ×  105/ml or 1 ×  105/ml) were seeded on 
Geltrex™ (Thermo Fisher)-coated culture plates and 
incubated at 37  °C for 19–22  h  (ABCB5+ MSCs) and 
16–18 h (HUVECs). For examination of cell viability, cells 
were stained with calcein acetoxymethylester (Thermo 
Fisher; 1:10,000, 30  min, 37  °C). Tube formation and 
calcein fluorescence were evaluated microscopically 
(EVOS™ FLoid™ cell imaging station).

Animal studies
Hindlimb ischemia (HLI) induction and post‑surgical care
Male OF1 mice (Charles River Laboratories, Saint-
Germain-Nuelles, France) were anesthetized with 2% 
isoflurane in 100% oxygen, and the inner faces of both 

hindlimbs were carefully shaved. After local disinfec-
tion, an about 1-cm skin incision was made on the left 
hindlimb from the inguinal region to the bifurcation 
region of the femoral artery into the saphenous and pop-
liteal artery. The femoral artery and vein were dissected 
from the nerve. The femoral artery/vein block was ligated 
proximally by two 8–0 ties placed just distally from the 
superficial epigastric artery, and distally by two 8–0 ties 
placed just proximally from the bifurcation of the femo-
ral artery into the saphenous and the popliteal artery. 
After cutting the femoral artery/vein block between the 
two proximal and between the two distal ties, the femoral 
artery/vein block was removed. When necessary, major 
branches such as the lateral circumflex femoral artery 
were ligated to avoid bleeding.

Thereafter, subcutaneous tissue and skin were closed 
with non-resorbable sutures or clamped with titanium 
micro clips (WDT, Garbsen, Germany). Postoperative 
care included pain management by injection of buprenor-
phine (Buprenovet, Bayer; 0.1 mg/kg) once directly after 
surgery or flunixin meglumine (2.5  mg/kg twice daily) 
during 3 days and daily local wound care with an antisep-
tic healing cream (Dermaflon, Pfizer).

Injection of ABCB5+ MSCs
On the day after surgery, mice were anesthetized with 
isoflurane to receive intramuscular injections at the 
ischemic limb of human  ABCB5+ MSCs suspended in 
Ringer’s lactate solution containing 2.5% human serum 
albumin and 0.4% glucose at concentrations between 
1 ×  106 and 1 ×  108 cells/ml, as required. Cell doses, injec-
tion volumes and sites are given in the Results section.

Blood perfusion measurement
Animals were anesthetized with isoflurane and placed on 
a warming platform in a supine position for imaging at 
the internal face of the thighs. Hindlimb blood flow was 
measured before and immediately after surgery (day  1) 
and on days 3, 5, 7, 14, 21 and 28 by real-time laser Dop-
pler blood perfusion imaging (LDPI; PeriCam PSI, Per-
imed Instruments). The scanned area covered an ellipse 
framing internal face of the thigh. Blood perfusion was 
expressed as the ratio between LDPI values in the left 
(ischemic) and right (non-ischemic) limb.

Histopathology
After sacrifice, the left, ischemic thigh and gastrocnemius 
muscles were preserved in 10% neutral buffered forma-
lin solution, embedded in paraffin wax, cut to 2–4  µm 
thickness, stained with hematoxylin and eosin, and 
inspected by conventional light microscopy. Histopatho-
logical findings were quantified according to the scoring 
system for local cellular and tissue responses described 
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by ISO 10993-6:2007 [59], evaluating the criteria poly-
morphonuclear cells, lymphocytes, plasma cells, mac-
rophages, giant cells, myofiber degeneration, myofiber 
regeneration, necrosis, neovascularization, fibrosis, fatty 
infiltrates and mineralization. Neovascularization was 
semi-quantitatively quantified as 0 = none, 1 = minimal 
capillary proliferation, focal, 1–3 buds, 2 = groups of 
4–7 capillaries with supporting fibroblastic structures, 
3 = broad band, and 4 = extensive band of capillaries with 
supporting fibroblastic structures.

Immunohistochemistry
After sacrifice, left, ischemic thigh muscles were pre-
served in 10% neutral buffered formalin solution, which 
was replaced after 24–48 h with 70% ethanol. Immuno-
histochemical staining for CD31 was performed using 
rabbit anti-human/mouse CD31 (ab28364, Abcam; dilu-
tion 1:50) and dextran polymer-horseradish peroxidase-
labeled anti-rabbit IgG (DAKO EnVision® + , K4010, 
Agilent) for detection. CD31 expression was semi-quan-
titatively quantified as 0 = none, 1 = minimal, 2 = slight, 
and 3 = moderate by two independent investigators who 
were blinded to the treatment.

Statistics
One-way ANOVA followed by Dunnett’s test was used to 
compare LDPI ratios  versus baseline and neovasculariza-
tion and CD 31 expression in the cell-treated groups ver-
sus control.

Clinical trial
Patients
Adults (18–85  years) with diabetes mellitus type  2 
(hemoglobin A1c < 11%) were eligible if they had a neu-
ropathic diabetic plantar foot ulcer (Wagner grade 1 or 2, 
1–50  cm2), confirmed by vibration sense testing (128-Hz 
Rydel-Seiffer tuning fork) without the presence of signifi-
cant arterial disease (ankle-brachial index ≥ 0.7 or trans-
cutaneous oxygen pressure > 40 mmHg or as per Doppler 
ultrasonography).

Main exclusion criteria were acute Charcot foot, active 
osteomyelitis, treatment-requiring ulcer infection, adja-
cent or chronic skin disorders, skin malignancies, acute 
or untreated deep vein thrombosis, need for hemodialy-
sis, surgical procedures within 2 months and use of active 
wound care agents within 2  weeks prior to treatment, 
and current use of systemic immunosuppressants, cyto-
toxics or glucocorticoids.

Trial design
The study was a national, multicenter (eight sites in Ger-
many), open-label, single-arm, phase I/IIa trial compris-
ing three periods: standard-of-care screening (≥ 6 weeks), 

treatment and efficacy follow-up (weeks 1–12), and safety 
follow-up period (until end of month  12). The trial was 
performed in accordance with the Declaration of Hel-
sinki and local regulations and approved by the ethical 
committees of all participating study sites. Patients gave 
written informed consent prior to trial participation.

Interventions
Treatment consisted of up to two topical applications of 
2 ×  106 allogeneic  ABCB5+ MSCs (suspended in Ringer’s 
lactate solution containing 2.5% human serum albumin 
and 0.4% glucose [56]) per  cm2 wound area on day 0 and 
at week  6. The cells were manufactured as a GMP-con-
forming standardized ATMP (for main product release 
data see Additional file  1: Table  S4). Originally, only 
one cell application was planned. The second applica-
tion was amended to the protocol only after data from 
a first-in-human trial on chronic venous ulcers [54] sug-
gested that a second cell dose at 6  weeks after the first 
cell dose might provide additional benefit for chronic 
wound healing. Cell application could be preceded by an 
optional wound debridement at the investigator’s discre-
tion followed by waiting until the bleeding had entirely 
stopped. For cell application, a suspension containing 
1 ×  107   ABCB5+ MSCs/ml was applied onto the wound 
surface, delivering 2 ×  106   ABCB5+ MSCs/cm2 wound 
surface area. Thereafter, the cells were allowed to settle 
for 15–30  min, optionally fixed in place with fibrin gel 
(Tisseel®; Baxter, Unterschleißheim, Germany), and then 
the wound was covered with a waterproof film dressing 
(Tegaderm™; 3  M, Neuss, Germany). On the following 
day (≥ 12 h after cell application), the film dressing was 
replaced by a microbe-binding dressing (Cutimed® Sorb-
act® tamponade or compress; BSN, Hamburg, Germany), 
which was changed again 1–2  days later. Additionally, 
patients received standard care until week  12 including 
glycemic control, ulcer debridement, appropriate wound 
dressings (i.e., microbe-binding tamponade of cavities 
and exudate-absorbent foam dressing for coverage), and 
antibiotics if required. All patients had to use offloading 
devices including cast devices or individually fitted thera-
peutic footwear [19, 60, 61].

Outcome measures
Primary efficacy endpoint was percent wound surface 
area reduction at week  12 or last available post-base-
line measurement. Secondary efficacy endpoints were 
percent and absolute wound surface area reduction 
at predefined visits, proportion of patients achieving 
complete and 30% wound closure, time to complete 
and to 30% wound closure, granulation, epithelializa-
tion, wound exudation, time to amputation at the tar-
get leg, pain and life quality. Safety outcome measures 
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included adverse events (during the whole study 
period) and vital signs, changes in physical examina-
tion findings and time to amputation of the target leg 
(during efficacy follow-up).

Outcome determination
Wound surface area determination followed a multistep 
approach combining computerized evaluation (PictZar® 
planimetry software; BioVisual, Elmwood Park, NJ, USA; 
98% accuracy, 94% inter-rater reliability, 98% intra-rater 
reliability according to a validation and reliability study 
[62]) of standardized photographs and depth measure-
ments using a wound measuring probe, to account for 
the typical three-dimensional shape of DFU wounds, i.e., 
consisting of wound floor, side wall and, occasionally, 
not visible tunneling or undermining areas. For details 
of the measuring and calculation algorithm see Addi-
tional file  2: Methods  S1. Formation of granulation and 
epithelial tissue was estimated by the investigator in % 
of wound area from standardized wound photographs. 
Wound exudation was rated by the investigator as low 
(dry), moderate (moist), and high (wet) according to the 
criteria defined by the World Union of Wound Healing 
Societies [63]. Pain was rated by the patient using a 0–10-
point numerical rating scale with 0 = no and 10 = worst 
imaginable pain. Quality of life was assessed using the 
participant-reported Short Form (36) Health Survey 
(SF-36) and Dermatology Life Quality Index (DLQI) 
questionnaires.

Sample size
Enrolment followed a Simon optimal two-stage design 
with responders defined as patients presenting with 
at least 30% wound surface area reduction at week 12. 
The sample size required to achieve 80% power at 
5% significance level was calculated using PASS  13 
software (NCSS, East Kaysville, UT, USA) to be 
37  patients. This enabled the option to terminate the 
trial if ≤ 6 or ≥ 14 of the first 18  treated patients were 
responders. As in an interim analysis 12 of 18 patients 
emerged as responders, recruitment was contin-
ued. However, by force of the emerging COVID-19 

pandemic, the trial was prematurely completed. At 
that time, 23 patients had been treated.

Statistical analysis
Safety assessments were performed on the safety analysis 
set, which included all patients who received at least one 
cell dose. Efficacy assessments were performed on the full 
analysis set (FAS), which included all patients of the safety 
analysis set who underwent wound surface area assess-
ments at baseline and at least one post-baseline visit, and 
on the per-protocol set (PP), which included all patients of 
the FAS who had no major protocol deviations.

If not otherwise stated, normally (D’Agostino–Pearson 
normality test) distributed parameters are presented as 
mean ± standard deviation, and non-normally distributed 
parameters as median and interquartile range (IQR). Sta-
tistical significance of percent wound surface area changes 
from baseline was tested against the null hypothesis 
(median change = 0) using a two-sided Wilcoxon signed 
rank test. Time to complete wound closure, time to 30% 
wound surface area reduction and time to amputation 
at the target leg were analyzed using the Kaplan–Meier 
method.

Results
Hypoxia studies
Hypoxia‑induced HIF‑1α activation in ABCB5+ MSCs
Prior to hypoxic incubation, HIF-1α protein was mainly 
detectable in the cytoplasm. During hypoxic incubation, 
cytoplasmic HIF-1α fluorescence decreased while nuclear 
HIF-1α fluorescence increased. At 24 h of hypoxia, HIF-1α 
was mainly detectable in the nuclei, indicating that nuclear 
translocation has occurred (Fig.  1A). In contrast, on the 
transcriptional level, HIF-1α mRNA expression peaked 
after 1 h of hypoxic culture and decreased thereafter, drop-
ping down to roughly 10% of the baseline value at 48  h 
(Fig. 1B).

Hypoxia‑induced VEGF mRNA expression and protein 
secretion in ABCB5+ MSCs
During hypoxia, VEGF mRNA expression increased about 
fourfold from baseline at 5 h, remaining on that level during 
48 h (Fig. 1C). VEGF protein secretion steadily increased 
during 48 h of hypoxic culture (Fig. 1D).

(See figure on next page.)
Fig. 1 HIF‑1α and VEGF expression by  ABCB5+ MSCs during hypoxic culture. A Representative immunofluorescence staining of  ABCB5+ MSCs 
revealing nuclear translocation of HIF‑1α at 24 h. Nuclei were counterstained with DAPI. Scale bars: 20 µm. B HIF‑1α mRNA expression by  ABCB5+ 
MSCs from two donors, shown as fold expression from baseline (normoxic conditions, 0 h). Data are means + SD of three replicates. C VEGF mRNA 
expression by  ABCB5+ MSCs, shown as fold expression from baseline (normoxic conditions, 0 h). Data are means + SD of three donors. D VEGF 
protein secretion by  ABCB5+ MSCS, measured as VEGF protein concentration in culture supernatant. Data are means + SD of three replicates from a 
representative donor
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Fig. 1 (See legend on previous page.)
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Angiogenic potency assay
The VEGF ELISA after hypoxic culture was used as a surro-
gate potency assay to predict the pro-angiogenic bioactiv-
ity of GMP-compliantly produced  ABCB5+ MSCs for use 
in clinical trials. Since VEGF secretion was highest at 48 h 
of hypoxic culture (Fig. 1D), the 48-h time point was set as 
temporal endpoint for potency testing. In validation stud-
ies (not shown), a VEGF concentration in the supernatant 
of ≥ 46.9 pg/ml, corresponding to an optical density thresh-
old < 3.0 in the serial standard dilution of the ELISA kit, was 
validated to reliably enable qualitative detection and, there-
fore, defined as acceptance criterion for cell batch release. 
For the potency data of the cell batches used in the present 
clinical trial see Additional file 1: Table S4.

Trans‑differentiation studies
Growth factor‑stimulated endothelial trans‑differentiation
After 96-h culture in medium supplemented with 200 ng/
ml VEGF, 1000  ng/ml FGF-2 and 1000  ng/ml PDGF-
BB,  ABCB5+ MSCs underwent endothelial trans-differ-
entiation as revealed by CD31 expression (Fig.  2A–C). 
Trans-differentiation was accompanied by an enhanced 
proliferative activity as evidenced by Ki67 staining 
(Fig. 2D–F).

Tube formation on gel matrix
After 18–20-h cultivation on Geltrex™ gel matrix, 
 ABCB5+ MSCs formed capillary-like structures similar 
to HUVECs that were used as positive control. The tubu-
lar structures stained positive for calcein, demonstrating 
viability (defined as metabolic activity measured by con-
version of calcein acetoxymethylester to calcein) of the 
tube-forming cells (Fig. 3).

Trans‑differentiation potency assay
The tube formation assay was used as a surrogate 
potency assay to predict the trans-differentiation capac-
ity of GMP-compliantly produced  ABCB5+ MSCs for use 
in clinical trials. For grading, tube formation of  ABCB5+ 
MSCs was semi-quantitatively classified into six catego-
ries ranging from 1 = tubular branches of several cells 
forming a defined network-like structure to 6 = no tubu-
lar branches visible (for a more detailed description of all 
categories see Additional file  1: Table  S4, with ≤ 3 in at 

least one of the two seeded cell concentrations (1 ×  105/
ml and 1.5 ×  105/ml) being considered as successful angi-
ogenic differentiation. For the potency data of the cell 
batches used in the present clinical trial see Additional 
file 1: Table S4.

Animal studies
Blood flow recovery in surgically induced HLI
Mice (n = 10 per group) received 5 ×  106  ABCB5+ MSCs/
animal or vehicle only by intramuscular injection (200 µl 
injection volume split over 4  injection sites at the inter-
nal face of the thigh) at 24  h after HLI induction. Dur-
ing the study, a certain mortality (day 3, 10%; day 5, 20%; 
day 7, 25%) was observed, which did not differ between 
groups. Blood perfusion measured by LDPI (Fig. 4A) and 
expressed as ratio between LDPI values in the ischemic 
and the non-ischemic limb (Fig.  4B; Additional file  1: 
Table  S5) significantly decreased immediately after sur-
gery in both treatment groups. During the following days 
the LDPI ratio gradually recovered, reaching baseline 
levels on day  5 in the MSC-treated group as compared 
to day  14 in the vehicle-treated group, with the most 
pronounced difference in LDPI ratio between groups 
occurring between days  5 and  7 (Fig.  4B; Additional 
file  1: Table  S5). These results confirmed the observa-
tions of a preceding pilot study in OF1 mice with surgi-
cally induced HLI showing blood flow recovery within 
5 days after injection of  ABCB5+ MSCs but not of vehicle 
(Additional file 3: Figure S1).

CD31 expression in surgically induced HLI
Mice (n = 10 per group) received 5 ×  105, 1 ×  106 or 
5 ×  106   ABCB5+ MSCs/animal or vehicle by intra-
muscular injection (200  µl injection volume split over 
4 injection sites at the internal face of the thigh) at 24 h 
post-HLI induction. At day 6, semiquantitative immuno-
histochemical evaluation revealed a significant increase 
in mean CD31 expression in the left thigh muscles of 
mice treated with the two higher cell doses as compared 
to the vehicle group (Fig. 4C, Additional file 1: Table S6). 
In a validation study on OF1 mouse and human skin sec-
tions, the CD31 antibody showed cytoplasmic staining of 
endothelium in both species (Additional file 3: Figure S2). 
Thus, the staining protocol was suitable to picture the 

Fig. 2 Endothelial trans‑differentiation of  ABCB5+ MSCs. A Co‑stimulation for 96 h with 200 ng/ml VEGF, 1000 ng/ml FGF‑2 and 1000 ng/ml 
PDGF‑BB elicited angiogenic trans‑differentiation of  ABCB5+ MSCs as revealed by CD31‑positive (red) staining. B  ABCB5+ MSCs cultured without 
growth factor supplementation served as negative control. C HUVECs served as positive control. D–F Proliferative activity of  ABCB5+ MSCs 
stimulated to undergo endothelial trans‑differentiation. D  ABCB5+ MSCs were stimulated for 96 h with 200 ng/ml VEGF, 1000 ng/ml FGF‑2 and 
1000 ng/ml PDGF‑BB. Proliferative activity was assessed by Ki67 staining (red). E  ABCB5+ MSCs cultured without growth factor supplementation 
served as negative control. F HUVECs served as positive control. Nuclei were counterstained with DAPI (blue). Representative images of three 
independent experiments

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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formation of capillaries generated from both mice resi-
dent cells and administered human MSCs.

Neovascularization in surgically induced HLI
Mice received 1 ×  105, 5 ×  106 or 1 ×  107   ABCB5+ 
MSCs/animal (n = 7 per group) or vehicle (n = 6) by 
intramuscular injection (100  µl injection volume split 
over 5 injection sites at the quadriceps, semitendinosus 
and gastrocnemius muscles) at 24  h post-HLI induc-
tion. At day 6, inflammatory and degenerative myofiber 
reactions were observed in all groups. The mean sum-
mary score was lower in the mice treated with the two 
lower cell doses and higher in the mice treated with the 

highest cell dose as compared with the control group; 
however, the differences were not statistically signifi-
cant (Fig.  4D, E). In contrast, semiquantitative histo-
logical evaluation revealed a significant increase in the 
mean neovascularization score in the left (ischemic) 
gastrocnemius muscles of mice treated with the highest 
cell dose as compared to the vehicle group (Fig. 4D, F).

Clinical trial
Progress of the study
Patients were enrolled between November  2017 and 
January 2020. Forced by the COVID-19 pandemic, which 
was associated with critical issues including staffing 

Calcein-AM 100 µm100 µm10 X

Calcein-AM 100 µm100 µm10 X

A

B

Fig. 3 Tube formation assays. A Human  ABCB5+ MSCs and B HUVECs were cultured for 18–20 h on Geltrex™ matrix. Calcein staining (green) 
demonstrates viability (i.e., metabolic activity) of tubular structure‑forming cells

Fig. 4 Blood flow recovery and neovascularization following surgically induced HLI in OF1 mice. A Representative LDPI acquisition before and 
immediately after HLI induction, illustrating the experimental setup. Scanned areas are marked by ellipses; the warmest color (intense red) 
represents 200 perfusion units. Graphs show mean perfusion unit during 1 min in the non‑ischemic (blue) and ischemic (red) thigh. B LPDI ratio 
between the ischemic and the non‑ischemic limb in mice treated with 5 ×  106  ABCB5+ MSCs or vehicle. Means with SD of n = 10 (day 1), n = 9 
(day 3), n = 8 (day 5; days 7–21 MSCs) and n = 7 (days 7–21 vehicle) animals. C–F Immunohistochemical and histopathological evaluation of the 
ischemic hindlimb muscles at 6 days after HLI induction in mice treated with  ABCB5+ MSCs or vehicle injected into the ischemic limb 24 h after 
surgery. C CD31 expression in the thigh muscles, presented as mean (SD) IHC score, with 0 = none, 1 = minimal, 2 = slight, and 3 = moderate, of 
n = 12 animals. D Representative H&E sections of the gastrocnemius muscle from a vehicle‑ and an MSC‑treated mouse, showing inflammatory and 
degenerative lesions in both mice and increased neovascularization in the MSC‑treated mouse. Scale bars: 50 µm. E Degenerative and inflammatory 
processes in the gastrocnemius muscle, presented as mean (SD) summary score according to ISO 10993–6:2007 of n = 6 (vehicle) and n = 7 (MSCs) 
animals. F Neovascularization in the gastrocnemius muscle, presented as mean (SD) score, with 0 = none, 1 = 1–3 focal buds, 2 = groups of 4–7 
capillaries with supporting fibroblastic structures, 3 = broad band and 4 = extensive band of capillaries with supporting fibroblastic structures, of 
n = 6 (vehicle) and n = 7 (MSCs) animals. *p < 0.05, **p < 0.01, ***p < 0.001 versus baseline (B) or vehicle (C, E, F); one‑way ANOVA with Dunnett’s post 
hoc test

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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shortages, impairments of supply chains and increased 
infection risk for the elderly and/or comorbid study 
patients, recruitment and treatment were discontinued 
as of April 2020, and the trial was prematurely completed 
as of end of June 2020 after consultation with the ethics 
committee and the regulatory authority. At that time, all 
treated patients had completed the efficacy follow-up. 
Patients who had entered the safety follow-up period but 
were not scheduled for a safety visit in June 2020 were 
subjected to a supplementary end-of-study visit (Fig. 5A, 
B).

Patients
Totally 63  patients were screened, of which 23  patients 
(20  men, 3  women) were treated (Fig.  5B). During the 
screening period, which ranged from 42 to 68 days (one 
outlier: 118  days; median: 49  days), changes in wound 
surface area ranged from 56% decrease to 175% enlarge-
ment (median change 0%) (Fig. 5C). Baseline characteris-
tics of the treated patients are listed in Table 1.

Of the 23 treated patients, 7 patients received only one 
cell application: 3 patients because they had been enrolled 
under earlier protocol versions before the second applica-
tion was amended to the protocol, two patients because 
their wounds were already closed at the week-6 visit, one 
patient due to a (not treatment-related) foot fracture, and 
one patient due to COVID-19 pandemic-related treat-
ment discontinuation. One patient was lost to follow-up 
after the month-9 safety visit (Fig.  1B). Three patients 
had major protocol deviations: use of prohibited medi-
cation (active wound care agent), delayed week-12 visit, 
improper off-loading. These patients were analyzed in 
the FAS (N = 23) but excluded from the PP (N = 20).

Efficacy outcomes
The wound healing progress of three representative 
responders is illustrated in Fig.  6. The primary effi-
cacy outcome, median wound surface area reduction 
from baseline at week 12, was 59% (IQR: 27–96%, FAS) 
and 64% (IQR: 46–96%, PP) (p < 0.001 in both sets) 
(Fig. 7A–C).

A summary of the secondary efficacy outcomes is given 
in Table 2.

Absolute wound surface area reduction was most pro-
nounced during the first 2 weeks after the first and sec-
ond MSC application, i.e., from day  0 till week  2 and 
from week  6 till week  8, respectively (Additional file  1: 
Table S7).

Complete wound closure was achieved in 6  patients 
(26% for FAS and 30% for PP; Additional file 1: Table S8). 
Since less than half of patients experienced complete 
wound closure during the efficacy follow up, the median 

time to complete wound closure could not be determined 
(Fig. 7D).

Wound surface area reduction by at least 30% at 
week  12 was observed in 17  patients (74% for FAS 
and 85% for PP) (Additional file  1: Table  S8). These 
patients were considered responders. The median time 
to first 30% wound surface area reduction was 27 days 
(95%-CI: 14; 30; FAS) and 22 days (95%-CI: 14; 30; PP) 
(Fig. 7E).

Due to the nature of DFU morphology, formation 
of granulation and epithelial tissue was not reliably 
evaluable.

Most patients demonstrated low or moderate wound 
exudation. The proportions of patients with low, mod-
erate or high exudation varied slightly over time with 
a few more patients having low exudation at week  12 
than on day  0 (52% vs. 44% and 50% vs. 35% for FAS 
and PP, respectively) (Additional file 1: Table S9).

An amputation at the target leg until week  12 was 
reported in one patient. The reason was a fracture of 
the little toe, which the investigator judged as unre-
lated to the cell therapy. Since only one patient experi-
enced an amputation during the efficacy follow up, the 
median time to amputation could not be calculated.

Median pain score was low during the whole 12-week 
follow-up period (Additional file  1: Table  S10). The 
SF-36 subscale scores remained virtually unchanged, 
while the median DLQI slightly improved from 6 
(1–12) at day 0 to 4 (0–10) at week 12 (Additional file 1: 
Table S11).

Post hoc analyses
Wound size analyses were additionally performed on 
the subgroup of responders, i.e., all patients who pre-
sented with ≥ 30% wound surface area reductions from 
baseline at week 12. Baseline patient characteristics, per-
cent change of wound surface area during screening and 
baseline wound size did not differ between the respond-
ers and the non-responders (Fig. 8A, B). All except three 
responders had achieved first 30% wound surface area 
reduction within 30 days; median time to first 30% wound 
surface area reduction was 16 days (Fig. 7E). At week 12, 
median wound surface area reduction from baseline was 
67% (55%–98%) (Fig. 7C), and in 6 of 17 (35%) respond-
ers the wound had fully closed.

Since in the trial protocol no threshold values had 
been specified to exclude patients from study treatment 
based on their wound surface area changes during the 
screening period, a Spearman’s rank correlation analysis 
was performed to test whether there was an association 
between wound surface area reduction during the screen-
ing period and during the efficacy follow-up period. A 
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Fig. 5 Trial design, study patients and wound surface area during screening. A Schematic representation of the trial design. aOnly patients who 
did not reach month‑12 visit before 30 June 2020 and were not scheduled for a planned safety follow‑up visit in June 2020 were subjected to an 
end‑of‑study visit. B Study patient flow chart. EoS visit, end‑of‑study visit [see (a)]. C Percent reduction of wound surface area during a ≥ 6‑week 
screening period (median 49 days, range 42–68 days; except for one outlier, whose screening period lasted 118 days, denoted by an asterisk). Error 
bar represents median and interquartile range
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Spearman’s rank correlation coefficient of 0.007 (95% 
CI = − 0.429, 0.417; p = 0.97) indicated that there was no 
association between these two parameters (Fig. 8C).

Safety outcomes
During the whole study period, 93  treatment-emer-
gent adverse events (TEAEs) were reported in 20 of 
23 patients (Table 3). Most TEAEs were mild or mod-
erate; 3  TEAEs reported by two patients were severe. 
Twelve  TEAEs reported by 10  patients were serious 
(Additional file  1: Table  S12). None of the TEAEs was 
judged related to the cell product.

During efficacy follow-up, no clinically relevant 
changes in vital signs occurred (Additional file  1: 
Table  S13). Eighteen physical examination findings 
that were either not present at baseline or had changed 
versus baseline were documented in 10 patients (Addi-
tional file 1: Table S14). Of these, 10 findings (56%) rep-
resented improvements.

Discussion
Despite well-established strategies for DFU manage-
ment, treatment is often challenging, and many patients 
respond only poorly to standard treatment. Experimen-
tal approaches that directly target defective pathways 
in the wound tissue, including blockade of IL-1β by a 
neutralizing antibody or IL-1RA [30, 64, 65], stabiliza-
tion of HIF-1α using prolyl hydroxylase inhibitors, iron 
chelator or protein–protein interaction inhibitors [35, 
37, 66, 67] or topical supplementation of pro-angio-
genic growth factors [39, 68], have accelerated wound 
healing in diabetic mice. However, the clinical transla-
tion of these approaches has been hampered by vari-
ous hurdles including safety concerns, short half-lives 
and/or the requirement of specific delivery systems [67, 
69, 70]. In contrast to single-drug approaches, thera-
peutically applied MSCs are considered, by sensing 

their environment for hypoxia or other stress signals 
and making use of multiple pathways, to respond more 
accurately according to the physiological needs [43, 44].

Here, we demonstrate that skin-derived  ABCB5+ 
MSCs adaptively activate the proangiogenic HIF-1 
pathway in response to hypoxic conditions. Activa-
tion occurred through posttranslational stabilization 
of HIF-1α protein (which at normoxia is subject to 
rapid degradation), which resulted in cellular accumu-
lation and translocation to the nucleus (Fig. 1A). HIF-
1α pathway response to hypoxia became also evident 
at the transcriptional level, albeit with different kinet-
ics: Whereas HIF-1α protein accumulation and nuclear 
translocation was most pronounced at 24  h, HIF-1α 
mRNA levels, after initial upregulation to peak levels 
already at 1 h, progressively decreased during sustained 
hypoxia, having returned to baseline levels at 5  h and 
dropping further thereafter (Fig. 1B). Similar kinetics of 
HIF-1α mRNA expression in response to hypoxia have 
been observed in various cell types including endothe-
lial cells and have been ascribed to a negative feedback 
loop that counteracts excessive HIF-1α protein accu-
mulation during prolonged hypoxic conditions [71]. 
Interestingly, in mice transplanted with subcutaneous 
gel grafts cellularized with MSCs and endothelial pro-
genitor cells (EPCs), genetic ablation or pharmacologic 
inhibition of HIF-1α in the MSCs completely abrogated 
experimental vessel formation in the gel graft, while 
HIF-1α deletion in the EPCs had no effect on vasculo-
genesis [72]. Thus, even though HIF-1α pathway activa-
tion is basically a common mechanism by which a cell 
adapts to reduced oxygen tension, HIF-1α stabilization 
in MSCs was considered a crucial event in cell-based 
therapeutic vasculogenesis [72]. In  ABCB5+ MSCs, 
HIF-1 pathway activation was accompanied by about 
fourfold upregulation of VEGF transcription (Fig. 1C), 
which eventually resulted in a substantial increase in 
VEGF protein secretion (Fig. 1D).

In addition to paracrine VEGF secretion under hypoxic 
conditions,  ABCB5+ MSCs proved capable of adopting 
phenotypic and functional characteristics of endothelial 
cells in  vitro, as demonstrated by expression of CD31 
when cultured in growth factor-supplemented medium 
(Fig. 2A) and formation of capillary-like structures simi-
lar to HUVECs when seeded on gel matrix (Fig. 3). This 
suggests that  ABCB5+ MSCs can trans-differentiate into 
endothelial-lineage cells, and might imply that, beyond 
serving paracrine proangiogenic functions to pro-
mote vascular regeneration,  ABCB5+ MSCs could even 
directly participate in neoangiogenesis in the injured 
tissue. Previously,  ABCB5+ MSCs have shown superior 
homing and engraftment to mouse skin wounds as com-
pared to bone marrow-derived MSCs [73]. Graft survival 

Table 1 Baseline characteristics of all treated patients

Variable Full analysis set (N = 23)

Age, years Median (range) 62 (49–79)

Sex

 Male n (%) 20 (87)

 Female n (%) 3 (13)

Body weight, kg Median (range) 105 (71–141)

Body mass index, kg/m2 Median (range) 33 (26–44)

Target wound surface area, 
 cm2

Median (range) 2.6 (1.0–15.2)

Ankle‑brachial index Median (range) 1.1 (0.8–2.0)

Hemoglobin A1c, % Median (range) 7.2 (5.0–9.8)
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was demonstrated in the skin against a fully allogeneic 
barrier (BALB/c  ABCB5+ MSCs administered to C57/
BL6 mice) for at least 17 days [51]. Moreover, in an NSG 
mouse wound model, significant detection of human-
specific CD31 DNA in the wound tissue at 13 days after 

topical application of human  ABCB5+ MSCs has indi-
cated that endothelial trans-differentiation of these cells 
can actually occur in  vivo [54]. Still, whether therapeu-
tically applied  ABCB5+ MSCs indeed become integrated 
in the regenerating vasculature remains to be elucidated.

Pa�ent 02-018 
(96% reduc�on) 

Day 0 

Week 6 

Week 12 

Day 0 

Week 6 

Week 12 

Day 0 

Week 6 

Week 12 

Pa�ent 08-001 
(100% reduc�on) 

Pa�ent 02-010 
(60% reduc�on) 

Fig. 6 Wound healing progress during the treatment and efficacy follow‑up period. Shown are three representative patients in the subgroup of 
responders. All patients had consented to publication of the photographs
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To investigate the vascular regenerative potential of 
 ABCB5+ MSCs in  vivo, we studied the effects of intra-
muscular cell injection on perfusion restoration in a 
mouse HLI model. As required from a drug regulatory 
perspective [74, 75], we did not use mouse  ABCB5+ 

MSCs but tested the ATMP made of human  ABCB5+ 
MSCs. Importantly in this regard, a significant body of 
studies comparing regenerative and anti-inflammatory 
effects of rodent and human MSCs in immunocompetent 
rodent models have confirmed a comparable efficacy of 

Fig. 7 Wound surface area reduction in DFU patients treated with  ABCB5+ MSCs. A–B Percent wound surface area reduction from baseline 
during the treatment and efficacy follow‑up period in the full analysis set (A) and per‑protocol set (B). Patients who presented with wound surface 
area reductions of at least 30% from baseline (indicated by light green dashed lines) at week 12 were considered responders. Error bars indicate 
median and interquartile range; p values (two‑sided Wilcoxon signed rank test) indicate statistical significance of changes from baseline. C Tukey’s 
boxplots of the primary efficacy outcome parameter, % wound surface area reduction from baseline at week 12, in the full analysis set (FAS, N = 23), 
per‑protocol set (PP, N = 20) and responders (i.e., patients who presented with at least 30% wound surface area at week 12; N = 17). D‑E Kaplan–
Meier plots for the time to full wound closure (D) and first 30% surface area reduction (E) in the FAS, PP and responders. Patients without event were 
censored at the date of the last available wound surface area assessment (indicated by small vertical ticks). Vertical dashed lines indicate median 
time to event (not reached for full wound closure)
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Table 2 Summary of the main secondary efficacy outcomes

n.a. not applicable
a Detailed results are given in Additional file 1: Tables S7–S11
b Median (interquartile range)
c Median (95%-CI)
d Due to space limitations, SF-36 subscale scores (which remained virtually unchanged during the efficacy follow-up) are not shown here but given in Additional file 1: 
Table S11

The median percentage wound surface area reduction was already statistically significant (p < 0.001) at 2 weeks and, except for the week-6 assessment (which was, 
however, missed by 4 patients), increased further over time (Fig. 7A, B)

Parameter Full analysis set
(N = 23)

Per‑protocol set
(N = 20)

Sourcea

Absolute wound surface area reduction

 Change from baseline at week 12  (cm2)b 1.7 (0.3–2.8) 2.0 (0.9–2.9) Additional file 1: Table S7

Complete wound closure

 Patients with complete closure at week 12, n (%) 6 (26) 6 (30) Additional file 1: Table S8

 Patients with complete closure at any time up to week 12, (%) 6 (26) 6 (30) Additional file 1: Table S8

 Time to complete closure,  daysc Not reached Not reached Figure 7D

 ≥ 30% wound surface area reduction

 Patients with ≥ 30% reduction at week 12 (“Responders”), n (%) 17 (74) 17 (85) Additional file 1: Table S8

 Patients with ≥ 30% reduction at any time up to week 12, n (%) 19 (83) 18 (90) Additional file 1: Table S8

 Time to ≥ 30% reduction,  daysc 27 (14; 30) 22 (14; 30) Figure 7E

Reopening after complete wound closure

 Patients with wounds reopened at week 12, n (%) 0 (0) 0 (0) n.a

Exudation

 Wounds with low exudation, n (%)

  Day 0 10 (44) 7 (35) Additional file 1: Table S9

  Week 12 12 (52) 10 (50) Additional file 1: Table S9

 Wounds with moderate exudation, n (%)

  Day 0 11 (48) 11 (55) Additional file 1: Table S9

  Week 12 10 (44) 9 (45) Additional file 1: Table S9

Amputation at target leg

 Patients with amputation, n (%) 1 (4) 1 (5) n.a

 Time to amputation, days 42 42 n.a

Pain  scoreb

 Day 0 1 (0–3) n.a Additional file 1: Table S10

 Week 12 1 (0–2) n.a Additional file 1: Table S10

Quality of  lifed

 Dermatology Life Quality  Indexb

  Day 0 6 (1–12) n.a Additional file 1: Table S11

  Week 12 4 (0–10) n.a Additional file 1: Table S11

Fig. 8 Assessment of potential influences of baseline patient characteristic, baseline wound size and wound surface area reduction during the 
screening period on response to treatment. Baseline patient characteristics and baseline wound surface area in all treated patients, responders and 
non‑responders. A–B Comparisons of baseline patient characteristics (A) and of wound surface area reduction during screening and of wound 
surface area at baseline (B) between all treated patients, responders and non‑responders. Depicted are Tukey’s boxplots (except for gender ratio); 
n = 23 (all patients; ankle‑brachial index: n = 22), n = 17 (responders; ankle‑brachial index: n = 16), n = 6 (non‑responders). Kruskal–Wallis tests 
followed by Dunn’s multiple comparisons revealed no statistically significant differences between groups (p > 0.999 for all comparisons except 
for ankle‑brachial index responders vs. non‑responders: p = 0.697). C Spearman’s rank correlation analysis between wound surface area reduction 
during screening and wound surface area reduction from baseline at week 12. *Asterisk denotes a patient whose screening period lasted 118 days, 
as compared to 42–68 days (median 49 days) for the other patients

(See figure on next page.)
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Fig. 8 (See legend on previous page.)
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allogeneic and xenogeneic MSCs [76–78]. This has been 
attributed to the low levels of HLA and co-stimulatory 
molecules expressed by MSCs and by the fact that both, 
allogeneic and xenogeneic MSCs, survive only for a lim-
ited time in the host, before species differences could 
manifest [76]. In the HLI model,  ABCB5+ MSCs mark-
edly accelerated perfusion recovery as measured by LDPI 
(Fig. 4B; Additional file 1: Table S5). At the microscopic 
level,  ABCB5+ MSCs significantly increased the vascu-
larization assessed by CD31 immunostaining (Fig.  4C; 
Additional file  1: Table  S6) and enhanced the prolifera-
tion of capillaries in the ischemic muscles (Fig. 4D,F).

Beside proangiogenic capacity based on paracrine 
activity and endothelial differentiation, a third principal 
mode of action by which MSCs perform their effects over 
injured tissue is through interaction with the immune 

system. While immune modulation has not been 
addressed in the present study, previous studies have 
demonstrated that  ABCB5+ MSCs respond to inflam-
matory milieus through multiple cell contact-dependent 
and paracrine mechanisms [51–53], including dampen-
ing the IL-1β-driven inflammation in chronic wounds by 
adaptive IL-1RA release, thereby shifting the prevalence 
of M1 toward proangiogenic and repair-promoting M2 
macrophages in the wound tissue [53].

With respect to these three principal modes of actions 
we have developed and established three potency assays 
to guarantee biological functionality and predict clini-
cal effectiveness of therapeutically applied  ABCB5+ 
MSCs: (i) VEGF secretion under hypoxic conditions to 
evaluate the angiogenic potency, (ii) tube formation on 
extracellular matrix gel to evaluate the endothelial trans-
differentiation capacity, and (iii) IL-1RA secretion after 
cocultivation with M1-polarized macrophages to evalu-
ate the immunomodulatory potency (Additional file  1: 
Table S4).

Based on the in vitro and preclinical observations, we 
investigated  ABCB5+ MSCs as a potential option for 
adjunctive treatment of DFUs. In the patient population 
studied, the greatest treatment success achieved over 
the ≥ 6-week screening period (median 7  weeks) with 
standard care alone was approximately 50% wound sur-
face area reduction in 3 of 23 patients (of whom 1 patient 
was even treated 118  days), while in about half of the 
patients the ulcer enlarged (up to 175%) (Fig. 5C). Thus, 
in line with current DFU treatment guidelines, which 
recommend to consider adjunctive therapy options for 
DFUs that did not achieve a 50% area reduction within 
4 weeks [19–21] or failed to heal after 4–6 weeks [22] of 
standard treatment, these ulcers had appeared refractory 
to standard treatment, indicating an urgent need for an 
advanced wound closure strategy [19–22, 79].

In this hard-to-heal population, adjunctive topical 
application of  ABCB5+ MSCs elicited statistically sig-
nificant median wound surface area reductions from 
baseline of 59% (FAS), 64% (PP) and 67% (subgroup 
of responders) after 12  weeks. Acceleration of wound 
healing started early, becoming statistically significant 
(p < 0.001) already at 2 weeks (median wound surface area 
reduction 31% for FAS and PP) (Fig. 7A, B), which indi-
cates that as early as at 2 weeks about half of the patients 
(48% of FAS and 56% of PP) had passed the predefined 
threshold value of 30% wound surface area reduction that 
was considered to classify them as responders (Fig. 7D). 
At 4  weeks, the median wound surface area reduction 
was 44% (FAS) and 48% (PP), and 1  patient (4% of FAS 
and 5% of PP) presented already with full wound clo-
sure (Fig. 7A, B), which together revealed that the over-
all situation had clearly improved as compared to the 

Table 3 Adverse events (SAS)

MedDRA Medical Dictionary for Regulatory Activities; TEAE Treatment-emergent 
adverse event; SAS Safety analysis set (N = 23)
a Includes pretreatment-emergent (occurring between giving written consent 
and first cell application) and treatment-emergent (occurring between first cell 
application and end of safety follow-up) adverse events
b Only TEAEs that were reported by at least 2 patients

Event Number of events Number (%) of patients

Any adverse  eventa 120 21 (91)

Any TEAE 93 20 (87)

Any serious TEAE 12 10 (43)

Any treatment‑related 
TEAE

0 0 (0)

Frequent TEAEs by MedDRA system organ  classb

 General disorders and administration site 
conditions

3 (13)

  Edema peripheral 2 (9)

 Infections and infestations 15 (65)

  Infected skin ulcer 6 (26)

  Localized infection 4 (17)

  Nasopharyngitis 4 (17)

  Wound infection 2 (9)

 Injury, poisoning and procedural complica‑
tions

5 (22)

  Ligament sprain 2 (9)

 Metabolism and nutrition disorders 4 (17)

  Hyperglycemia 2 (9)

 Musculoskeletal and connective tissue 
disorders

4 (17)

  Arthralgia 2 (9)

  Back pain 2 (9)

  Pain in extremity 3 (13)

 Skin and subcutaneous tissue disorders 11 (48)

  Blisters 6 (26)

  Skin ulcer 4 (17)
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standard-of-care screening period. Finally, at week  12, 
6  of these urgent-need patients (26%, 30% and 35% of 
FAS, PP and responders, respectively) had reached full 
wound closure, and it seems reasonable to expect that 
this rate would increase further if the follow-up period 
was extended, as suggested by the observation that the 
median wound surface area reduction was still increasing 
(Fig. 7A, B).

A variety of other cell-based treatment strategies have 
been tested in controlled clinical trials for adjunctive 
treatment of DFUs, including autologous and allogeneic 
MSCs derived from bone marrow and adipose tissue 
[80–82], autologous adipose tissue and adipose-derived 
stromal vascular fraction cells [83, 84], autologous plate-
let-rich plasma [83, 85–90], allogeneic platelets [91], 
autologous skin cells [92], skin allografts [93], and vari-
ous cell-containing skin substitute products [94–99] (for 
a summary see Additional file 1: Table S15). The reported 
effects show great variations, ranging from wound sur-
face area reductions and full wound closure ratios within 
12–26  weeks that did not significantly differ from the 
control groups [82, 83, 85, 92] to impressive significant 
wound surface area reductions from baseline of up to 
98% within 80 days [90] and wound closure ratios of up 
to 100% within 8 weeks [84]. However, in the trials that 
observed superiority of the investigational treatment 
over standard treatment, the reported outcomes in the 
standard treatment (control) groups ranged up to 88% 
wound surface area reduction [90] and 78% full wound 
closure ratio [88], indicating that considerable propor-
tions of the treated wounds have not been refractory to 
standard treatment (Additional file 1: Table S15). In con-
trast, in the present trial we have focused on a standard 
treatment-refractory, extremely hard-to-heal population, 
which needs to be taken into account when compar-
ing the outcomes in the present trial with those of other 
adjunctive treatment strategies.

In view of the high personal and socioeconomic dis-
ease burden of DFUs it has become desirable to identify 
the patients who are likely to benefit from an adjunctive 
treatment strategy as early as possible. Basically, the phe-
nomenon that a certain proportion of patients do not 
respond to the treatment, is widely known across the 
various MSC therapy approaches in a broad range of dis-
eases, with non-responders potentially amounting up to 
60% of the treated patients [100]. A major part of vari-
ability in clinical outcomes of MSC therapies has been 
ascribed to heterogenous products with insufficiently 
characterized therapeutic potency [49]. In contrast, in 
the present study, the strongly standardized quality and 
potency of the cell product (Additional file  1: Table  S4) 
rules out potential differences in quality and bioactivity 
as a cause of variation in the treatment responses, which 

is supported by the comparably low non-responder rates 
of 26% (FAS) and 15% (PP). Importantly, there was no 
association between the treatment responses and the 
potency assay data of the applied cells (Additional file 1: 
Table  S4), which indicates that the specified threshold 
acceptance values for product release are strong enough 
to guarantee proper biological activity. When compar-
ing potential patient-related negative predictors for DFU 
healing such as greater wound surface area [101–106] 
and patient characteristics including older patient age 
[106–108], male gender [104, 109], very high [110] or 
very low [108] body mass index, lower ankle-brachial 
index [109] and lower hemoglobin A1c [111], there were 
no significant differences between the responders and the 
non-responders that seem to have contributed to failure 
of treatment response (Fig.  8A). Clearly, however, the 
etiology of impaired DFU healing is far more multifacto-
rial, involving, e.g., previous diabetes control, comorbidi-
ties, and psycho-social factors [79]. On a cellular level, 
differential regulation or variations of genes involved in 
skin barrier function, inflammation or vascularization 
and blood flow have been associated with impaired DFU 
healing [112–115]. To further investigate what segre-
gates responders to  ABCB5+ MSC treatment from non-
responders could aid identifying predictors of response 
which might help distinguishing already before treatment 
initiation the patients that will likely respond to  ABCB5+ 
MSC therapy from those who will not.

Naturally, the conclusions drawn from the present trial 
are limited by factors typically associated with early-
phase trials, particularly a small patient number and an 
open, non-randomized design. Even though all ulcers 
had emerged refractory to standard treatment, we can-
not rule out that part of the observed improvements has 
occurred through additional attention and care during 
the trial. Not least, as discussed above, wound healing 
can be influenced by various patient-specific factors that 
were not controlled for.

Despite these limitations, we conclude that the present 
results support GMP-manufactured dermal  ABCB5+ 
MSCs as a potential developable candidate for adjunc-
tive therapy of standard treatment-refractory DFUs, 
even though in the present trial the majority of respond-
ers achieved only partial wound closure. Clearly, partial 
wound closure is a clinically less meaningful outcome 
than full wound closure; however, it is considered valid to 
“indicate relevant biological activity and help guide subse-
quent trials design” [75]. Importantly, the absence of any 
treatment-related adverse event during the trial confirmed 
good tolerability and overall safety of the cell product.
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Conclusions
The present studies demonstrate the in vitro and in vivo 
angiogenic potential of  ABCB5+ MSCs based on both, 
paracrine pro-angiogenic factor secretion and trans-dif-
ferentiation into endothelial-lineage cells. Together with 
the wound surface area reduction observed upon topi-
cal administration onto chronic DFUs, the results sup-
port GMP-manufactured  ABCB5+ MSCs as a safe, viable 
candidate for adjunctive therapy of treatment-refractory 
DFUs and warrant further investigation in a larger ran-
domized controlled trial with a dose-ranging design, an 
extended efficacy follow-up period and advanced out-
come measures in order to validate the benefit and opti-
mize the dose regime.
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