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a b s t r a c t 

Background: Acute kidney injury (AKI) occurs frequently in in-hospital patients, especially in the intensive 

care unit (ICU), due to various etiologies including septic shock. It is clinically important to identify high- 

risk patients at an early stage and perform the appropriate intervention. 

Methods: We proposed a system to predict AKI using one-dimensional convolutional neural networks 

(1D-CNN) with the real-time calculation of the probability of developing AKI, along with the visualiza- 

tion of the rationale behind prediction using score-weighted class activation mapping and guided back- 

propagation. The system was applied to predicting developing AKI based on the KDIGO guideline in time 

windows of 24 to 48 h using data of 0 to 24 h after admission to ICU. 

Results: The comparison result of multiple algorithms modeling time series data indicated that the 

proposed 1D-CNN model achieved higher performance compared to the other models, with the mean 

area under the receiver operating characteristic curve of 0.742 ± 0.010 for predicting stage 1, and 

0.844 ± 0.029 for stage 2 AKI using the input of the vital signs, the demographic information, and serum 

creatinine values. The visualization results suggested the reasonable interpretation that time points with 

higher respiratory rate, lower blood pressure, as well as lower SpO2, had higher attention in terms of 

predicting AKI, and thus important for prediction. 

Conclusions: We presumed the proposed system’s potential usefulness as it could be applied and trans- 

ferred to almost any ICU setting that stored the time series data corresponding to vital signs. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

Acute kidney injury (AKI) refers to a pathological condition that 

shows a sudden decrease in the glomerular filtration rate, and it 

replaced acute renal failure (ARF) as a new concept including the 

more subtle decline in kidney function [1] . AKI occurs frequently in 

in-hospital patients, especially in the intensive care unit (ICU), due 

to various etiologies including septic shock. Patients who develop 

AKI have increased mortality [2] ; therefore, it is clinically impor- 

∗ Corresponding author. 
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tant to identify the high-risk patients with AKI in a timely manner 

and perform the appropriate intervention. 

Recently, machine learning techniques have been widely ap- 

plied to the prediction of various clinical events including AKI. In 

the ICU settings, the important data, such as vital signs are usu- 

ally stored densely compared with a normal in-hospital ward in 

a timely manner. These data are directly related to the patho- 

physiologies of AKI, including intrarenal hemodynamic changes [3] . 

Regarding the application to these time series data, the machine 

learning algorithms, particularly, neural networks with various ar- 

chitectures including recurrent neural networks (RNN), long short- 

term memory (LSTM), and one-dimensional convolutional neural 

networks (1D-CNN) have been frequently implemented. Caicedo- 
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Torress et al. applied 1D-CNN to predict death in ICU using the 

public database of Medical Information Mart for Intensive Care-III 

and provided visual interpretation by DeepLIFT [4] . Regarding AKI, 

Tomasev et al. utilized RNN to predict the probability of AKI within 

the next 48 h at any time point and achieved the high performance 

that was evaluated by metrics of the area under receiver operat- 

ing characteristic curve (AUROC) of 0.927 [5] . Additionally, the 1D- 

CNN models were applied to predict AKI, in the study focused on 

the usage of clinical notes [6] . However, applying 1D-CNN to the 

prediction of AKI based on the densely collected vital sign data, 

especially with the visual interpretation of reasons underlying the 

prediction results has been scarcely investigated. Additionally, the 

calculation of the real-time probability of developing AKI is an im- 

portant task, particularly in the ICU setting, where clinical events 

occur in hourly intervals. 

The present work addresses the challenges of predicting AKI by 

densely collected dataset which is routinely available in almost ev- 

ery ICU by 1D-CNN. Among the machine-learning algorithms, one 

advantage of using CNN is that there are established and standard- 

ized algorithms to visualize the reasons behind the prediction [7–

9] . Therefore, we propose a system to predict AKI which enables 

physicians to understand what time point is important for the pre- 

diction of AKI in the real-time and retrospective manner by visu- 

alizing which time point is important for prediction, for use in the 

real-world setting. 

2. Materials and methods 

2.1. Patient selection 

We used a publicly disclosed dataset, eICU Collaborative Re- 

search Database [10] , with over 20 0,0 0 0 patients’ data collected in 

the period from 2014 to 2015, in multiple centers across the United 

States. The data were made available in the PhysioNet repository. 

First, the demographic information was collected. The age above 

89 was recorded “over 90” for deidentification, and we replaced 

“over 90” with the value of 90. Gender was categorized as male 

or female. We obtained the information regarding whether a pa- 

tient had chronic kidney disease (CKD) based on pastHistory and 

the diagnosis table. In the pastHistory table, those who had “re- 

nal”, and no “dialysis” in “pasthistoryvalue” were regarded as ones 

having CKD. Additionally, based on the diagnosis table, those with 

the words “chronic” and “kidney” in “diagnosisstring” column were 

regarded as having CKD. The acute physiology and chronic health 

evaluation diagnoses upon admission were categorized in groups 

according to the code provided officially (apache-groups.sql). The 

patients with the code “ARF” were not included in the analysis, 

and the remaining 20 disease categories were considered as the 

input features in a binary format. These yielded a total of 24 fea- 

tures with the demographic information of age, gender, baseline 

creatinine, and the presence of CKD, apart from the time-series in- 

formation. 

Subsequently, we excluded the patients aged younger than 18 

years, those who passed away in 0 to T hours after admission. T re- 

ferred to the hour after the admission of which the input features 

used in training were obtained. We excluded those who received 

continuous renal replacement therapy in 0 to T hours after admis- 

sion. This was defined by having “hemodialysis|for acute renal fail- 

ure" in treatmentstring in the treatment table in 0 to T hours after 

admission. Additionally, we excluded those who stayed in ICU less 

than T hours. We excluded those on chronic hemodialysis or peri- 

toneal dialysis. These conditions were defined based on pastHistory 

table if the word “dialysis” was in in “pasthistoryvalue”. Addition- 

ally, from the treatment table, those who have treatmentstring of 

“hemodialysis” (not “hemodialysis|for acute renal failure") were ex- 

cluded. 

2.2. Problem setting and the time series input features 

The main objective of the present study was to predict the on- 

set of AKI within the time period from 24 to 48 h after admis- 

sion to ICU, using the routinely collected data in ICU between 0 to 

24 h after admission. We included the time series data of systolic, 

diastolic blood pressure (denoted as SBP and DBP respectively), 

heart rate (HR), respiratory rate (RR), body temperature (TEMP), 

and SpO2 as the routinely collected data, that are available in al- 

most every patient in every ICU. 

We obtained the vital sign information per minute. For the val- 

ues taken in the same minute, the mean value was calculated. 

The missing data for each time point were imputed by the feed- 

forward method, which yielded 1,440 features per vital sign per 

patient (“downup” in fill function of tidyr library). Subsequently, 

the values were grouped according to the 15-minute interval, and 

the mean value was derived for each interval. These yielded 576 

features (96 time series for six channels) for the vital signs of each 

patient. Additionally, the time series of serum creatinine values 

(CRE) were included from the laboratory data. The vital signs and 

CRE were scaled for the input of 1D-CNN, RNN, and LSTM using 

StandardScaler function in scikit-learn [11] . 

The training and test datasets were split according to the ra- 

tio of 8:2 for cross-validation, and the training dataset was addi- 

tionally split to a 9:1 ratio to obtain the validation dataset while 

training of 1D-CNN, RNN, and LSTM. Training, test, and validation 

split of the dataset were the same for all the model training and 

evaluation steps. 

Additionally, we performed the same workflow applied to the 

problem of predicting developing AKI in 48 to 72 h using the data 

from 0 to 48 h after admission to ICU. 

2.3. AKI definition 

Baseline creatinine was defined as the lowest value of those 

recorded before seven days until admission to ICU. AKI was de- 

fined as follows: (a) CRE increase of �0.3 mg/dL or above of 

the lowest creatinine value of the past 48 h, (b) CRE equal to 

or above the baseline creatinine values multiplied by 1.5, (c) CRE 

equal to or above the baseline creatinine values multiplied by 2, 

(d) CRE equal to or above the baseline creatinine values multi- 

plied by 3 and (e) CRE equal to or above 4.0 mg/dL fulfilling the 

lowest value of past 48 h equal to or below 3.7 mg/d, or CRE 

equal to or above the baseline creatinine values multiplied by 

1.5. The criteria for AKI used in the present study roughly corre- 

sponded to the KDIGO creatinine criteria [1] . Those with the base- 

line creatinine value of 4.0 mg/dL or above were excluded from the 

analysis. 

The outcomes were defined as stage 1 or above (definition a 

to e, denoted as stage 1 hereafter), and stage 2 or above (defi- 

nition c to e, denoted as stage 2 hereafter). AKI was calculated 

for every CRE record obtained. The onset of AKI was defined 

as when the criteria were met first, and if the patient had any 

time point with CRE as defined, the patient was categorized to 

AKI group. Subsequently, we included those who developed AKI 

in the defined period and did not develop AKI before the de- 

fined period as AKI group. The patients who did not develop AKI 

within the defined period were subsampled to the same number 

based on the remaining population with the fixed seed (non-AKI 

group). 

2.4. Machine learning and used libraries 

We used the machine learning algorithm of 1D-CNN to perform 

prediction. For classification performance comparison and assess- 

ment, we considered RNN, LSTM, and XGBoost as the baseline ap- 
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Fig. 1. The model overview. 

The overview of the proposed workflow in the study. 

proaches. We evaluated the performance of the considered mod- 

els in terms of the area under the receiver operating characteristic 

curve (AUROC), with five-fold cross-validation. 

The 1D-CNN model comprised one convolutional layer with the 

rectified linear activation function, followed by the batch normal- 

ization layer [12] , a single global average pooling layer, and one 

dropout layer for each of creatinine and other vital signs. The fi- 

nal dense layer with the sigmoid function was used to make a 

prediction. The global average pooling layer was incorporated to 

enable the variable input length. The padding parameter was set 

to “causal”, meaning that padding was performed in the manner 

that output of time point t does not depend on the input of time 

point t + 1, which was suitable for modeling the temporal data. The 

RNN model had one RNN layer, and the LSTM model had one LSTM 

layer, along with the dropout and the dense layer. When the de- 

mographic information was incorporated into the 1D-CNN, RNN, 

and LSTM model, the corresponding input layer was concatenated 

to the output of a respective model, and the final output was de- 

rived using the sigmoid function. We used an Adam optimizer with 

the default setting for the optimization of parameters in all the 

models [12] . Binary cross entropy was calculated as a loss and 

optimized. The model was trained for 200 epochs, and weights 

of the best performance epoch regarding validation loss were 

saved. 

For the input of RNN, LSTM, and XGBoost, the time series 

of vital signs with and without CRE and the combination with 

the demographic information was used. For the 1D-CNN mod- 

els, an additional dataset including only CRE time-series was 

evaluated. Multiple filter numbers and kernel sizes were tested, 

and the best parameters regarding the 1D-CNN model with the 

time series with CRE and demographic information as input were 

chosen. 

We used R library tidyverse for preprocessing of data [13] . We 

used machine learning and deep learning library scikit-learn and 

keras with tensorflow version 1.15 or 2.2.0 backend to construct 

neural networks [ 11 , 14 , 15 ]. We used Python library xgboost ver- 

sion 1.3.3 to construct XGBoost model, and the default param- 

eter for xgboost training was used, and the objective parame- 

ter was set to “binary:logistic” [16] . The plotting and visualiza- 

tion were performed using ggplot2, ComplexHeatmap, firatheme, 

plotly, and patchwork [17–20] . When comparing patients’ demo- 

graphic information, one-way ANOVA was used for comparing con- 

tinuous variables, and Chi-squared test was used for categorical 

variables. 

2.5. Real-time prediction and retrospective visualization of the basis 

To perform the real-time prediction of AKI, we predicted the 

probability of developing AKI at each 15 min interval. To achieve 

this, the input shape of the model was set to the corresponding 

time point, and the model was compiled, set weight of the best 

performance model and probability was predicted. Note that the 

weight of the best predictive model can be used for variable input, 

as the weight is dependent on filter number and kernel size, not 

on the input shape. Additionally, using the weight of the model 

in the fold with the best performance, we applied Score-weighted 

Class Activation Mapping (Score-CAM) to visualize the rationale 

behind the prediction in 1D-CNN, which was capable of interpret- 

ing which time point was important for prediction, for each pa- 

tient retrospectively. The calculation of Score-CAM was described 

in the original paper [7] . Guided Score-CAM could be used to as- 

sess which channel was important for prediction and was calcu- 

lated by multiplication of saliency map obtained by guided back 

propagation with Score-CAM values [9] . The absolute values of 

Guided Score-CAM were used as the score of the corresponding 

patient. We performed the analysis to show the validity of our 

approaches by the simulation of the intervention based on the 

real-time probability and guided Score-CAM. The detailed methods 

were described in Supplementary Text 1. 

2.6. Availability of data and material 

The source code of Python and R to reproduce the analysis can 

be found at https://doi.org/10.6084/m9.figshare.14555142 . 

3. Results 

3.1. Predictive performance 

The overall workflow is presented in Fig. 1 . For the analysis 

predicting stage 2 AKI, 725 AKI patients and the same number 

of under-sampled patients were included in the analysis from the 

eICU database. The patient’s demographic information is summa- 

rized in Table 1 . There were significant differences between the 

non-AKI and AKI groups in age, ICU discharge offset and the base- 

line creatinine and the value was higher in AKI patients. Addi- 

tionally, AKI patients had a higher frequency of having CKD. For 

the analysis including stage 1, 5342 patients were included. The 
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Fig. 2. The performance summary of prediction. 

The summary of the performance for each model. The bar plot represents the mean values of five-fold cross-validation and the standard deviations. The color represents the 

model. XGB: XGBoost, RNN: recurrent neural network, LSTM: long short-term memory, 1DCNN: one-dimensional convolutional neural network. 

Table 1 

The demographics of patients included in the analysis. 

Clinical Values non-AKI ( N = 725) AKI ( N = 725) p -value 

Age (mean (SD)) 62.77 (16.55) 65.51 (14.44) 0.001 

Gender = male (%) 383 (52.8) 417 (57.5) 0.081 

Unit discharge offset (mean (SD)) 5994.38 (6066.93) 8341.59 (7924.58) < 0.001 

Baseline creatinine value (mean (SD)) 1.18 (0.61) 1.36 (0.88) < 0.001 

CKD present (%) 73 (10.1) 123 (17.0) < 0.001 

Unit discharge offset: the timing of leaving ICU, presented as the minutes after admission. 

Table 2 

The number of the valid value for each fea- 

ture. 

VS mean SD Max min 

HR 32.77 24.94 191 1 

RR 31.08 24.19 189 1 

SYS 25.14 20.45 179 1 

DIA 25.14 20.45 179 1 

SpO2 31.6 24.59 190 1 

TEMP 9.7 12.68 126 1 

CRE 1.66 1.17 12 1 

VS: vital signs, SD: standard deviation, HR: 

heart rate, RR: respiratory rate, SYS: systolic 

blood pressure, DIA: diastolic blood pressure, 

TEMP: body temperature, CRE: serum creati- 

nine value. 

patient’s demographic information is summarized in Supplemen- 

tary Table 1. The mean number of the valid values for each fea- 

ture before imputation for all the patients included in the analy- 

sis of stages 1 and 2 is summarized in Table 2 . CRE had a lower 

number of valid values compared to the other features. The per- 

formance of each classifier for the prediction of stages 1 and 2 

is summarized in Table 3 and Fig. 2 . Overall, the highest perfor- 

mance was obtained when the vital signs, demographic informa- 

tion, and CRE were combined (AUROC 0.742 ± 0.010 for stage 1 

and 0.844 ± 0.029 for stage 2, mean ± standard deviation), com- 

pared to the other models. When only the CRE were used as input 

for prediction of stage 2 AKI in 24 to 48 h, the performance was 

lower than combined with CRE combined with vital signs as input 

(AUROC 0.759 ± 0.034 and 0.796 ± 0.032 respectively). 

Table 3 

The performance summary of each model. 

Model Stage1_ave Stage1_std Stage2_ave Stage2_std Input 

1DCNN 0.636 0.012 0.684 0.036 VS 

LSTM 0.606 0.013 0.672 0.044 VS 

RNN 0.587 0.015 0.639 0.035 VS 

XGB 0.583 0.014 0.612 0.027 VS 

1DCNN 0.704 0.011 0.796 0.032 VS, CRE 

LSTM 0.683 0.015 0.784 0.033 VS, CRE 

RNN 0.671 0.014 0.77 0.024 VS, CRE 

XGB 0.624 0.017 0.712 0.026 VS, CRE 

1DCNN 0.742 0.009 0.844 0.029 VS, CRE, DEMOG 

LSTM 0.723 0.01 0.784 0.035 VS, CRE, DEMOG 

RNN 0.725 0.011 0.791 0.025 VS, CRE, DEMOG 

XGB 0.671 0.011 0.816 0.019 VS, CRE, DEMOG 

1DCNN 0.707 0.007 0.703 0.04 VS, DEMOG 

LSTM 0.691 0.007 0.672 0.036 VS, DEMOG 

RNN 0.688 0.009 0.674 0.041 VS, DEMOG 

XGB 0.635 0.007 0.653 0.014 VS, DEMOG 

Stage1_ave, Stage2_ave, Stage1_std, and Stage2_std: the average AUROC values and 

the standard deviation for prediction of stage 1 and 2 AKI, VS: vital signs, CRE: 

serum creatinine values, DEMOG: demographic information, RNN: recurrent neural 

network, LSTM: long short-term memory, 1DCNN: one-dimensional convolutional 

neural network, XGB: XGBoost. 

We additionally applied the same workflow for predicting de- 

veloping AKI in 48 to 72 h using the features of 0 to 48 h after 

admission to ICU. For the setting, as same as the prediction of de- 

veloping AKI in 24 to 48 h, the higher performance was obtained 

in 1D-CNN compared to the other approaches in both predictions 

of stage 1 and 2, when vital signs, demographic information, and 

CRE were combined (AUROC 0.698 ± 0.012 and 0.860 ± 0.026 for 

predictions of stage 1 and 2). The results for the prediction of de- 
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Fig. 3. The ROC curves of the 1D-CNN model. 

The ROC curves of the 1D-CNN with the input of vital signs, demographic information, and creatinine values for all the folds in the cross-validation. 

veloping AKI in 48 to 72 h were summarized in Supplementary 

Table 2. 

We used the model of predicting the stage 2 AKI in 24 to 48 h 

for the downstream visualization analysis, with the weights in the 

best fold in cross-validation, which had the AUROC value of 0.890 

( Fig. 3 ). 

3.2. Real-time prediction and visualization 

We calculated the real-time probability, Score-CAM and guided 

Score-CAM. Those with the highest three probability of developing 

AKI in the test dataset were visualized in Fig. 4 (the patient one 

to three hereafter). Note that all three patients visualized in the 

fold developed AKI in subsequent 24 to 48 h period and were true 

positives. 

Specifically, for patient one, the average guided Score-CAM was 

high in SBP and DBP, and the time interval of lower SBP and DBP 

got higher attention, suggesting the patient developed AKI because 

of these vital signs. Additionally, higher RR and lower SpO2 got 

high attention. For patient two, The average guided Score-CAM was 

high in SpO2 and TEMP, and the time points with lower SpO2, as 

well as higher TEMP got high attention. Additionally, higher RR got 

high attention. For patient three, the higher RR and TEMP also got 

high attention, and the time interval with lower SpO2 and higher 

TEMP got high attention. For all the patients, the probability of de- 

veloping AKI was continuously high from admission to ICU. 

We showed one example of the patients who had a grad- 

ual increase in the probability of developing AKI in Supplemen- 

tary Figure 1. This patient had high attention in SpO2, TEMP and 

RR. For this patient, we performed the additional analysis of the 

simulation of the intervention to show the validity of our pro- 

posed framework (Supplementary Figure 2). On all the experiments 

changing vital signs based on the real-time probability and guided 

Score-CAM, the final probability of developing AKI was low com- 

pared to the raw input. 

Additionally, The visualization of the patients with the highest 

three probability in the fold with the second-highest performance 

(AUROC 0.866) is in Supplementary Figure 3 for the referencing 

purpose. 

4. Discussion 

In the present study, we applied the 1D-CNN model to the 

problem of prediction of AKI in ICU and proposed the system to 

help physicians understand which time point could be important 

for prediction in the real-time and retrospective manner. The ob- 

tained results indicated that although the performance of the pro- 

posed system was low compared to other studies, the real-time 

prediction and retrospective visualization of prediction were rea- 

sonable. 

Visualization result of guided Score-CAM suggested that time 

points with lower SpO2 and blood pressure, and higher TEMP and 

RR had high attention and thus important for the prediction of AKI. 

One of the suspected reasons is that these vital signs are among 

the criteria for sepsis or septic shock [21] , which is one of the im- 

portant and common reasons for AKI in ICU and thus are consid- 
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Fig. 4. Visualization of the rationale behind the prediction of developing AKI. 

Information of patients with the highest three probability of developing AKI were listed. The x -axis showed a time point of 15 min interval. The line plot of PROB indicates 

the probability of developing AKI at the specific time point and CAM indicates Score-CAM values. HR, RR, SBP, DBP, TEMP, and SpO2 indicate the recorded value at the 

specific time point, and the color of the point indicates guided Score-CAM value. The values under each label in the y -axis represent the average value of guided Score-CAM 

for each vital sign. 

ered to have high attention. Besides, cardiac arrest, in which vital 

signs show drastic changes, has been reported to cause AKI [22] . In 

this context, this suggested that the 1D-CNN algorithm is capable 

of correctly identify which time point has important information 

regarding the prediction of AKI. Additionally, the important vital 

signs for the prediction differ from patient to patient. 

We compared the performance of 1D-CNN with those of XG- 

Boost, RNN, and LSTM. When compared to RNN and LSTM, 1D- 

CNN achieved slightly better performance in the current setting. 

In one study, it was reported that CNN, or temporal CNN, which 

have the characteristic of architecture are causal, and that the ar- 

chitecture can take a variable length of the input, have superior 

properties compared with the RNN architecture, such as LSTM in 

the sequencing modeling task [23] . Additionally, CNN generally re- 

quires low memory and time to train compared to RNN or LSTM, 

which could be advantageous where the computational resource is 

scarce. 

The major limitation of the present study was the low perfor- 

mance compared with the other study using the full set of features 

available in ICU [5] . The main reason underlying this was suspected 
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to be the selection of a time window, the usage of strict AKI crite- 

ria in terms of occurrence in a limited time window, and the us- 

age of limited features, especially not using information regarding 

medications used in ICU, which is used in the other study [24] , as 

medications can cause AKI in high frequency [25] . Although 1D- 

CNN has the advantage of the capacity to visualize the rationale 

behind the prediction and the capability of real-time prediction, 

other models could achieve high performance in the present com- 

parison. Besides, in the situations like the number of valid input 

values before imputation was low, the algorithms could identify 

the highest or lowest values as important, which did not use time- 

series information sufficiently. As our model used CRE as the input, 

and the AKI category was defined using CRE, CRE seemed to play 

the major role in prediction. However, we showed that combining 

the easily accessible vital signs and demographic information with 

CRE can improve the predictive performance of developing future 

AKI to a certain extent. Additionally, although making changes in 

vital signs is clinically not feasible and impossible, we showed that 

the real-time calculation of probability and the calculation of the 

basis behind prediction by the proposed system could aid in re- 

ducing the probability of developing AKI in the present setting. 

The performance assessed by AUROC was lower in the prediction 

of stage 1 compared to stage 2 AKI. It was presumed that stage 

1 included more subtle changes and a limited dataset that is rou- 

tinely available did not have sufficient information to predict stage 

1 AKI. 

The approach proposed in the present study could be advan- 

tageous, as it could be applied and transferred to almost any ICU 

setting that stored the time series data of vital signs, without the 

need for the identification and linking of medication codes and 

translation of clinical notes. 

5. Conclusions 

In conclusion, we developed a prediction and visualization sys- 

tem of AKI using 1D-CNN and Score-CAM. The proposed system 

was aimed to help physicians involved in ICU to understand how 

the patient developed AKI retrospectively, and additionally realize 

the probability of developing AKI in a real-time manner. 
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