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LETTER
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Abstract
This study investigated simultaneous flood risk among all the 109 class-A river basins over Japan
using the big data of (over 1000 years) annual maximum hourly flow simulated from a large
ensemble climate simulation database for policy decision making for future climate change, and
proposed a novel approach in its geospatial analysis by applying two informatics techniques: the
association rule analysis and graph theory. Frequency analysis of the number of rivers with the
annual maximum flow over the flow capacity in the same year (defined as simultaneous flooding
here) indicated that simultaneous flood risk will increase in the future climate under 4-degree rise
scenarios in Japan, whose increment is larger than the variation of sea surface temperature
projections. As the result, the return period of simultaneous flooding in eight river basins (the same
number as in a severe storm in western Japan, 2018, causing the second worst economic damage
since 1962) is estimated at 400 years in the historical experiment, 25 years in the 4-degree rise
experiment. The association rule and graph theory analyses for the big data of annual maximum
flows in the future climate scenarios indicated that simultaneous flood occurrence is dominated by
spatial distance at a national scale as well as by the spatial relation between mountainous ridges and
typhoon courses at a regional scale. Large ensemble climate simulation data combined with the
informatics technology is a powerful approach to simultaneous flood risk analysis.

1. Introduction

Flood is one of the most hazardous natural dis-
asters around the world and its economic impact
keeps increasing in the last decades (Swiss Re Institute
2018). In particular, Japan has intensively experi-
enced severe floods almost every year over this dec-
ade: the worst and second worst flood damage were
caused by Typhoon Hagibis in 2019 (1.86 trillion
Japanese yen) and a heavy rainfall event over western
Japan in 2018 (1.35 trillion Japanese yen), respectively
(MLIT 2019a, 2019b). These extreme flood damages
were caused by river overflow and dike breach inmul-
tiple river basins (six and eight river basins among 109
class-A rivers, respectively). Such simultaneous flood
occurrence results in devastating disaster through the

supply chain and thus massive insurance payment as
well as disaster recovery expenditure. In fact, the accu-
mulation risk (Bull-Kamanga et al 2003) is of great
attention in the insurance industry. Climate change
impact on flood disaster risk has been intensively
investigated in the literature at national to regional
scales (e.g. Hirabayashi et al 2013, Arnell and Gosling
2016); nevertheless, the impact on the coincidence
of flood in multiple river basins has rarely been dis-
cussed in the literature. Rather, more attention is paid
to compound risk of river floodingwith other types of
disasters such as storm surge (Wahl et al 2015, Saleh
et al 2017) and/or wildfires/heatwaves (Zscheischler
et al 2018, Moftakhari and AghaKouchak 2019).

Spatial dependence of flood risk has been evalu-
ated in the context of hydrological frequency analysis
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(Keef et al 2009, Chen et al 2012, Neel et al 2013,
Geertsema et al 2018). Keef et al (2009) analyzed
spatial dependence of flood peaks and precipitation
totals over the whole UK. Neal et al (2013) estim-
ated the joint probability of flood peaks among the
River Eden and its two tributaries. They successfully
estimated joint probabilities of multi-site flood peaks
and the resulting inundation depths at various return
periods with the help of copula functions. Geertsema
et al (2018) presented another approach, dynamic
time warping as an efficient tool in time series ana-
lysis that detects analogy in two different flood waves,
and clarified that rapid drainage in a lowland trib-
utary reduces the likelihood of coincident discharge
peak with the main stream. These statistical tech-
niques are essential to discuss simultaneous flooding
because the observation period is far shorter than the
return periods of such events. However, it has been
a challenge to apply these statistical approaches to
inter-catchment and/or national-scale simultaneous
flood analysis due to high dimension of their joint
probability distribution.

Recently, some studies expanded flood spatial
dependence to continental scales by accumulating
all the available observation data over the coun-
tries. Quinn et al (2019) generated many synthetic
flood events by constructing spatial flood depend-
ence structures with conditionalmultivariate extreme
value analysis. They were then converted into a
flood risk curve through depth-damage functions.
Diederen et al (2019) constructed a statistical model
of spatially coherent discharge peaks from blockmax-
ima data and produced pan-European flood events.
Using these state-of-the-art statistical models for
increased number of gauges is a major way to do a
large-scale flood risk assessment (Brunner et al 2020,
Winter et al 2020). There will be, however, still chal-
lenges for extending this analysis to assess climate
change impact on large-scale flooding, which would
be addressed in the near future.

As an alternative approach, this study explores the
use of large ensemble climate simulations with global
climate models. In the last few years, to detect the cli-
mate change signals in extreme weather events such
as heavy rainfall and/or storm surge, a large ensemble
climate simulation database has been developed by
the meteorological research community such as Half
A degree additional warming, Prognosis and Projec-
ted Impacts (Mitchell et al 2017), database for(4)
policy decision making for future climate change
(d4PDF) (Mizuta et al 2017), and the ClimEx project
(Leduc et al 2019). They realized a tremendous num-
ber of climate simulations and as a result, produced
thousands of climate simulation data for the present
and future climate conditions. They are considered
long enough to estimate low-frequency phenomena
including river overflow at the return period of several
hundred years. Recent studies have widely applied
these data to impact assessments on river overflow,

storm surge, and/or wind disasters (Doll et al 2018,
Faye et al 2018, Lavender et al 2018, Yang et al 2018,
Mori et al 2019). These large ensemble climate simu-
lation datasets also have potential of giving coincid-
ent flood frequencies over a wide range in a more
straightforward manner.

This research aims to estimate future changes of
simultaneous flood occurrence probability and its
geospatial characteristics among all the 109 class-A
river basins in Japan (see figure 1) using the annual
maxima of hourly river discharge simulated with
a rainfall-runoff model from d4PDF. The climate
change signal of simultaneous flood risk is detected by
comparing the probability distribution of the number
of flooded river basins per year between the past and
4-degree rise experiments of d4PDF.

Furthermore, we also analyze spatial dependence
in flood occurrence among all the basins. This can
be challenging because d4PDF provides 3000-year
and 5400-year annual maximum flow data in the 109
river basins, which makes a tremendous number of
combinations to examine. We overcome this big data
issue by employing association rule analysis (ARA)
and a graph theory that efficiently identify a group
of river basins which are likely to be flooded in the
same year. Finally, two examples of regional com-
munity extraction are demonstrated in the Kyushu
and Hokkaido regions to examine the geospatial
characteristics of simultaneous flood occurrence at
a regional scale. Note that the community extrac-
tion approach is presented only for the 4-degree
rise experiment because enough simultaneous flood
events did not occur in the past experiment.

2. Model and data

2.1. Rainfall-runoff model 1K-DHM
Weemploy a rainfall-runoffmodel 1K-DHM(Tanaka
and Tachikawa 2015), a distributed rainfall runoff
model based on a kinematic wave flow approxima-
tion, constructed at all the 109 class-A rivers basins
in Japan in Kobayashi et al (2020). 1K-DHM calcu-
lates the slope runoff and river routing at each cell at
around 1 km (30 s) resolution over a two-dimensional
domain. Slope runoff is simulated with the continu-
ity and momentum equations of the kinematic wave
theory, considering saturated and unsaturated sub-
surface flows and surface flow with the following
momentum equation and discharge–storage relation
(Tanaka and Tachikawa 2015)

∂h

∂t
+

∂q

∂x
= re (1)

q=


vcdc

(
h
dc

)β

(0⩽ h⩽ dc)

vcdc + va (h− dc) (dc ⩽ h⩽ da)
α(h− dc)

m
+ va (h− dc)+ vcdc (da ⩽ h)

(2)
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Figure 1. River basin map in Japan. The filled areas show the class-A river basins. The red river basins show the Ara, Shonai, and
Yodo River basins having a mega city (Tokyo, Nagoya, and Osaka, respectively). The blue areas show the western Japan river
basins, the most southern island of which is the Kyushu region; the green areas show the Hokkaido River basins. The exceedance
probability of number of simultaneously inundated basins is investigated all Japan and the western Japan; community extraction
is demonstrated all Japan, in the Kyushu and Hokkaido regions.

where, q is the slope runoff discharge per unit width;
h is the water depth; da and dc are the water depth
corresponding to the maximum water content of sat-
urated and unsaturated soil layers, respectively; va and
vc are the water velocity of saturated and unsaturated
soil layers, respectively; α= n/

√
sinθ; n is the rough-

ness coefficient; and θ is the slope gradient. River
flow is simulated with a kinematic wave model with
the following momentum equation and discharge–
storage relation

qL =
∂A

∂t
+

∂Q

∂x
(3)

Q= αcA
m (4)

where, A is cross-sectional area of a river, Q is dis-
charge. qL is lateral inflow per unit width and given
by calculated slope runoff discharge per unit. αc is

parameter and defined αc = (1/Bc)
2/3√ic/nc where

ic river gradient, nc is roughness coefficient of river,Bc
is riverwidth. Figure 1 shows the concept of 1k-DHM.
A kinematic wave flow approximation with thin sub-
surface flow components well represents flash flood
characteristics over steep mountainous terrain in a
temperate climate, which are widely seen in Japan
river catchments (Shakti 2017).

Dams whose catchment area is larger than 5%
basin area are modeled at each basin. Dam opera-
tion is assumed to be constant release operation, by
which outflow of dam is calculated with the follow-
ing equation

Q(t) =


I(t) (I(t) < Qctl)

Qctl (I(t) ⩾ Qctl,(S(t)< SF)
I(t) (I(t) ⩾ Qctl, S(t)⩾ SF)

(5)

where, I(t), S(t), Q(t) is inflow, storage, outflow of a
dam at time t. Initial storage Q(0) is assumed to be
capacity for water utilization in flooding period, SF.

Themodel parameters are identified in each basin
to maximize the Nash–Sutcliffe coefficient using the
SCE-UA algorithm (Duan et al 1994) as an optim-
ization method. This study examines simultaneous
occurrence probability of extreme flood peaks at the
standard gauging station of each river system (loc-
ated near by the major city within its catchment);
thus, the parameters are calibrated to the hydrograph
of the station during the largest flood event between
1981 and 2017 (when enough observation data was
available in most river systems). If the observed
rainfall/discharge data has problems (most data are
missing, runoff ratio exceeds 1.0, …etc), the second

3
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largest one was targeted. Calibrated parameters are
summarized in supplementary table S1 (available
online at stacks.iop.org/ERL/16/074059/mmedia). As
the result, for the calibrated event, the model showed
the Nash–Sutcliffe efficiency (NSE) coefficient ran-
ging from 0.730 to 0.997 (0.923 on average) and peak
discharge error within ±20% among all the basins.
The calibrated model was validated for the second
largest event (the third largest one if the second largest
event was used for calibration) in each river basin.
As the result, the NSE values ranged from 0.523 to
0.988 (0.816 on average), and peak error ratios were
within ±30% among all the basins. Hydrographs of
the calibration and validation events at one river sys-
tem from each region, i.e. Hokkaido, Tohoku, Kanto,
Koshinetsu, Shikoku and Kyushu (see figure 1), were
shown in supplementary figures S2 and S3, respect-
ively.

2.2. Large ensemble climate simulation data d4PDF
d4PDF is a huge ensemble climate simulation data-
base produced using MRI-AGCM 3.2 s at 60 km res-
olution, which was downscaled to 20 km with the
non-hydrostatic regional climate model (NHRCM)
(Sasaki 2008) over Japan. This study used this 20 km
regional experiment. The downscaled d4PDF con-
sists of 50 ensembles of climate simulations under
the observed boundary conditions with observable
small perturbations in sea surface temperature (SST)
and sea ice from 1951 to 2010 (historical experi-
ment, hereinafter HPB), and six ensembles of differ-
ent future SST projections corresponding to around
4-degree rise in global mean temperature under 15
boundary condition ensembles (900 ensembles in
total), in which the NHRCM was run for 60 years
(4-degree rise experiment, hereinafter HFB) (Mizuta
et al 2017). Therefore, HPB and HFB have 3000- and
5400-year data, respectively.

This dynamically downscaled dataset resolved
typhoons, which is the major driver of flooding in
Japan, and well reproduced their genesis frequency
with the spatial distribution (Yoshida et al 2017) and
the central pressure to some degree (Nakajo et al
2020) while it still has bias from observation with
similar to other climate models. The model bias in
d4PDF was corrected by Kobayashi et al (2020) in
terms of rainfall intensity (direct input to the rainfall-
runoff model 1K-DHM) so that annual maximum
basin rainfall reproduces observation in all the class-A
river basins (the target rivers in this study) as follows.

2.3. Bias correction and rainfall-runoff simulation
Kobayashi et al (2020) corrected the bias of rainfall
intensity during a storm event causing the annual
maximum basin rainfall in each year (hereinafter,
the annual maximum storm) in all the class-A rivers
using the radar AMeDAS rainfall (RAR) as reference.
Bias correction ratio was calculated as the difference
ratio of D-hour rainfall between HPB of d4PDF (D

is the design rainfall duration of each river ranging
between 6 and 72 h) and RAR at the same quantile
(Piani et al 2010) and applied to rainfall intensity
of the original 20 km grid rainfall during D-hour.
The bias-corrected rainfall was converted into river
discharge using the aforementioned rainfall-runoff
model (Kobayashi et al 2020). This study utilizes the
simulated discharge data for the following simultan-
eous flood risk analysis.

3. Simultaneous flood risk analysis

3.1. Definition of occurrences of flooding in each
river basins and simultaneous flooding
Performing 3000- and 5400-year continuous simu-
lation for both the past (HPB) and 4-degree rise
(HFB) experiments consumes huge time and com-
puter resources for its completion. To avoid this, we
focus on annualmaximum storms in each river basin,
i.e. simulate 3000 and 5400 flood events for all the tar-
get river basins in total. Then, we define, in a river
basin of interest, flooding as a phenomenon that the
flood peak discharge of an annual maximum storm
exceeds the one corresponding to the design return
period (100, 150 and 200 years depending on each
river basin, hereinafter, flow capacity). This proced-
ure implies that we assume the flood occurrence at
most once per year per one river basin. Simultaneous
flooding is, accordingly, defined as a phenomenon
that annual maximum river discharge exceeds the
flow capacity inmultiple river basins in the same year.

Regulating simultaneous flooding in the same
year (between January and December) maymiss sim-
ultaneous floods crossing the year. Although it is well
known that Japanese river basins under the Asian
Monsoon climate receive extreme precipitation from
typhoons and frontal rain in the middle of the year,
the frequency of annual maximum storms (years) for
each month in d4PDF was examined. Among all the
target river basins, around 60%–68% to 98%of events
(years) occurred between June and October in HPB
and HFB, respectively (see supplementary figure S4).
It became 88%–100% when it comes to floods larger
than the 100-year event (minimum level of the design
return period) (see supplementary figure S5), justify-
ing the treatment of every year as individual isolated
time units both in the present and future climates.

3.2. Annual flood occurrence probability at a single
river basin
The estimated annual probability of flood occurrence
in HFB at all the 109 class-A river basins is shown in
figure 2. The probability in HFB is much higher than
the design level of ranging from 0.005 to 0.01 (cor-
responding to 100- to 200-year return periods) in the
target river basins. Increase of the occurrence probab-
ility is higher in the northern (Hokkaido andTohoku)
regions where design flood is smaller corresponding
to smaller flood discharge in historical records and
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Figure 2. Annual probability of flood occurrence in HFB at all the 109 class-A river basins.

Figure 3. The histogram of the number of inundated river basins in the same year. The blue and red bins show the historical
(HPB) and the mean of the 4-degree rise (HFB) experiment, respectively. The black dots show the SST ensemble range (the
minimum and maximum values) in HFB.

the southern (Kyushu and Shikoku) regions where
severe typhoons approach frequently (see figure 1 for
locations). The one-sided binominal distribution test
showed that the change is statistically significant at
1% significance level.

3.3. Probability of simultaneous flood occurrence
The histograms of the number of inundated river
basins in the same year in HPB and HFB are shown
in figure 3. HFB shows much higher frequencies of
simultaneous flood occurrence among more than
three river basins. Although there are some vari-
ations in frequencies among the SST ensembles of

HFB (between the two black dots), its length is far
shorter than the future increase, indicating that future
changes of simultaneous flood occurrence probability
is far larger than the uncertainty of future SST projec-
tions. The tail of the distributions become long; con-
sequently, there are some extreme events with around
30 basins inundated in the same year. In the top five
years with the largest number of inundated basins
for both the experiment, heavy rainfall is caused by
a typhoon.

The exceedance probability of the number of
flooded river basins among the 41 basins in west-
ern Japan is shown in figure 4. The black line in the
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Figure 4. Annual exceedance probability (AEP) of the number of flooded river basins in HPB and HFB among the 41 basins in
western Japan. The gray bar shows the range of SST ensembles in HFB.

Figure 5. The exceedance probability of the number of
flooded river basins among the Ara, Yodo, and Shonai River
basins. As the probability is much smaller than all Japan
and the western Japan cases, it was estimated using all the
SST ensemble members (5400 years in total).

figure indicates the number in the rainfall event in
2018 (eight rivers were inundated), whose exceedance
probability in HPB is around 0.002 corresponding to
about 500-year return period, whereas one in HFB is
around 0.035 corresponding to 28-year return period.
For the Tohoku, Kanto andKoshinetsu Regionswhere
six river basinswere inundated byTyphoonHagibis in
2019, the similar analysis (without the SST ensemble
range) was performed by Tanaka et al (2020) show-
ing that the exceedance probability in HPB is around
0.0027 (370-year return period) while that in HFB
is around 0.05 (20-year return period). Both results
show that a large-scale flooding at hundreds of return
period will occur around once in a few decades in the
4-degree rise climate.

The same plot for the Ara, Yodo, and Shonai
River basins having the mega cities: Tokyo, Osaka,
and Nagoya, respectively, is plotted in figure 5. Note
that this probability was estimated using all the
SST ensemble members (5400-year data) because

simultaneous flood occurrence among the three river
basins rarely occurs; thus, uncertainty range is not
shown in this case. In the historical experiment HPB,
simultaneous flood did not occur among them. HFB
shows that two river basins are inundated with prob-
ability of 0.0011 (around 910-year return period) and
all the basins are inundated in only one year, in which
there are two major flood events: one caused flood
in the Yodo and Shonai River basins; the other did in
the Ara River basin. This is simply because the Yodo
and Shonai Rivers are closer to each other than the
Ara River. In Japan, simultaneous flooding in mul-
tiplemega cities is found to rarely occur in the present
climate while it might happen more often than once
in 1000 years under the 4-degree rise climate. Note,
however, that this estimation is under high uncer-
tainty due to the absence of SST ensemble range.

Return periods of simultaneous flood events have
been rarely discussed due to the lack of obser-
vation data or climate simulation ensembles. The
presented analysis demonstrated the usefulness of
large ensemble climate simulation data for the fre-
quency analysis of simultaneous flood occurrence, i.e.
the accumulation risk of floods, which is different
information from large-scale flood risk map in a lit-
erature (Alfieri et al 2014, Dottori et al 2016).

4. Geospatial analysis of simultaneous
flood occurrence

4.1. ARA
As seen in a literature, simultaneous flood risk
has been analyzed by multivariate analysis of flood
peak data among multiple gauges (Keef et al 2009,
Diederen et al 2019). As Quinn et al (2019) poin-
ted out, statistical flood generators need to consider
that dependence structure is different between reg-
ular and extreme floods. To focus on flood exceed-
ing the design level, this study deals with the flood
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occurrence data, i.e. whether annual maximum peaks
exceed the flow corresponding to the design return
period or not. As such data is not a continuous
but discrete variable (flooding occurs or not), typ-
ical correlation analysis cannot be applied (Changhai
and Shenping 2019). Furthermore, it is unrealistic to
examine dependence between all the combinations
from 109 river basins (only a pair of two basins makes
5886 patterns) in each of which 5400 flood occur-
rence data are included in the 4-degree rise experi-
ment. Dependence structure in such discrete, big data
has been analyzed in the field of market analysis using
the ARA. This study first applies the ARA to geospa-
tial analysis of simultaneous flood occurrence.

The ARA is a method to identify interesting rela-
tions between two sets of variables from big data
and first proposed and applied in the field of mar-
ket basket analysis to find items bought together fre-
quently by Agrawl et al (1993). In this analysis, prob-
lems are formulated as follows: let I= {i1, i2, . . . , im}
be a set of items and D be a set of transactions
where each transaction T is a set of items (T ∈ I).
Then, the combination of two transactions X and
Y such that ∅ ̸= X,Y⊂ I and X∩Y ̸= ∅ is defined
as an association rule X⇒ Y, where X is the ante-
cedent; Y is the consequent. An association rule is fea-
tured as a higher value of indices: ‘support’, ‘confid-
ence’, and ‘lift value’. Support sup(X⇒ Y) is defined
as sup(X⇒ Y) = P

(
X∩Y

)
, which means the fre-

quency of transaction(s)T= {X,Y} in all the transac-
tions |D|. The confidence conf(X⇒ Y) is defined as:
conf(X⇒ Y) = P(X∩Y)/P(X) = P(Y|X) , indicat-
ing the conditional probability of Y on X.

In this study, a set of items I consists of all the river
basins {RB1,RB2, . . . ,RB109} and {0} (no occurrence
of flooding); a transaction T is a set of river basins
flooded (T= {0} when no river is flooded) in a cer-
tain year. In this analysis, the 4-degree rise experiment
data (5400-year simulations) was used as it showed
larger number of flood occurrences; thus, 5400 trans-
actions were obtained. This study deals with flood
occurrences between two river basins in each trans-
action. For example, between river basins RB2 and
RB5 (denote that X= {RB2} and Y= {RB5}, let RB2

and RB5 be flooded in 108 and 270 events (year) in
5400 years and both are flooded in 54 years. Then, sup
(X⇒ Y) = P(X∩Y) = 54/5400= 1/100 and conf
(X⇒ Y) = P(X∩Y)/P(X) = 54/108= 1/2. Condi-
tional probability is used to avoid from extracting
rules with week relations but high support due to the
high frequency of transaction X. On the other hand,
only the confidence may extract trivial rules such that
the transactionX rarely occurs. In the above example,
sup(X⇒ Y) is 1/100,meaning that both RB2 and RB5

are flooded once in 100 years, and conf(X⇒ Y) =
1/2, indicating that RB5 is flooded once in two
times when RB2 is flooded. If both sup(X⇒ Y) and
conf(X⇒ Y) are high, flooding in RB2 and RB5 is
strongly related and not rare. ARA aims to extract

interesting but non-trivial rules by selecting those
with both sup(X⇒ Y) and conf(X⇒ Y) over the
threshold (see the values in this study in section 4.3).
This selection is efficiently implemented with the
Apriori algorithm (Agrawal et al 1994) in R pack-
age ‘arules’. Finally, an additional criterion called ‘lift
value’

lift(X⇒ Y) =
conf(X⇒ Y)

sup(Y)
=

P(Y|X)
P(Y)

=
P(Y∩X)

P(X)P(Y)
(6)

is used to cut out rules extracted due to frequent
occurrence of Y. After all, interesting and meaning-
ful rules are identified as the high support and con-
fidence above the thresholds and the high lift value.

4.2. Community extraction by graph theory
A rule (transaction) extracted as support and con-
fidence above threshold is expressed as a link and
the connected two river basins are expressed as
nodes, making undirected graph (see figure 6(a) as
an example). A community of simultaneous flood
occurrence, composed of elements strongly connec-
tedwith each other (i.e. high support, confidence, and
the lift value), is then extracted from the construc-
ted graph based on the intermediation centrality Cv

defined as:

Cv (e) =
1

2

∑
s,t

σst (e)

σst
(7)

where e is a link targeted; σst is the total number of
the shortest paths between nodes s and t; σSt (e) is the
paths with the link e. High intermediation centrality
indicates that a link between nodes s and t works as
a hub connecting two individual communities. Such
communities are identified by cutting a link with
the largest Cv (see figure 6(b) as an example). This
study applies the GN algorithm (Girvan and New-
man 2002) which repeats the above process until the
network is split into strongly connected communit-
ies using the modularity as criterion. Modularity is
a measure of connectivity in communities and high
when links connecting nodes within a community
are dense but those between communities are sparse,
i.e. nodes (river basins in this study) are divided
into strongly related groups (see Newman and Gir-
van 2004). In figure 7(b), themodularity is the highest
when dividing into two communities {1,2,3,4} and
{5, 6,7,8}. All these algorithms are implemented in
R package ‘igraph’.

4.3. Geospatial characteristics of simultaneous
flood occurrence
We applied the ARA to simultaneous flood occur-
rence among all the 109 river basins and extrac-
ted interesting rules by the Apriori algorithm. The
threshold values depend on the problem. This study
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Figure 6. An example of community extraction: (a) the numbers indicate the intermediation centrality defined as equation (7);
(b) two communities are extracted by cutting the whole network at a link with the largest intermediation centrality of 16.

Figure 7. The locations of river basins around the Tone River basin (No. 28 shown in gray). The southeastern river basins of the
Tone River basin (red) have higher lift value whereas the value is lower for the northeastern basins (blue).

set the minimum threshold of the support and con-
fidence as 0.001 and 0.1, respectively and by selecting
the top 25 ones so that geospatial characteristics can
be seen. To see the characteristics of association rules,
the top ten rules fixing the precedent to the ToneRiver
basin having the largest catchment area in Japan are
shown in table 1. The location of each basin is dis-
played in figure 7. Obviously, the combinations of
nearer river basins have higher lift value. Interestingly,

the consequent of the most rules is located in the
southeastern of the Tone River basin (as shown in
red in figure 7) whereas its northern basins No. 34,
No. 20, No. 27 and No. 26 are ranked at 8th, 10th
and out of the top tenth, respectively (as shown in
blue in figure 7). As typhoons approach from the
south Pacific Ocean in Japan, when the Tone River is
flooded, its southeastern basins are more likely to be
flooded together than the northern basins. The ARA
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Table 1. Top 10 association rules from the Tone River basin. See figure 7 for the locations.

Association rule Lift value Support Confidence

28⇒ 35 14.0 0.0094 0.364
28⇒ 46 10.1 0.0100 0.386
28⇒ 29 8.42 0.0080 0.307
28⇒ 32 7.97 0.0070 0.271
28⇒ 50 7.71 0.0033 0.129
28⇒ 54 7.01 0.0030 0.114
28⇒ 30 6.69 0.0070 0.271
28⇒ 34 6.29 0.0072 0.279
28⇒ 48 5.95 0.0069 0.264
28⇒ 20 5.85 0.0059 0.229

Figure 8. (a) Extracted communities of simultaneous flood occurrence and (b) elevation in Japan.

clarified that such geographical feature still applies in
extreme storm events that cause large-scale precipit-
ation. This finding will be informative for large-scale
flood risk management and/or insurance planning.

Based on the extracted rules, the 109 river basins
are classified into ten groups as shown in figure 8(a).
River basins with the same color belong to the same
community. With similar to the ARA, spatially closer
basins are classified into the same group; however,
its boundary does not always the same as mountain
ridges (figure 8(b)). This indicates that at a national
scale, spatial distance is more dominant than topo-
graphic features in extreme storms. On the other
hand, the Group 6 (light-blue region in figure 7)
expands to the north of the Group 5, whose bound-
ary exactly correspond to the ridges of the Japan Alps
probably because of their notably high altitudes.More
regional investigation is demonstrated in Hokkaido
and Kyushu regions (see figure 1) by applying the
community extraction within the region as shown
in figures 9 and 10, respectively, which clearly shows
that the communities are consistent with mountain
ridges. In summary, the grouping of simultaneous
flood occurrence at a national scale is affected mainly
by spatial distance and partly bymountain ridgeswith
high altitudes while at a regional scale, the latter dom-
inates it.

5. Summary, concluding remarks and
future work

This study estimated the present and future simul-
taneous flood occurrence probability and its geo-
spatial characteristics using big data of simulated
flood peak discharge of annual maximum rainfall
events in a large ensemble climate simulation data-
base d4PDF and informatics techniques: ARA and
graph theory. Even in Japanese river basins suffering
from severe typhoons every year, simultaneous flood
occurrence is a low-frequency phenomenon at least in
the last decades. Frequencies of such events are first
quantified in this study owing to a large number of
ensembles in d4PDF and a rainfall-runoff model cal-
ibrated in all the class-A river basins in Japan.

The probability of simultaneous flood occur-
rence in the 4-degree rise experiment HFB is sig-
nificantly larger than that in the historical exper-
iment HPB in all the three cases examined: all
Japan, western Japan that experienced large-scale
inundation in 2018, and mega cities. The significant
increase is largely attributed to the increased mag-
nitude and frequencies of extreme discharge in each
river basin. The future change of their correlation
might have some impact, which should be analyzed in
future research. Statistical techniques for multivariate
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Figure 9. (a) Extracted communities of simultaneous flood occurrence and (b) elevation in the Kyushu region (see figure 1 for the
location).

Figure 10. (a) Extracted communities of simultaneous flood occurrence and (b) elevation in the Hokkaido region (see figure 1 for
the location).

probability distribution such as the copula approach
might be helpful (Bevacqua et al 2017). The uncer-
tainty analysis of the probability estimation is kept as
the future work because it focused on first proposing
a big data-based approach to multi-basin flood risk
analysis. The Bayesian approach and/or the MCMC
approach could support to quantify the uncertainty
range of simultaneous flood occurrence probability
(Zhou et al 2017).

The geospatial characteristics of simultaneous
flood risk were first analyzed using the ARA and
graph theory, which provided the degree of correl-
ation with surrounding areas while being unable to
detect various combinations of river basins at high
simultaneous flood risk. This study, using the graph
theory, identified the groups of river basins to which
insurance design and/or urban planning should pay
much attention.
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