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a b s t r a c t

In this paper, we consider clustering based on the kernel principal component analysis
(KPCA) for high-dimension, low-sample-size (HDLSS) data. We give theoretical reasons
why the Gaussian kernel is effective for clustering high-dimensional data. In addition,
we discuss a choice of the scale parameter yielding a high performance of the KPCA
with the Gaussian kernel. Finally, we test the performance of the clustering by using
microarray data sets.
© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The clustering method is largely divided into hierarchical and non-hierarchical methods. For HDLSS data, Borysov
et al. [10] and Kimes et al. [16] studied asymptotic behaviors of hierarchical clustering methods. Liu et al. [18], Ahn
et al. [1], Huang et al. [14] and Sarkar and Ghosh [23] considered non-hierarchical type clustering methods. Especially,
Liu et al. [18] proposed a binary split type clustering method called ‘‘statistical significance of clustering (SigClust)’’. On the
other hand, principal component analysis (PCA) is a quite popular tool for non-hierarchical clustering of high dimensional
data. Armstrong et al. [8] analyzed gene expression HDLSS data sets by clustering based on the linear PCA (LPCA). Yata
and Aoshima [28] showed that the LPCA enjoys geometric consistency properties for the PC scores in high-dimensional
mixture models. For non-linear data, the kernel PCA (KPCA) by Schölkopf et al. [24,25] is a non-linear extension of PCA
by using kernel methods. There are a lot of data analyses based on the KPCA. For instance, Liu et al. [17] and Reverter
et al. [22] analyzed HDLSS gene expression data by using the KPCA. However, as long as we know, asymptotic properties of
the KPCA seem not to have been studied in HDLSS settings. In the current paper, we shall investigate asymptotic properties
of the KPCA for HDLSS data.

Suppose there are independent and d-variate populations, Πi, i ∈ {1, . . . , k}, k ≥ 2, having an unknown mean
vector µi and unknown covariance matrix Σ i for each i. We assume lim supd→∞ ∥µi∥

2/d < ∞ and tr(Σ i)/d ∈ (0, ∞) as
d → ∞ for i ∈ {1, . . . , k}, where ∥ · ∥ denotes the Euclidean norm. Here, for a function, f (·), ‘‘f (d) ∈ (0, ∞) as d → ∞’’
implies lim infd→∞ f (d) > 0 and lim supd→∞ f (d) < ∞. We mainly consider the case when k = 2. See Appendix C of the
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online supplementary for the case when k = 3. Suppose we have a d × n data matrix X = (x1, . . . , xn), where xjs are
independently taken from Π1 or Π2. Let

ni = #
{
j|xj ∈ Πi for j ∈ {1, . . . , n}

}
,

where #A denotes the number of elements in a set A. Note that n = n1 + n2. We assume that n and nis are independent
of d, and ni ≥ 1 for i ∈ {1, 2}. For the sake of simplicity, we assume that tr(Σ 1) ≤ tr(Σ 2) and

xj ∈ Π1, j ∈ {1, . . . , n1}, xj ∈ Π2, j ∈ {n1 + 1, . . . , n}. (1)

In this paper, we study asymptotic properties of the kernel PCA in the HDLSS context that d → ∞ while n is fixed. Let K
be an n×n gram matrix with the (j, j′) element k(xj, xj′ ) = φ(xj)⊤φ(xj′ ), where φ(·) is a feature map. Let Pn = In−n−11n1⊤

n ,
where In denotes the n-square identity matrix and 1n = (1, . . . , 1)⊤. We define the (centroid) gram matrix by

K0 = PnKPn.

Note that rank(K0) ≤ n − 1. Let λ̂1 ≥ · · · ≥ λ̂n−1 be the eigenvalues of K0. Then, we define the eigen-decomposition of
K0 by

K0 =

n−1∑
i=1

λ̂iûiû⊤

i ,

where ûi = (ûi1, . . . , ûin)⊤ denotes a unit eigenvector corresponding to the λ̂i. Note that ∥ûi∥ = 1 and û⊤

i ûi′ = 0 for all
i ̸= i′. The ith (normalized) PC score of xj is given by sij =

√
nûij. We note that

∑n
j=1 s

2
ij/n = 1 for all i. Also, note that∑n

j=1 sij = 0 when λ̂i > 0 from the facts that 1⊤
n ûi =

∑n
j=1 sij/

√
n and 1⊤

n K01n = 0. Since the sign of an eigenvector is
arbitrary, we assume that (1⊤

n1 , −1⊤
n2 )û1 ≥ 0 without loss of generality.

We consider the following four typical kernels:
(I) The linear kernel: k(xj, xj′ ) = x⊤

j xj′ ;
(II) The Gaussian (radial basis function) kernel: k(xj, xj′ ) = exp(−∥xj − xj′∥2/γ );
(III) The polynomial kernel: k(xj, xj′ ) = (ζ + x⊤

j xj′ )
r ;

(IV) The Laplace kernel: k(xj, xj′ ) = exp(−∥xj − xj′∥1/ξ ),
where γ > 0, ζ ≥ 0, ξ > 0, r ∈ N and ∥ · ∥1 denotes the L1-norm. Hellton and Thoresen [13], Shen et al. [26] and

Yata and Aoshima [28] gave asymptotic properties of the PC score for the linear kernel function (I) in HDLSS settings.
The Gaussian kernel function (II) is probably the most popular choice for kernel functions. Thus we mainly investigate
the KPCA for the Gaussian kernel. In Appendix A, we give asymptotic properties of the KPCA in a general framework
including the kernel functions (III) and (IV).

The rest of the paper is organized as follows: In Section 2, we provide motivations of the KPCA for HDLSS data. In
Section 3, we give asymptotic properties of the KPCA with (I), that is, the LPCA. In Section 4, we give asymptotic properties
of the KPCA with (II). We show that the KPCA gives better performances than the LPCA in HDLSS settings. In addition,
we discuss a choice of the scale parameter γ yielding a high performance of the KPCA with (II). Finally, in Section 5,
we examine the performance of the KPCA with (II) in numerical simulations and actual data analyses. All the theoretical
results in this paper are given in the HDLSS context that d → ∞ while nis are fixed.

2. Motivations of the kernel PCA

In this section, let us give motivations of the KPCA for HDLSS data.

2.1. Kernel PCA for spherical data

We consider the following condition for Σ i, i ∈ {1, 2},

tr(Σ 2
i )/tr(Σ i)2 = o(1), d → ∞. (2)

If we assume (2) and (A-i) given in Section 3, we have that as d → ∞, when xj ∈ Πi,

∥xj − µi∥ = tr(Σ i)1/2{1 + oP (1)}. (3)

Thus, ‘‘xj −µi’’ concentrates on the surface of an expanding sphere with radius, tr(Σ i)1/2, as the dimension increases. See
Dryden [11] and Hall et al. [12] for the details of the phenomenon. Aoshima and Yata [4,5] also proposed classifier based
on the phenomenon. See also Aoshima et al. [3] for the review.

Remark 1. Let λi1 ≥ · · · ≥ λid (≥ 0) be the eigenvalues of Σ i (i ∈ {1, 2}). Note that tr(Σ 2
i )/tr(Σ i)2 =∑d

ℓ=1 λ2
iℓ/(

∑d
ℓ=1 λiℓ)2 ∈ [1/d, 1]. Also, note that (2) is equivalent to ‘‘λi1/tr(Σ i) → 0 as d → ∞’’. For instance, let us

consider a spiked model as

λiℓ = aiℓdαiℓ , ℓ ∈ {1, . . . , g}, λiℓ = ciℓ, ℓ ∈ {g + 1, . . . , d}, (4)

2
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Fig. 1. Toy example to illustrate the kernel PC scores for spherical data. The left panel displays the original spherical data set, the center panel
displays (s1j(I), s2j(I))s and the right panel displays (s1j(II), s2j(II))s.

where aiℓs, ciℓs and αiℓs are positive (fixed) constants, and g is a positive (fixed) integer. See Yata and Aoshima [27]
for the details of the spiked model. For (4), (2) holds when αi1 < 1. On the other hand, (2) and (3) do not hold when
αi1 = 1. When αi1 = 1, at least the first eigenvalue is strongly spiked and causes very huge noise. In this paper, we do not
consider such cases as αi1 = 1. Aoshima and Yata [6,7] developed a data transformation technique to avoid huge noise
and to ensure high accuracy for inferences no matter how large the eigenvalues are. It would be possible to apply the
data transformation technique to clustering for very noisy data and that is now under investigation.

Let us check the performance of the KPCA for spherical data. We considered the following toy example. Let θj = π (j/10)
for j ∈ {1, . . . , 20}. We generated 40 samples as xj = (0.3 cos θj, 0.3 sin θj)⊤ and xj+20 = (cos θj, sin θj)⊤ for j ∈ {1, . . . , 20}.
Note that ∥xj∥ = 0.3 for j ∈ {1, . . . , 20}, ∥xj∥ = 1 for j ∈ {21, . . . , 40}, and

∑20
j=1 xj =

∑40
j=21 xj = 0. We calculated

the first and second PC scores both for the linear kernel and Gaussian kernel with γ = 1/2. Let sij(I) and sij(II) denote
sij given by using the kernel functions (I) and (II), respectively. In Fig. 1, we displayed scatter plots of (s1j(I), s2j(I)) and
(s1j(II), s2j(II)), j ∈ {1, . . . , 40}, together with scatter plots of the spherical data set itself. We observed that the linear
kernel reproduces the spherical data set by (s1j(I), s2j(I))s. On the other hand, the Gaussian kernel clustered the spherical
data set by s1j(II)s. It seems that the KPCA with (II) is useful for clustering spherical data.

2.2. Numerical behaviors of PC scores in HDLSS settings

Let

∆µ = ∥µ1 − µ2∥
2 and ∆Σ = |tr(Σ 1) − tr(Σ 2)|.

Let us check the behavior of PC scores for several choices of ∆µ, ∆Σ and nis. We considered the following toy examples.
Independent pseudo random observations were generated from Πi : Nd(µi,Σ i) for i ∈ {1, 2}, with Σ i = ciId. We set
n = 20, µ2 = 0 and c1 = 1. For d = 100, 1000 and 10 000, we considered four cases:

(a) µ1 = 3−11d, c2 = 1 and (n1, n2) = (12, 8);
(b) µ1 = 3−11d, c2 = 2 and (n1, n2) = (12, 8);
(c) µ1 = 0, c2 = 2 and (n1, n2) = (12, 8);
(d) µ1 = 3−11d, c2 = 2 and (n1, n2) = (8, 12).

Note that ∆µ = d/9 for (a), (b) and (d), and ∆µ = 0 for (c). Also, note that ∆Σ = d for (b) to (d) and ∆Σ = 0 for
(a). In Figs. 2–3, we displayed scatter plots of (s1j(I), s2j(I)) and (s1j(II), s2j(II)), j ∈ {1, . . . , n}, together with two vertical
lines,

√
n2/n1 and −

√
n1/n2. See Sections 3 and 4 for the details of the lines. We observed that s1j(II) became close to

(−1)i+1√ni′/ni (i′ ̸= i) when xj ∈ Πi for all j as d increases. In addition, s2j(II) became close to 0 when xj ∈ Π1 as d
increases for (b) to (d). On the other hand, for (c) and (d), sij(I)s behaved totally different from sij(II)s. We shall explain
their theoretical backgrounds in Sections 3 and 4.

3. Kernel PCA with the linear kernel (I)

In this section, we consider the KPCA with (I), that is, the LPCA. We assume the following condition:

(A-i) Var(∥x − µi∥
2
|x ∈ Πi) = O{tr(Σ 2

i )} as d → ∞ for i ∈ {1, 2}.

Note that E(∥x − µi∥
2
|x ∈ Πi) = tr(Σ i) for i ∈ {1, 2}. If Πis are Gaussian, it holds that Var(∥x − µi∥

2
|x ∈ Πi) = 2tr(Σ 2

i )
for i ∈ {1, 2}, so that (A-i) naturally holds.

Remark 2. We denote the eigen-decomposition of Σ i (i ∈ {1, 2}) by Σ i = HiΛiH⊤

i , where Λi = diag(λi1, . . . , λid) having
eigenvalues, λi1 ≥ · · · ≥ λid ≥ 0, and Hi is an orthogonal matrix of the corresponding eigenvectors. When x ∈ Πi (i ∈

3
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Fig. 2. Toy example to illustrate the behaviors of the PC scores by the linear and Gaussian kernels for (a) and (b). The blue circles and red triangles
denote the data points belonging to Π1 and Π2 , respectively. The upper (lower) three panels illustrate the linear (Gaussian) kernel for (a) and (b).

{1, 2}), let us write that x− µi = HiΛ
1/2
i (zi1, . . . , zid)⊤. Note that E{(zi1, . . . , zid)⊤} = 0 and Var{(zi1, . . . , zid)⊤} = Id. Then,

it holds that

Var(∥x − µi∥
2
|x ∈ Πi) =

d∑
ℓ,ℓ′=1

λiℓλiℓ′E{(z2iℓ − 1)(z2iℓ′ − 1)}.

If lim supd→∞ E(z4iℓ) < ∞ and E(z2iℓz
2
iℓ′ ) = E(z2iℓ)E(z

2
iℓ′ ) for all ℓ ̸= ℓ′, (A-i) holds. Thus if Πis are Gaussian, (A-i) holds since

ziℓs are independent and identically distributed (i.i.d.) as the standard normal distribution when Πi is Gaussian.

We write that K0(I) = PnX⊤XPn = (X − X)⊤(X − X), where X = (x, . . . , x) with x =
∑n

j=1 xj/n. We have the sample
covariance matrix as S = (X − X)(X − X)⊤/(n − 1). Then, its dual covariance matrix, K0(I)/(n − 1), shares non-zero
eigenvalues with S . See Ahn et al. [2], Jung and Marron [15] and Yata and Aoshima [27] for the details of the dual

4
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Fig. 3. Toy example to illustrate the behaviors of the PC scores by the linear and Gaussian kernels for (c) and (d). The blue circles and red triangles
denote the data points belonging to Π1 and Π2 , respectively. The upper (lower) three panels illustrate the linear (Gaussian) kernel for (c) and (d).

covariance matrix. We define the eigen-decomposition of K0(I) by K0(I) =
∑n−1

i=1 λ̂i(I)ûi(I)û⊤

i(I), where λ̂1(I) ≥ · · · ≥ λ̂n−1(I)

and ûi(I) = (ûi1(I), . . . , ûin(I))⊤. Note that sij(I) =
√
nûij(I). Let r = n−1(n21⊤

n1 , −n11⊤
n2 )

⊤ and

K̃0(I) = ∆µrr⊤
+ Pn

(
tr(Σ 1)In1 On1,n2
On2,n1 tr(Σ 2)In2

)
Pn,

where On1,n2 denotes the n1 × n2 zero matrix. Let ∥ · ∥F denote the Frobenius norm. Then, we have the following result.

Lemma 1. Assume (A-i). Assume also

(A-ii) tr(Σ 2
i )/∆

2
µ = o(1) as d → ∞ for i ∈ {1, 2}.

Then, it holds that ∥K0(I) − K̃0(I)∥F = oP (∆µ) as d → ∞.

5
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Here, ‘‘tr(Σ 2
i )/∆

2
µ = o(1)’’ means that the intrinsic information about µ1 − µ2 is much larger than the noise. If

lim infd→∞ ∆µ/d > 0, (A-ii) is equivalent to (2).
Now, we consider the eigenstructure of K̃0(I). Note that(

tr(Σ 1)In1 On1,n2
On2,n1 tr(Σ 2)In2

)
= tr(Σ 1)In + ∆Σ

(
On1,n1 On1,n2
On2,n1 In2

)
from (1). By noting that Pnr = r , when n2 ≥ 2, we write that

Pn

(
On1,n1 On1,n2
On2,n1 In2

)
Pn =

n2−1∑
i=1

viv⊤

i +
n1

n
rr⊤

∥r∥2 , (5)

where the set of vectors, {v1, . . . , vn2−1, r/∥r∥}, is orthonormal. Then, by noting that ∥r∥2
= n1n2/n, we write that

K̃0(I) = (n1n2∆µ/n + n1∆Σ/n)
rr⊤

∥r∥2 + ∆Σ

n2−1∑
i=1

viv⊤

i + tr(Σ 1)Pn. (6)

Note that n1n2∆µ/n + n1∆Σ/n + tr(Σ 1) and ∆Σ + tr(Σ 1) are eigenvalues of K̃0(I) when n2 ≥ 2. Also, note that

n1n2∆µ/n + n1∆Σ/n − ∆Σ

∆µ

=
n1n2

n

(
1 −

∆Σ

n1∆µ

)
. (7)

Here, we assume the following condition:

(A-iii) lim sup
d→∞

∆Σ

n1∆µ

< 1 when n2 ≥ 2.

From (6) and (7), under (A-iii), the first unit eigenvector of K̃0(I) is r/∥r∥. Thus from Lemma 1, under (A-i) and (A-ii), û1(I)
tends to r/∥r∥ = (n21⊤

n1 , −n11⊤
n2 )

⊤/
√
n1n2n as d → ∞. Then, we have the following result.

Theorem 1. Assume (A-i) to (A-iii). Then, it holds that as d → ∞

s1j(I) =

{√
n2/n1 + oP (1), j ∈ {1, . . . , n1},

−
√
n1/n2 + oP (1), j ∈ {n1 + 1, . . . , n}.

(8)

Remark 3. Yata and Aoshima [28] gave the results similar to Theorem 1 under ∆Σ/∆µ = o(1) as d → ∞. Note that
(A-iii) is milder than ∆Σ/∆µ = o(1). When n2 = 1, (8) holds under (A-i) and (A-ii). From Corollary 3 in [27] and Eq. (3)
in [28], under (A-ii) and some regularity conditions, it holds that

Angle(û1(I), r) = oP (1) as d → ∞ and n → ∞. (9)

Thus, the data can be effectively classified by the sign of the first PC scores even when d → ∞ and n → ∞.

Remark 4. If tr(Σ 1) > tr(Σ 2), (8) holds as d → ∞ under (A-i), (A-ii) and the following condition:

lim sup
d→∞

∆Σ/(n2∆µ) < 1 when n1 ≥ 2.

By using Theorem 1, one can classify xjs into two groups by the sign of the first PC scores. Note that ∆Σ/(n2∆µ) = 0 and
∆Σ/(n1∆µ) = 3/4 < 1 in the settings (a) and (b) of Fig. 2, respectively. Thus from Theorem 1, as expected theoretically,
s1j(I) became close to (−1)i+1√ni′/ni (i′ ̸= i) when xj ∈ Πi for all j, in Fig. 2.

In addition, we have the following result for the i (≥ 2)th PC score.

Proposition 1. Assume (A-i) to (A-iii). Assume also n2 ≥ 2 and

(A-iv) lim inf
d→∞

∆Σ

∆µ

> 0.

Then, it holds that as d → ∞

n∑
j′=n1+1

s2ij′(I)
n

= 1 + oP (1), sij(I) = oP (1), j ∈ {1, . . . , n1}, i ∈ {2, . . . , n2}.

We note that under the assumptions in Proposition 1, ûi(I) tends to a linear combination of vi′ , i′ ∈ {1, . . . , n2 − 1},
as d → ∞ for i ∈ {2, . . . , n2}. From Proposition 1, s2j(I) concentrates on 0 for xj ∈ Π1. Thus, under the assumptions in
Proposition 1, one can classify xjs into two groups, effectively, by the first two PC scores. See the upper three panels of
(b) in Fig. 2. On the other hand, if (A-iii) is not met, we have the following result.

6
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Proposition 2. Assume (A-i) and tr(Σ 2
i )/∆

2
Σ = o(1) as d → ∞ for i = 1, 2. Assume also n2 ≥ 2 and

lim inf
d→∞

∆Σ

n1∆µ

> 1.

Then, it holds that as d → ∞

n∑
j′=n1+1

s2ij′(I)
n

= 1 + oP (1), sij(I) = oP (1), j ∈ {1, . . . , n1}, i ∈ {1, . . . , n2 − 1}.

Remark 5. Yata and Aoshima [28] gave the results similar to Proposition 2 under ∆µ/∆Σ = o(1) as d → ∞.

We note that under the assumptions in Proposition 2, ûi(I) tends to a linear combination of vi′ , i′ ∈ {1, . . . , n2 − 1},
as d → ∞ for i ∈ {1, . . . , n2 − 1}. Also, note that (A-iii) is not met for the settings (c) and (d) of Fig. 3 since
∆Σ/(n1∆µ) = 9/8 > 1 for (d). Thus, as expected theoretically, sij(I), i ∈ {1, 2}, became close to 0 for xj ∈ Π1 in Fig. 3.
However, it is difficult to cluster xjs into two groups in such cases. Therefore, if ∆µ/∆Σ is small, we do not recommend
to use the linear PCA.

4. Kernel PCA with the Gaussian kernel (II)

In this section, we consider the KPCA with (II).

4.1. Asymptotic properties of the PC scores

Let K0(II) denote K0 given by using the kernel function (II). We assume the following condition for γ in (II):

(A-v) lim sup
d→∞

∆µ + ∆Σ

γ
< ∞.

Note that (A-v) holds under the following condition:

lim sup
d→∞

tr(Σ 1) + tr(Σ 2)
γ

< ∞. (10)

See also Remark 6 for the details of (A-v). Let κi = exp{−tr(Σ i)/γ } for i ∈ {1, 2}, κµ = exp(−∆µ/γ ) and κΣ =

exp(−∆Σ/γ ). Note that κ1 ≥ κ2 from tr(Σ 1) ≤ tr(Σ 2). Also, note that κµ < 1 and κΣ < 1 when ∆µ ̸= 0 and ∆Σ ̸= 0,
respectively. Let ∆κ = 1 + κ2

Σ − 2κµκΣ and

K̃0(II) = ∆κκ
2
1 rr

⊤
+ Pn

(
(1 − κ2

1 )In1 On1,n2

On2,n1 (1 − κ2
1κ

2
Σ )In2

)
Pn.

Here, ∆κ is a distance between the two populations since ∆κ = (1− κΣ )2 + 2(1− κµ)κΣ ≥ 0, and ∆κ > 0 when ∆µ ̸= 0
or ∆Σ ̸= 0. Then, we have the following result.

Lemma 2. Assume (A-i) and (A-v). Assume also

(A-vi)
tr(Σ 2

i ) + (µ1 − µ2)⊤Σ i(µ1 − µ2)
γ 2∆2

κ

= o(1), d → ∞, i ∈ {1, 2}.

Then, it holds that ∥K0(II) − K̃0(II)∥F = oP (∆κκ
2
1 ), d → ∞.

Remark 6. We note that (A-vi) is a convergence condition of K0(II). Note that lim infd→∞ κµ > 0 and lim infd→∞ κΣ > 0
under (A-v). Then, it holds that lim infd→∞ γ∆κ/∆µ > 0 under (A-v), so that (A-vi) is a milder condition than (A-ii) under
(A-v) from the fact that (µ1 − µ2)⊤Σ i(µ1 − µ2) ≤ ∆µtr(Σ 2

i )
1/2. However, (A-vi) is not always milder than (A-ii) when

(A-v) is not met. In addition, when (A-v) is not met, the KPCA with (II) gave bad performances in Figs. 4–5 in Section 5.
Thus, we assume (A-v) for γ in (II).

From Remark 6, (A-vi) holds under (A-ii) and (A-v). We have the following result.

Proposition 3. (A-vi) holds under (A-v) and the condition:

tr(Σ 2
i )

max{∆2
Σ/γ , ∆µ}2

= o(1), d → ∞, i ∈ {1, 2}. (11)
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Fig. 4. The performances of the PC scores with the kernel functions (I) and (II) for (e) to (h). For the Gaussian kernel, we set γ = d2
s/8 (s ∈ {1, . . . , 4})

and γ̂ (Γ0).

Fig. 5. The performances of the PC scores with the kernel functions (I) and (II) for (i) to (k). For the Gaussian kernel, we set γ = d2
s/8 (s ∈ {1, . . . , 4})

and γ̂ (Γ0).

Note that (A-vi) holds even when ∆µ = 0. From (5), when n2 ≥ 2, we write that

K̃0(II) = κ2
1

(
n1n2∆κ/n + n1(1 − κ2

Σ )/n
) rr⊤

∥r∥2 + κ2
1 (1 − κ2

Σ )
n2−1∑
i=1

viv⊤

i + (1 − κ2
1 )Pn. (12)

Similar to (7), from Lemma 2, for the PC score by the kernel function (II), we have the following result.

Theorem 2. Assume (A-i), (A-v) and (A-vi). Assume also

(A-vii) lim sup
d→∞

(1 − κ2
Σ )

n1∆κ

< 1 when n2 ≥ 2.

Then, it holds as d → ∞

s1j(II) =

{√
n2/n1 + oP (1), j ∈ {1, . . . , n1},

−
√
n1/n2 + oP (1), j ∈ {n1 + 1, . . . , n}.

(13)
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Furthermore, it holds as d → ∞

n∑
j′=n1+1

s2ij′(II)
n

= 1 + oP (1), sij(II) = oP (1), j ∈ {1, . . . , n1}, i ∈ {2, . . . , n2}

under n2 ≥ 2 and the condition:

(A-viii) lim inf
d→∞

(1 − κ2
Σ )

∆κ

> 0.

Remark 7. Similar to (9), for the KPCA with (II) it would be possible to obtain ‘‘Angle(û1, r) = op(1) as d → ∞ and
n → ∞’’ and that is now under investigation. We provide some simulation studies for large nis in Fig. 5.

From Theorem 2 and Proposition 3, the PC score with (II) has the consistency (13) even when µ1 = µ2. Note that
(A-vii) holds for (a) to (d) in Figs. 2–3. Thus in Figs. 2–3, s1j(II) became close to (−1)i+1√ni′/ni (i′ ̸= i) as d increases when
xj ∈ Πi. On the other hand, the PC score with (I) does not hold the consistency property when µ1 = µ2. See (c) in Fig. 3.

When (A-vii) is not met, we have the following result.

Proposition 4. Assume (A-i), (A-v) and

tr(Σ 2
i ) + (µ1 − µ2)⊤Σ i(µ1 − µ2)

γ 2(1 − κ2
Σ )2

= o(1), d → ∞, i ∈ {1, 2}.

Assume also n2 ≥ 2 and

lim inf
d→∞

(1 − κ2
Σ )

n1∆κ

> 1.

Then, it holds that as d → ∞

n∑
j′=n1+1

s2ij′(II)
n

= 1 + oP (1), sij(II) = oP (1), j ∈ {1, . . . , n1}, i ∈ {1, . . . , n2 − 1}.

From Theorem 2, one can classify xjs into two groups by the PC score under (A-vii) and the regularity conditions. Thus
we recommend to use γ satisfying (A-vii).

4.2. Relation between the linear kernel and Gaussian kernel

For K̃0(I) and K̃0(II), we have the following result.

Proposition 5. Under maxi=1,2 tr(Σ i)/γ = o(1) and ∆2
Σ/(γ∆µ) = o(1) as d → ∞, it holds that as d → ∞

∥K̃0(I)/∆µ − K̃0(II)/(κ2
1∆κ )∥F = o(1).

From Proposition 5, under maxi=1,2 tr(Σ i)/γ = o(1) and ∆2
Σ/(γ∆µ) = o(1) as d → ∞, the PC score with the Gaussian

kernel function (II) is asymptotically equivalent to that with the linear kernel function (I).

4.3. How to choose γ

In this section, we discuss a choice of γ in the Gaussian kernel function (II). Let ηi = ni/n for i ∈ {1, 2}. We assume
n2 ≥ 3 and ∆κ > 0 in this section. Let λ1(II) ≥ · · · ≥ λn−1(II) be the eigenvalues of K̃0(II). Let α1 = (1 − κ2

1 )/(∆κκ
2
1 ),

α2 = (1 − κ2
Σ )/∆κ and βj = λj(II)/(∆κκ

2
1 ) for j ∈ {1, . . . , n − 1}. From (12) we have that

β1 = α1 + η1n2 + η1α2, β2 = · · · = βn2 = α1 + α2, when α2/n1 < 1;
and β1 = · · · = βn2−1 = α1 + α2, βn2 = α1 + η1n2 + η1α2, when α2/n1 ≥ 1.

From the above results, if lim infd→∞(β1 − β2) > 0, (A-vii) holds. On the other hand, if β1 = β2, (A-vii) does not hold.
Also, from Theorem 2, we emphasize that the first eigenspace includes the intrinsic information for the two-class model.
If the difference between β1 and β2 is large, the intrinsic information becomes clearer. Thus one may choose γ that
makes ‘‘λ1(II)(γ ) − λ2(II)(γ )’’ large, where λj(II)(γ ) denotes λj(II) for a given tuning parameter γ . We propose the following
procedure to choose γ : We denote a set of candidates of γ by Γ = {γ1, . . . , γt}. Let λ̂1(II)(γ ) ≥ · · · ≥ λ̂n−1(II)(γ ) be the
eigenvalues of K0(II) with a given γ . Choose γ such that

γ̂ (Γ ) = argmax
γ∈Γ

(λ̂1(II)(γ ) − λ̂2(II)(γ )). (14)
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We give the performance of γ̂ (Γ ) in Section 5. Let γ∗ = tr(S). From (10), γ∗ is a candidate of γ since E{tr(S)} =

η1tr(Σ 1) + η2tr(Σ 2) + η1η2∆µ. We recommend to consider γ s around γ∗ as candidates in Γ . See (15) in Section 5.1.
We provide in Appendix D of the online supplementary material a program in R-code to calculate sij(II)s with γ = γ̂ (Γ ).

5. Performances

In this section, we check the performance of the KPCA both in numerical simulations and actual data analyses.

5.1. Numerical studies

For the toy examples in Figs. 2 to 3 of Section 2.2, we checked the performance of sij(II)s with γ = d. In this section,
we checked the performance of sij(II)s with γ = γ̂ (Γ ) in the following setup. We set Γ in (14) as

Γ0 =
{
γ t/5

∗
, t ∈ {1, . . . , 9}

}
. (15)

Independent pseudo random observations were generated from Πi : Nd(µi,Σ i), i = 1, 2, having Σ 1 = c1B(0.3|i−j|1/3 )B
and Σ 2 = c2B(0.4|i−j|1/3 )B, where B = diag[{0.5 + 1/(d + 1)}1/2, . . . , {0.5 + d/(d + 1)}1/2]. We set µ1 = 0 and
d = 2s, s = 3, . . . , 11. Let µ∗ = (1, . . . , 1, 0, . . . , 0)⊤ whose first ⌈d2/3⌉ elements are 1. Here, ⌈·⌉ denotes the ceiling
function. We considered four cases:

(e) n1 = 12, n2 = 3, µ2 = µ∗ and (c1, c2) = (1, 1);
(f) n1 = 3, n2 = 12, µ2 = 0 and (c1, c2) = (0.3, 1);
(g) n1 = 3, n2 = 12, µ2 = 2µ∗ and (c1, c2) = (1, 2);
(h) n1 = 12, n2 = 3, µ2 = µ∗ and (c1, c2) = (1, 1 + 2/⌈d1/3⌉).

Note that ∆µ ≈ d2/3 for (e) and (h), ∆µ = 0 for (f) and ∆µ ≈ 4d2/3 for (g). Also, note that ∆Σ = 0 for (e), ∆Σ = 0.7d
for (f), ∆Σ = d for (g) and ∆Σ ≈ 2d2/3 for (h). We calculated û1 for the linear and Gaussian kernels. Here, we used
γ = d2

s/8, s ∈ {1, . . . , 4} and γ̂ (Γ0). Note that (A-v) does not hold when γ = d2
s/8, s ∈ {1, 2}, for (e) to (h). We checked

the consistency (13). Note that the consistency is equivalent to (∥r∥−1r⊤û1−1)2 = oP (1). Let û1t be û1 in the tth iteration.
We calculated the squared error, SE(û1t ) = (∥r∥−1r⊤û1t − 1)2, for t ∈ {1, . . . , 2000}. We repeated it 2000 times and took
the average, MSE(û1) =

∑2000
t=1 SE(û1t )/2000. In Fig. 4, we plotted MSE(û1) for d = 2s, s ∈ {3, . . . , 11}. We observed that

the Gaussian kernel with γ̂ (Γ0) gives preferable performances for (e) to (h). The performances of the Gaussian kernel with
γ = d2 were close to those of the linear kernel. See Proposition 5.

Next, we compare the performance of the proposed methods in complex settings. We set µ1 = 0, Σ 1 =

0.9B(0.3|i−j|1/3 )B and Σ 2 = 1.1(0.4|i−j|1/3 ). Note that ∆Σ = 0.2d. For Πis, we considered the following distributions:
(A) Πi : Nd(µi,Σ i);
(B) (zi1, . . . , zid)⊤s are i.i.d. as the d-variate t-distribution, td(Id, ν), with mean zero, covariance matrix Id and degrees

of freedom ν = 5;
(C) ziℓ = (viℓ −5)/

√
10 (ℓ = 1, . . . , d) in which viℓs are i.i.d. as the chi-squared distribution with 5 degrees of freedom.

Here, ziℓs are given in Remark 2.
Note that (A-i) holds for (A) and (C), however does not hold for (B). We set up three cases:

(i) n1 = n2 = 8 + 4s, s ∈ {1, . . . , 9}, µ2 = 1d/5, and d = 1000 for (A);
(j) n1 = 2s, n2 = 5s, s ∈ {1, . . . , 9}, µ2 = 1d, and d = 1000 for (B);
(k) n1 = n2 = 10, µ2 = 1d/3, and d = 2s, s ∈ {3, . . . , 11} for (C).

Similar to the above simulations, we calculated MSE(û1) for the kernel functions (I) and (II) with γ = d2
s/8 (s ∈ {1, . . . , 4})

and γ̂ (Γ0) and plotted the results in Fig. 5. We observed that the Gaussian kernel with γ̂ (Γ0) gives adequate performances
even when nis are large or unbalanced. Also, it gave preferable performances for the non-Gaussian cases.

5.2. Data examples

In this section, we analyzed three microarray data sets given in the supplemental material of Mramor et al. [19]. See the
web page (http://www.biolab.si/supp/bi-cancer/projections/index.html) for the details. The three data sets are as follows:

(D-i) Lung cancer data with 12 600 genes, consisting of Π1: normal lung (17 samples) and Π2: small cell lung cancer (6
samples), given by Bhattacharjee et al. [9];

(D-ii) Leukemia data with 12 533 genes, consisting of Π1: mixed-lineage leukemia (20 samples) and Π2: acute myeloid
leukemia (28 samples), given by Armstrong et al. [8];

(D-iii) Lymphoma and leukemia data with 15 434 genes, consisting of Π1: T-cell lymphoblastic lymphoma (9 samples)
and Π2: B-cell acute lymphoblastic leukemia (10 samples), given by Raetz et al. [21].

In Fig. 6, we displayed scatter plots of (s1j(I), s2j(I)) and (s1j(II), s2j(II)) with γ = γ̂ (Γ0), j ∈ {1, . . . , n}, together with two
vertical lines,

√
n2/n1 and −

√
n1/n2, for each data set. Also, we gave the value of SE(û1) for the linear and Gaussian kernels

in Table 1. From Fig. 6, one can effectively cluster xjs into two groups by the sign of the PC scores. Especially, for (D-ii),
sij(II)s gave a better performance than sij(I)s. In fact, SE(û1) was smaller for the Gaussian kernel compared with the linear
kernel.
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Table 1
The value of SE(û1) for three microarray data sets, (D-i), (D-ii) and (D-iii), in cases of (I)
the linear kernel and (II) the Gaussian kernel.
(n1, n2) SE(û1) for (I) SE(û1) for (II)

(D-i)
(17, 6) 0.001 0.003

(D-ii)
(20, 28) 0.051 0.018

(D-iii)
(9, 10) 0.016 0.006

6. Conclusion

In this paper, we considered a clustering method based on the KPCA for HDLSS data. We first investigated asymptotic
properties of the KPCA with the linear and Gaussian kernels for the two-class (k = 2) model. We theoretically showed
that HDLSS data can be classified by the sign of the first PC scores. See also Appendix C of the online supplementary for
the case when k = 3. Detailed study of the case when k ≥ 4 is left to a future work. We gave theoretical reasons why
the Gaussian kernel is effective for clustering high-dimensional data. We discussed the choice of the scale parameter,
γ , to enjoy high performances of the KPCA with the Gaussian kernel. We showed that the Gaussian kernel with the γ
gives preferable performances both in numerical simulations and actual data analyses. However, we have to say, the
dataset is not always classified by the sign of the first several PC scores. See Fig. 6 or Fig. C.2 in Appendix C of the online
supplementary. Therefore, we recommend the following steps: (i) apply the KPCA with the Gaussian kernel, (ii) map the
dataset onto the first two or three eigenspaces (feature space), and (iii) apply general clustering methods such as the
k-means method to the feature space.
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Appendix A. General framework of the kernel PCA

In this section, we consider the KPCA in a general framework. We assume the following condition as d → ∞:

(A-ix) k(xj, xj′ ) = δi + oP (∆) when xj, xj′ ∈ Πi (j ̸= j′), i ∈ {1, 2},
k(xj, xj) = δ2+i + oP (∆) when xj ∈ Πi, i ∈ {1, 2},
and k(xj, xj′ ) = δ5 + oP (∆) when xj ∈ Π1, xj′ ∈ Π2,
where ∆ = δ1 + δ2 − 2δ5 and δls are variables (which may depend on d) such that ∆ > 0, δ3 ≥ δ1 and δ4 ≥ δ2.

Let σ1 = δ3 − δ1, σ2 = δ4 − δ2 and ∆σ = |σ2 − σ1|. Note that (A-ix) is regarded as a convergence condition for the gram
matrix and ∆ is a distance between the two populations. Also, note that δis are characteristic variables for each kernel in
high-dimensional settings. For example, ∆ = κ2

1 + κ2
2 − 2κ1κ2κµ = ∆κκ

2
1 , δi = κ2

i , i ∈ {1, 2}, δ3 = δ4 = 1, δ5 = κ1κ2κµ

and ∆σ = κ2
1 − κ2

2 = κ2
1 (1− κ2

Σ ) when k(·, ·) is the Gaussian kernel function (II). Also, from (B.3) and (B.4) in Appendix B,
(A-ix) is met for the Gaussian kernel under (A-v) and (A-vi).

Remark 8. We note that ∆ = ∥µ1 − µ2∥
2, δi = ∥µi∥

2, δ2+i = ∥µi∥
2
+ tr(Σ i), i ∈ {1, 2}, δ5 = µ⊤

1 µ2 and ∆σ = ∆Σ when
k(·, ·) is the linear kernel function (I). See Nakayama et al. [20] for δis of the polynomial kernel function (III).

For the sake of simplicity, we assume σ1 ≤ σ2. Let

K̃0 = ∆rr⊤
+ Pn

(
σ1In1 On1,n2
On2,n1 σ2In2

)
Pn.

Then, under (A-ix), it holds that ∥K0 − K̃0∥F = oP (∆) as d → ∞. Thus, we have the following result.
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Fig. 6. Scatter plots of the PC scores for (D-i) to (D-iii). The blue circles and red triangles denote the data points belonging to Π1 and Π2 , respectively.
The left (right) panels illustrate the linear (Gaussian) kernel.

Proposition 6. Assume (A-ix). Assume also

lim sup
d→∞

∆σ

n1∆
< 1 when n2 ≥ 2.

12

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



Y. Nakayama, K. Yata and M. Aoshima Journal of Multivariate Analysis 185 (2021) 104779

Then, it holds as d → ∞

s1j =

{√
n2/n1 + oP (1), j ∈ {1, . . . , n1},

−
√
n1/n2 + oP (1), j ∈ {n1 + 1, . . . , n}.

In addition, it holds as d → ∞

n∑
j′=n1+1

s2ij′
n

= 1 + oP (1), sij = oP (1), j ∈ {1, . . . , n1}, i ∈ {2, . . . , n2}

under n2 ≥ 2 and lim infd→∞ ∆σ /∆ > 0.

We checked the performance of the PC scores by the polynomial and Laplace kernels in the same settings (a) and (d)
as in Section 2.2. We set (ζ , r) = (d, 2) in (III) and ξ = d in (IV). Let sij(III) and sij(IV ) denote sij given by using the kernel
functions (III) and (IV), respectively. In Fig. A.1, we displayed scatter plots of (s1j(III), s2j(III)) and (s1j(IV ), s2j(IV )), j ∈ {1, . . . , n},
together with two theoretical lines,

√
n2/n1 and −

√
n1/n2. We observed that both the kernels give good performances

for (a). For (d), s1j(IV )s became close to the theoretical lines as d increases. However, s1j(III)s did not show the consistency
property for (d). This is probably because the Laplace kernel can draw information about heteroscedasticity via the
difference of Σ is.

Appendix B. Proofs

Let
L1 =

(
tr(Σ 1)In1 On1,n2

On2,n1 tr(Σ 2)In2

)
and L2 =

(
(1 − κ2

1 )In1 On1,n2
On2,n1 (1 − κ2

1κ
2
Σ )In2

)
.

Let Jn1,n2 be the n1 × n2 matrix with all elements 1.

Proof of Lemma 1. Let µ0 = η1µ1 + η2µ2. We can write that xj − µ0 = (xj − µi) + (−1)i+1(1 − ηi)(µ1 − µ2) for
i ∈ {1, 2}, j ∈ {1, . . . , n}. Under (A-i) and (A-ii), it holds that as d → ∞ for i ∈ {1, 2}

Var(∥x − µi∥
2
|x ∈ Πi)/∆2

µ = o(1).

Then, similar to the proof of Lemma 1 in Yata and Aoshima [28], under (A-i) and (A-ii), we have that as d → ∞

{∥xj − µi∥
2
− tr(Σ i)}/∆µ = oP (1), (xj − µi)

⊤(xj′ − µi′ )/∆µ = oP (1)

and (xj − µi)
⊤(µ1 − µ2)/∆µ = OP [{(µ1 − µ2)

⊤Σ i(µ1 − µ2)}
1/2/∆µ] = oP (1) (B.1)

when xj ∈ Πi and xj′ ∈ Πi′ (j ̸= j′), from the fact that (µ1 − µ2)⊤Σ i(µ1 − µ2) ≤ ∆µtr(Σ 2
i )

1/2. Thus, it holds that(X − µ01⊤

n )
⊤(X − µ01⊤

n ) − ∆µrr⊤
− L1


F = oP (∆µ)

under (A-i) and (A-ii). By noting that Pn(X − µ01⊤
n )

⊤(X − µ01⊤
n )Pn = K0(I) and r⊤Pn = r⊤ from r⊤1n = 0, we conclude

the result.

Proof of Theorem 1, Propositions 1 and 2. Assume (A-i) and (A-ii). Note that û⊤

i 1n = 0 when λ̂i > 0 since 1⊤
n K0(I)1n = 0.

From Lemma 1, we have that as d → ∞

û⊤

i K0(I)ûi

∆µ

= (û⊤

i r)
2
+

û⊤

i PnL1Pnûi

∆µ

+ oP (1) = (û⊤

i r)
2
+

tr(Σ 1)
∆µ

+
∆Σ û⊤

i PnDnPnû⊤

i

∆µ

+ oP (1) (B.2)

when λ̂i > 0, where Dn = diag(0, . . . , 0, 1, . . . , 1) whose last n2 diagonal elements are 1. When n2 ≥ 2, from (6), under
(A-iii), it holds that û⊤

1 r/∥r∥ = 1 + oP (1) since (1⊤
n1 , −1⊤

n2 )û1 ≥ 0. When n2 = 1 and û⊤

1 1n = 0, we note that

argmax
û1

(û⊤

1 PnDnPnû1) = r/∥r∥.

Thus it concludes the result of Theorem 1.
For Proposition 1, from (5), under (A-iii) and (A-iv), it hold that

ûi = (oP (1), . . . , oP (1), ûin1+1, . . . , ûin)⊤

for i ∈ {2, . . . , n2}. It concludes the result of Proposition 1. Similarly, from (5) and (B.2), we can conclude the result of
Proposition 2.

Proof of Lemma 2. Assume (A-i) and (A-v). Let ω = {maxi=1,2(µ1 −µ2)⊤Σ i(µ1 −µ2)+maxi=1,2 tr(Σ 2
i )}

1/2/γ . Note that
ω = o(1) as d → ∞ under (A-vi) from the fact that ∆κ = O(1). Thus from (B.1), under (A-vi), it holds that

exp(−∥xj − xj′∥2/γ ) = exp(−2tr(Σ i)/γ ){1 + OP (ω)}, xj, xj′ ∈ Πi (j ̸= j′);

exp(−∥xj − xj′∥2/γ ) = exp{−(tr(Σ 1) + tr(Σ 2) + ∆µ)/γ }{1 + OP (ω)}, xj ∈ Π1, xj′ ∈ Π2. (B.3)
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Fig. A.1. Toy example to illustrate the behaviors of the PC scores by the polynomial and Laplace kernels for (a) and (d). The blue circles and red
triangles denote the data points belonging to Π1 and Π2 , respectively. The upper (lower) three panels illustrate the polynomial (Laplace) kernel for
(a) and (d).

Thus, under (A-vi), it holds thatK/κ2
1 −

(
Jn1,n1 κµκΣ Jn1,n2

κµκΣ Jn2,n1 κ2
Σ Jn2,n2

)
− L2/κ2

1


F

= OP (ω). (B.4)

Note that

Pn

(
Jn1,n1 κµκΣ Jn1,n2

κµκΣ Jn2,n1 κ2
Σ Jn2,n2

)
Pn = ∆κrr⊤. (B.5)

Then, from (B.4) and (B.5), we can conclude the result of Lemma 2.
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Proof of Propositions 3 and 5. Note that (A-vi) holds under (11) when ∆µ/γ ∈ (0, ∞) or ∆Σ/γ ∈ (0, ∞) as d → ∞,
from the fact that (µ1 − µ2)⊤Σ i(µ1 − µ2) ≤ ∆µtr(Σ 2

i )
1/2. Thus, we consider the case when (∆µ + ∆Σ )/γ = o(1). It

holds that ∆κ = (1 − κΣ )2 + 2(1 − κµ)κΣ = (∆Σ/γ )2{1 + o(1)} + 2(∆µ/γ ){1 + o(1)}. Thus (A-vi) holds under (11) when
(∆µ + ∆Σ )/γ = o(1). It concludes the result of Proposition 3.

Next, we consider Proposition 5. Note that ∆κ = 2(∆µ/γ ){1+o(1)} and 1−κi = (tr(Σ i)/γ ){1+o(1)}, i ∈ {1, 2}, under
the conditions in Proposition 5. Thus we can conclude the result of Proposition 5.

Proof of Theorem 2 and Proposition 4. Assume (A-i), (A-v) and (A-vi). Similar to (B.2), from Lemma 2, we have that as
d → ∞

û⊤

i K0(II)ûi

∆κκ
2
1

= (û⊤

i r)
2
+

û⊤

i PnL2Pnûi

∆κκ
2
1

+ oP (1) = (û⊤

i r)
2
+

1 − κ2
1

∆κκ
2
1

+ (1 − κ2
Σ )

û⊤

i PnDnPnû⊤

i

∆κ

+ oP (1)

when λ̂i > 0, where Dn is given in the proofs of Theorem 1, Propositions 1 and 2. Then, similar to the proofs of Theorem 1,
Propositions 1 and 2, we can conclude the results in Theorem 2 and Proposition 4.

Proof of Proposition 6. Similar to the proofs of Theorem 1, Propositions 1 and 2, we can conclude the results in
Proposition 6.

Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmva.2021.104779. We
give asymptotic properties of the PC score with the Gaussian kernel function (II) for three classes (k = 3) and an R-code
to calculate sij(II)s with γ = γ̂ (Γ ) in the online supplementary material.

References

[1] J. Ahn, M.H. Lee, Y.J. Yoon, Clustering high dimension, low sample size data using the maximal data piling distance, Statist. Sinica 22 (2012)
443–464.

[2] J. Ahn, J.S. Marron, K.M. Muller, Y.-Y. Chi, The high-dimension, low-sample-size geometric representation holds under mild conditions, Biometrika
94 (2007) 760–766.

[3] M. Aoshima, D. Shen, H. Shen, K. Yata, Y.-H. Zhou, J.S. Marron, A survey of high dimension low sample size asymptotics, Aust. N. Z. J. Stat. 60
(2018) 4–19.

[4] M. Aoshima, K. Yata, Two-stage procedures for high-dimensional data, Sequential Anal. (Ed. Spec. Invit. Pap.) 30 (2011) 356–399.
[5] M. Aoshima, K. Yata, A distance-based, misclassification rate adjusted classifier for multiclass, high-dimensional data, Ann. Inst. Stat. Math. 66

(2014) 983–1010.
[6] M. Aoshima, K. Yata, Two-sample tests for high-dimension, strongly spiked eigenvalue models, Statist. Sinica 28 (2018) 43–62.
[7] M. Aoshima, K. Yata, Distance-based classifier by data transformation for high-dimension, strongly spiked eigenvalue models, Ann. Inst. Stat.

Math. 71 (2019) 473–503.
[8] S.A. Armstrong, J.E. Staunton, L.B. Silverman, R. Pieters, M.L. den Boer, M.D. Minden, S.E. Sallan, E.S. Lander, T.R. Golub, S.J. Korsmeyer, MLL

translocations specify a distinct gene expression profile that distinguishes a unique leukemia, Nat. Genet. 30 (2002) 41–47.
[9] A. Bhattacharjee, W.G. Richards, J. Staunton, C. Li, S. Monti, P. Vasa, C. Ladd, J. Beheshti, R. Bueno, M. Gillette, M. Loda, G. Weber, E.J. Mark,

E.S. Lander, W. Wong, B.E. Johnson, T.R. Golub, D.J. Sugarbaker, M. Meyerson, Classification of human lung carcinomas by mRNA expression
profiling reveals distinct adenocarcinoma subclasses, Proc. Natl. Acad. Sci. 98 (2001) 13790–13795.

[10] P. Borysov, J. Hannig, J.S. Marron, Asymptotics of hierarchical clustering for growing dimension, J. Multivariate Anal. 124 (2014) 465–479.
[11] I.L. Dryden, Statistical analysis on high-dimensional spheres and shape spaces, Ann. Statist. 33 (2005) 1643–1665.
[12] P. Hall, J.S. Marron, A. Neeman, Geometric representation of high dimension, low sample size data, J. R. Stat. Soc. Ser. B Stat. Methodol. 67

(2005) 427–444.
[13] K. Hellton, M. Thoresen, When and why are principal component scores a good tool for visualizing high-dimensional data?, Scand. J. Stat. 44

(2017) 581–597.
[14] H. Huang, Y. Liu, M. Yuan, J.S. Marron, Statistical significance of clustering using soft thresholding, J. Comput. Graph. Stat. 24 (2015) 975–993.
[15] S. Jung, J.S. Marron, PCA consistency in high dimension, low sample size context, Ann. Statist. 37 (2009) 4104–4130.
[16] P.K. Kimes, Y. Liu, H.D. Neil, J.S. Marron, Statistical significance for hierarchical clustering, Biometrics 73 (2017) 811–821.
[17] Z. Liu, D. Chen, H. Bensmail, Gene expression data classification with kernel principal component analysis, J. Biomed. Biotechnol. (2005) 155–159.
[18] Y. Liu, D.N. Hayes, A. Nobel, J.S. Marron, Statistical significance of clustering for high-dimension, low-sample size data, J. Amer. Statist. Assoc.

103 (2008) 1281–1293.
[19] M. Mramor, G. Leban, J. Demšar, B. Zupan, Visualization-based cancer microarray data classification analysis, Bioinformatics 23 (2007) 2147–2154.
[20] Y. Nakayama, K. Yata, M. Aoshima, Bias-corrected support vector machine with gaussian kernel in high-dimension, low-sample-size settings,

Ann. Inst. Stat. Math. 72 (2020) 1257–1286.
[21] E.A. Raetz, S.L. Perkins, D. Bhojwani, K. Smock, M. Philip, W.L. Carroll, D.-J. Min, Gene expression profiling reveals intrinsic differences between

T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma, Pediatr. Blood Cancer 47 (2006) 130–140.
[22] F. Reverter, E. Vegas, P. Sánchez, Mining gene expression profiles: an integrated implementation of kernel principal component analysis and

singular value decomposition, Genom. Proteom. Bioinf. 8 (2010) 200–210.
[23] S. Sarkar, A.K. Ghosh, On perfect clustering of high dimension, low sample size data, IEEE Trans. Pattern Anal. 42 (2020) 2257–2272.
[24] B. Schölkopf, A. Smola, K.-R. Müller, Nonlinear component analysis as a kernel eigenvalue problem, Neural Comput. 10 (1998) 1299–1319.
[25] B. Schölkopf, A. Smola, K.-R. Müller, Kernel principal component analysis, in: Advances in Kernel Methods - Support Vector Learning, MIT Press,

1999, pp. 327–352.
[26] D. Shen, H. Shen, J.S. Marron, A general framework for consistency of principal component analysis, J. Mach. Learn. Res. 17 (2016) 1–34.
[27] K. Yata, M. Aoshima, Effective PCA for high-dimension, low-sample-size data with noise reduction via geometric representations, J. Multivariate

Anal. 105 (2012) 193–215.
[28] K. Yata, M. Aoshima, Geometric consistency of principal component scores for high-dimensional mixture models and its application, Scand. J.

Stat. 47 (2020) 899–921.

15

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

https://doi.org/10.1016/j.jmva.2021.104779
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb1
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb1
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb1
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb2
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb2
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb2
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb3
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb3
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb3
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb4
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb5
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb5
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb5
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb6
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb7
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb7
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb7
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb8
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb8
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb8
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb9
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb9
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb9
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb9
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb9
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb10
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb11
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb12
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb12
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb12
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb13
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb13
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb13
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb14
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb15
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb16
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb17
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb18
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb18
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb18
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb19
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb20
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb20
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb20
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb21
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb21
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb21
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb22
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb22
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb22
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb23
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb24
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb25
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb25
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb25
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb26
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb27
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb27
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb27
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb28
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb28
http://refhub.elsevier.com/S0047-259X(21)00057-9/sb28

	Clustering by principal component analysis with Gaussian kernel in high-dimension, low-sample-size settings
	Introduction
	Motivations of the kernel PCA
	Kernel PCA for spherical data
	Numerical behaviors of PC scores in HDLSS settings

	Kernel PCA with the linear kernel (I)
	Kernel PCA with the Gaussian kernel (II)
	Asymptotic properties of the PC scores
	Relation between the linear kernel and Gaussian kernel
	How to choose 

	Performances
	Numerical studies
	Data examples

	Conclusion
	CRediT authorship contribution statement
	Acknowledgments
	Appendix A. General framework of the kernel PCA
	Appendix B. Proofs
	. Supplementary data
	References




