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Abstract
In	 general,	 it	 is	 not	 feasible	 to	 collect	 enough	empirical	 data	 to	 capture	 the	 entire	
range	of	processes	that	define	a	complex	system,	either	intrinsically	or	when	viewing	
the	system	from	a	different	geographical	or	temporal	perspective.	In	this	context,	an	
alternative	approach	is	to	consider	model	transferability,	which	is	the	act	of	translat-
ing	a	model	built	 for	one	environment	to	another	 less	well-	known	situation.	Model	
transferability	and	adaptability	may	be	extremely	beneficial—	approaches	that	aid	in	
the	reuse	and	adaption	of	models,	particularly	for	sites	with	limited	data,	would	ben-
efit	from	widespread	model	uptake.	Besides	the	reduced	effort	required	to	develop	
a	model,	data	collection	can	be	simplified	when	transferring	a	model	to	a	different	
application	context.	The	research	presented	in	this	paper	focused	on	a	case	study	to	
identify	and	implement	guidelines	for	model	adaptation.	Our	study	adapted	a	general	
Dynamic	Bayesian	Networks	(DBN)	of	a	seagrass	ecosystem	to	a	new	location	where	
nodes	were	similar,	but	the	conditional	probability	tables	varied.	We	focused	on	two	
species	of	seagrass	(Zostera noltei	and	Zostera marina)	located	in	Arcachon	Bay,	France.	
Expert	 knowledge	 was	 used	 to	 complement	 peer-	reviewed	 literature	 to	 identify	
which	components	needed	adjustment	including	parameterization	and	quantification	
of	the	model	and	desired	outcomes.	We	adopted	both	linguistic	labels	and	scenario-	
based	elicitation	to	elicit	from	experts	the	conditional	probabilities	used	to	quantify	
the	DBN.	Following	the	proposed	guidelines,	the	model	structure	of	the	general	DBN	
was	retained,	but	the	conditional	probability	tables	were	adapted	for	nodes	that	char-
acterized	the	growth	dynamics	 in	Zostera	 spp.	population	 located	 in	Arcachon	Bay,	
as	well	as	the	seasonal	variation	on	their	reproduction.	Particular	attention	was	paid	
to	the	light	variable	as	it	is	a	crucial	driver	of	growth	and	physiology	for	seagrasses.	
Our	guidelines	provide	a	way	to	adapt	a	general	DBN	to	specific	ecosystems	to	maxi-
mize	model	reuse	and	minimize	re-	development	effort.	Especially	 important	from	a	
transferability	perspective	are	guidelines	for	ecosystems	with	limited	data,	and	how	
simulation	and	prior	predictive	approaches	can	be	used	in	these	contexts.
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1  |  INTRODUC TION

Ecological	models	and	related	decision-	support	frameworks	support	
defining	problems,	conveying	ecological	concepts	and	relationships,	
characterizing	 potential	 system	 responses	 to	management	 pertur-
bations,	 and	 evaluating	 alternative	management	 policies	 (McCann	
et	al.,	2006).	High-	quality	data	are	fundamental	to	such	modeling,	yet	
it	may	be	expensive,	 insufficient,	or	 indeed	unavailable.	Numerous	
ecological	studies	have	shown	the	effect	of	limited	data	on	the	pre-
dictive	accuracy	of	models	(e.g.,	Chen,	2003;	Pearce	&	Boyce,	2006; 
Vaughan	&	Ormerod,	2003).	One	approach	to	provide	modeling	de-
cision	support	in	challenging	data	environments	is	to	transfer	a	gen-
eral	model	from	another	context	to	the	one	being	managed.

The	 difficulty	 of	 collecting	 enough	 empirical	 data	 to	 capture	
the	entire	 range	of	processes	 that	define	a	 complex	 system	 is	ex-
acerbated,	when	viewing	the	system	from	a	different	geographical	
or	 temporal	 perspective	 (Clark,	2001;	 Yates	 et	 al.,	2018).	When	 a	
general	model	is	developed	to	illustrate	the	“ecological	causal	web”	
of	 key	 variables	 and	 their	 influences	 on	 an	 ecosystem	 (Marcot	
et	al.,	2006),	it	becomes	potentially	applicable	to	a	wide	range	of	do-
mains.	As	long	as	the	core	character	of	the	decision-	making	process	
remains	 the	 same,	model	 transfer	 can	be	more	 cost	 effective	 and	
enhance	model	uptake.

In	 ecology,	 there	 are	 many	 examples	 of	 spatial	 and	 temporal	
transfer	of	species	distribution	models	(Bridge	et	al.,	2020;	Sequeira	
et	al.,	2016,	2018).	Models	have	also	been	used	in	different	locations	
(Barbosa	et	 al.,	2009;	 Lauria	et	 al.,	2015;	Randin	et	 al.,	2006)	 and	
times	(Barbosa	et	al.,	2009;	Moreno-	Amat	et	al.,	2015;	Rapacciuolo	
et	al.,	2012;	Tuanmu	et	al.,	2011)	to	which	they	were	originally	de-
veloped.	However,	there	remain	many	challenges	in	model	transfer-
ability.	These	include	challenges	with	the	theory	(Yates	et	al.,	2018),	
data	use	(Aubry	et	al.,	2017;	Morán-	Ordóñez	et	al.,	2017),	methods	
for	transfer	for	different	modeling	methods	(Heikkinen	et	al.,	2012; 
Sequeira	et	al.,	2018),	and	resultant	interpretation	of	transferability	
(Wenger	&	Olden,	2012).

Ongoing	efforts	have	been	made	to	better	understand	the	pat-
terns	and	determinants	of	model	adaptation	and	transferability.	For	
example,	Lauria	et	al.	(2015)	examined	and	evaluated	model	transfer-
ability	across	regions	using	a	four-	step	framework:	model	selection,	
model	evaluation,	model	transferability	between	regions,	and	model	
mapping.	In	the	methodology	developed	by	Lauria	et	al.	(2015),	the	
smallest	 Akaike	 Information	 Criterion	 was	 used	 to	 determine	 the	
best	model;	Spearman	rank	and	the	coefficient	of	determination	(R2)	
were	used	to	evaluate	the	relationship	between	observed	and	pre-
dicted	values,	and	at	the	“mapping”	stage,	species-	environment	rela-
tionships	were	used	to	interpolate	the	distribution	of	the	species	in	

the	same	geographic	area	in	which	the	model	was	calibrated.	Moon	
et	 al.	 (2017)	 created	 a	more	 analytical	 approach	 to	 characterize	 a	
given	 model's	 application	 niche	 by	 synthesizing	 information	 from	
databases,	previous	research,	and	models	in	unique	and	innovative	
applications	 to	 produce	 performance	 curves	 indicating	whether	 a	
specific	model	is	acceptable	or	not	for	a	distinct	context.

Undeniably,	correlative	models	relating	ecological	metrics	to	en-
vironmental	and	spatial	predictors	are	often	used	and	play	a	critical	
role	in	supporting	management	and	conservation	efforts	worldwide.	
However,	such	models	consider	only	a	subset	of	the	relevant	eco-
logical	processes.	Even	when	other	variables	are	included	in	models,	
there	may	be	no	data	available	for	that	variable	nor	an	understand-
ing	of	how	it	interacts	with	other	variables.	This	makes	predictions	
of	ecological	interactions	beyond	the	range	of	observed	values	very	
challenging.	Dealing	with	ecological	problems	is	inherently	complex	
since	 ecosystems	 are	 composed	 of	 heterogeneous,	 complex	 net-
works	with	nonlinear	relationships	and	limited	predictability	(Folke	
et	al.,	2004;	Starfield,	1997).	This	is	due	to	multiple	interactions	that	
occur	within	ecosystems	and	between	system	components	across	
temporal	and	spatial	dimensions	(Green	et	al.,	2005).

In	this	paper,	we	consider	the	challenge	of	adapting	a	Dynamic	
Bayesian	Networks	 (DBN)	model	 of	 an	 ecosystem	developed	 in	 a	
generic	context	and	transferring	it	to	a	specific	context.	DBNs	have	
been	widely	used	as	a	tool	to	assist	in	ecological	research	and	man-
agement	 in	 numerous	 studies	 where	 network	 structures	 capture	
nonlinear,	 dynamic	 processes	 in	 response	 to	 natural	 and	 anthro-
pogenic	stressors	(Maxwell	et	al.,	2015;	Trifonova	et	al.,	2015;	Wu	
et	 al.,	 2017).	 They	 can	 integrate	 disparate	 and	 often	 limited	 data	
and	capture	uncertainties	and	complexities	inherent	in	natural	sys-
tems	 (Marcot	&	Penman,	2019).	DBNs	are	 temporal	extensions	of	
Bayesian	 networks	 (BN),	 which	 are	 probabilistic	 graphical	 models	
that	use	a	set	of	nodes	(variables	of	interest)	to	represent	a	system.	
Nodes	can	be	deterministic	or	stochastic,	with	the	later	represented	
by	continuous	probability	distributions.	The	structure	of	a	BN	is	de-
fined	 graphically,	where	 each	 variable	within	 the	DBN	network	 is	
presented	as	a	node	with	directed	 links	 forming	arcs	 that	express	
hypothesized	causal	or	directed	associative	relationships	conditional	
probabilities	tables	(CPTs;	Koski	&	Noble,	2011).

Marcot	et	al.	(2006)	describe	guidelines	for	developing	and	up-
dating	BNs	 in	 the	 context	of	 ecological	 assessment,	with	 steps	 to	
create,	test,	calibrate,	and	update	BN	models	at	three	levels:	alpha,	
beta,	 and	 gamma.	 The	 alpha-	level	 BN	 models	 are	 developed	 by	
building	influence	diagrams	depicting	the	hypothesized	“causal	web”	
of	key	elements	that	impact	a	species	or	ecological	outcome	of	in-
terest.	The	beta-	level	model	is	produced	following	a	formal	revision	
of	the	model	structure	and	CPT	values	by	species	experts	who	were	
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not	engaged	in	the	development	of	the	model.	The	gamma-	level	or	
final	application	model	is	created	by	further	testing,	calibrating,	val-
idating	and	updating	the	beta-	level	model.

However,	to	our	knowledge,	context-	specific	guidelines	and	ex-
amples	for	transferring	an	ecological	DBN	have	not	yet	been	explored	
in	the	literature	(Table	S2).	The	ecological	context	of	interest	in	this	
paper	is	seagrass.	Seagrass	ecosystems	are	widely	recognized	as	cru-
cial	ecosystems	in	the	coastal	zone,	with	essential	functions	contrib-
uting	 to	multiple	marine	 ecosystems	 (Hemminga	&	Duarte,	2000; 
Pachauri	 et	 al.,	 2014).	 As	 plants	 living	 in	 shallow	 coastal	 waters,	
seagrass	 are	 typically	 subjected	 to	 anthropogenic	 stressors,	 such	
as	water	quality	degradation	and	coastal	development	 (Cambridge	
&	McComb,	1984;	Orth	et	al.,	2006).	Consequently,	understanding	
the	risks	posed	to	these	systems	and	how	they	respond	to	succes-
sive	 disturbances	 is	 essential	 for	 improved	management	 (McCann	
et	al.,	2006).

Wu	 et	 al.	 (2018)	 developed	 a	 DBN	model	 to	 predict	 seagrass	
meadow	resilience	to	dredging	disturbances.	The	model	focuses	on	
three	 genera	 and	 locations:	Amphibolis	 in	 Jurien	 Bay,	Halophila	 in	
Hay	Point,	and	Zostera	in	Pelican	Banks,	Gladstone.	Overall	system	
interactions	were	evaluated,	such	as	light	loss	due	to	dredging	(the	
hazard),	as	well	as	ecosystem	characteristics	such	as	lifehistory	char-
acteristics	 exhibited	 by	 genera	 and	 local	 environmental	 variables.	
The	general	DBN	model	was	also	used	to	predict	how	dredging	af-
fects	the	resilience	of	seagrasses	from	28	locations	throughout	the	
globe	(Wu	et	al.,	2017).	However,	species-	specific	modifications	and	
the	overall	model's	 applicability	 to	particular	 areas	have	yet	 to	be	
studied.	Therefore,	we	attempted	to	assess	the	model	transferability	
from	global	to	local	scale	and	from	genera	to	seagrass	species.

In	the	following,	we	use	the	terms	model	adaptation	and	model	
transfer	interchangeably.	We	consider	a	structured	approach	for	the	
model	adaptation.	General	guidelines	are	introduced	to	adapt	an	ex-
isting	DBN	to	a	new	context	and	validate	the	new	model	with	limited	
data.	 The	 proposed	 guidelines	 and	 lessons	 acquired	 from	 this	 re-
search	may	also	be	extended	to	other	contexts	and	serve	as	a	guide	
for	the	reuse	and	modification	of	different	models,	particularly	for	
locations	with	limited	data.

2  |  MATERIAL S AND METHODS

2.1  |  Overview of the guidelines

Our	proposed	guidelines	have	three	main	stages:	revision	and	design	
phase,	 knowledge	 acquisition,	 and	 site	 application	 (Figure 1).	 The	
first	phase	encompasses	a	single	step	(Step	1)	in	which	the	following	
tasks	are	performed:	 Identifying	and	collaborating	with	experts	to	
assess	the	transferability	of	the	chosen	model.	Thus,	once	an	agree-
ment	has	been	reached,	 the	structure	of	 the	model	 is	 revised.	For	
example,	how	nodes	are	linked	and	which	states	should	be	assigned	
to	each	node.	Key	elements	in	the	functioning	of	the	environmental	
system	are	 also	 identified	 in	 this	 stage.	The	 second	 stage	 focuses	
on	identifying	available	information	for	the	study	(Step	2).	This	may	

include	experimental	or	observational	data,	models	published,	gray	
literature,	and	expert	knowledge	for	the	study	area.	The	third	stage	
is	 subdivided	 into	 three	 steps	 (Steps	3,	4,	 and	5)	 that	 are	 iterated	
through	until	an	appropriate	local	model	is	obtained,	given	the	avail-
able	 information.	 In	 the	 first	part,	 information	acquired	 in	 stage	2	
is	used	to	update	the	CPTs	 in	the	model	 (Step	3).	The	second	part	
involves	a	general	evaluation	of	 the	model	 through	sensitivity	and	
scenario	assessment	(Step	4).	Finally,	the	proposed	model	is	evalu-
ated	against	observed	data	when	possible	and	appropriate	(Step	5).

Note	 that	 the	 steps	 shown	 in	 Figure 1	 can	 be	 performed	 in	 a	
different	order	depending	on	the	context.	for	example,	step	2	may	
occur	before	or	concurrently	with	step	1.	Furthermore,	it	is	essential	
to	note	that,	unless	there	is	a	significant	change	in	system	processes,	
it	is	typically	recommended	to	preserve	as	much	of	the	model	struc-
ture	as	possible	(Grzegorczyk	&	Husmeier,	2009).	When	adapting	a	
DBN	model	to	a	new	context,	it	is	thus	most	preferable	to	change	the	
CPTs,	redefine	the	node(s)	and/or	change	the	states	of	the	node(s)	
rather	than	redesign	the	model	structure	(Figure 2).

2.1.1  |  Step	1:	Identify	and	partner	with	
experts	to	confirm	choice	of	model	and	review	the	
graph	structure

The	task	of	the	experts	 in	this	step	is	to	use	their	own	knowledge	
and	other	relevant	information,	such	as	peer-	reviewed	literature,	to	
confirm	the	choice	of	a	DBN	for	the	problem	at	hand	and	to	review	
the	model	 structure	 (Koski	&	Noble,	2011).	The	 review	procedure	
should	consider	the	model's	objectives,	choice	of	relevant	variables	
and	 response(s)	 (nodes),	 causal	 links	 (directed	 arrows),	 spatial	 and	
temporal	scales,	and	other	key	elements.	The	model	should	be	de-
tailed	enough	to	reflect	 the	relevant	ecological	structure	and	pro-
cesses	of	the	system	under	consideration.

The	 research	 team	 has	 three	main	 tasks	 to	 facilitate	 this	 step	
(Figure	S1).	The	first	task	is	to	identify	experts	with	relevant	knowl-
edge.	Where	possible,	it	is	helpful	to	convene	a	pool	of	experts	with	
both	overlapping	and	complementary	expertise	about	the	system	of	
interest	(Drescher	et	al.,	2013;	Martin	et	al.,	2012).	Knol	et	al.	(2010)	
and	Caley	et	al.	(2014)	provide	a	variety	of	formal	processes	that	can	
be	used	to	identify	experts.

The	 second	 task	 is	 to	define	 the	elicitation	 tool.	An	 important	
design	choice	is	between	individual	or	group	elicitation	of	informa-
tion	 from	 experts.	 Individual	 elicitations	 may	 allow	 for	 more	 tar-
geted	questioning,	explanation	and	feedback	(Knol	et	al.,	2010; Page 
et	al.,	2012),	while	groups	may	produce	better	predictions	than	in-
dividual	assessments	in	certain	situations	(Surowiecki,	2004).	When	
using	multiple	experts,	separate	opinions	may	be	sought	and	aggre-
gated,	 or	 group	 agreement	may	 be	 pursued	 (Martin	 et	 al.,	2012).	
Elicitation	may	take	place	in	various	forms,	including	via	interviews,	
questionnaires	 or	 the	 use	 of	 specialized	 software	 (Cooke,	 1994; 
O'Leary	 et	 al.,	 2009;	 Steinert,	 2009).	 An	 alternative	 group	 ap-
proach	is	the	Delphi	method,	in	which	experts	provide	information	
separately,	 then	discuss	 the	collective	 results	and	 reconsider	 their	
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responses	in	light	of	the	responses	of	others.	This	approach	has	been	
widely	used	 in	ecology	(Delbecq	et	al.,	1975;	Kuhnert	et	al.,	2010; 
MacMillan	&	Marshall,	2006).

The	second	task	also	involves	designing	the	elicitation	questions.	
The	first	question	is	to	confirm	that	a	DBN	model	is	indeed	appropri-
ate	for	the	problem	at	hand,	and	that	the	particular	DBN	model	from	
the	 source	 location	 is	 appropriate	 to	 consider	 transferring	 to	 the	
target	location.	The	subsequent	questions	will	focus	on	what	adjust-
ments	are	required	in	the	DBN	nodes	and	directed	links,	as	well	as	
the	number	and	definition	of	the	states	of	the	nodes.	An	important	
parallel	consideration	is	what	information	may	be	available	to	inform	
the	corresponding	changes	in	the	CPTs	(to	support	step	3).	This	may	
be	sourced	from	observation	data,	 literature	or	experts.	Examples	

of	questions	regarding	the	model	structure	are	given	 in	Figure	S1. 
It	should	be	kept	 in	mind	that	 the	DBN	should	maintain	a	balance	
between	detail	 and	 robustness,	 in	 that	 it	 should	 include	sufficient	
detail	to	adequately	describe	the	target	system	while	ensuring	that	
the	DBN	can	be	adequately	quantified.

The	 third	 task	 is	 to	 carry	out	 the	elicitation	procedure.	A	vital	
part	of	this	process	 is	the	preparation	of	the	experts.	The	experts	
should	be	advised	 in	advance	about	 the	aim	of	 the	elicitation	and	
the	elicitation	tool.	In	many	cases,	it	is	helpful	to	provide	background	
reading	to	ensure	a	common	baseline	understanding,	as	well	as	some	
training	in	probability	to	ensure	appropriate	calibration	of	responses.	
See	Burgman	et	al.	(2006)	for	a	comprehensive	review	of	techniques	
for	eliciting	expert	judgment.

F I G U R E  1 Stepwise	methodology	flowchart	for	adapting	an	existing	model	using	information	from	data,	literature,	and	expert	knowledge
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2.1.2  |  Step	2:	Collect	information

Given	 confirmation	 of	 the	 suitability	 of	 the	DBN	 and	 the	model's	
structure,	the	next	step	is	to	collect	information	required	to	quantify	
the	CPTs	underpinning	nodes	in	the	model.	This	involves	determin-
ing	what	experimental	or	observational	data	are	available,	collecting	
it	to	fill	the	gaps,	assessing	the	degree	of	understanding	of	key	ele-
ments	of	the	system,	identifying	information	sources	such	as	litera-
ture,	model	outputs,	and	expert	knowledge.

A	 significant	 strength	 of	 a	DBN	 is	 its	 capacity	 to	 combine	 di-
verse	 data	 sources	 in	 a	 dynamic,	 whole-	of-	system	 model	 (Caley	
et	 al.,	 2014;	 Uusitalo,	 2007).The	 relative	 merit	 of	 these	 different	
sources	has	been	well	 argued	 in	 the	 literature,	with	some	authors	
preferring	sitespecific	empirical	relations	and	site-	specific	data	(e.g.,	
Cain,	2001;	Tari,	1996),	others	advocating	the	advantages	of	expert	
knowledge	(e.g.,	Smith	et	al.,	2007)	and	some	proposing	both	(Pollino	
et	al.,	2007).	In	the	latter	paper,	the	authors	suggested	using	expert	
elicitation	to	offer	a	first	estimate	of	the	probability	and	observed	
data to revise this estimate.

It	 is	common	for	Step	2	to	occur	concurrently	with	Step	1	and	
Step	3	since	these	steps	are	closely	connected.	Therefore,	depend-
ing	 on	 the	 availability	 of	 information,	 adjustments	 to	 the	 model	
structure	may	be	required	at	this	point,	thus	requiring	returning	to	
step	1	(Figure 1).

2.1.3  |  Step	3:	Review	the	CPTs

After	reviewing	the	model's	structure,	the	CPTs	for	those	nodes	in-
dicated	by	experts	as	requiring	adjustments	must	be	assessed	and,	
modified	using	the	information	acquired	in	Step	2.	A	CPT	underlies	
every	node	in	a	DBN,	in	which	the	data	(expressed	as	probabilities)	
used	to	fill	the	CPTs	must	describe	how	a	node	changes	in	response	
to	 changes	 in	 its	 parents.	As	 the	DBN	 is	 a	 network,	 the	 effect	 of	
changing	 any	 variable	 is	 transmitted	 right	 through	 the	network	 in	
congruence	with	the	relationships	expressed	by	the	CPTs.	The	dy-
namic	 component	 allows	 the	model	 to	 capture	 these	 interactions	
between	variables	and	changes	over	time	(Friedman	et	al.,	2013).

The	CPTs	can	be	completed	directly	by	the	research	team	in	con-
junction	with	the	experts	if	applicable	or	calculated	using	algorithms	
chosen	 based	 on	 the	 available	 data.	 Several	methods	 are	 used	 to	
update	CPTs,	such	as	the	Lauritzen–	Spiegelhalter	algorithm	(a	basic	
representation	 of	 Bayes'theorem),	 Gibbs	 sampling,	 Expectation	
Maximization	 (EM)	or	Gradient	Descent,	which	are	built	 into	most	
BN	software	(Chen	&	Pollino,	2012).	A	popular	choice	is	the	EM	al-
gorithm,	which	can	estimate	conditional	probabilities	from	data	with	
missing	values	(Uusitalo,	2007;	Watanabe	&	Yamaguchi,	2003).	The	
algorithm	works	by	 iteratively	 imputing	missing	data	 (expectation)	
and	estimating	CPT	values	(maximization),	terminating	when	a	local	
maximum	is	found.

2.1.4  |  Step	4:	Scenario	assessment

This	stage	aims	to	examine	the	behavior	of	the	DBN	model	to	ensure	
that	 the	key	variables	 and	 their	 connections	 are	accurately	 repre-
sented.	The	particular	focus	is	on	whether	adjusted	CPTs	or	revised	
structural	changes	 in	 the	DBN	behave	as	anticipated	with	 respect	
to	inferred	probabilistic	outcomes.	This	stage	is	particularly	impor-
tant	 for	 studies	with	 limited	 or	 scant	 data.	 A	 popular	 approach	 is	
scenario	assessment,	a	form	of	evaluation	in	which	a	range	of	plau-
sible	scenarios	are	assessed	against	the	model's	aims	and	objectives	
and	compared	to	one	another.	The	scenarios	allow	the	DBN	to	be	
evaluated	 in	 the	 studied	 ecosystem	 given	 certain	 biological,	 envi-
ronmental,	and	ecological	conditions.	Expertise,	existing	literature,	
and	analogous	studies	may	be	used	to	build	the	scenarios	and	both	
the	research	team	and	experts	should	be	involved	in	evaluating	the	
results.

This	stage	may	also	involve	a	global	sensitivity	analysis	to	eval-
uate	the	network's	response	to	the	different	scenarios	employed.	A	
sensitivity	analysis	may	help	determine	which	variables	and	states	
of	variables	influence	the	outcome,	highlighting	priority	risks	or	im-
portant	knowledge	gaps	(Pollino	et	al.,	2007).

Based	 on	 the	 findings	 of	 these	 assessments;	 Steps	 1,	 2,	 and	
3	should	be	critically	 reviewed	to	assess	each	component	of	 the	
model,	 including	 the	 overall	 structure,	 node	 discretization,	 and	

F I G U R E  2 Order	of	preference	for	
components	to	be	adjusted	in	a	DBN	
model.	The	pyramid	suggests	that	it	is	
most	preferable	to	update	only	the	CPTs,	
while	the	pointed	top	indicates	it	is	least	
preferable	to	change	the	model	structure.
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CPT	quantification.	 If	 the	model	 shows	unrealistic	 behavior,	 the	
research	 team	 in	 collaboration	with	 the	experts	 should	 consider	
modifying	 the	CPTs,	by	either	combining,	 splitting,	or	 redefining	
the	 nodes	 and/or	 states	 of	 the	 nodes	 or	 readjusting	 the	 overall	
structure	 of	 the	 model	 until	 it	 provides	 a	 reasonable	 response	
(Marcot,	2012).	The	approach	applied	in	this	step	will	return	a	mu-
tually	agreed	model.

2.1.5  |  Step	5:	Validate	model	performance

This	 step	builds	on	 the	previous	 step	by	evaluating	 in	more	detail	
the	agreed	DBN	after	scenario	assessment.	There	are	a	variety	of	
model	 validation	 approaches;	 selecting	 the	 most	 appropriate	 one	
will	rely	on	available	data	and	the	modeling	objective.	Where	pos-
sible,	data-	based	validation	is	preferred,	although	if	data	are	sparse	
then	a	qualitative	evaluation	of	model	outputs	using	experts	may	be	
used	to	validate	model	predictions	(Chen	&	Pollino,	2012).

For	 the	 former	case	of	data-	based	validation,	when	sufficient	
data	 are	 available,	 cross-	validation	 is	 preferable	 where	 the	 data	
set	 is	 randomly	 split	 into	 training	 (building	 the	DBN)	 and	 testing	
sets	(validating	the	DBN).	The	model	outputs	are	compared	to	the	
test	 data	 and	evaluated	using	 a	metric	 such	 as	 logarithmic	 prob-
ability;	 root	mean	squared	error,	or	prediction	accuracy	 (Aguilera	
et	al.,	2011).	If	data	are	insufficient	to	do	this,	goodness-	of-	fit	mea-
sures	 can	be	used	as	 the	 same	data	 is	used	 to	 train	and	 test	 the	
DBN.	In	either	case,	predicted	state	probabilities	are	compared	to	
the	observed	state	probabilities	obtained	from	the	data.	Finally,	if	
there	 are	 little	 or	 no	 data,	 qualitative	 evaluation	 procedures	 can	
be	applied,	such	as	using	expert	knowledge	(Chen	&	Pollino,	2012).	
Here,	 an	 independent	 expert	 reviewer	 may	 verify	 whether	 the	
model's	behavior	 is	 consistent	with	 the	current	understanding	of	
the	system.

2.2  |  Guidelines in the context of the case study

In	accordance	with	the	general	guidelines,	the	methodology	used	to	
adapt	the	model	to	our	case	study	is	presented	below,	broken	down	
into	the	three	stages	depicted	in	(Figure 1)	with	the	steps	presented	
in	detail.

2.2.1  |  Arcachon	Bay	case	study

Our	 case	 study	 includes	 two	 Zostera	 seagrass	 species	 located	 in	
Arcachon	 Bay,	 France:	 Z. marina	 and	 Z. noltei.	 Arcachon	 Bay	 is	 a	
tidal	ecosystem,	 sheltering	Europe's	 largest	 seagrass	bed	of	dwarf	
grass	 (Z. noltei;	Auby	&	Labourg,	1996).	This	species	colonizes	soft	
sandy	to	muddy	sediments	of	shallow	sheltered	bays,	often	in	inter-
tidal	areas.	In	the	shallow	subtidal	sector	around	the	channel	edges,	
another	 species,	 Z. marina	 (eelgrass)	 grows	 forming	 smaller	 beds	
(Cognat	 et	 al.,	2018).	 Seagrass	mapping	 between	 1989	 and	 2007	
showed	 a	 severe	 decline	 of	Zostera	 spp.	 from	2005,	 an	 estimated	

33%	reduction	for	Z. noltei	(from	68.5	to	45.7 km2)	and	74%	(from	3.7	
to	1.0 km2)	for	Z. marina	meadows	(Plus	et	al.,	2010).

Although	 studies	 have	 suggested	 that	 factors	 such	 as	 climate	
change,	 eutrophication,	 increased	 geese	 grazing,	 wasting	 disease,	
herbicide	contamination,	or	dredging	activities	may	explain	this	de-
cline,	 the	exact	 reason	for	 the	 loss	of	seagrass	 in	Arcachon	Bay	 is	
still	unclear	(Cognat	et	al.,	2018;	Plus	et	al.,	2010).	Therefore,	trans-
ferring	 a	 whole-	of-	system	 DBN	 model,	 which	 integrates	 analysis	
of	 interactions	 and	 feedbacks	 across	different	 components	of	 the	
system	to	Arcachon	Bay,	provides	a	way	to	understand	the	ongoing	
seagrass	dynamics	and	allow	projections	to	support	future	decision	
making.	Furthermore,	such	a	model	could	be	used	to	simulate	and	
assess	different	management	scenarios	to	support	decision	makers.

2.2.2  |  Revision	and	design	phase

Step 1: Identify and partner with experts to confirm choice of model 
and review the graph structure
The	general	DBN	that	was	adapted	in	this	study	has	a	network	struc-
ture	comprised	of	34	nodes	organized	into	four	themes,	resistance	
(e.g.,	physiology),	recovery	(e.g.,	growth),	site	conditions	(e.g.,	genera	
present),	and	environmental	factors	(e.g.,	light;	Figures 3	and	S2a,b).	
The	current	framework	uses	hybrid	and	dynamic	BNs	containing	dis-
crete	variables	over	multiple	time	stages.	The	temporal	frequency	of	
this	DBN	model	is	monthly	time	steps	and	the	spatial	extend	is	at	the	
local	level	of	the	seagrass	meadow.

The	 existing	 model	 was	 designed	 in	 such	 a	 way	 that	 it	 could	
be	 expanded	 to	 a	wide	 range	 of	 ecological	 domains	 by	 capturing	
ecosystem	dynamics	and	effects	 in	a	probabilistic	 risk	 framework.	
In	 transferring	 this	model	 to	Arcachon	Bay,	 the	modeling	 context	
was	 identified,	 in	consultation	with	 local	experts,	 to	center	on	the	
conservation	of	 two	particular	 seagrass	 species	under	 the	Zostera 
genera	 captured	 in	 the	 general	model.	 They	were	 sufficiently	 dif-
ferent	that	the	conditional	probabilities	needed	to	be	reviewed	and	
adapted	for	factors	relating	to	seasonal	growth,	reproductive	cycle,	
baseline	conditions	and	environmental	input	factors	such	as	light.

A	group	of	eight	experts	with	good	local	knowledge	of	seagrass	
and	 marine	 ecology	 were	 identified	 and	 invited	 to	 participate	 in	
the	evaluation	of	the	merit	of	the	proposed	DBN	for	the	target	site	
(Table	S1).	Following	a	critical	approval	review	of	the	DBN	structure,	
experts	were	also	invited	to	participate	in	the	knowledge	elicitation	
process.	Local	ecological	knowledge,	such	as	information	regarding	
the	 target	 species'	 seasonal	 growth	 and	 reproduction	 dynamics,	
was	 therefore	 crucial	 for	 adapting	 the	 general	 DBN	 to	 the	 given	
ecosystem.

2.2.3  |  Knowledge	acquisition

Step 2: Collect information
The	 research	 team	 was	 responsible	 for	 guiding	 the	 experts	
through	the	tasks,	encouraging	discussion,	and	presenting	results	
and	 analysis	 back	 to	 the	 experts.	 In	 addition,	 modelers	 worked	
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collaboratively	with	domain	experts	in	establishing	relevant	litera-
ture,	 data,	 and	 key	 biological	 and	 environmental	 processes	 that	
needed	to	be	adapted	for	the	case	study.	Communication	with	all	
experts	was	carried	out	entirely	online,	via	Zoom	and	e-mail,	since	
face-	to-	face	meetings	were	not	 feasible	 due	 to	 global	 pandemic	
travel	restrictions.

In	the	first	meeting	with	the	experts,	training	was	conducted	for	
those	unfamiliar	with	DBN	and	probabilistic	quantification	of	CPTs.	
The	case	study	was	then	presented	with	the	overall	aim	to	transfer	
the	Wu	et	al.	 (2017)	model	to	new	sites	in	Arcachon	Bay,	focusing	
on	 two	 species	 of	 seagrasses	 (Z. marina	 and	 Z. noltei).	 Interviews	
were	then	held	with	the	experts	to	assess	the	DBN	nodes	(and/or	
states)	directed	linkages	and	confirm	that	the	particular	DBN	model	
was	appropriate	for	transferring	to	the	target	 location.	Since	most	
experts	already	had	experience	 in	 the	BN	CPT	elicitation	process,	
we	 reviewed	 and	 quantified	 the	 CPTs	 in	 parallel	 (See	 details	 in	
Section	2.2.4,	Step	3).

The	 empirical	 data	 used	 here	 was	 provided	 by	 IFREMER	 (the	
French	 Institute	 for	 Research	 and	 Sea	 Exploitation)	 collected	 from	
nine	sampling	sites	distributed	over	the	whole	of	the	Bay	selected	for	
their	different	depths,	environmental	conditions,	and	seagrass	den-
sity	(Cognat	et	al.,	2018).	Although	we	have	data	for	nine	sites,	only	
four	sites,	FONT,	GAIL,	ILE,	and	ROCH,	were	considered	for	tuning	
model	parameters	(light	thresholds)	and	validation	analysis	because	
these	sites	were	considered	to	be	in	good	physiological	condition	and	
historically	had	not	declined	(Florian	Ganthy,	pers.	comm.).

Seagrass	shoot	density,	benthic	light,	and	temperature	data	from	
a	1-	year	 field	survey	 (December	2015–	December	2016)	were	used	
to	test	and	validate	the	model.	For	each	site,	measurements	of	shoot	
density	were	collected	monthly,	while	light	intensity	(μmols m−2 s−1)	
and	temperature	(°C)	were	measured	continuously	at	high	frequency	
(10 min	sampling	rate).	Unfortunately,	no	shoot	density	and	biomass	

records	were	available	for	Z. marina,	making	it	impracticable	to	vali-
date	the	model	for	this	species.	To	incorporate	light	data	in	DBN	in-
ference,	we	discretised	light	into	states.	The	probability	of	light	being	
in	one	of	these	states	is	based	on	simultaneous	requirements	of	light	
intensity	(mols	m−2	day−1)	and	light	duration	per	day	(number	of	hours	
of	saturation	and	compensation	irradiance	per	day).	Therefore,	site-	
specific	 information	was	required	when	establishing	critical	thresh-
olds	for	water	quality	based	on	the	responses	of	seagrass	plants	to	
light	availability	and	minimum	light	levels.	As	this	information	was	not	
available	for	our	study	area,	we	employed	expert	elicitation	based	on	
studies	 from	similar	 sites	 in	France	and	peer-	reviewed	 literature	 to	
estimate	light	thresholds	and	estimate	baseline	light	patterns.

Like	 other	 plants,	 the	 light	 regime	 is	 the	 primary	 environmen-
tal	 factor	 influencing	 photosynthesis	 and	 the	 growth	 of	 seagrass	
(Dennison,	1987).	The	light	required	for	growth	and	survival	varies	
by	 species,	 location,	 and	 temperature	 (Kirk,	1994).	 The	maximum	
photosynthetic	rate	which	promotes	plant	growth	occurs	at	saturat-
ing	light	conditions	(above	the	light	half-	saturation	point	Ik).	At	lower	
light	 values,	 the	 compensation	 irradiance	 (Ic)	 level	 captures	 when	
photosynthesis	 exactly	 balances	 respiration	 and	 primary	 metabo-
lism	is	maintained	but	not	growth.	If	light	falls	below	Ic,	respiration	is	
greater	than	photosynthesis,	and	there	is	not	enough	light	for	plant	
survival	(Lee	et	al.,	2007).	In	the	existing	DBN	model,	the	probability	
of	above	or	below	saturation	light	is	used	to	capture	the	optimal	and	
suboptimal	light	conditions	that	support	seagrass	growth.	Here,	ex-
perts	proposed	to	test	two	distinct	ways	to	discretise	the	light	factor	
to	obtain	evidence	to	support	the	use	of	a	2-	state	(based	only	on	Ik)	
or	a	3-	state	(Ik	and	Ic)	light	model.	The	thresholds	used	to	discretise	
the	light	factor	into	those	states	are	described	below.

As	 light	 intensity	 thresholds	 were	 not	 well	 understood	 in	 our	
study	 area,	 we	 used	 a	 K-	nearest	 neighbors	 algorithm	 (k-	NN;	 Fix	
&	Hodges,	1989)	 based	on	published	data	 to	 apply	 to	our	 area	of	

F I G U R E  3 The	overall	DBN	structure.	
Nodes	are	ovals	and	arrows	denote	
causal	parent–	child	relationships	in	
the	direction	of	the	arc	where	a	parent	
node	(e.g.,	meadow	type)	influences	
a	child	node	(e.g.,	location	type);	
conversely,	an	absence	of	a	link	implies	
conditional	independence.	Rounded	
rectangles	denote	subnetworks.	Nodes	
are	colored	as	follows:	White	for	site	
condition	nodes,	purple	for	recovery	
nodes,	green	for	resistance	nodes,	blue	
for	environmental	nodes,	yellow	for	
population	(shoot	density)	nodes,	and	
pink	for	all	other	nodes.	From	“Timing	
anthropogenic	stressors	to	mitigate	their	
impact	on	marine	ecosystem	resilience	
Supplementary	Information”	by	Wu	
et	al.	(2017),	nature	communications	
8:1263,	Figure	S7.
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study	 (See	 Supporting	 Information	 S1,	 and	 Table	 S3).	 For	 this	 ap-
proach,	since	photosynthetic	parameters	are	related	to	temperature	
and	 show	 seasonal	 trends,	 we	 used	 the	 monthly	 temperature	 of	
Arcachon	Bay	to	predict	seasonal	 Ik	and	 Ic	 thresholds.	The	satura-
tion	and	compensation	 irradiance	 (Ik	 and	 Ic,	 respectively)	obtained	
from	the	k-	NN	algorithm	are	summarized	for	Z. noltei	in	Table 1	(See	
Tables S3	and	S4	for	more	information	on	Ik	and	Ic,	estimated	for	Z. 
marina	and	Z. noltei	at	the	nine	sampling	sites).	Both	 Ik	and	 Ic were 
used	 to	 assess	 the	 number	 of	 hours	 of	 saturation	 and	 compensa-
tion	 light.	 From	 that,	 thresholds	 for	 light	duration	 (Hsat	 and	Hcomp)	
were	required	to	determine	the	number	of	hours	of	saturation	and	
compensation	light	per	day	was	necessary	to	classify	the	daily	light	
as	above,	below	and/or	below	 limitation	 state.	Because	 this	 infor-
mation	was	unknown	for	Z. noltei	located	at	Arcachon	Bay,	we	em-
ployed	 expert	 elicitation	 based	 on	 recorded	 data	 to	 set	 different	
combinations	of	Hsat	and	Hcomp	values	(Table 2).

After	establishing	the	light	intensity	and	duration	thresholds,	it	was	
possible	to	estimate	the	number	of	days	of	light	being	in	one	of	those	
states	per	month.	The	proportion	of	days	of	above	saturation	light	in	
a	month	was	represented	by	δ(xlight

abovesat
, t),	and	the	probability	of	above	

saturation	light	was	encoded	as	δ(xlight
abovesat

, t),	t =	{Jan,	Feb,…,	Dec}.	The	
same	 equation	 was	 applied	 to	 model	 the	 probability	 of	 light	 being	
below	saturation	or	below	 limitation.	These	probabilities	were	 input	
as	evidence	to	the	DBN	in	simulating	scenarios.	Finally,	we	estimated	
the	light	conditions	for	all	sites	and	used	it	as	evidence	for	our	model.

2.2.4  |  Site	application

Step 3: Review the CPTs
The	process	of	reviewing	the	CPTs	was	undertaken	with	the	expert	
team	and	took	the	form	of	scenarios,	an	intuitive	way	for	experts	to	
make	 sense	of	 the	evidence	 (Pennington	&	Hastie,	1993),	 and	 lin-
guistic	labels	of	certainty,	extremely	likely,	very	likely,	likely,	50/50,	

unlikely,	very	unlikely,	extremely	unlikely	and	impossible.	An	itera-
tive	approach	was	adopted	to	maximize	cognitive	compatibility,	as	
people	find	it	challenging	to	think	of	probabilities	with	several	condi-
tioning	factors	to	quantify	the	DBN	(Uusitalo,	2007).

As	stated	above,	based	on	expert	agreement	it	was	unnecessary	
to	change	the	definition	of	nodes	and	the	core	model	dynamics	for	
our	case	study,	so	the	overall	structure	of	the	DBN	was	retained.	The	
focus	was	then	on	changes	in	the	designation	of	probabilities	and	cor-
respondents	CPTs	for	these	components	that	reflect	the	local	system	
of	interest	(Step	3,	Figure 1).	The	CPTs	were	used	to	capture	the	un-
certainty	and	variation	of	multiple	associations	between	species	and	
their	environment.	To	elicit	the	conditional	probabilities	for	each	node	
of	 interest	 from	 the	experts,	questions	were	phrased	as	 follows	 “If	
seagrasses	were	under	good	conditions	of	light	but	show	poor	physi-
ological	status,	what	is	the	probability	of	the	plants	growing?”

Table 3	is	an	excerpt	from	expert-	elicited	rules	used	to	quantify	
the	CPT	of	Baseline	Shoot	Density,	and	Figure 4	shows	graphically	
the	parent–	child	relationships	between	baseline	shoot	density	and	
its	parents	(time	of	year,	species	presence,	location	type,	and	phys-
iological	status	of	plants).	Note	that	this	is	just	an	excerpt	from	the	
full	network,	focusing	on	baseline	shoot	density.	The	baseline	shoot	
density	has	 four	parent	nodes.	Each	row	 in	 the	table	 represents	a	
unique	scenario,	which	was	formulated	as	questions	that	were	posed	
to	experts.	Not	applicable	(NAs)	are	used	to	simplify	notation	by	in-
dicating	when	a	scenario	is	independent	of	a	given	parent	node.

During	elicitations,	we	focused	on	updating	the	CPTs	for	nodes	
to	capture	the	local	growth	dynamics	of	Zostera spp. meadows lo-
cated	in	Arcachon	Bay	and	seasonal	variations	in	their	population	
and	 life	histories.	Local	knowledge	of	seagrass	growth	rates	and	
reproductive	 success	was	 required	 to	 express	 and	 calculate	 the	
relationships	between	nodes	related	to	the	main	drivers	of	the	fit-
ness	of	seagrass.	Temporal	variations	of	growth	rates	and	sexual	
reproduction	 (e.g.,	 flowering	 shoots,	 seed	 production,	 and	 seed	
quality	and	density)	between	species	and	location	were	considered	

TA B L E  1 Average	monthly	water	temperature	(temp,	°C),	saturation	and	compensation	irradiance	(Ik	and	Ic,	μmols	photons	m
−2 s−1)	

estimated	for	Z. noltei	located	at	FONT,	GAIL,	ILE	and	ROCH

FONT GAIL ILE ROCH

Temp Ik Ic Temp Ik Ic Temp Ik Ic Temp Ik Ic

Jan 11 174 19 11 174 19 12 174 19 12 174 19

Feb 11 174 19 11 174 19 12 174 19 11 174 19

Mar 13 174 19 13 174 19 14 174 19 13 174 19

Apr 16 305 35 16 305 35 16 305 35 16 305 35

May 20 305 35 19 305 35 19 305 35 19 305 35

Jun 23 254 33 22 254 33 23 254 33 23 254 33

Jul 26 254 33 25 254 33 25 254 33 25 254 33

Aug 27 254 33 25 254 33 25 254 33 26 254 33

Sep 24 254 33 23 254 33 24 254 33 24 254 33

Oct 17 305 35 18 305 35 19 305 35 18 305 35

Nov 14 174 19 14 174 19 15 305 35 14 174 19

Dec 12 174 19 12 174 19 13 174 19 12 174 19
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when	updating	the	relevant	conditional	probability	tables	so	that	
the	interactions	nodes	and	interactions	between	nodes	captured	
the	local	conditions.

Step 4: Scenario assessment
The	behavior	of	the	structure	was	tested	by	the	application	of	two	
light	models,	in	which	different	numbers	of	states	for	the	light	node	
were	used.	Furthermore,	for	each	light	model,	combinations	of	light	
thresholds	were	also	considered	to	assess	the	posterior	marginal	prob-
abilities	for	the	shoot	density	node.	Specifically,	we	were	interested	
in	a	key	outcome	node	which	was	shoot	density	and	its	change	over	

TA B L E  2 The	combination	of	the	lengths	of	daily	light	periods	
thresholds	(Hsat	and	Hcomp,	hours)	for	Z. noltei

Model Threshold ID Hsat Hcomp

2- state Thdl- 1 4 –	

Thdl- 2 5 –	

Thdl- 3 5.5 –	

Thdl- 4 6 –	

Thdl-	5 7 –	

Thdl- 6 7.5 –	

Thdl- 7 8 –	

Thdl- 8 8.5 –	

Thdl- 9 9 –	

3- state Thdl- 1 6 8.5

Thdl- 2 6 9

Thdl- 3 6 10

Thdl- 4 6 11

Thdl-	5 6 12

Thdl- 6 7 8.5

Thdl- 7 7 9

Thdl- 8 7 10

Thdl- 9 7 11

Thdl- 10 7 12

Thdl- 11 8 8.5

Thdl- 12 8 9

Thdl- 13 8 10

Thdl- 14 8 11

Thdl-	15 8 12

Thdl- 16 8.5 8.5

Thdl- 17 8.5 9

Thdl- 18 8.5 10

Thdl- 19 8.5 11

Thdl- 20 8.5 12

Thdl- 21 9 8.5

Thdl- 22 9 9

Thdl- 23 9 10

Thdl- 24 9 11

Thdl-	25 9 12

Note:	The	thresholds	are	separated	for	the	2-	state	model.
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time.	Thus,	it	is	possible	to	verify	if	the	predictions	obtained	from	the	
model	are	consistent	with	the	current	understanding	of	the	system	
(Bogaert	&	Fasbender,	2007;	Chen	&	Pollino,	2012;	Uusitalo,	2007).	
Therefore,	we	simulated	different	light	threshold	scenarios	for	both	
2-		and	3-	state	light	formulations,	and	validated	model	predicted	shoot	
density	 against	 observed	 shoot	 density.	 The	 simulations	were	 con-
ducted	for	each	of	the	four	sites	in	the	Bay.	The	system	response	can	
be	subdivided	into	two	periods,	the	initialization	period	to	establish	
the	baseline	pattern	and	the	response	period.	A	weighted	mean	ap-
proach	was	 used	 as	 a	 comparative	method	 in	which	multiple	 state	
probability	 trajectories	 are	 aggregated	 into	 a	 single	 trajectory.	 The	
weighted	mean	follows	the	approach	of	Wu	et	al.	(2017).

Step 5: Validate model performance
The	MSE	was	used	as	a	distance	metric	to	compute	distances	be-
tween	 simulated	 posterior	 marginal	 distribution	 for	 shoot	 den-
sity	(probabilities	for	high,	moderate,	low	and	zero	shoot	density)	
against	 observed	 distributions	 of	 shoot	 density.	 Shoot	 density	
data	 collected	 in	 Arcachon	 Bay	 (Cognat	 et	 al.,	2018)	 were	 used	
to	validate	the	prediction	of	the	model	(See	Table	S4).	We	used	a	
hierarchical	ordinal	regression	analysis	to	transform	the	observed	
data	into	state	probabilities	of	high,	moderate,	low	and	zero	shoot	
density	as	follows:

Here,	we	use	a	Generalized	Linear	Mixed	Model	(GLMM),	and	g−1(yi,t)	
represents	the	probability	of	state	i	(high,	moderate,	low	and	zero)	of	
shoot	density	at	time	t	(month	of	year).	The	regression	has	coefficients	

β0	 and	β1,	which	are	 the	global	 intercept	and	 the	slope	 for	 the	sea-
sonal	effect	from	months	t,	respectively,	and	coefficient	β2,	which	is	
the	random	effect	used	to	capture	the	differences	between	sites.	The	
model	was	formulated	with	the	Bayesian	framework	(Wu	et	al.,	2015)	
and	fitted	with	Hamiltonian	Monte	Carlo	using	the	R	package	brms	
(Bürkner,	2018)	using	default,	flat	priors	(i.e.,	uninformed	priors).

3  |  RESULTS

3.1  |  Application of guidelines to case study

In	this	section,	the	results	from	the	application	of	the	guidelines	for	
adapting	a	model	to	a	case	study	are	outlined.	The	results	are	bro-
ken	down	 into	three	stages	that	 include	sub-	elements	that	can	be	
viewed	as	a	step-	by-	step	process.

3.1.1  |  Revision	and	design	phase

Step 1: Identify and partner with experts to confirm choice of model 
and review the graph structure
Given	 the	 importance	of	 local	 ecological	 knowledge,	we	obtained	
the	 participation	 of	 eight	 experts	 in	 seagrass	 and	 marine	 ecol-
ogy.	Among	them,	six	experts	came	from	the	 Ifremer,	France,	one	
from	Edith	Cowan	University,	Australia,	and	one	from	James	Cook	
University,	Australia.	The	panel	of	experts	confirmed	that	the	model	
could	be	transferred	to	the	target	location.

It	 was	 agreed	 that	 the	model	 did	 not	 capture	 differences	 be-
tween	 species	 at	 local	 scales.	 Therefore,	 adjustments	 on	 factors	
used	to	capture	 the	general	health	and	growth	of	 the	 two	Zostera 
spp.	were	needed;	 these	are	 summarized	 in	Table 4.	 For	example,	
although	both	species	are	perennial	(persistent)	in	the	Bay,	Zostera 
beds	display	significant	seasonal	variations	 in	density	and	biomass	
(Auby	&	Labourg,	1996).	 Tolerance	 and	 ability	 to	 acclimate	 to	dif-
ferent	environmental	conditions,	such	as	turbidity,	salinity	regimes	
and	light	availability,	is	also	known	to	vary	between	species	(Cognat	
et	al.,	2018;	Peralta	et	al.,	2000).	For	instance,	to	offer	better	resis-
tance	to	desiccation	during	low	tide,	Z. noltei	has	a	narrower	leaf	than	
Z. marina,	as	Z. noltei	covers	the	large	intertidal	flats	of	Arcachon	Bay	
while Z. marina	only	grows	in	submerged	channels	(Plus	et	al.,	2010).

3.1.2  |  Knowledge	acquisition

Step 2: Collect information
Our	study	had	access	to	both	seagrass	data,	but	only	 limited	data,	
and	environmental	experts	with	 local	knowledge.	Therefore,	 since	
data	was	 limited	 and	 insufficient	 to	 “learn”	 the	DBN	model	 struc-
ture,	the	effort	to	harness	the	expert	knowledge	to	adapt	the	model	
became critical.

Overall,	the	main	inputs	for	the	model	included	the	state	prob-
ability	 for	 light	 (environmental),	 the	 genera	 and	 location-	specific	

g
(
yi ,t

)
= �0,i + �1,i sin(t|6�) + �2.i,Site

F I G U R E  4 Simple	model	structure	representing	the	relationship	
between	a	child	node	(baseline	shoot	density	node)	and	all	
its	parents	(time	of	year,	specie	presence,	location	type,	and	
physiological	status	of	plants).	Nodes	are	colored	as	follows:	White	
for	input	nodes,	yellow	for	population	(shoot	density)	nodes,	and	
pink	for	all	other	nodes.
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parameters	 relating	 to	 climate	 (tropical	 or	 temperate),	 depth	 and	
tidal	 exposure	 (subtidal	 or	 intertidal),	 and	 transitory	 or	 enduring	
(persistent)	type	of	meadow	(site	conditions).	The	key	metric	of	in-
terest	to	management	was	shoot	density	(number	of	shoots	m2).	The	
light	impact	on	seagrass	ecosystems	was	considered	in	terms	of	eco-
logical	baselines	and	as	a	key	stressor	to	modeling	risk.

3.1.3  |  Site	application

Step 3: Review the CPTs
The	nodes	 that	 required	modification	 for	 the	 case	 study	 included	
those	that	characterized	the	seasonal	growth	and	reproduction	dy-
namics	of	the	Zostera	spp.	The	CPTs	of	the	following	nodes	were	up-
dated:	physiological	status	of	plants,	nodes	used	to	capture	seagrass	
growth	dynamics	(baseline	shoot	density,	loss	in	shoot	density),	and	
seasonal	 variation	 in	 seagrass	 reproduction	 (seed	 density,	 and	 re-
cruitment	rate	from	seeds;	Table 4).	The	seagrass	growth	captured	
via	shoot	density	factor	had	the	CPTs	estimated	separately	for	Z. ma-
rina	and	Z. noltei	to	capture	the	different	growth	strategies	between	
the	species.	In	contrast,	the	conditional	probabilities	of	the	elements	
used	to	represent	the	reproductive	cycle	of	the	seagrass,	such	as	the	
seed	density	and	seed	recruitment	rate	factors,	were	also	adjusted,	
but	the	CPTs	computed	for	these	parameters	were	the	same	for	both	
species.	That	is	because	the	seasonal	variation	in	reproduction	does	
not	differ	between	the	two	species	of	Zostera.	Furthermore,	while	

assessing	 their	CPTs	 for	 the	3-	state	of	 light	model,	 nodes	utilized	
to	reflect	the	influence	of	different	light	conditions	on	the	seagrass	
population,	 including	 loss	 in	 shoot	 density,	 physiological	 status	 of	
plants,	 and	seed	 recruitment	 rate,	were	modified	 (Table 4).	This	 is	
because	a	third	state	was	added	to	the	light	node.

Step 4: Scenario assessment
In	our	case	study,	the	model	infers	predicted-	state	probabilities	for	
shoot	density	based	on	scenarios	of	different	species	(Z. marina or 
Z. noltei),	 the	 light	 conditions	 (2-		 or	 3-	state)	 and	 site-	specific	 pa-
rameters	relating	to	depth	and	tidal	exposure	(subtidal	or	intertidal;	
Figure 5).	 In	 the	 absence	 of	 light	 thresholds	 data,	 we	 considered	
ranges	of	values	based	on	expert	judgments	as	evidence	of	light	con-
ditions.	This	process	of	varying	the	value	of	uncertainty	one	at	a	time	
while	keeping	all	other	factors	fixed	helped	us	to	draw	conclusions	
about	whether	it	should	have	further	adjustments.

Each	subfigure	comprises	two	panels,	where	the	top	panel	shows	
the	state	probability	trajectories	over	time	for	the	states	indicated,	
while	the	bottom	panel	shows	the	weighted	mean	response	(assum-
ing	a	uniform	distribution)	of	the	expected	value	and	the	interquar-
tile	range.	As	can	be	seen	from	Figure 5,	a	light	saturation	threshold	
Ik	 that	 is	 higher	 than	 available	 light	 leads	 to	 significant	 decline	 in	
shoot	density	but	 the	 level	of	 impact	differs	by	site.	For	example,	
when	comparing	FONT	with	ILE	for	Hsat =	8 h,	the	meadow	is	driven	
to	zero	shoot	density	for	seagrasses	located	at	FONT,	while	this	pat-
tern	is	not	observed	at	ILE.

TA B L E  4 This	table	shows	the	nodes	that	have	undergone	adjustment	when	transferring	the	existing	DBN	to	the	Arcachon	Bay	case	
study

Node Definition What has changed?

Accumulated	Light Probability	of	meeting	light	requirements	for	the	
normal	function	of	the	plant	representing	
accumulated	variations	and	effects	in	that	month

The	addition	of	a	third	state.	The	2-	state	and	3-	
state models are compared

Genera	Presence Categorical,	proportion	of	meadow	of	that	genera. The	current	model	adds	two	specific	Zostera 
species: Z. marina	and	Z. noltei

Physiological	Status	of	Plants The	physiological	status	captures	the	degree	to	which	
the	plant	can	function	normally

Node	modeled	as	a	function	of	light	factor—	CPTs	
are	adjusted	when	considering	a	3-	state	light	
model

Baseline	Shoot	Density Best	case	expected	shoot	density	for	a	given	month	
given	the	physiological	status	of	the	meadow.	Used	
to	explicitly	capture	large	seasonal	variations

The	CPTs	are	estimated	for	each	species	
separately	to	capture	the	different	growth	
strategies	between	species

Loss	in	Shoot	Density Loss	in	shoot	density	for	that	month Node	modeled	as	a	function	of	light	factor—	CPTs	
are	adjusted	when	considering	a	3-	state	light	
model

Seed	Density Density	of	seeds	per	m2.	States	capture	the	dynamic	
range	in	growth	rates	from	fast	colonizing	species	
to	slow	persistent	species

The	CPTs	are	adjusted	to	capture	the	
reproduction	cycle	for	the	two	species

Recruitment	Rate	from	Seeds Rate	of	recruitment	into	the	adult	population	from	
seeds

The	CPTs	are	adjusted	to	capture	the	
reproduction	cycle	for	the	two	species.	Node	
modeled	as	a	function	of	light	factor	CPTs	
adjusted	when	considering	a	3-	state	light	
model

Note:	In	addition,	a	definition	of	the	nodes	is	provided	and	where	the	change	took	place	in	each	node.	Definition	of	the	nodes	is	obtained	from	
“Timing	anthropogenic	stressors	to	mitigate	their	impact	on	marine	ecosystem	resilience	Supplementary	Information”	by	Wu	et	al.	(2017),	nature	
communications	8:1263,	Table	S3.
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Step 5: Validate model performance
The	model	was	validated	by	comparing	simulated	scenarios	corre-
sponding	to	unobserved	parameters	 (i.e.	 light	 thresholds)	with	ob-
served	data	 (shoot	density	and	 light	over	 time).	When	considering	
the Hsat	of	6 h	in	the	2-	state	model,	the	MSE	in	the	predicted-	state	
probabilities	compared	to	observed	values	was	found	to	be	of	the	
order	 of	 0.01	 to	 0.04	 across	 the	 four	 sites	 (Table 5),	 demonstrat-
ing	 an	 acceptable	 fit	 of	 the	 model	 to	 the	 data.	 Furthermore,	 the	
ability	 of	 the	model	 to	 predict	 seagrass	 shoot	 density	 trends	was	
also	validated	for	the	3-	state	of	light,	 in	which	the	MSE	values	are	
on	 the	order	of	0.01	 for	GAIL	and	 ILE	 for	Hsat	of	6 h	and	Hcomp	of	
8.5	(Table 6).	For	the	other	two	sites,	FONT	and	ROCH,	the	lowest	
MSE	estimated	 are	0.02	 and	0.01,	 respectively,	 is	 observed	when	
the	highest	light	thresholds	are	considered.	Thus,	the	2-		and	3-	state	
models	demonstrated	a	similar	ability	to	predict	the	trends	for	the	Z. 

noltei	at	Arcachon	Bay;	nevertheless,	because	of	parsimony	and	data	
limitations	in	a	model	transferability	context,	we	decided	to	go	with	
a	2-	states	light	model	and	Hsat	of	6 h	for	Arcachon	Bay.

4  |  DISCUSSION

Model	transferability	and	adaptation	can	be	highly	beneficial,	since	
methods	to	enable	reusing	and	adapting	models	can	help	with	wide-
spread	model	uptake	to	support	managers	and	decision	makers,	es-
pecially	for	sites	with	limited	data.	In	general,	transferring	a	model	
to	a	new	context	can	shorten	the	time	and	effort	to	develop	a	new	
model	by	adapting	an	existing	model.	Although	not	a	 replacement	
for	comprehensive	data	and	studies,	model	transferability	helps	to	
provide	predictive	evidence	on	potential	future	scenarios	to	support	

F I G U R E  5 The	model	predicted-	state	probabilities	for	shoot	density	for	Z. noltei	located	at	FONT	and	ILE.	The	initial	24 months	are	used	
for	initialisation	to	allow	the	system	to	enter	the	baseline	pattern.	Top	plots	are	the	probability	of	each	shoot	density	state,	and	the	bottom	
plots	show	the	weighted	mean	of	the	expected	value	and	the	interquartile	range.	Shoot	density	state	probabilities	for	seagrass	located	at	(a)	
FONT	and	(b)	ILE,	when	considered	Hsat	of	6 h	as	light	thresholds	to	estimate	the	light	conditions	used	as	input	to	the	model.	shoot	density	
state	probabilities	for	seagrass	located	at	(c)	FONT	and	(d)	ILE,	when	considered	Hsat	of	8 h	as	light	thresholds	to	estimate	the	light	conditions	
used	as	input	to	the	model.

(a)

(c) (d)

(b)
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proactive	 management,	 such	 as	 in	 the	 management	 of	 resilience.	
This	 paper	 has	 demonstrated	 the	 transferability	 of	 an	 existing	
general	 seagrass	 ecosystem	DBN	model	 to	 new	 sites	 and	offered	

guidelines	on	model	transferability	that	could	be	applicable	across	
different	contexts	and	scales	around	the	world.

In	 the	 future,	 substantial	 losses	 of	 seagrass	 meadows	 are	 ex-
pected	in	response	to	human	impact,	both	through	direct	proximal	
impacts	 affecting	 seagrass	meadows	 locally	 and	 indirect	 impacts,	
which	may	affect	seagrass	meadows	far	away	from	the	sources	of	
the	disturbance	(Duarte,	2002).	Thus,	the	ability	to	transfer	a	global	
model	and	concepts	and	apply	them	to	a	local	case	study	can	help	
protect	 and	 sustainably	 manage	 these	 valuable	 marine	 resources	
such	as	the	seagrass	meadows	located	in	Arcachon	Bay.

One	of	the	challenges	we	faced	in	the	study	arose	in	defining	the	
light	thresholds	to	characterize	the	regional	light	regime	and	the	lack	
of	extensive	empirical	data	available	to	validate	our	model.	Although	
we	have	shown	that	applying	such	a	range	of	different	light	thresholds	
provides	valuable	insights	into	the	effects	of	light	intensity	and	dura-
tion	 variability	 on	 seagrass	 ecosystems,	 determining	 an	 appropriate	
light	threshold	for	seagrasses	involves	several	challenges.	For	example,	
light	 requirements	are	unknown	 for	many	seagrass	 species,	particu-
larly	locally-	specific	thresholds.	The	light	levels	can	differ	over	multi-
ple	timescales;	seagrass	light	requirements	may	vary	by	season	and	a	
range	of	environmental	parameters,	including	water	temperature	and	
sediment	chemistry	(Koch,	2001;	Lee	et	al.,	2007).	Furthermore,	the	
levels	of	adaptability	of	the	plants	to	respond	to	changing	environmen-
tal	conditions	can	differ	among	species	(Collier	et	al.,	2012).

Bayesian	inference	necessitates	the	use	of	certain	prior	distribu-
tions.	Hence,	approaches	concerned	with	choosing	a	proper	prior	for	
a	statistical	analysis	have	been	developed	(Kass	&	Wasserman,	1996; 
Sarma	&	Kay,	2020).	Expert	informed	priors	have	been	used	in	BN	
models	to	help	ecologists	go	from	conceptual	models	to	statistical	
models	that	are	calibrated	to	observed	data	 (O'Leary	et	al.,	2009).	
Generally,	 experienced	 experts	 translate	what	 is	 known	 about	 an	
application	 into	 choosing	 a	 probability	 distribution	 by	 reflecting	
beliefs	about	the	unknown	values	of	certain	quantities.	For	exam-
ple,	expert	knowledge	was	utilized	to	fill	in	data	gaps	for	a	model	of	
distribution	of	 the	brush-	tailed	 rock-	wallaby	 (Petrogale penicillatus)	
(Murray	et	al.,	2009).	Prior	probability	distributions	expressing	what	
is	known	about	a	particular	model	parameter	are	easily	included	in	
Bayesian	approaches	(Gelman,	2003)	because	they	may	be	obtained	
from	 earlier	 studies	 or	 built	 on	 expert	 knowledge	 (Garthwaite	 &	
O'Hagan,	2000;	 Gelman,	2003;	 Kuhnert	 et	 al.,	2010).	 Substantial	
research	on	 the	conservation	science	and	ecological	 literature	de-
tails	the	application	of	these	methods	(Kuhnert	et	al.,	2005;	Martin	
et	al.,	2005).

Wang	et	al.	(2018)	developed	effective	numerical	methods	in	which	
history	matching	specifies	a	prior	distribution	from	expert-	elicited	in-
formation.	As	a	result,	a	set	of	appropriate	prior	choices	can	be	used	
as	a	basis	for	making	a	unique	prior	choice	less	arbitrary	in	a	sensitivity	
analysis	(Wang	et	al.,	2018).	Based	on	that,	an	alternative	model	updat-
ing	approach	is	also	outlined	here	(see	Supporting	Information	S2)	to	
apply	the	calibration	of	light	thresholds,	and	identify	which	best	light	
model	 and	 threshold	 fit	 the	 empirical	 data.	 Although	 discretization	
thresholds	can	be	drawn	from	experts	and	literature	when	there	is	lim-
ited	or	no	data	available,	finding	high-	scoring	discretization	is	difficult	
or	 impractical	due	to	a	 large	number	of	possibilities	that	need	to	be	

TA B L E  5 MSE	for	the	2-	state	model	per	site	(FONT,	GAIL,	ILE	
and	ROCH)	and	considering	different	lengths	of	daily	light	periods	
thresholds	(Hsat,	hours)	for	Z. noltei

Hsat FONT GAIL ILE ROCH

4 0.0417 0.0401 0.0405 0.0424

5 0.0399 0.0392 0.0395 0.0409

5.5 0.0390 0.0387 0.0392 0.0403

6 0.0362 0.0145 0.0121 0.0183

7 0.0586 0.0176 0.0434 0.0490

7.5 0.1446 0.0923 0.0785 0.0712

8 0.1977 0.1158 0.0930 0.1327

8.5 0.2848 0.1965 0.1764 0.2553

9 0.2939 0.2904 0.2605 0.2855

Note:	The	warmer	colours	indicate	higher	values	of	MSE,	and	green	
colours	indicate	lower	values	of	MSE.

TA B L E  6 MSE	for	the	3-	state	model	per	site	(FONT,	GAIL,	ILE	
and	ROCH)	and	considering	different	lengths	of	daily	light	periods	
thresholds	(Hsat	and	Hcomp,	hours)	for	Z. noltei

Hsat Hcomp FONT GAIL ILE ROCH

6 8.5 0.0254 0.0122 0.0108 0.0164

6 9 0.0295 0.0128 0.0113 0.0175

6 10 0.0336 0.0137 0.0116 0.0175

6 11 0.0363 0.0140 0.0117 0.0187

6 12 0.0363 0.0140 0.0117 0.0175

7 8.5 0.0230 0.0185 0.0168 0.0150

7 9 0.0269 0.0332 0.0287 0.0194

7 10 0.0416 0.0155 0.0423 0.0130

7 11 0.0543 0.0460 0.0425 0.0484

7 12 0.0561 0.0457 0.0427 0.0130

8 8.5 0.0822 0.0471 0.0348 0.0246

8 9 0.0875 0.0409 0.0365 0.0522

8 10 0.1495 0.0738 0.0775 0.0130

8 11 0.1976 0.1032 0.0846 0.1013

8 12 0.2021 0.1239 0.0910 0.0130

8.5 8.5 0.1258 0.0442 0.0418 0.0380

8.5 9 0.1241 0.0504 0.0450 0.0845

8.5 10 0.1887 0.1071 0.0938 0.0130

8.5 11 0.2669 0.1748 0.1263 0.2028

8.5 12 0.2758 0.1869 0.1782 0.0130

9 8.5 0.1247 0.0507 0.0455 0.0604

9 9 0.1356 0.0835 0.1020 0.0990

9 10 0.2045 0.1279 0.1160 0.0130

9 11 0.2798 0.2204 0.1717 0.2348

9 12 0.2911 0.2421 0.2072 0.0130

Note:		The	warmer	colours	indicate	higher	values	of	MSE,	and	green	
colours	indicate	lower	values	of	MSE.



14 of 16  |     HATUM et al.

verified,	which	makes	this	approach	beneficial.	This	methodology	has	
the	potential	to	be	particularly	valuable	to	select	optimum	DBN	inputs	
(e.g.,	light	thresholds)	in	data-	scarce	regions.

Another	 challenge	 faced	 in	 this	 project	was	 the	 scarce	 data	 to	
validate	the	model	and	the	balance	between	a	more	detailed	model	
and	a	practical	model	that	is	supported	by	available	data	and	expert	
knowledge.	For	example,	discretising	the	light	parameter	into	three	
states	instead	of	two	did	not	show	better	estimates	for	shoot	den-
sity	values	when	compared	to	the	data.	Furthermore,	as	there	was	
only	data	for	one	species,	steps	1–	5	were	only	achievable	for	Z. noltei,	
whereas	for	Z. marina,	it	was	only	possible	to	complete	steps	1–	3	due	
to	data	limitations	(Figure 1).	Such	a	systematic	set	of	guidelines	can	
additionally	help	modelers	 and	experts	 to	 identify	potential	 limita-
tions	in	the	scope	of	the	developed	models,	and	where	more	study	
and	data	 is	 needed.	Although	we	 focused	on	 transfer	of	 a	 general	
DBN	to	a	local	site	and	species,	it	could	also	include	transfers	to	other	
stressors.	For	example,	stressors	from	new	environmental	hazards	or	
climate	stress,	such	as	heat	stress	caused	by	marine	heatwaves,	can	
be	included	in	the	model	to	explore	changes	in	seagrass	response.

5  |  CONCLUSIONS

Model	users	are	increasingly	transferring	models	to	alternative	sites	
where	data	can	be	scarce.	When	transferring	a	model	from	one	con-
text	to	a	new	application	context,	the	effort	in	developing	a	model	
is	reduced,	and	data	collection	can	be	less	demanding.	In	this	regard,	
models	transferred	to	novel	conditions	could	provide	predictions	in	
data-	poor	 scenarios,	 contributing	 to	 more	 informed	 management	
decisions.	 In	 this	 study,	we	 have	 demonstrated	 the	 transferability	
of	an	existing	general	seagrass	ecosystem	DBN	model	to	new	sites	
and	offered	general	guidelines	capturing	the	 lessons	 learned	here.	
Moreover,	 the	DBN	adapted	for	the	Arcachon	Bay	case	study	can	
also	be	applied	 to	various	other	domains	 in	ecology.	For	example,	
other	stressors	can	be	incorporated	into	the	model,	such	as	effects	
caused	by	climate	events,	to	explore	changes	in	seagrass	response.
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