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Geometric and dosimetric impact of 3D 
generative adversarial network-based metal 
artifact reduction algorithm on VMAT and IMPT 
for the head and neck region
Mitsuhiro Nakamura1,2* , Megumi Nakao3, Keiho Imanishi4, Hideaki Hirashima2 and Yusuke Tsuruta1,5 

Abstract 

Background: We investigated the geometric and dosimetric impact of three-dimensional (3D) generative adversarial 
network (GAN)-based metal artifact reduction (MAR) algorithms on volumetric-modulated arc therapy (VMAT) and 
intensity-modulated proton therapy (IMPT) for the head and neck region, based on artifact-free computed tomogra-
phy (CT) volumes with dental fillings.

Methods: Thirteen metal-free CT volumes of the head and neck regions were obtained from The Cancer Imaging 
Archive. To simulate metal artifacts on CT volumes, we defined 3D regions of the teeth for pseudo-dental fillings from 
the metal-free CT volumes. HU values of 4000 HU were assigned to the selected teeth region of interest. Two different 
CT volumes, one with four (m4) and the other with eight (m8) pseudo-dental fillings, were generated for each case. 
These CT volumes were used as the Reference. CT volumes with metal artifacts were then generated from the Refer-
ence CT volumes (Artifacts). On the Artifacts CT volumes, metal artifacts were manually corrected for using the water 
density override method with a value of 1.0 g/cm3 (Water). By contrast, the CT volumes with reduced metal artifacts 
using 3D GAN model extension of CycleGAN were also generated (GAN-MAR). The structural similarity (SSIM) index 
within the planning target volume was calculated as quantitative error metric between the Reference CT volumes 
and the other volumes. After creating VMAT and IMPT plans on the Reference CT volumes, the reference plans were 
recalculated for the remaining CT volumes.

Results: The time required to generate a single GAN-MAR CT volume was approximately 30 s. The median SSIMs 
were lower in the m8 group than those in the m4 group, and ANOVA showed a significant difference in the SSIM for 
the m8 group (p < 0.05). Although the median differences in  D98%,  D50% and  D2% were larger in the m8 group than the 
m4 group, those from the reference plans were within 3% for VMAT and 1% for IMPT.

Conclusions: The GAN-MAR CT volumes generated in a short time were closer to the Reference CT volumes than the 
Water and Artifacts CT volumes. The observed dosimetric differences compared to the reference plan were clinically 
acceptable.
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Background
Computed tomography (CT) systems are widely used in 
clinical practice. Artifacts such as motion, ring and metal 
artifacts [1] are commonly encountered in clinical CT 
and may reduce the image quality. Metal artifacts appear 
as streaking artifacts and dark bands in the reconstructed 
images owing to photon starvation and beam-hardening 
effects under the presence of metals in the subject. The 
shape of the metal and its surroundings are blurred in 
metal artifacts, leading to inaccurate Hounsfield unit 
(HU) values and the poor visualization of internal organs 
[2]. These drawbacks reduce treatment accuracy in radio-
therapy, consequently leading to radiation-induced tox-
icities [3].

Several sinogram-based metal artifact reduction 
(MAR) algorithms, such as orthopaedic MAR (O-MAR; 
Philips Healthcare System, Cleveland, OH, USA) [4], iter-
ative MAR (iMAR; Siemens Healthcare, Forchheim, Ger-
many) [5], single-energy MAR (SEMAR; Canon Medical 
Systems, Otawara, Japan) [6], SmartMAR (GE Medical 
Systems, Waukesha, WI, USA) [7], and virtual mono-
chromatic images via dual-energy CT [8], are clinically 
available. Although insufficient correction of sinograms 
around metals lead to additional artifacts and image 
blurring, these MAR algorithms generally yield clinically 
acceptable CT images in terms of image quality and HU 
value accuracy [9–13]. However, a notable shortcoming 
is that it is impossible to examine the true effect of MAR 
algorithms due to lack of real patients’ data without metal 
artifacts.

With recent developments in artificial intelligence, 
deep learning (DL) has attracted attention in the field of 
medicine. DL has been mainly employed in image-based 
MAR algorithms [14]. Most DL-MAR algorithms are 
supervised methods that require paired data. However, a 
significant drawback of supervised methods is difficulty 
in collecting them from real patients. To overcome this 
issue, generative adversarial networks (GANs) have been 
extensively studied as a framework for unsupervised 
methods [15]. Recently, GAN-based MAR algorithms for 
images with metals has attracted significant attention in 
diagnostic radiology [16]. In therapeutic radiology, Koike 
et  al. have proposed a two-dimensional (2D) cycle-con-
sistent GAN (CycleGAN)-based MAR method in inten-
sity-modulated radiotherapy for head and neck cancer 
patients with dental fillings [17]. They demonstrated the 
efficiency of the planning process by eliminating man-
ual delineation and consistent dose distribution against 
metal artifacts. However, their evaluation was based on 

2D analyses using artifact-corrected CT volumes with 
the water density override method. Although 3D analy-
ses were performed in a recent phantom study by Branco 
et al. [13], the effects of MAR are unclear in real-patient 
datasets, as artifact-free CT volumes with dental fillings 
were not available in their study.

We successfully generated CT volumes with metal 
artifacts from artifact-free CT volumes with dental fill-
ings. In addition, we reduced artifacts by employing 
a 3D GAN-based MAR, which is an extension of the 
image-to-image translation framework of CycleGAN 
[18]. Thus, artifact-free CT volumes with dental fillings 
can be treated as ground truths. In this study, we inves-
tigated the geometric and dosimetric impacts of the 3D 
GAN-based MAR algorithm on volumetric-modulated 
arc therapy (VMAT) and intensity-modulated proton 
therapy (IMPT) for the head and neck regions, based on 
the artifact-free CT volumes with dental fillings.

Methods
CT volumes
Thirteen metal-free CT volumes of the head and neck 
regions were obtained from The Cancer Imaging Archive 
[19]. The field of view (350–400  mm), matrix size 
(512 × 512), and slice thickness (1–3 mm) were clinically 
acceptable for treatment planning CT.

To simulate metal artifacts on CT volumes, we defined 
3D regions of the teeth for pseudo-dental fillings from the 
metal-free CT volumes. Figure 1 illustrates the scheme of 
dental arches, showing the pseudo-dental fillings for each 
case. HU values of 4000 HU were uniformly assigned to 
the selected teeth region of interest (ROI). Two different 
CT volumes, one with four (m4) and the other with eight 
(m8) pseudo-dental fillings, were generated for each case. 
These CT volumes were used as the Reference in this 
study.

Generation of metal artifacts and manual correction 
of metal artifacts
The metal artifacts were simulated based on the proce-
dure and parameters used in [14], as follows: (1) simu-
lated sinograms were obtained from the Reference CT 
volumes by forward projection, and (2) the CT volumes 
were reconstructed using filtered back projection from 
the simulated sinograms. The number of projection 
views over a rotation and detector bins were 984 and 
920, respectively. The distance between the X-ray tube 
source and the rotation center was 59.5  cm. The code 
for forwarding projection and image reconstruction are 
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publicly available [14]. The resultant CT volumes were 
labeled Artifacts. Metal artifacts were more prominent in 
the Artifacts CT volumes in the m8 group than in the m4 
group.

Metal artifacts were manually corrected on the Arti-
facts CT volumes by a senior medical physicist using the 
water density override method with a value of 1.0 g/cm3. 
The m4 and m8 groups were corrected using standard 
clinical methods. The CT volumes with manually cor-
rected metal artifacts were termed Water.

GAN‑based metal artifact reduction
We used a 3D GAN model extension of CycleGAN in 
this study, the details of which are described in a prior 
work [18]. Our GAN-MAR approach is based on par-
tial volume-to-partial volume translation and includes 
two mapping functions—image domain with artifacts to 
image domain without artifacts (GY) and vice versa (GX). 
Two adversarial discriminators DX and DY are also intro-
duced, where DX aims to distinguish between volumes 
x and GY(y), and DY to distinguish y from GX(x). Here, a 
training sample x or y is an unpaired partial volume that 
consists of N spatially continuous image slices.

To generate the CT volumes for artifact correction 
using 3D GAN (GAN-MAR), unpaired data including 
300 CT volumes with metal artifacts and 53 CT volumes 
without metal artifacts were prepared. No labels were 
assigned to the regions with metal artifacts. Then, CT 

volumes without metal artifacts were augmented sixfold 
by 3D rotation and deformation. Nine sequential slices 
were input to the network, i.e., detection and correction 
of metal artifacts was conducted based on partial vol-
ume-to-partial volume translation. The key parameters at 
training phase were as follows: the input and output size 
was 512 × 512 × 9, batch size was 8, and the number of 
epochs was 1000. Google Compute Engine (CPU: Intel 
Xeon, Memory: 16 GB, GPU: Tesla T4, Memory: 16 GB) 
was used for the calculations.

Treatment planning
Metal artifacts affect the accuracy of radiotherapy for 
oropharyngeal cancer. In this study, the pseudo-clinical 
target volume (CTV) including the base of the tongue 
was manually delineated on the Reference CT volumes. 
The planning target volume (PTV) was defined by add-
ing a 5 mm margin to the CTV. The spinal cord and the 
parotids were also delineated as organs at risk. Figure 2 
shows the representative axial and sagittal slices.

One VMAT plan and one IMPT plan were generated 
on the Reference CT volumes on the Eclipse treatment 
planning system (ver. 15.6, Varian Medical Systems, Palo 
Alto, CA, USA) with a grid size of 2.5 mm. The VMAT 
plan comprised two coplanar arcs of 6 MV photon beams 
using TrueBeam (Varian Medical Systems). Beam avoid-
ance sectors from 330° to 30° (central angle of 60°) were 
used to minimize the effect of metal and artifacts on dose 

Fig. 1 Schemas of dental arch for each case. Teeth painted by light gray are dental fillings in the m4 group, and by both light and dark gray are in 
m8 groups
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distribution. The collimator angles were 330° for arc 1 
and 30° for arc 2. The dose distributions were calculated 
using Acuros XB (Varian). By contrast, spot scanning 
technique with two incident proton beams of kinetic 
energies between 70 and 250 MeV delivered by the Var-
ian proton therapy system was used in the IMPT plan. 
The gantry angles were set to 150° and 210° to divert inci-
dent proton beams from the metal. A proximal and dis-
tal margin of 5 mm and a lateral margin of 10 mm were 
added to the PTV, and CTV-based robust optimization 
was not employed. The Proton Convolution Superposi-
tion algorithm (Varian) was used for dose calculation.

The prescribed dose of 60  Gy in 30 fractions was 
administered to 50% of the PTV (PTV  D50%) for each 
plan. The reason for only PTV  D50% prescription was 
that  D50% is typically a suitable choice for a representative 
absorbed-dose value for the PTV [20]. In addition, multi-
ple use of prescriptions made evaluation difficult. A dose 
covering of 2% of the PTV volume (PTV  D2%) was set 
to < 105%, the maximum dose  (Dmax) to the spinal cord 
was < 45  Gy, and the mean dose  (Dmean) to the parotids 
was < 26  Gy. Figure  3 shows a representative treatment 
plan and dose distribution for the VMAT and IMPT plan.

Evaluation
The ROIs of body, CTV, PTV, the spinal cord and the 
parotids on the Reference CT volumes were rigidly prop-
agated to the Artifacts, Water and GAN-MAR CT vol-
umes in each case (Fig. 2). As these CT volumes shared 
the origin of the orthogonal coordinate system, the shape 
and position of the ROIs were identical for these CT vol-
umes. Then, the root mean square error (RMSE) of the 

HU values and the structural similarity (SSIM) index 
[21] within the PTV were calculated as quantitative 
error metrics between the Reference CT volumes and 
the other volumes, to examine the correlation between 
the differences in the dose-volumetric indices (DVIs) for 
the PTV and the RMSE and SSIM within the PTV in the 
VMAT and IMPT plans. SSIM is in the range of 0 and 
1, and a value of 1 indicates perfect structural similarity. 
One-way analysis of variance (ANOVA) was performed 
to evaluate significant differences in the RMSE and SSIM. 
In addition, the reference plans were recalculated on the 
Water and GAN-MAR CT volumes while maintaining 
the monitor units and beam arrangements. As the Arti-
facts CT volumes are not typically used in clinical prac-
tice, we did not calculate the associated dose distribution. 
The difference in the DVIs from the reference plans were 
calculated. A Mann–Whitney U test was performed to 
evaluate the statistical significance of the difference in 
DVIs from the reference plans. During both statistical 
analyses, the level of significance was set to 0.05, and all 
statistical analyses were performed using the R (version 
3.6.1) package.

Results
The calculation time required to generate a single GAN-
MAR CT volume was approximately 30 s.

The median PTV volume was 133.6  ml (range 98.7–
169.1  ml), and median overlap ratio of the artifact cor-
rected volume to the PTV volume was 7.5% (range 
0.0–18.5%) in the m4 group and 14.3% (range 0.0–22.8%) 
in the m8 group.

Fig. 2 Representative axial slices from Reference, Artifacts, Water, and GAN-MAR CT volumes in (upper) m4 and (lower) m8 groups. Difference 
images to Reference are also shown
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Table  1 summarizes the RMSE and the SSIM within 
the PTV. The maximum RMSE was 10.64 HU observed 
in the m8 group, and reduced in order for the Artifacts, 
GAN-MAR, and Water CT volumes in both the m4 and 
m8 groups. There was a significant difference to popula-
tion means in the RMSE in the m8 group (p < 0.05). As 
can be seen from the SSIM values, the GAN-MAR CT 
volumes were closer to the Reference CT volumes than 

the Water and Artifacts CT volumes. The median SSIMs 
were lower in the m8 group than those in the m4 group, 
and ANOVA showed a significant difference to popula-
tion means in the SSIM for the m8 group (p < 0.05).

Figure  4 shows the SSIM as a function of the overlap 
ratio of the artifact corrected volume to the PTV vol-
ume. The SSIM exhibited negative correlation with the 
overlap ratio. The slopes for GAN-MAR were −  0.67 

Fig. 3 Representative (upper) treatment plan and (lower) dose distribution for (left) VMAT and (right) IMPT plan

Table 1 Summary of RMSE of the HU values and SSIM within the PTV

Data are shown in median (minimum–maximum)

RMSE root mean square error, SSIM structural similarity, PTV planning target volume

RMSE (HU) SSIM

Artifacts Water GAN‑MAR p value Artifacts Water GAN‑MAR p value

m4

6.87 (0.84–8.45) 4.22 (0.84–6.66) 4.84 (1.33–6.04) 0.13 0.84 (0.75–0.96) 0.84 (0.76–0.96) 0.91 (0.80–0.96) 0.09

m8

8.69 (1.06–10.64) 5.95 (1.05–8.46) 6.24 (1.65–7.34) < 0.05 0.74 (0.66–0.95) 0.73 (0.65–0.95) 0.86 (0.73–0.92) < 0.05
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in the m4 group and −  0.51 for the m8 group. By con-
trast, slopes for Artifacts and Water were steeper than 
GAN-MAR, and Artifacts exhibited a similar tendency 
to Water. Among the thirteen cases, three in the m4 
group and one in the m8 group exhibited lower SSIM 
than Water or Artifacts. One value in the m4 and m8 
groups exhibited an overlap ratio of 0, which means that 
the water-corrected volumes were outside the PTV. At 
an overlap ratio of 0.122 in the m4 group, a drop in the 
SSIM in GAN-MAR was observed. Considering this case, 
under-correction parts (indicated by yellow arrows) were 
observed in the tongue, and metal artifacts were substan-
tially reduced on the GAN-MAR CT volumes (Fig. 5). A 
drop in the SSIM in GAN-MAR was also observed at an 
overlap ratio of 0.143 in the m8 group, owing to the same 
reason. However, the SSIM was higher than that in Water 
and Artifacts (Fig. 4b).

Table  2 summarizes the difference in DVIs from the 
reference plan for the PTV. Although the range between 
the minimum and maximum values broadened in the m8 
group compared to the m4 group, the differences in DVIs 
from the reference plan were within 3% in the VMAT 
plans and 1% in the IMPT plans. The Mann–Whit-
ney U test showed significant differences in all DVIs in 
VMAT and  D98% in IMPT (p < 0.05). No correlations were 
observed between the differences in the DVI, RMSE, and 
SSIM in the VMAT and IMPT plans. The difference in 

Fig. 4 SSIM as a function of the overlap ratio of the artifact corrected 
volume to the PTV volume for the a m4 and b m8 groups

Fig. 5 Axial slices for the case with the worst SSIM in GAN-MAR in the m4 group. The region indicated by the yellow arrow is the part of 
under-correction. Difference images to Reference are also shown
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the  Dmax for the spinal cord and the  Dmean for the parot-
ids was less than 0.2 Gy.

Discussion
More than 90% of head and neck cancer are squamous 
cell carcinomas, and the growth rate of squamous cell 
carcinoma is faster than that of adenocarcinoma. Thus, 
it is preferable to treat head and neck cancer patients 
promptly. In clinical practice, some head and neck cancer 
patients undergo tooth extraction prior to radiotherapy 
to avoid severe metal artifacts, which affect quality of 
life and cause delays in starting radiotherapy. Therefore, 
reduction of metal artifacts is clinically essential in radio-
therapy for head and neck cancer patients.

Considering the current clinical workflow, the Water 
CT volumes are typically used for anatomy segmentation 
and dose calculation. However, the Water CT volumes 
depend on how the metal artifacts are corrected by the 
observers, and they cannot be ground truths. We treated 
the artifact-free CT volumes with dental fillings as 
ground truths because it is thus possible to know the cor-
rect answer. When the differences in image quality and 
dosimetry are negligible from the reference, the results 
can be interpreted as the close to the reference.

Our GAN-MAR approach detects and reduces the 
partial volume where metal artifacts appear. This means 
that the corresponding partial volume was targeted 
for reduction. Although the regions with metal arti-
facts were generally well-corrected, a decrease in the 
image contrast was also observed on the other regions. 
In image reconstruction using GAN, the autoencoder, 
which is an algorithm to compress input data, retains 
only the important features and then restores the data 
to its original dimensions. In the translation process, 
the training principle makes autoencoders assign a high 

probability to training points; this cannot ensure that 
blurry points are assigned to a low probability. Accord-
ingly, incorrect conversion of pixel values, appearing 
blurry to the human eye, would occur [15].

The lower SSIM in GAN-MAR than Water or Arti-
facts was due to the characteristics in the case with an 
overlap ratio of 0. One case exhibited a large deviation 
of the SSIM from the regression line in GAN-MAR in 
both the m4 and m8 groups (Fig. 4). As shown in Fig. 5, 
our approach failed to reduce the metal artifacts, as 
indicated by the yellow arrows. Because the dark band, 
which is indicated by the yellow arrow in Fig.  5, was 
similar to the feature of the air space in the oral cavity, 
the GAN generator G did not learn it as an image fea-
ture to be reduced but proceeded to learn it as a trans-
formation that would preserve it. As a result, it passed 
the check of discriminator D because there was a simi-
lar air space in the real database. The under-correction 
could be improved by increasing such cases or the fail-
ure could be avoided if the MAR images are used for 
training our network and for input.

We have demonstrated that the difference in RMSEs 
and DVIs in the VMAT and IMPT plans was within 
11 HU and 3%, respectively, for all situations consid-
ered in this study. There are several literatures that 
have conformed the validity of MAR algorithms for the 
head and neck region. Koike et al. reported the results 
of 2D evaluation using real patients’ CT volumes [17], 
and Branco et al. conducted a phantom study to assess 
the effect of clinically available MAR algorithms on 3D 
geometry and dosimetry [13]. Because our study was 
based on 3D analyses using artifact-free CT volumes 
of real patients with dental fillings as ground truths, 
direct comparisons could not be made with other stud-
ies due to different study settings, MAR methods and 
evaluation metrics. Nevertheless, the results of our 

Table 2 The difference in DVIs from the reference plan for the PTV

Data are shown in median (minimum–maximum)

DVI dose-volumetric index, PTV planning target volume, VMAT volumetric-modulated arc therapy, IMPT intensity-modulated proton therapy, Dxx% dose covering xx% 
of the volume

VMAT IMPT

D98% (%) D50% (%) D2% (%) D98% (%) D50% (%) D2% (%)

m4

Water 0.2 (− 0.7 to 0.8) 0.1 (0.0–0.3) 0.5 (0.0–1.1) 0.0 (0.0–0.4) 0.0 (0.0–0.0) 0.0 (0.0–0.0)

GAN-MAR − 0.1 (− 3.0 to 0.1)  − 0.1 (− 0.2 to 0.1) 0.0 (− 0.2 to 0.0) 0.0 (− 0.2 to 0.1) 0.0 (0.0–0.0) 0.0 (0.0–0.0)

p value < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05

m8

Water 0.4 (0.1–0.9) 0.1 (0.0–0.3) 0.6 (0.0–1.1) 0.0 (− 0.3 to 0.4) 0.0 (0.0–0.0) 0.0 (− 0.1 to 0.0)

GAN-MAR − 0.4 (− 2.4 to 0.0) − 0.2 (− 0.5 to 0.1) − 0.1 (− 0.4 to 0.0) − 0.3 (− 0.8 to 0.2) 0.0 (0.0–0.0) 0.0 (0.0–0.0)

p value < 0.05 0.29 0.70 < 0.05 0.62 0.68
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study would be clinically acceptable when compared to 
those of previous studies [9–13, 17].

High Z materials produce dose backscatter, and dose 
reduction occurs downstream of the materials [22]. In 
addition to the dose disturbance, changes in the water 
equivalent path length greatly affects dose distribu-
tion in proton therapy [23]. These factors may yield 
inaccurate dose distribution at treatment planning, 
which leads to radiation-induced toxicities such as oral 
mucositis in head and neck cancer patients [3]. One 
possible reason for the small dosimetric difference can 
be the avoidance of incident photon and proton beams 
to the metal. The International Atomic Energy Agency 
(IAEA) quotes a requirement of 3% accuracy for cal-
culated doses [24]. The IAEA [24] and the American 
Association of Physicists in Medicine (AAPM) [25] 
tolerance for accuracy of HU is 20 HU and 30 HU, 
respectively. Although evaluation metrics were differ-
ent from the IAEA and AAPM, small dosimetric differ-
ences can be attributed to low RMSE of the HU values 
within the PTV. Interestingly, we also found that the 
water density override method commonly used is clin-
ically acceptable.

Several limitations of this study warrant discussion. 
First, it is unknown whether our GAN-MAR is supe-
rior to the commercially available MAR algorithms; 
however, it is impossible to evaluate the effect of metal 
artifact correction and reduction in real patients with 
the commercially available solutions, due to lack of 
the artifact-free CT volumes with dental fillings. From 
the viewpoint of calculation time and image quality, 
our GAN-MAR would be equivalent or superior to 
the commercially available MAR algorithms. The sec-
ond is the number of pseudo-dental fillings and HU 
values assigned. In this study, the number of pseudo-
dental fillings was up to eight, and fixed HU values of 
4000 HU were assigned to the pseudo-dental fillings. 
Among head and neck cancer patients, eight or more 
dental fillings were used, and their HU values may 
differ from 4000 HU, which may lead to the appear-
ance of metal artifacts different from those in this 
study. The third limitation is the correction of metal 
artifacts. In general, manual correction procedures 
of metal artifacts are dependent on observers. In this 
study, one senior medical physicist conducted the cor-
rection, which may lead to a potential bias. However, 
we used two Artifacts CT images with different num-
ber of pseudo-dental fillings (four and eight) for each 
case and conducted geometric and dosimetric evalua-
tion under the correction of metal artifacts. From the 
dosimetric results (Table 2), the effect of interobserver 
variability in artifact contorting on dose distribution 
can be negligible.

Conclusions
This is the first study to evaluate the effect of metal 
artifact correction and reduction in terms of 3D geom-
etry and dosimetry in radiotherapy for head and neck 
cancer patients, based on the artifact-free CT volumes 
with dental fillings. Our major findings can be summa-
rized as follows: (1) The GAN-MAR CT volumes gen-
erated in a short time were closer to the Reference CT 
volumes than the Water and Artifacts CT volumes, and 
(2) the dosimetric difference in the PTV from the refer-
ence plan was within 3% in VMAT and IMPT.
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