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ABSTRACT This paper addresses bandwidth allocation to multiple light detection and ranging (LIDAR)
sensors for smart monitoring, which a limited communication capacity is available to transmit a large volume
of point-cloud data from the sensors to an edge server in real time. To deal with the limited capacity of
the communication channel, we propose a bandwidth-allocation scheme that assigns multiple point-cloud
compression formats to each LIDAR sensor in accordance with the spatial importance of the point-cloud data
transmitted by the sensor. Spatial importance is determined by estimating how objects, such as cars, trucks,
bikes, and pedestrians, are likely to exist since regions where objects are more likely to exist are more useful
for smart monitoring. A numerical study using a real point-cloud dataset obtained at an intersection indicates
that the proposed scheme is superior to the benchmarks in terms of the distributions of data volumes among
LIDAR sensors and quality of point-cloud data received by the edge server.

INDEX TERMS Smart monitoring, LIDAR sensor, bandwidth allocation, point cloud compression.

I. INTRODUCTION
Smart monitoring systems, particularly at intersections, are
expected to be a road-safety solution from the perspective
of smart cities. As Datondji et al. suggested [1], intersection
safety is a critical global issue since accidents at intersections
are a major cause of road fatalities. Smart monitoring for
obtaining spatial information in real time from 3D image
sensors called light detection and ranging (LIDAR) sensors
is a promising to prevent accidents at intersections [2], [3].
A smart monitoring system using multiple LIDAR sensors is
effective in detecting objects; a single LIDAR sensor cannot
obtain information of the back side of the target object, and
the target object can be easily blocked by obstacles.

An issue with this system is that, since multiple LIDAR
sensors share the limited capacity of the communication
bandwidth from the sensors to an edge server, the commu-
nication channel becomes a bottleneck in real-time transmis-
sion of point-cloud data as the number of LIDAR sensors
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or the volume of point-cloud data increases. Due to this
bottleneck, some of the data are dropped in real-time trans-
mission; only successfully received data are used at the edge
server, which leads to performance deterioration in smart
monitoring. Although Sato et al. previously discussed this
issue, bandwidth allocation to each LIDAR sensor was not
taken in account [3].

In this paper, we propose a bandwidth-allocation scheme
that allocates multiple point-cloud compression formats to
each LIDAR sensor in accordance with the spatial importance
of the point-cloud data transmitted from a LIDAR sensor.
Spatial importance is determined by estimating how objects,
such as cars, trucks, bicycles, and pedestrians, are likely to
exist; regions where objects are more likely to exist are more
useful for smart monitoring. The proposed scheme indirectly
controls bandwidth by assigning the compression ratio of
point-cloud data; as a higher compression ratio is assigned
(data is less compressed), larger bandwidth is allocated from
the limited capacity of the total bandwidth. We evaluate the
proposed bandwidth-allocation scheme and compare it with
benchmark schemes through a numerical study using a real
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point-cloud dataset obtained at an intersection in terms of
the distributions of data volumes among LIDAR sensors and
quality of point-cloud data received by the edge server.

The remainder of this paper is as follows. Section II
reviews previous studies conducted on bandwidth allocation
for image-sensor networks. Section III presents the proposed
scheme, and Section IV presents an extension of the pro-
posed scheme. Section V presents the performance evaluation
using a point-cloud dataset. Finally, Section VI concludes the
paper.

II. RELATED WORK
A. 3D-IMAGE SENSOR NETWORK
LIDAR sensors are often used for autonomous vehicles [4].
However, the deployment of a network with multiple LIDAR
sensors has been also investigated. In 2006, the intelligent
transportation systems (ITS) group at the University of Min-
nesota developed a testbed system that placed a network
of radar and LIDAR sensors near a rural intersection [5].
The network constantly monitored this intersection and col-
lected road-traffic data from various perspectives. In 2009,
Zhao et al. proposed a system for monitoring an intersection
using a network of LIDAR sensors and video cameras [6].
The expected output of the system is motion trajectories
of each moving object that entered the intersection and an
estimation of its class (e.g., car, bus, bicycle, or pedestrian).
The monitoring system can estimate a transformation within
the horizontal plane (i.e., two translation and one rotation
parameters) between the coordinate systems of two neighbor-
ing LIDAR sensors. Using a LIDAR sensor as the reference
frame, all laser points from different LIDAR sensors can be
transformed into a common coordinate system. In addition,
all client computers are connected through a network to a
server computer. The server computer broadcasts its local
time periodically to synchronize the time of all computers.
In 2014, Strigel et al. published a dataset collected at a public
intersection in Aschaffenburg, Germany [2]. Four LIDAR
sensors covered a wide area of the central intersection, two
scanners observed the sidewalks along the main road, and
eight sensors observed three egresses of the intersection.
The LIDAR sensors synchronously operated at a frequency
of 12.5 Hz (80 ms).

B. POINT-CLOUD COMPRESSION
Point-cloud compression has been extensively studied to
tackle the problem of the limitation capacity of the com-
munication channel becoming a severe bottleneck affect-
ing real-time transmission of a large volume of point-cloud
data.

One of the most effective techniques for point-cloud com-
pression is setting up a regular structure for the point cloud.
An octree structure provides an efficient representation of
the spatial point-cloud distribution in a binary stream for-
mat [7], [8]. A kd tree is another structure commonly used
to represent a point cloud. The tree is constructed recur-

sively in a top-down fashion by selecting the coordinate
axis with the largest range (span) of point coordinates and
splitting the set of points into two equally sized subsets,
subsequently recursing to each of them [9]. Devillers et al.
used the kd-tree approach to recursively subdivide the bound-
ing box of a point cloud [10]. In 2017, Google established
the open source Draco [11], which uses a kd-tree structure
and arithmetic coding to quantify and organize points in 3D
space. A new ad-hoc group has recently been initiated for
MPEG Point Cloud Compression (MPEG PCC) [12], [13].
The group focuses on developing point-cloud compression
standards and has made significant progress in point-cloud
compression. Sato et al. compared octree and Draco in
the context of the spatial characteristics of point-cloud
data [3].

Some studies have attempted to convert 3D point-cloud
data into 2D structures rather than decomposing one frame of
point-cloud data into multiple images. Houshiar and Nüchter
used an equirectangular projection to map point clouds
onto panorama images [14]. Kohira and Masuda mapped
point-cloud data onto 2D pixels using GPS time and the
parameters of the laser scanner [15].

C. DATA-IMPORTANCE-BASED BANDWIDTH ALLOCATION
After the 3rd-generation cellular system and IEEE802.11
were standardized around 2000, quality-of-service (QoS) dif-
ferentiation technology started attracting attention because
both standards were promising for providing multimedia
services in wireless environments. Xiao et al. presented a
bandwidth-allocation scheme for multi-class multimedia ser-
vices in wireless/mobile networks [16]. They defined the
QoS degradation metric and discussed inter-fairness and
intra-fairness among QoS classes and in each QoS class.
Shinkuma et al. presented a scheme that uses a more
bandwidth-efficient transmission format to transmit web con-
tent less likely requested by users, which results in effi-
cient bandwidth usage in wireless/mobile web services [17].
They also proposed a differentiated video-transmission
scheme that allocates bandwidth in accordance with the
error sensitivity of video data; the more sensitive the
data, the larger the amount of bandwidth is assigned to
ensure the robustness of the transmission [18]. Nasser et al.
considered diverse bandwidth requirements of real-time
multimedia traffic and proposed a scheme that prioritizes
bandwidth allocation and call-admission control for multiple
classes [19].

Much research has led to the standardization of QoS differ-
entiation in commercialized wireless/mobile networks [20].
The recent development of network virtualization technology
in the 5G context enables flexible bandwidth allocation to
groups of communication traffic that belong to the same class
by assigning a virtual network slice to each group [21].

Although there has been much research on QoS differen-
tiation, bandwidth allocation of importance-aware transmis-
sion of point-cloud data has not been investigated. Adaptive
encoding is an indirect means of bandwidth allocation; data
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with a lower coding ratio require a smaller bandwidth for
transmission [22]. This is the principle upon which the pro-
posed scheme is built.

III. PROPOSED SCHEME
A. SYSTEM MODEL
Figure 1 illustrates the system model we assume in this
paper. The system consists of an edge server and multi-
ple devices equipped with image sensor units (hereafter
‘‘sensor devices’’). Each sensor device generates streaming
point-cloud data frame by frame sequentially. Point-cloud
data are transmitted from multiple sensor devices to the edge
server via a wireless network in this system. The capturer
of each sensor device acquires point-cloud data at every
frame delivered from the sensor device and stores them in
the buffer. The encoder compresses point-cloud data using
the compression format instructed by the controller of the
edge server. The transmitter then sends the compressed data
to the edge server. The receiver of the edge server receives
the compressed data from the sensor devices. The decoder
decompresses the compressed data with the compression for-
mat instructed by the controller. The estimator recognizes
objects, such as cars, trucks, bicycles, and pedestrians, from
the point-cloud data and estimates the spatial importance of
the point-cloud data provided from each sensor device and
stores them in the database. The controller determines the
bandwidth allocation for each sensor device on the basis of
the spatial importance stored in the database.

FIGURE 1. Overview of system model for the proposed scheme.

B. PROBLEM FORMULATION
This section presents the problem formulation of the system
model in Fig. 1, which is given as

max
∑

i∈I
q(pi(xi)) (1)

s.t.
∑

i∈I
b(pi(xi)) ≤ C . (2)

The given parameters in the problem formulation are the
set of all sensor devices I and the total bandwidth capacity
from the transmitter to the receiver C . The decision variables
in the problem formulation are the point-cloud data xi and
the compression format pi of sensor device i. q() is the
quality of decompressed point-cloud data that depends on
pi, and b() is the bandwidth allocated to sensor device i by
selecting pi as the compression format. Equations (1) and (2)

are the objective and constraint of the problem formulation
of the proposed scheme, respectively. Equation (1) means
that the objective of the proposed scheme is to maximize the
total quality of decompressed point-cloud data by selecting
the appropriate pi. Equation (2) means that the total volume
of data transmitted from sensor devices does not exceed C .

Obviously, Eq. (1) cannot be solved because the quality
of the point-cloud data becomes measurable after the point
cloud is decompressed. In the proposed scheme, the quality
of the decompressed point cloud in specific spatial regions
where objects are likely to exist should be prioritized. There-
fore, in the proposed scheme, Eq. (1) is replaced with

max
∑

i∈I
sib(pi(xi)). (3)

This means that the proposed scheme maximizes the sum of
the bandwidth for sensor device i weighted by si, which is
the spatial importance score of sensor device i and explained
in detail in Section III-D3. A simple heuristic approach for
this optimization is to select the higher compression ratio to
the sensor device with a higher importance score to improve
the quality of the spatial regions with high importance scores.
The algorithm for the control procedure of bandwidth alloca-
tion is described in detail in Section III-C. Figure 2 illustrates
an example of bandwidth allocation in the proposed scheme
based on Eqs. (3) and (2). In this example, sensor devices
I to IV transmit the point-cloud data with importance scores
1 to 4, respectively. Sensor devices with higher scores com-
press the point-cloud data with a higher compression ratio.
Eventually, the compressed point-cloud data with high impor-
tance scores are transmitted while satisfying the requirement
of C .

FIGURE 2. Example of bandwidth allocation in proposed scheme.

C. CONTROL PROCEDURE
The control procedure of bandwidth allocation of the pro-
posed scheme is shown in Algorithm 1 and Figure 3.
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FIGURE 3. Block diagram of control procedure of proposed scheme.

Algorithm 1 Control Procedure of Proposed Scheme
Model-creation

phase
1: f1, f2, . . . , fl ← l frames of point cloud collected in

advance
2: si ← spatial importance of the sensor device estimated

from f1, f2, . . . , fl , where i is the unique number of the
sensor device

3: pi ← the compression format is determined from
s1, s2, . . . , si

Real-time
compression phase

4: Send pi to each device
5: Compress point-cloud data obtained from sensor device
i, xi with the pi for i.

6: Send the compressed data from devices to the edge server
7: Receive the compressed data and carry out decompres-

sion with pi

The control procedure roughly consists of two phases: model
creation and real-time compression. In the model-creation
phase, the importance score of each sensor device is esti-
mated. The details of estimating the importance score are
given later in Section III-D3. In the real-time-compression
phase, compression is performed with the compression for-
mat determined for each sensor device.

Considering pi, we assume octree-based compression,
which is a commonly used compression method for
point-cloud data [8], [23]. The compression of octree-based
compression corresponds to setting the voxel size as a
parameter; the smaller (larger) the voxel size is, the higher
(lower) the compression ratio becomes while maintaining the
high (low) quality of the point-cloud. Therefore, the proposed
scheme uses a smaller voxel size for the sensor devices with
higher importance scores. In the proposed scheme, the voxel
size pi is given as

pi = pmax − (pmax − pmin)N ((si)k ), (4)

where pmax and pmin are the maximum and minimum voxel
size in the range of pi, respectively, N () is a normalization
function that scales from 0.0 to 1.0, and k is a given parameter
that affects the normalization of si. In Eq. (4), k affects the
distribution of N (). As k is set larger, smaller pi is assigned
to sensor devices with high-importance scores. As pmax and
pmin are set larger, pi increases for all sensor devices. It is
difficult to optimize the determination of k , pmax, and pmin;
we compared several combinations of them in the numerical
study discussed in Section V.

D. NUMERICAL EXAMPLE OF BANDWIDTH ALLOCATION
This section presents a numerical example of the bandwidth
allocation of the proposed scheme.

1) SCENARIO AND DATASET
We assumed a scenario in which ten or more sensor devices
at an intersection acquire point-cloud data. A dataset called
the Ko-PER intersection dataset, which was published by
Strigel et al. [2], was most suitable for our numerical study
because it contains 3D image data obtained with 14 SICK
LD-MRS 8-layer LIDAR sensor devices. Raw data in the
dataset were collected to identify a public four-way inter-
section in Aschaffenburg, Germany. Its main road fea-
tures two straight ahead lanes and a separate left-turn lane
for each direction. The branch roads have one lane per
direction and a left-turn lane on one side. Additionally,
the main road has a separate bicycle lane, and the inter-
section is surrounded by sidewalks on all sides except
one. The intersection was observed using the 14 sensor
devices from different viewpoints. The sensor devices were
installed on infrastructure components such as lamp posts
and traffic lights and were mounted at least 5 m above the
ground. Four sensor devices covered the area of the cen-
ter of the central intersection, two sensors (scanners) moni-
tored the sidewalks along the main road, and eight sensors
monitored three egresses of the intersection. The sensor
devices synchronously operated at a frequency of 12.5 Hz
(80 ms). The dataset consists of Sequence1a-d, Sequence2,
and Sequence3 and contains raw LIDAR data, undistorted
camera images, reference data of selected vehicles, and
object-label information. The object labels are cars, trucks,
pedestrians, and bicycles. We used Sequence1a because it
contains label information and has 1,211 frames. Each sensor
device was calibrated in advance using calibration informa-
tion from the Ko-PER intersection dataset and Open3D [24],
an open source python programming library. The number of
points in the calibrated point-cloud data of one frame was
around 15,000.

2) COMPRESSION METHOD
Huang and Liu mentioned that octree-based compression
is a commonly used compression method [25]. We used
this compression method in our numerical study though
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FIGURE 4. Distribution of point cloud data of each sensor device in
Ko-PER dataset.

other compression methods mentioned in Section II such
as Draco [11] and MPEG PCC [12], [13] are applicable
for the proposed scheme. Octree-based compression allows
us to easily control the compression ratio by just a few
parameters.

Octree-based compression is provided by an octree struc-
ture [23]. An octree is a tree with a structure suitable for
sparse 3D data, in which each branch node represents a
certain cube or cuboid bounding volume in space. Starting
at the root, each branch has up to eight children, each one is
a sub-octant of the node’s bounding box. By traversing the
tree in breadth-first order and outputting every child node
configuration byte encountered, we are able to efficiently
encode a point distribution in space. Our study involved using
the Point Cloud Library (PCL) to implement octree-based
compression. The PCL is a large cross-platform open-source
C++ programming library that implements a large number of
point-cloud universal algorithms and efficient data structures
[26], [27]. The PCL provides parameters for octree-based
compression. We used octree voxel size resolution, which
corresponds to pi in Eq. (4).

3) IMPORTANCE ESTIMATION
In our numerical study, we assumed that the bounding
boxes given by the dataset are spatially important because
the proposed scheme takes into account the regions where
objects are likely to exist as important regions. Ten fea-
tures of each object were obtained with sensor devices
from the object-label information of the dataset. We used
seven features, x position [m], y position [m], z position
[m] (set to zero), object width [m], object length [m],
object height [m], and orientation angle [rad], to extract
the bounding box of the object. The point cloud was then
divided into high-importance regions inside the bounding
boxes and low-importance regions outside the bounding
boxes. We counted the number of points inside the bound-
ing boxes for each sensor device and defined the total num-
ber of points inside the bounding boxes as the importance
score. This is reasonable because the sensor devices with a
larger number of points inside the bounding boxes have more
rich information about objects. Figures 4a and 4b show the
point-cloud data volumes before compression of each sensor
device and number of points in the bounding boxes per frame
of each sensor device. As can be seen in Figure 4a, sensor
devices 1, 6, 7, and 11 were top ranked in terms of data
volume. As shown in Fig. 4b, however, data with a large
volume did not always contain many points in the bounding
boxes.

4) RESULTS
This section presents the data-volume results after compres-
sion, which suggests how bandwidth was allocated to each
sensor device. Figures 5a and 5b show the data volumes
of each sensor device after compression in the uniform and
proposed schemes. The uniform scheme uses octree-based
compression. However, different from the proposed scheme,
the uniform scheme uses the same voxel size for all sensor
devices without taking into account the importance of the
point cloud. For comparison, we chose parameters of the
uniform and proposed schemes that give almost the same
normalized data rate. The normalized data rate was about
0.090. Note that the definition of normalized data rate is the
data volumes after compression divided by the data volumes
before compression. In the uniform scheme, data volumes
uniformly decreased, as shown in Figure 5a, compared with
those in Figure 4a. In the proposed scheme, compression was
carried out in accordance with the number of points in the
bounding boxes in Figure 5b. For example, the data volumes
after compression of sensor devices 1, 2, 5, 7, 10, 13, and
14 were kept large because the numbers of points in the
bounding boxes of those sensor devices were large. On the
other hand, the data volumes after compression of sensor
devices 6, 9, and 11 decreased because of the small numbers
of points in the bounding boxes of those sensor devices. Thus,
in the proposed scheme, the data of sensor devices with higher
importance are compressed with a higher compression ratio,
which means larger bandwidth is allocated to sensor devices
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FIGURE 5. Data volume after compression.

with higher importance data, as expected with the proposed
scheme.

IV. EXTENSION OF PROPOSED SCHEME
The proposed scheme presented in Section III performs as
expected for prioritized transmission of point-cloud data
in accordance with their spatial characteristics. However,
there is still room for improvement because sensor devices
with high (low) priority always use a high (low) compres-
sion ratio even when they are sending low (high) impor-
tance data. Therefore, this section presents an extension of
the proposed scheme, which introduces the virtual device
concept.

A. SYSTEM MODEL
Figure 6 illustrates the system model for the extended
scheme. The architecture of the system is basically the same
as that presented in Section III-A. However, we consider
splitting sensor device i into two virtual sensor devices:
high importance and low importance. Different compression
parameters are set to each on the basis of the importance of the
spatial regions. Compression of point cloud data is then car-
ried out independently in each virtual sensor device. On the
edge-server side, the controller determines the bandwidth

FIGURE 6. Overview of system model for extended scheme.

allocation to virtual sensor devices on the basis of the spatial
importance of each virtual sensor device estimated by the
estimator.

B. PROBLEM FORMULATION
The problem formulation presented in Section III-B is
extended as follows. Equations (1) and (2) are redefined as

max
∑

i∈I
(q(pi,h(xi,h)+ q(pi,l(xi,l))) (5)

s.t.
∑

i∈I
(b(pi,h(xi,h))+ b(pi,l(xi,l))) ≤ C . (6)

The subscripts i, h and i, l denote virtual sensors of device
i with high- and low- importances, respectively. The other
notations are the same as in Eqs. (1) and (2).

Equation (5) is redefined as

max
∑

i∈I
(si,hb(pi,h(xi,h))+ si,lb(pi,l(xi,l))). (7)

This means that the extension maximizes the sum of the
bandwidth for virtual sensor devices i, h and i, l weighted
by si,h and si,l , which are the spatial importance scores of
the high- and low-importance regions of sensor device i,
respectively. Again, we took a simple heuristic approach that
selects the higher compression ratio to the region of the
sensor device with the higher importance score to improve
the quality of the spatial regions with high importance
scores.

C. CONTROL PROCEDURE
The extend scheme is executed using Algorithm 1. For the
compression format pi,x (x = h or l), it uses the octree as
described above and a smaller voxel size for virtual sensor
devices with higher importance scores. The voxel size pi,x is
given by Eq. (4).

D. BANDWIDTH-ALLOCATION EXAMPLE
This section presents an example of bandwidth allocation
of the extended scheme. We used the Ko-PER intersection
dataset and octree-based compression, as we did for the pro-
posed scheme, described in Section III-D.
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1) IMPORTANCE ESTIMATION
In our numerical study, we similarly assumed that the
bounding boxes given by the dataset are spatially impor-
tant because the extended scheme takes into account the
regions where objects are likely to exist as important
regions. The point cloud of a sensor device was then
divided into high-importance regions inside the bound-
ing boxes and low-importance regions outside the bound-
ing boxes. We counted the number of points inside the
bounding boxes for each virtual sensor device and defined
the total number of points as the importance score of
high-importance regions. In the extended scheme, the impor-
tance score of the low-importance spatial region of sensors
devices was set to 0 because there are no bounding boxes
in low-importance spatial regions, and the importance score
of the high-importance spatial regions of sensor devices
equals the importance score of those in the proposed scheme,
as shown in Figure 4b. Therefore, by splitting the point-cloud
data of a sensor device into high- and low-importance spatial
regions, the high-importance spatial regions of sensor devices
of low importance are scored higher than the low-importance
spatial regions of LIDAR sensors of high importance.

2) RESULTS
This section presents the data volume after compression of
each sensor device to discuss how bandwidth was allocated
to each region of the devices. Figures 7a and 7b show the
data volumes of the high- and low-importance regions of
the sensor devices before compression with the extended
scheme. Figures 8a and 8b also show the data volumes of the
high- and low-importance regions of the sensor devices after
compression. For comparison, we chose the same parame-
ters for the high- and low-importance regions of the sensor
devices; pmax was 1/32, pmin was 5.0×10−3, and k was 1/8.
Note that the compression ratio was determined from Eq. (4).
As shown in Fig. 8b, the data volumes of the low-importance
regions of the sensor devices decreased compared with those
in Figure 7b, while in the high-importance regions of the
sensor devices, compression was carried out in accordance
with the number of points in the bounding boxes in Figure 4b.
For instance, the data volumes after compression of the
high-importance regions of sensor devices 1, 2, 5, 7, 10, 13,
and 14 remained large because the numbers of points in the
bounding boxes of the regions of these devices were large.
On the other hand, the data volumes of the sensor devices with
the low-importance regions decreased because the number of
points in the bounding boxes were 0. Thus, in the extended
scheme, the data of the regions of sensor devices with higher
importance data were compressed with a higher compression
ratio, which means a larger bandwidth is allocated to the
regions of sensor devices with higher-importance data.

V. PERFORMANCE EVALUATION
First, we describe the performance evaluation metrics, which
were the point-to-plane peak signal-to-noise ratio (PSNR)

FIGURE 7. Data volume before compression.

and classification accuracy. Then, we compare the proposed
and extended schemes with the uniform compression and
random sampling schemes.

A. PSNR
The PSNR [28] of a point cloud was used as an objective
quality metric. Previous studies on evaluating point-cloud
compression [29]–[31] used the PSNR. The PSNR is defined
as

PSNR(A,B) = 10 log10
MAX2

MSE
[dB], (8)

where A and B represent the original point cloud and com-
pressed point cloud, respectively. MAX and MSE have vari-
ous definitions.

MAX is conventionally defined as the length of the diago-
nal or the maximum of three sides of the bounding box of
point cloud A. According to Tian et al., one disadvantage
of this definition is that, given the same amount of error for
each point cloud, a spatially larger point cloud would produce
a higher PSNR than a spatially smaller point cloud [28].
They proposed themaximumdistance of the nearest-neighbor
points to point cloudA, which selectsMAXon the basis of the
intrinsic resolution of point cloud A. They also defined MAX
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FIGURE 8. Data volume after compression.

as the maximum distances of nearest-neighbor points to point
cloud A. They used the point-to-plane metrics for calculating
MSE. The point-to-plane MSE is defined as

MSE(A,B) =
1
NA

∑NA

i=1
( EEi,j · ENi)2, (9)

where NA, EEi,j, and ENi represent the number of points in point
cloud A, error vector between ai and bi, and normal vector
of ai, respectively. ai and bi are the point belonging to point
cloud A and the nearest-neighbor point of ai that belongs to
point cloud B, respectively. The error from the surface of the
structure is represented by taking the inner product of EEi,j
and ENi. Thus, the maximum of MSE (A,B) and MSE (B,A) is
taken as MSE. In this study, the normal vector was calculated
using an algorithm from the PCL. This algorithm estimates
the normal vector from the nearest-neighbor points to the
observation point. We set the number of nearest-neighbor
points to 10.

Another definition of MSE is point-to-point MSE. The
point-to-point definition calculates the MSE from the dis-
tance between points. Figure 9 shows the differences between
the two metrics. The point-to-plane metric captures the sur-
face features of the structure more effectively than the point-
to-point one does. We thus used the point-to-plane MSE.

FIGURE 9. Point-to-point MSE vs. point-to-plane MSE [28].

B. CLASSIFICATION ACCURACY
The PSNR is not a practical measure of the quality of a point
cloud. Therefore, we used accuracy of object classification
as a more practical metric. Moreover, there are generally
three methods of point-cloud evaluation; shape-classification
object detection and point-cloud segmentation [32]. Shape
classification classifies point clouds into certain categories,
e.g., cars, bicycles, and pedestrians. Object detection detects
objects as bounding boxes from the point cloud in a cer-
tain scene. Semantic segmentation divides a point cloud
into several subsets according to the meaning in the scene.
We performed shape classification in our study. The bound-
ing boxes do not need to be detected because the infor-
mation of bounding boxes is contained in the Ko-PER
dataset.

There are two quality metrics for classification: overall
accuracy (OA) and mean class accuracy (mAcc) [32]. OA is
obtained by dividing the number of correct instances by the
total number of instances. mAcc represents the mean accu-
racy for shape classes, which is derived from the average
accuracy of each class. Table 1 shows an example, where OA
is 0.95(= 95/100) and mAcc is 0.50(= (95/95 + 0/5)/2).
Thus, OA and mAcc are not proportional; both needed to be
used for classification evaluation.

We used Random Forest as a machine learning method for
classification [33], [34].We extracted all sets of points in each
bounding box from the Ko-PER dataset using the label infor-
mation. For machine learning, we used four features of each
set of points: the total number of points and the maximum
width, maximum height, and maximum length between two
points in the bounding box. For machine-learning training,
1211 frames of data before compression were used after
bonding boxes with 0 points or 0 width, height, and length
were removed. We used the class ID as the label. We only

TABLE 1. Example of classification.
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considered cars and pedestrians. For the machine-learning
test, we used the top 100 frames with the largest num-
ber of points in a bounding box from Sequence1a of the
Ko-PER dataset. We used the Random Forest of scikit-learn
with the default setting and set random_state and n_jobs to
1 and −1 [35].

C. BENCHMARK SCHEMES
We compared the proposed and extended schemes with two
benchmarks: uniform and sampling. The uniform scheme
uses octree-based compression. However, different from the
proposed scheme, the uniform scheme uses the same voxel
size for all sensor devices without taking into account the
importance of the point cloud. We set pi to 1.0 ×10−5, 1.0
×10−4, 1.0 ×10−3, 1.0 ×10−2, 1.0 ×10−1, 0.25, 0.5, 0.75,
1.0, 2.0, 3.0, 4.0, 5.0, and 6.0. The sampling scheme performs
random sampling for points with a given sampling rate. The
sampling rate was set to 0.01, 0.05, 0.10, 0.15, 0.20, 0.25,
0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80,
0.85, 0.90, 0.95, and 0.99. Note that, for the sampling scheme,
the results were averaged over ten trials by changing the
random seed in each trial.

We note that other compression methods mentioned in
Section II such as Draco andMPEGPCC are other options for
the compression method used in the proposed scheme instead
of octree-based compression rather than benchmark schemes
for the proposed scheme. Table 2 compares octree-based
compression, Draco, and MPEG PCC from three aspects:
controllable, efficient, and specialized for stream. The advan-
tage of octree-based compression is that it allows us to control
the compression ratio by setting only a few parameters. It was
reported that Draco performs compression more efficiently
than octree-based compression in terms of data reduction and
computation time [3]. Although octree-based compression
and Draco are applicable for stream data of point cloud, they
process the data frame by frame. MPEG PCC deals with
stream data of point cloud as time-series data and considers
the difference and the similarity between frames over time to
improve the efficiency of the compression [12], [13].

TABLE 2. Comparison among compression methods for point cloud.

D. RESULTS
1) PSNR
This section discusses the results of the performance evalua-
tion using the PSNR as the quality metric. We first selected
the top 100 frames with the largest number of points in a
bounding box from Sequence1a and calculated the average
PSNRs. The proposed scheme used octree-based compres-
sion, and it compressed by changing the voxel size pi. pmax

TABLE 3. Parameter combinations used in proposed scheme
(pmax and pmin).

FIGURE 10. PSNR vs. normalized data rate in proposed scheme.

and pmin were set to the combinations listed in Table 3, and k
was set to 2n(n = −3,−2,−1, . . . , 3).

Figure 10 shows the PSNR performance against the nor-
malized data rate in the proposed scheme. Figures 10a
and 10b show the PSNRs in the overall region and
high-importance regions determined with the method pre-
sented in Section III-D3. As shown in Fig. 10a, the PSNR
in the overall region of the proposed scheme was a little
lower than that of the uniform scheme. However, the PSNR
in the high-importance region of the proposed scheme was
higher than that of the uniform scheme, as shown in Fig. 10b.
The sampling scheme did not perform well compared with
the uniform and proposed schemes, both of which used
octree-based compression. Note that the PSNRs in Figs. 10a
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FIGURE 11. PSNR vs. normalized data rate in extended scheme.

and 10b are not comparable with each other; PSNRs for
different images are generally not comparable. Obviously,
the proposed scheme performed well by improving the PSNR
in the high-importance region by appropriately allocating
bandwidth to multiple sensor devices.

Figure 11 shows the PSNRs of the extended scheme. As we
did for Fig. 10, if a combination of parameters achieved
a better PSNR in the high-importance region at a lower
normalized data rate than another combination, we removed
the plot of the latter because the former is obviously more
effective. Figures 11a and 11b show the PSNRs in the over-
all and high-important regions, respectively. The observa-
tion from Fig. 11 is basically the same as from Fig. 10;
using the (extended) proposed scheme, PSNRs in the over-
all and high-importance regions decreased and increased,
respectively, compared with the uniform scheme. However,
the extended scheme improved the PSNR more than the
proposed scheme did in the high-importance region compared
with the uniform scheme.

2) CLASSIFICATION ACCURACY
This section presents accuracies of the classification obtained
with the method described in Section V-B. Figures 12a
and 12b show the OA and mAcc, respectively, which were
described in Section V-B.

FIGURE 12. Evaluation by classification.

Figure 12 shows the classification performance against the
normalized data rate. If a combination of parameters achieved
a better result at a lower normalized data rate than another
combination, we removed the plot of the latter because the
former is obviously more effective. As shown in Fig. 12a,
the OA of the extended scheme was higher than those of
the uniform and sampling schemes. As shown in Fig. 12b,
in terms of mAcc, the proposed scheme performed better than
the uniform and sampling schemes.

Thus, the proposed scheme improved classification accu-
racy for the high-importance region by appropriately allocat-
ing bandwidth to regions of multiple sensor devices.

VI. CONCLUSION
We proposed a bandwidth-allocation scheme for multiple
LIDAR sensor devices to improve the quality of received
point-cloud data while satisfying the constraint of the band-
width capacity of the communication channel from the
sensor devices to the edge server. The proposed scheme
sets the compression ratio higher for sensor devices with
higher-importance point-cloud data. We also described an
extension of the proposed scheme for the case in which there
are two virtual sensors for each physical sensor device; it
divides up the point-cloud data into high- and low-importance
regions and assigns different compression ratios in accor-
dance with the importance. A numerical study showed that
the proposed scheme allocates bandwidth to multiple sen-
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sor devices, as expected, and performed better than the
benchmark schemes in terms of the quality of the received
point-cloud data. We evaluated the extended scheme’s object
classification and found that it improved classification accu-
racy relative to that of a uniform scheme and sampling
scheme.

For future work, the proposed scheme should be examined
with other compression methods mentioned in Section II
such as Draco and MPEG PCC instead of octree-based
compression.
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