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Data-Driven Imitation Learning for a Shopkeeper Robot

with Periodically Changing Product Information

MALCOLM DOERING, DRAŽEN BRŠČIĆ, and TAKAYUKI KANDA, Kyoto University

Data-driven imitation learning enables service robots to learn social interaction behaviors, but these systems

cannot adapt after training to changes in the environment, such as changing products in a store. To solve this,

a novel learning system that uses neural attention and approximate string matching to copy information from

a product information database to its output is proposed. A camera shop interaction dataset was simulated

for training/testing. The proposed system was found to outperform a baseline and a previous state of the art

in an offline, human-judged evaluation.
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Information systems → Question answering;

Additional Key Words and Phrases: Human-robot interaction, imitation learning, database question answer-

ing, knowledge base question answering, retail robot, service robot, social robot

ACM Reference format:

Malcolm Doering, Dražen Brščić, and Takayuki Kanda. 2021. Data-Driven Imitation Learning for a Shop-

keeper Robot with Periodically Changing Product Information. Trans. Hum.-Robot Interact. 10, 4, Article 31

(July 2021), 20 pages.

https://doi.org/10.1145/3451883

1 INTRODUCTION

The data-driven imitation learning approach has been been increasingly explored as a method for
designing end-to-end text-based dialog systems [1, 44] and for multi-modal, mobile robot inter-
action behaviors [6, 7, 10, 29]. The advantage of this approach is that robot interaction behaviors,
which consist of speech, locomotion, object manipulation, and so forth, can be learned for domains
with highly repeatable, formulaic interactions from data alone, with minimal input from human
interaction designers or manual data annotation. Furthermore, by learning from natural interac-
tion examples collected with noisy sensors, the system can become more responsive to natural
variations of human speech and behavior (forgoing the necessity for interaction designers to an-
ticipate the many ways humans might behave), and it can become more robust to sensor noise
(e.g., speech recognition errors).
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31:2 M. Doering et al.

Fig. 1. In service scenarios (e.g., a camera shop), the information that should be provided by a robot may
change after training. The robot should automatically adapt its actions whenever the product database in-
formation is updated, without retraining.

However, one limitation of the previous approaches is that after training, they cannot adapt
to dynamic, periodically changing environments in which social robots work. For example, in a
camera shop scenario, a robot might be trained on a dataset of interactions collected over a duration
of time where the products in the store and the attributes of those products (e.g., prices) are fixed.
To adapt the robot’s behaviors to deal with changing products, a new interaction dataset with the
new products would have to be collected, and the robot would have to be retrained. But since
data collection and retraining take time and would require the robot to repeatedly be taken out of
service, this is an infeasible solution.

Thus, this work focuses on the problem of learning and adapting the behaviors of a camera
shopkeeper robot to keep its actions consistent with the products sold there over time (Figure 1).
For this purpose, we propose a learning system that uses database-addressing neural attention
and approximate string matching mechanisms. Approximate string matching finds mentions of
product information in shopkeeper speech, and the neural network, given a representation of the
state of the interaction, retrieves the most relevant contents from a product information database
and outputs an appropriate shopkeeper action. Furthermore, it learns to do this automatically
based on interaction examples, without manual data annotation.

The proposed system was evaluated by training and testing it on simulated examples of
customer-shopkeeper interactions and snapshots of the product database from the times the inter-
actions were collected. It was compared to a baseline without the database-addressing and string
search mechanisms and to a state-of-the-art neural architecture for question answering with a
knowledge base [19]. Finally, the proposed system was found to outperform the two other sys-
tems in an offline, human evaluation.

2 RELATED WORKS

2.1 Data-Driven Imitation Learning of Social Interaction Behaviors

Data-driven systems for designing behaviors for virtual humans were explored early on: The
“Restaurant Game”was a virtual restaurant in which two human players, playing the roles of cus-
tomer and waiter, could navigate around the restaurant and interact via text and predefined ac-
tions [37, 38]. “Plan networks” were automatically extracted from the interaction data, enabling
the automation of virtual characters. The “Mars Escape”game used a similar approach and went
a step further by embodying the learned behaviors in a real robot [2, 7, 8]. In contrast, data col-
lected in the real, physical world, which is incorporated into our interaction simulation, has the
additional challenge of sensor noise, which is absent in virtual worlds.

Liu et al. [29, 30] introduced the concept of training a camera shopkeeper robot from examples
of natural human-human interaction without any input from a human designer. The approach
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Data-Driven Imitation Learning for a Shopkeeper Robot 31:3

consists of clustering the raw interaction data to find discrete common actions, then training a
neural network classifier using the action cluster IDs as labels.

Much research has been done in extending the data-driven imitation learning approach to
human-robot interaction. Nanavati et al. [35] focused on applying the data-driven imitation learn-
ing framework to one-to-many interaction (i.e., one shopkeeper, many customers). Doering et al.
[10] focused on the problem of modeling the hidden structure of interaction, which enabled res-
olution of ambiguous customer speech. Doering et al. [11] showed how gated recurrent neural
networks could be used to learn a memory model of customer behavior. In addition, Doering et al.
[12] presented a system that could explore different robot behaviors and learn online, which re-
sulted in more varied, interesting robot behaviors than previous approaches and enabled some
customization to customers’ individual differences. To make these previous approaches function
properly in a situation where a store’s products have changed after training, further data collection
and system retraining would be necessary. In contrast, the current work introduces an approach
that automatically adapts the robot’s behavior to account for changing products in the store.

Others have also explored learning of human-robot interaction behaviors. Kawahara [22]
presents an approach for human-robot dialog but does not use a data-driven imitation learning
approach. Where a data-driven approach is used, it is not end-to-end and requires annotated data.
In contrast, our approach is end-to-end (from customer input to robot output) and does not re-
quire expensive data annotation. Patompak et al. [40] presented a reinforcement learning method
to learn social proxemics maps of groups of people for socially appropriate robot navigation. In
contrast, our approach uses imitation learning to learn speech behaviors and location targets.

2.2 Dialog and Question Answering

Recent work in end-to-end dialog systems is closely related to learning social robot interaction
behaviors. These methods work by either retrieving or generating a response utterance given a
dialog history. Retrieval-based methods select a response from among a set of candidate responses
obtained from the training data using score functions based, for example, on neural networks or
term frequency–inverse document frequency [32]. However, generation-based methods generate
responses from scratch, word-by-word, using recurrent neural networks [44, 46]. Both approaches
have certain advantages and disadvantages, so some approaches attempt to combine them to get
the best of both [45, 55]. In contrast to our approach, these systems (except that of Yang et al. [55])
decide the output based only on the dialog history, without any external information source.

Liu et al. [29] presented a retrieval-based method designed to work better than previous retrieval-
based methods on data collected by noisy sensors in environments where robots are to be deployed.
Well-formed, error-free utterances were selected for robot output from among the training utter-
ances by speech clustering and typical utterance selection. Our approach extends this method for
the situation where the system may want to alter the typical utterance by adding some informa-
tion from a product information database. Thus, it could maintain robustness to noise while also
including information from an external knowledge base.

There are also data-driven methods that are designed to use external information sources, such
as end-to-end neural dialog systems and question answering systems. These include generation-
based [13, 19, 26, 54, 57], retrieval-based [1, 47, 56], and combined approaches [55]. Furthermore,
some of them are designed to access external data stored in an unstructured text document [54],
arrays of sentences [1, 13, 26, 47, 55], knowledge graphs [56, 57], and databases [19].

Most closely related to our approach is that of He et al. [19], which presents a generation-based
approach for answering questions based on information in a database. It has the common pitfalls
of generation-based approaches, such as outputs that are overly general and ungrammatical [45,
55]. In contrast, our approach is based on the retrieval method first presented by Liu et al. [29],
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31:4 M. Doering et al.

which overcomes these pitfalls. Furthermore, one of the downsides of retrieval-based approaches
is that they can only output candidate responses that appear in the training data, so they cannot
generalize beyond previously seen outputs. Our approach overcomes this by creating templates
that can be dynamically filled with information from the database at runtime.

To the best of our knowledge, our proposed approach is the only one that uses retrieval-based
methods in combination with a structured external knowledge base and will work on out-of-
vocabulary database contents without requiring retraining. This makes it uniquely suited to solve
the problem of data-driven learning of interactive shopkeeper behaviors when there are periodi-
cally changing products.

2.3 Continual Learning

Continual learning, also known as incremental learning [15, 28], is the problem of learning from
training data that is obtained over time in a dynamically changing environment. This is in contrast
to traditional machine learning, where all training data is available at once and the data distribution
is assumed to be static. Continual learning has been used for robotics and human-robot interaction
in applications such as learning task representations [58], perception models [53], motion primi-
tives [33], gestures [4], and body postures [52]. Moreover, reinforcement learning in combination
with intrinsic motivation has been used to allow robots to explore their sensorimotor [21, 39, 43]
and social [42] spaces in dynamically changing environments.

The primary question that our work focuses on is how a data-driven imitation learning sys-
tem can adapt to periodically changing products in a store setting. Continual learning may be a
possible approach to solving this problem; however, it is distinct from our proposed approach. In
continual learning, a learning model will continuously train on newly incoming data, sometimes
requiring labeling input from an oracle (e.g., a human supervisor), depending on the type of learn-
ing model [28]. In contrast, our approach does all of the training at once, on unlabeled examples
of interactions and database snapshots from many points in time. This has the advantage of not
requiring manual data labeling and forgoes the other requirements of continual learning, such as
memory, data storage, and learning-dedicated CPU cycles during runtime. Another important dif-
ference is that continual learning aims at remembering previously learned concepts while learning
new ones, whereas our proposed system is designed to overwrite previous product information
with new information.

2.4 Symbol Grounding in Human-Robot Interaction

Symbol grounding, or language grounding, in the context of human-robot interaction is mainly
concerned with linking linguistic instructions or descriptions of the physical environment to a
robot’s actions and perceptions [17, 34]. At a high level, the key to the symbol grounding problem
lies in how object, spatial relation, and attribute classifiers, and primitive robot actions, can be
linked to the semantic representations of sentences. Many approaches exist, including attributed
relational graph matching [5], defining robot actions in terms of goal states or action sequences [5,
16], probabilistic graphical models such as conditional random fields and hierarchical adaptive
distributed correspondence graphs [41, 48, 49], and active and interactive learning to learn new
words and classifiers [25, 50, 51].

Symbol grounding in the context of human-robot interaction is similar to our work because
it leverages externally provided information contained not in a database but in a data structure
that describes a representation of the environment model at the time of the interaction. However,
these related works are mainly focused on the problem of linguistic communication between the
human and robot about the physical world, whereas data-driven imitation learning is intended
for more social interaction and information exchange, where the contents of the speech are not
necessarily about the physical world. Moreover, were a symbol grounding approach to be applied
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Fig. 2. Overview of the simulation procedure.

to the problem of learning to talk about periodically changing products, this would raise the
question of how to ground language to language (the customer or shopkeeper’s speech to the
contents of the database), which is not the target of the symbol grounding methods but is solved
by our proposed system.

3 INTERACTION DATASET

To train and evaluate a system that can deal with periodically changing products, we first need
a dataset of interactions in a store that is taken over a prolonged time so that it includes such
changing products. In the future, it will be possible to collect social interaction data in stores to
train social service robots. For example, passive sensors, such as person-tracking 3D range sen-
sors [3] and voice-recording microphone arrays, could record customer-employee dialogues about
products in the store. However, such a dataset does not yet exist, and collecting one, even in a
laboratory setting, would be time and cost prohibitive.

Therefore, to demonstrate the proposed system as a proof-of-concept, we simulated customer-
shopkeeper interactions in a camera shop scenario, where the cameras on display periodically
change. This was accomplished by creating an interaction simulator that combined elements of
previously collected human-human interactions, hand-designed new products, and new utterances
collected via crowdsourcing (Figure 2).

The previous human-human interactions (collected in a physical laboratory setup) were used
as the basis for the simulated interactions [31]. Thus, each simulated interaction contains three
cameras, one shopkeeper, and one customer. Figure 2 shows the store layout. Furthermore, abstract
actions (Table 1), action transition probabilities (Section 3.1.2), and utterances (Section 3.1.4) from
that human-human dataset were used for simulation.

To simulate periodically changing products, new products were hand designed and used to
populate snapshots of a product information database (Section 3.1.1). Moreover, utterances about
these new products were crowdsourced, as they were not present in the human-human dataset
(Section 3.1.5).

3.1 Simulation Procedure

The simulator generated sequences of alternating shopkeeper and customer actions (Table 1),
where action transitions were determined by transition probabilities and if-then style logic for
contextually appropriate actions. Finally, customer and shopkeeper utterances from the human-
human dataset and from crowdsourcing were injected into the generated action sequences.

3.1.1 Product Information Databases. Each product information database consisted of C rows
of products (cameras) and A columns of attributes. In total, 33 new cameras and 11 product in-
formation databases were created, each containing 3 cameras and 15 attributes. Table 2 shows
an example database. For each simulated interaction, one database was selected to represent the
products in the store at that time.

ACM Transactions on Human-Robot Interaction, Vol. 10, No. 4, Article 31. Publication date: July 2021.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



31:6 M. Doering et al.

Table 1. Actions Used in the Interaction Simulation

Action Actor

ENTERS Customer

GREETS Customer, Shopkeeper

WALKS TO CAMERA Customer

LOOKING FOR A CAMERA Customer

EXAMINES CAMERA Customer

LEAVES Customer

QUESTION ABOUT FEATURE Customer

SILENT OR BACKCHANNEL Customer

THANK YOU Customer

NONE Shopkeeper

RETURNS TO COUNTER Shopkeeper

LET ME KNOW IF

YOU NEED HELP
Shopkeeper

ANSWERS QUESTION

ABOUT FEATURE
Shopkeeper

INTRODUCES FEATURE Shopkeeper

INTRODUCES CAMERA Shopkeeper

NOT SURE Shopkeeper

Table 2. An Example Product Information Database

camera_ID camera_name camera_type preset_modes ...
CAMERA_A Sony Alpha5100 E-mount interchangeablelens camera 9 scene modes(e.g., landscape, macro)
CAMERA_B Nikon CoolpixA900 Compact digitalcamera 17 exposure modes(e.g., backlighting)
CAMERA_C Fujifilm FinePixJX660 Point and shootcamera 22 shooting modes(e.g., baby, fireworks)

Note: Each database contains three cameras and 15 attributes (camera ID, camera name, camera type, preset modes,

etc).

Table 3. An Example Simulated Interaction

3.1.2 Action Transitions. Each simulated interaction starts with the customer at the door and
the shopkeeper at the service counter. The customer then enters and approaches one of the three
cameras. The shopkeeper may approach a browsing customer to answer questions or introduce the
cameras and their features. The customer may ask about the cameras, utter backchannels, remain
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Data-Driven Imitation Learning for a Shopkeeper Robot 31:7

silent, or thank the shopkeeper for help. The interaction proceeds until the customer decides to
leave the store.

The action transition probabilities were set manually based on the interactions in the human-
human dataset [31]. In that work, the customer’s and shopkeeper’s actions were segmented and
discretized into sequences of alternating customer and shopkeeper actions. The transition probabil-
ities were estimated based on observations of these sequences. For example, after the shopkeeper
introduces a camera, there is roughly a 50% chance that the customer will remain silent (allowing
the shopkeeper to take initiative) and a 50% chance that the customer will ask a question about a
feature.

3.1.3 If-Then Logic for Contextually Appropriate Actions. A priori if-then logic was used to gen-
erate contextually appropriate actions, since action transitions alone do not fully capture the in-
teraction history.

For each interaction, the simulator tracks the current camera of conversation, the previous cam-
eras of conversation, the previous features of conversation, and the customer and shopkeeper’s
locations. Then, contextually appropriate actions were generated via if-then logic conditioned on
these stored aspects of the interaction history. For example, the shopkeeper’s actions were simu-
lated such that he remembers which cameras and features had already been talked about so he
would not reintroduce them. Additionally, the customers’ actions were simulated such that they
did not ask about features or cameras that had already been introduced or asked about.

Spatial formations, which describe the shopkeeper and customer’s proxemics, were also gener-
ated using if-then rules. At each turn, one of three possible spatial formations was set: waiting was
set when the shopkeeper was at the service counter, face-to-face when greeting the customer, and
present object when talking about a camera.

3.1.4 Utterances from the Human-Human Dataset. In the final step of simulation, customer and
shopkeeper utterances were assigned to each turn. For each action (Table 1), a set of matching
utterances was selected from the human-human dataset from Liu et al. [31].

The utterances in the human-human dataset [31] were recorded during role-played camera shop
interactions using handheld smartphones with attached head-mounted microphones. To start and
stop recording their speech, participants could touch anywhere on the smartphone’s screen and an
audible cue would play. This setup enabled participants to speak and operate the smartphone with-
out distraction. The recorded utterances were automatically transcribed using the Google Speech
API.

Several natural variations of phrasing (e.g., backchannels such as “okay” and “I see, and . . .”)
and terminology are present in the human-human dataset. Furthermore, the data contains many
automatic speech recognition (ASR) errors. In fact, of 400 utterances from a dataset collected
in the same environment and scenario, and using the same equipment and recording methods, 53%
were correctly recognized, 30% had minor errors (e.g., “can it should video” instead of “can it shoot
video”), and 17% were complete nonsense [29]. The presence of the human-human utterances’
natural variation and speech recognition errors in the simulated dataset makes the subsequent
learning problem more closely resemble the challenge of learning from real data collected with
noisy sensors.

3.1.5 Utterances from Crowdsourcing. The simulated interactions must also contain shopkeeper
utterances about the cameras in the databases, which were not present in the human-human
dataset. Therefore, we obtained such utterances for actions INTRODUCES CAMERA, INTRODUCES

FEATURE, and ANSWERS QUESTION ABOUT FEATURE through crowdsourcing.
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31:8 M. Doering et al.

Crowd workers role-playing a shopkeeper were asked what they would say given a prompt,
which consisted of a context (e.g., “The customer asked for the resolution of this camera”), an
intent (e.g., “You want to provide the requested information”), and information for a camera. Thus,
20,534 shopkeeper utterances were collected from 24 crowd workers. They were then injected
into the generated interactions by assigning them based on action type, camera, and feature of
conversation.

3.2 The Simulated Interaction Dataset

Finally, 2,200 interactions1 (200 per database) were simulated, containing a total of 36,129 customer-
shopkeeper turns (mean 16.4, standard deviation 7.9 turns per interaction). Table 3 shows an ex-
ample simulated interaction. Such interactions reasonably resemble what could be collected in the
real world (Section 6.1).

4 PROPOSED APPROACH

4.1 Overview

The goal of the system is to learn the behaviors of a shopkeeper from examples of human-human
interaction such that a robot could perform as a shopkeeper in interaction with real humans. Fig-
ure 3 shows an overview of the complete system that would enable a robot shopkeeper to function.

A sensor network collects raw interaction data in the camera shop. It consists of an array of
Microsoft Kinect sensors that track the human and robot’s positions and a smartphone application
that records the customer’s speech. ASR is used to transcribe the customer’s speech into text. The
sensor data is sent to a behavior abstraction module that discretizes the raw tracking data into one
of the typical stopping locations (door, middle, camera A, camera B, camera C, and service counter),
which were discovered by clustering stopping locations in the training data. Existing models are
applied to determine proxemics formation (waiting, face-to-face, present object) [31].

The input sequence stores all actions that have occurred from the time a customer enters the shop.
When a customer action is detected, or when a shopkeeper action is output, it is appended to the
sequence. The input sequence is vectorized (Section 4.2.2) and fed into a trained neural network
to get the next shopkeeper action. The robot moves to the output location, spatial formation, and
state target and synthesizes the output utterance with text-to-speech.

The focus of this work is for the system to update its output speech based on the changing
contents of a product information database. This is accomplished by searching for mentions of
database contents among the shopkeeper utterances during training time (Section 4.2.3) and re-
placing such mentions in the output utterance during runtime (Section 4.3.3) based on database
indices, which are output from the trained neural network (Section 4.3.2).

In this work, we trained and evaluated the learning system on simulated interactions, so the
sensor network, abstraction of typical behavior patterns, and text-to-speech was not used. How-
ever, similar versions of the complete system have been demonstrated to work in live interaction
with real humans in previous work [29, 30].

4.2 Preprocessing

Before training the neural network, customer and shopkeeper actions are vectorized, the shop-
keeper utterances from the training data are searched for mentions of product information and
marked, and the shopkeeper speech is clustered.

1The simulated dataset and neural network code is available at http://www.robot.soc.i.kyoto-u.ac.jp/en/research/dataset-

simulated-customer-shopkeeper-interactions-with-periodically-changing-products/.
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Data-Driven Imitation Learning for a Shopkeeper Robot 31:9

Fig. 3. System overview. Before runtime, speech features, typical stopping locations, and shopkeeper speech
clusters are learned from the training data, and the neural network is trained. The shopkeeper utterances are
searched for mentions of the database contents and marked with attribute symbols. During runtime, speech
and tracking data are collected from a sensor network in the real world, and the raw data is abstracted using
the models of typical behavior patterns, vectorized, and input to the trained neural network. The neural
network outputs the robot’s next action. If the output utterance contains an attribute symbol, it is replaced
with the relevant information from the database. In this work, we focus on a simulated scenario, so the sensor
network and physical robot are not used.

4.2.1 Typical Stopping Locations and Proxemics Formations. Typical stopping locations and
proxemics formations represent the customer and shopkeeper’s positions and orientations, ab-
stracting away from raw sensor data. In previous work, the customer and shopkeeper’s x ,y
positions were detected using a 3D person-tracking sensor network, trajectory segmentation was
applied to separate moving and stopped segments of each participants’ motion trajectory, and
clustering was applied to the stopped segments to identify the typical stopping locations in the
store [31]. Six locations were discovered: door, middle, service counter, camera A, camera B, and
camera C. Furthermore, existing human-robot interaction models of proxemics formations were
applied to the raw position data to determine whether the shopkeeper was waiting, face-to-face, or
presenting object, and in the last case, whether it was presenting camera A, camera B, or camera C.

In this work, the customer and shopkeeper’s locations and orientations were simulated at the
level of typical stopping locations and proxemics formations, so extracting them from the raw data
was unnecessary.

4.2.2 Input Action Vectorization. To input the customer and shopkeeper’s previous actions into
the neural network, they are vectorized. Customer and shopkeeper speech was vectorized using
two separate binary bag-of-words models. In other words, the speech vectors were n-hot vectors
with the vector values being 0 or 1 depending on whether the word appears in the utterance.
Utterances were tokenized and stemmed. The customer’s and shopkeeper’s vocabularies contained
613 and 1,593 words, respectively.
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Locations and proxemics were also vectorized. The locations vectors were of length 6 (the possi-
ble locations being door, middle, service counter, camera A, camera B, or camera C). For proxemics,
one vector of length 4 was used to represent the spatial formation (none, waiting, face-to-face, or
present object) and one of length 4 to represent the target of present object (none, camera A, camera

B, or camera C).
To determine the participants’ locations at runtime, their x ,y positions would be matched to one

of the typical stopping location clusters (4.2.1). However, since this work uses a simulated dataset,
this step was unnecessary.

Thus, the input vector at each turn was of length 2,226. The first shopkeeper action vector s−1,
a place holder for before the customer enters the store, was set to all 0s.

4.2.3 Searching Shopkeeper Utterances for Product Information. The shopkeeper utterances
were searched for mentions of product information using approximate string matching [36] so
that later these parts can be dynamically updated whenever the contents of the database change.

The searching procedure consisted of preprocessing, approximate string matching, and candi-
date match filtering. First, the shopkeeper utterances and database contents were preprocessed
(lowercase, remove punctuation, etc.) and tokenized, yielding sequences of word tokens. Then, an
approximate string match algorithm2 was applied to find subsequences among the shopkeeper
utterance token sequences that approximately matched any of the database contents token se-
quences. The Levenshtein distance metric was used and the maximum distance set to 19

30 based on
empirical results. Approximate string matching yielded a set of candidate matches that were then
filtered to remove overlapping matches and matches with non-matching numbers (e.g., prices).

The system must know which part of the output shopkeeper utterance to replace with the up-
to-date database contents. Therefore, each mention of product information found by the search
procedure was marked with an attribute symbol.

4.2.4 Shopkeeper Speech Clustering. The neural network outputs the shopkeeper’s next action
given the previous sequence of actions as input. Part of the next action is the shopkeeper’s speech,
which the system must learn from the human-human interaction data. However, this is challenging
because data collected in the real world (where this method is intended to be applied) is messy, with
many speech recognition errors and disfluencies. We solve this problem by applying a retrieval-
based approach combined with speech clustering to choose the most well-formed utterances from
among clusters of similar utterances (as in Liu et al. [30]).

Before the shopkeeper utterances can be clustered, they must be vectorized. We used an n-gram
vector (n = 1,2,3) concatenated to a keyword vector, number vector, and attribute symbol vector to
represent each utterance. n-Hot vectors were used, where the vector values were 0 or 1 depending
on whether the term appears in the utterance. Keywords were extracted with the IBM Watson API.3

To emphasize their importance, the keyword and number vectors were multiplied by a weight of
3 and the attribute symbol vector by a weight of 9.

To cluster the utterances into clusters of lexically similar utterances, inter-utterance Euclidean
distances were computed and the Dynamic Tree Cut hierarchical clustering algorithm was ap-
plied [27]. The clustering procedure yielded 143 speech clusters. The neural network (Section 4.3)
is trained to output a speech cluster ID, which dictates the system’s next utterance.

To choose the most well formed from among all of the shopkeeper utterances, the medoid ut-
terance was found for each cluster. The medoid utterance is the utterance most similar to all other
utterances in the speech cluster. Since complete utterances with few ASR errors tended to share

2https://github.com/taleinat/fuzzysearch.
3https://www.ibm.com/watson/services/natural-language-understanding/.
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Fig. 4. The proposed neural network architecture showing inputs (green), outputs (blue), neural network
layers (orange), internal vectors/scalars (gray), and components related to the product information database
(yellow).

the most similarities with other utterances in the same cluster, medoid utterances tended to be
well formed and easy to understand.

4.2.5 Target Output Action Vectorization. To train the neural network, the shopkeeper actions,
which the network outputs, must be represented as vectors. The outputs include the next spatial
state and state target, shopkeeper location, shopkeeper speech cluster, database attribute index,
and database camera index.

Spatial state and state target were represented with one-hot vectors, each of length 4; shop-
keeper location was represented by a one-hot vector of length 6; and shopkeeper speech cluster
was represented by a one-hot vector of length 143 (i.e., speech cluster ID). Attribute indices and
camera indices were represented by binary vectors of length 15 and 3, respectively. If the output
shopkeeper utterance contained an attribute symbol (Section 4.2.3), the indices corresponding to
the matching database contents were set to 1, and all other indices were set to 0.

4.3 Neural Network Architecture

The proposed network architecture (Figure 4) takes the customer and shopkeeper’s previous ac-
tions during an interaction as input and outputs the shopkeeper’s next action.4

4.3.1 Input Interaction Context Encoding. The sequence of customer and shopkeeper action
vectors s−1, c0...st−1, ct (representing the actions that have occurred during an interaction) are con-
densed into a single input encoding vector representing the interaction context. To do this, they are
first processed through two dense layers with leaky ReLU activation functions and then through a
two-layer gated recurrent unit many-to-one sequence model [9]. The final outputs of both layers
are concatenated to get the input encoding.

4.3.2 Relevant Product Selection. When the customer asks a question or the shopkeeper proac-
tively introduces some information, the neural network must find the relevant information in the
database. This is accomplished by using neural attention camera and attribute indices to address
the database.

To get the indices, the input encoding is passed through two separate dense layers with sigmoid
activation functions. The first outputs the camera indices (3 dimensions). The second outputs the
attribute indices (15 dimensions). The sigmoid activations allow for selection of multiple relevant
cameras and attributes.

4See footnote 1 for the link to the neural network code.
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Sometimes the database does not contain the information requested by the customer. In these
cases, the system must output an appropriate utterance, such as “Sorry, I don’t have that informa-
tion.” To enable this behavior, a scalar, representing whether the database contains any information
for the relevant camera(s) and attribute(s), is computed:

∑

i

∑

j

ciajHi, j , (1)

where ci is the camera index activation for row i , aj is the attribute index activation for column j,
and Hi, j represents whether database cell i, j contains any information (0 or 1). This scalar is then
passed as an input to the dense layer for computing the output speech cluster.

In cases where the database does contain relevant information, the camera indices are used to
locate it (Section 4.3.3).

4.3.3 Output Shopkeeper Action Decoding. The neural network outputs the next shopkeeper
action, which would then be executed by a robot. The action consists of the speech, location, spatial
state, and state target.

To output the components of the shopkeeper’s action, the input encoding vector is passed
through four separate dense layers with leaky ReLU activation functions. To get the final out-
put, each ReLU activation is passed through a softmax and the maximum dictates the next spatial
state, state target, shopkeeper location, and speech cluster ID.

To get the output speech, the output speech cluster ID with maximum activation is mapped to
that cluster’s medoid utterance (Section 4.3.3). If that utterance contains any attribute symbols, the
argmax of camera indices (Section 4.3.2) is used to find the value in the database and it is copied over
the attribute symbol—for example, “This one has a 5x zoom” (Figure 4). In this way, the system can
automatically update the shopkeeper’s utterances when the contents of the product information
database change.

To run the robot in live interaction with a human, the outputs of the neural network would
be executed by the robot—that is, commands would be sent to the robot to move to a destination
or speak an utterance [29]. The destination is determined by the location, spatial formation, and
state target outputs. If the spatial formation is waiting, the robot will be sent to center of the
stopping location cluster corresponding to the neural network’s location output. When the spatial
formation is present object or face-to-face, the precise target position is computed according to
that formation’s proxemics model. While in motion, the robot projects the future position of the
customer and recalculates a target location according to the proxemics model every second until it
arrives. For face-to-face, the target location will not be a fixed location but rather a point in front of
the customer. For present object, the target location will be the object of interest, determined by the
state target output. Finally, the system’s speech output would be executed by running it through the
robot’s text-to-speech system. In this work, however, an offline evaluation was conducted based
only on the outputs of the neural network, so no actual action was executed by the robot.

5 EVALUATION

To determine the effectiveness of the proposed system at adapting its behaviors to the changing
contents of the product information database, we conducted an offline evaluation comparing it to
a baseline and a previous state of the art.

5.1 Experimental Conditions

COREQA is a previous state-of-the-art database question answering system that uses a modified
recurrent neural network to generate answers [19]. In addition to generating output words as a
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typical recurrent neural network does, it also computes a copy score and retrieve score, which allows
outputting words from the input or a database, respectively.

He et al. [19] demonstrated that COREQA achieved an F1 score of 90.6 (87.4 precision, 94.0
recall) on a simulated question-answer dataset and a database filled with birthday information
(year, month, day, and gender). The model was also evaluated on question-answer pairs obtained
from a QA website, on which it achieved 56.6% accuracy. For these reasons, we believe this is a
suitable model for comparison to the proposed system.

Our implementation of COREQA uses the input encoder from Section 4.2.2, and only uses
the retrieve score, since this study focuses on retrieving information from a database. Database
“facts”consisted of tuples of camera ID, attribute, and value (e.g., [“CAMERA B,” “camera type,”
“compact digital camera”]), where each was encoded with a bidirectional gated recurrent unit net-
work [9] of size 100. The retrieve-mode score, used to select which database fact is most relevant
given the current state, was computed using a single dense layer of size 100. The vocabulary size
was 1,702, and the output sequence length was 83.

Baseline is the same as the proposed system but without the mechanisms for addressing and
copying from the database. Specifically, the parts that of the proposed system that were not used
for the baseline were searching shopkeeper utterances for product information (Section 4.2.3), rel-
evant product selection (Section 4.3.2), and copying of database contents into the typical utterance
during action decoding (Section 4.3.3). For the baseline, a separate shopkeeper speech clustering
(Section 4.2.4) was conducted, although without the attribute symbols. It yielded 553 clusters. The
neural network architecture is the same as the proposed system but without the camera index and
attribute index layers. By comparing the proposed system to this baseline, the effectiveness of the
database mechanisms at adapting the system’s behaviors can be determined.

Proposed is the full system described in Section 4.

5.2 Training the Systems

All three action predictors were trained using the same procedure. An 11-fold cross validation was
conducted, in which interactions for nine of the simulated datasets were used for training (1,800
interactions containing an average of 29,520 customer input/shopkeeper output turns), interac-
tions from one database were used for validation (200 interactions containing an average of 3,280
turns), and interactions from one database were used for testing. Finally, after training, the first
3 interactions from each of the testing sets (33 interactions containing 458 turns) were used for
human evaluation.

The number of units in hidden layers was set to 100. All dense layers used He normal initial-
ization [18]. All recurrent layers used Glorot normal initialization [14]. Cross entropy was used to
compute the loss function. Moreover, since the attribute index targets are sparse, their losses were
weighted inversely proportional to their number of occurrences in the training data based on King
and Zeng [23]. Similarly, the speech cluster targets, whose occurrence in the training data has a
long tail distribution, were also weighted inversely proportional to their number of occurrences.
The Adam optimizer [24] was used to update the parameter values for 300 epochs with a learning
rate of 0.0001.

5.3 Evaluation Procedure

One human evaluator, an internally recruited fluent English speaker (F, age 36) blind to the experi-
mental conditions, evaluated the 458 action predictions made on the simulated interactions (three
interactions per database). The evaluator assigned each a a binary label of either correct or incor-
rect. To receive a correct label, the system’s action must be socially appropriate (e.g., appropriately
greeting the customer, being polite, answering questions), and for cases where the shopkeeper
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Table 4. Percentage of Output Actions That Were
Judged to Be Correct by a Human Evaluator

Shopkeeper Utterances

Condition Overall
Provides

Information
Other

COREQA 37% * 3% * 70% *

Baseline 53% * 10% * 94%

Proposed 90% 86% 94%

Note: Provides Information is the subset of actions where

the shopkeeper should provide product information.

Other is the subset of all other actions. An asterisk (*)

marks results that significantly differed (p < .001) with

Proposed.

Table 5. Example Outputs from the Proposed System and the Most Common Reasons for Errors

provided information (from the product information database), it must be the correct information.
In the case that the evaluator was unable to determine if the predicted action was correct or not, the
instance was not included in the evaluation (0.5% of instances). Evaluations of 11% of the data (50
instances) by a second evaluator, an internally recruited fluent English speaker (M, age 31) blind to
the experimental conditions, showed a substantial degree of agreement, with a kappa coefficient
of 0.671, so the evaluations were judged to be reliable.

To better understand how well each system was at providing information from the database, we
divided the overall set of output actions into two subsets: actions that should provide information

about a product and other actions.

5.4 Results

The evaluation and statistical analysis results are shown in Table 4. Table 5 shows example speech
outputs from the proposed system.

Overall, the proposed system performed the best with 90% correct actions. This was significantly
better than the baseline with 53% (χ 2(1, N = 912) = 151.84, p < .001) and COREQA with 37% (χ 2(1,
N = 909) = 271.95, p < .001).

On the provides information subset of actions, the proposed system performed the best with 86%
correct. This was significantly better than the baseline with 10% (χ 2(1, N = 446) = 259.62, p < .001)
and COREQA with 3% (χ 2(1, N = 446) = 310.55, p < .001).

On the other subset of actions, the proposed system had 94% correct. This was significantly
better than COREQA with 70% correct (χ 2(1, N = 463) = 42.08, p < .001), although not significantly
different from the baseline with 94% correct (χ 2(1, N = 466) = 0.152, p = .697).
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5.5 Analysis of Errors

Although the proposed system performed better overall and on the provides information subset
than the other systems, there were some errors (46 instances). The most common reasons for
errors were repeated utterances (26% of errors), inappropriate greetings (22% of errors), copying
from an empty database cell (15% of errors), and providing information about the wrong attribute
(13% of errors) (Table 5).

The high proportion of repeated utterances (26% of errors) (e.g., reintroducing the same feature
multiple times) suggests that the interaction history is not being sufficiently taken into account
by the neural network. This could perhaps be fixed by fine tuning the hyper-parameters of the
encoding dense and GRU layers, such as the number of units per layer and number of layers.

Inappropriate greetings (22% of errors) occur, for example, when the shopkeeper greets a cus-
tomer for the second time as if meeting for the first time (row 5 in Table 5) or when greeting in
a way that is not specific to the customer’s greeting (e.g., C: “Sorry [to] ask you another question
about this camera.”S: “Good afternoon.”). This is an artifact of the interaction simulation method;
the shopkeeper’s utterances were chosen from a pool for S_GREETS regardless of whether greet-
ing for the first or second time and the specifics of the customer’s utterance. As a result, the system
learned to imitate such behaviors.

The instances of the system copying from an empty database cell (15% of errors) were caused
by the proposed system incorrectly outputting speech templates (determined by speech cluster
ID) for providing information (e.g., “It has <preset_modes>”) instead of one stating that the data-
base contained no information about the requested attribute (e.g., “I’m sorry, I don’t have that
information”). Further analysis showed that for some of these instances, the camera or attribute
index outputs were not focused on a single camera or attribute, causing an incorrect calculation of
whether or not the database contains relevant contents (1). This problem could perhaps be fixed by
using Gumbel softmax [20] or some other mechanism to focus the index outputs to be categorical.

The instances of providing information about the wrong attribute (13% of errors) were caused
by the proposed system incorrectly outputting speech templates for providing information about
the wrong attribute. For these instances, since the customer speech often clearly indicated which
attribute was requested (e.g., row 7 in Table 5), we hypothesize that the errors are caused by incor-
rectly attending to irrelevant features of the interaction history and not sufficiently to important
keywords in the customer speech (e.g., “preset modes”).

In contrast to the proposed system, the baseline system’s most frequent reason for errors was
providing incorrect information (77% of errors), which demonstrates the effectiveness of the pro-
posed database retrieval mechanism. COREQA’s most frequent reason for errors was word repe-
tition (45% of errors), which demonstrates the effectiveness of the proposed system’s retrieving
medoid utterances of speech clusters, instead of COREQA’s word-by-word sequence generation.

5.6 Robustness to ASR Errors

The proposed system is robust to ASR errors in two ways. First, it can provide correct shopkeeper
responses to customer utterances that contain ASR errors. In fact, the proposed system responded
correctly to 82% (51) of the customer utterances in the testing set that contained ASR errors. (The
testing set contained 304 customer utterances, and 20% (62) of them contained ASR errors.) The
proposed system is able to respond correctly to errorful customer utterances because it is trained
on examples with similar errors. This is an advantage of a data-driven approach to learning inter-
active robot behaviors.

Second, the proposed system is able to filter out shopkeeper utterances that contain ASR errors
when it learns to imitate the shopkeeper. This is accomplished by shopkeeper speech clustering and
typical utterance selection (Section 4.2.4). During shopkeeper speech clustering, lexically similar
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utterances are clustered together. Some of these utterances may contain ASR errors. However,
for the system’s outputs, one typical utterance is selected from each speech cluster (the medoid
utterance), which is usually a grammatically well-formed utterance without ASR errors. In this
way, the system learns to imitate shopkeeper speech without ASR errors.

In the current work, shopkeeper utterances with ASR errors are few because most (approxi-
mately 73%) of the simulated shopkeeper utterances came from crowdsourcing on the web. How-
ever, previous work has demonstrated that shopkeeper speech clustering results in significantly
greater “correctness of wording” when ASR errors are present in the shopkeeper training utter-
ances [29].

5.7 Action Correctness Depends on the Proportion of Information Providing Actions

and the Dynamic Nature of the Database

The overall accuracy reported in Table 4 is influenced by the relative sizes of the provides informa-
tion and other action subsets. In fact, the exact relationship is described by the following equation:

correct(P)
|P |

|P ∪O |
+ correct(O)

|O |

|P ∪O |
= correct(P ∪O), (2)

where P is the provides information subset of actions, O is the other subset of actions, P ∪O is the
overall set of actions, and correct() is a function that returns the rate of correctness (as displayed
in Table 4). Thus, the degree of improvement of the proposed system over the baseline system is
proportional to the size of the provides information subset: when this subset is much greater than
the other subset, the proposed system’s correctness rate will be much greater than the baseline’s
correctness rate, and as the size of the provides information subset decreases, the performance of
the two systems will become equal.

Furthermore, the degree of improvement of the proposed system’s performance over the base-
line system’s performance depends on the dynamic nature of the product information database.
When the information in the database does not change from training time to testing time, the pro-
posed system’s and baseline systems’ performance is expected to be equal. When it changes a lot,
the proposed system is expected to perform much better than the baseline.

6 DISCUSSION

6.1 Reality of the Dataset

This work is a proof-of-concept for how a learning system can be trained automatically on in-
teraction data to automate social interaction behaviors, toward the goal that a robot may one
day be deployed into real-world service scenarios. Since real-world data is not yet available, we
demonstrated the proposed system using simulated data, containing examples of behaviors and
interaction patterns that may be found in real human-human interaction. Granted, real-world in-
teractions would contain greater variation of speech and non-verbal behavior than the simulated
data, and therefore would be more difficult to learn from. However, by collecting greater amounts
of real-world data using passive sensor networks, it will be possible to overcome this challenge
and learn the repeatable, formulaic behaviors that make up the core of many service interactions.

Therefore, we believe that the simulated interactions are sufficiently similar to real-world inter-
action for the purpose of demonstrating this proof-of-concept. In the future, it would be interesting
to apply data-driven imitation learning methods to real-world interaction data.

6.2 Generalizability

Ideally, the proposed system will work for any scenario characterized by highly repeatable, formu-
laic interactions. The proposed system worked for the simulated camera shop scenario, which has
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these characteristics, suggesting it will work for other scenarios with these characteristics. How-
ever, it also makes some assumptions that may not hold true generally. Here we suggest how the
system could be made more generalizable.

In the simulated camera shop scenario, it is assumed that there are only three products in the
store, that they are all of the same type (cameras) with the same database table format, and that
their location in the database (row) corresponds to their location in the store. Our evaluation did
not explore these issues, but they could potentially be solved by using different database addressing
mechanisms. In other words, using a (product_type,product_ID,attribute,value) tuple encoding
similar to He et al. [19] would allow for an arbitrary number of products of any type. Further-
more, using multi-hop inference as in Sukhbaatar et al. [47] would enable location-based lookup
to mitigate changing locations.

We also found that mentions of product information in the shopkeeper utterances (which were
crowdsourced) often roughly matched the information in the product information database. This
enabled the approximate string match algorithm to find mentions at the word level. However, in a
real scenario, where shopkeepers are providing information from memory, these mentions would
likely occur with alternate wordings. Therefore, more research needs to be done on algorithms
that search for mentions based on semantics instead of surface word form.

6.3 Contribution and Implications

This work advances the state of the art in data-driven imitation learning for social robot behav-
iors by enabling a behavior learning system to automatically update shopkeeper (robot) speech
about periodically changing products based on the contents of a product information database,
without requiring retraining on newly collected data. To the best of our knowledge, the proposed
approach is the first one to solve this problem, on which it achieved an action correctness rate of
90%. Moreover, comparing this to the baseline system’s action correctness rate of 53% demonstrates
the importance of the proposed mechanisms for addressing and copying from the database.

Lately, there has been much work on integrating information from the web, databases, and
knowledge bases for question answering and dialog systems trained via machine learning (Sec-
tion 2.2); however, none of these are suited for the problem that the proposed approach aims to
solve. Namely, the proposed approach overcomes the shortcomings of generation based models
(e.g., repeated words and susceptibility to ASR errors, as demonstrated and discussed in Section 5
by using a novel retrieval-based approach (i.e., outputting medoid utterances of speech clusters
and copying contents directly from the database to the output) (Section 4.2.4 and Section 4.3.3).
Furthermore, in contrast the previous retrieval-based approaches that use information from exter-
nal sources, the proposed approach is able work for out-of-vocabulary database contents.

Finally, the proposed system’s results are promising, but more research is required before such
system can be robustly deployed to real-world stores. Specifically, the limitations presented earlier
must be addressed, and further testing and analysis will be necessary to deal with challenges of
learning from real-world data. In the future, we hope to extend the proposed approach to enable the
robot to adapt to additional changing aspects of its environment that can be stored in a knowledge
base, such as the store layout and the size, shape, location, and type of products present, and to
test it in the real world.

7 CONCLUSION

In this work, a novel shopkeeper behavior learning system that updates its speech to account
for periodically changing products was presented. This was accomplished by using approximate
string matching to find mentions of product information in shopkeeper speech at training time,
and replacing those mentions with information selected from a product information database by
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neural attention mechanisms at test time. In a cross validation using a simulated camera shop in-
teraction dataset, a human evaluator judged the proposed system to be better at outputting correct
shopkeeper actions than a baseline and a previous state-of-the-art database question answering
system.
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