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ABSTRACT
The effect of tensile fracture in a vertical borehole under anisotropic horizontal stress
conditions is numerically investigated in terms of the dispersion of flexural wave gen-
erated in dipole sonic logging. Our three-dimensional model comprises a borehole
filled with water and a tensile fracture intersecting the borehole in the borehole axial
direction. Two shear waves are excited individually to produce particle displacements
polarized in two orthogonal radial directions using two dipole sources aligned in the
two polarized directions. A vertical array of equispaced dipole sensors is placed at the
centre of the borehole along the borehole axis. We assumed that the surrounding for-
mation possesses transversally isotropic anisotropy with the isotropy plane parallel
to the borehole axis due to horizontal stress anisotropy. We examined the dispersion
of flexural waves travelling along a borehole in our numerical models that include
either fast or slow formation with various depths of tensile fractures. Our numerical
results show that the deeper the penetration depth of a tensile fracture, the higher the
slowness of shear waves polarized perpendicular to the tensile fracture for both slow
and fast formation models. Our results indicate that the flexural dispersion behaviour
could be used to investigate the depth of penetration of a tensile fracture that can be
produced by either drilling or hydraulic fracturing.
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INTRODUCTION

Seismic waveforms are sensitive to properties and geometric
shapes of materials in the wavepath, and their characteris-
tics have been utilized in geophysical exploration. Sonic log-
ging has been widely used as an effective method to obtain
physical properties of formations surrounding the borehole.
The usage of monopole and dipole sources enables us to esti-
mate P- and S-wave velocities (Kitsunezaki, 1980) and even
anisotropic properties could be estimated by use of cross-
dipole sources orthogonally polarized towards the radial di-
rections (Sinha and Kostek, 1996). Research on the dispersion
of flexural waves travelling in the direction of borehole has
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been of great interest since the application of logging tools
with dipole sources. Sinha et al. (2009) investigated the effect
of a steel pipe tool in a borehole on the dispersion curves and
proved the influence of tools for the measurements. Sinha et al.
(2010) have shown that the dispersion of flexural waves re-
flects the mechanical state of the surrounding material. Tang
et al. (2016) studied elastic wave scattering due to the het-
erogeneities in the vicinity of the borehole. Fang et al. (2015)
studied the effect of stress-induced anisotropy on the flexural
dispersion. Wang and Fehler (2018a, b) investigated the in-
fluence of cement and casing pipe on the semblance and the
dispersion curves. The above studies revealed that the physi-
cal properties, the inhomogeneities and the mechanical state
of the materials surrounding the borehole have a significant
influence on the dispersion of flexural waves.
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Dispersion of flexural waves in fractured borehole 599

During drilling or after hydraulic fracturing, tensile frac-
ture along the borehole could be generated in the direction of
principal stress orientation. As Maxwell (2014) mentioned, a
microseismic observation system at hydraulic fracture treat-
ments has proven invaluable to see the orientation and the
dimension of artificially created fracture around the bore-
hole. The distribution of acoustic emissions associated with
hydraulic fracturing, however, may not directly indicate the
fractured areas. Microseismic or acoustic emissions caused
by drilling-induced tensile fractures generated at the time of
drilling in fast formation could not be detected, either. Al-
though the precise estimation of the penetration depth of in-
duced tensile fractures has high demand, quantitative method
for estimating the penetration depth of induced fractures has
not been established yet. For evaluating the performance of
hydraulic fracturing more precisely, an additional measure-
ment of the penetration depth of induced fractures is desir-
able. Any fractures induced around borehole influence flexu-
ral wave propagation due to the induction of anisotropic elas-
tic properties (Lei and Sinha, 2013), and the relationship be-
tween tensile fracture growth and flexural wave propagation
has been pointed out (Zheng et al., 2009; Su et al., 2018).
We hypothesize that the penetration depth of an induced frac-
ture could be estimated by analysing the behaviour of flexu-
ral waves in the cross-dipole measurements in a quantitative
manner.

In the present study, we investigate the influence of an
induced tensile fracture in an anisotropic formation on flexu-
ral dispersion using numerical experiments. Since we may en-
visage fractures caused by hydraulic fracturing for both fast
and slow formations, and drilling-induced fractures in the fast
formation, numerical simulations in three-dimensional mod-
els comprised of a borehole and a lateral fracture filled with
water intersecting the borehole both in fast and slow forma-
tions were carried out. The quantitative relationship between
the penetration depth and dispersion characteristic of the flex-
ural wave is investigated as a function of the depth of the
fracture gradually varies in the range from 0 cm (i.e. without
fracture) to infinity. We simulate seismic wave propagation
in numerical models using the Hamiltonian particle method
(HPM) with the staggered particles (Takekawa et al., 2014a).
The application of a modified matrix pencil algorithm (Ek-
strom, 1995) to synthetic data sets produces the dispersion
curves, which are investigated as a function of the depth of the
tensile fracture. This may give us an opportunity to detect the
fracture penetration depth through analysing the dispersion
curves.

METHOD

In the present study, we use the Hamiltonian particle method
(HPM) with the staggered particles (Takekawa et al., 2014a)
to simulate seismic wave propagation in three-dimensional
numerical models. This method can simulate accurate seismic
wavefield in models with irregularly shaped boundaries in an
efficient manner (Takekawa et al., 2014b). Finite-difference
or finite-element method is often used to simulate seismic
wave propagation. The finite-element method and its deriva-
tive ones like spectral element method have an advantage
over the finite-difference method in the treatment of complex
boundaries. However, the mesh generation process, which is
a time-consuming task especially in three-dimensional cases,
is required. On the other hand, HPM can simulate accurate
seismic wavefield without such a time-consuming pre-process
(Takekawa et al., 2014b). Since our numerical model includes
complex geometry (borehole and tensile fractures), we adopt
the HPM as a seismic simulator. Derivation of particle motion
equation of HPM can be found in the Appendix. One of the
crucial factors to determine the numerical accuracy of HPM is
the size of the influence domain. Takekawa et al. (2014b) in-
vestigated the effect of the influence domain on the numerical
results and concluded that the compact support of the domain
is better not only for the accuracy but also for the efficiency.
We, therefore, set the radius of the influence domain to include
only nearest neighbours.

In the present study, we need to model a borehole and
lateral fractures which are filled by water. To represent fluid-
filled borehole and fracture, we assign the physical properties
of water to those particles corresponding to the borehole and
fracture (Saenger et al., 2004). In this case, a fracture is mod-
elled as a tangential-stress-free rectangular plane whose phys-
ical properties are the same as water. The effect of the shape
of the fracture tip on numerical accuracy depends on the spa-
tial resolution. Takekawa et al. (2014c) investigated the in-
fluence of the spatial resolution on the accuracy of wavefield
in cracked media using the HPM. They concluded that the
numerical accuracy could be improved by increasing the spa-
tial resolution around the fracture tip. According to the above
study, we use sufficient spatial resolution for simulating an
accurate seismic wavefield. We generated a synthetic data set
using the HPM and then calculated the dispersion curves us-
ing the modified matrix pencil algorithm (Ekstrom, 1995).We
compared the results from our method with the theoretical so-
lutions and verified the accuracy of the HPM and the modified
matrix pencil algorithm.
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600 K. Kayama, H. Mikada and J. Takekawa

Figure 1 Schematic of the borehole model containing a tensile frac-
ture.

NUMERICAL EXPERIMENT

Numerical model

Figure 1 shows a schematic of our numerical model. The
model has a borehole and tensile fracture. In our numerical
model, the fracture and its surrounding formation are repre-
sented in high resolution (2 mm), and large model size (7 *
borehole radius) is required for simulating accurate flexural
wave propagation especially in the low-frequency region. In
order to reduce the computational cost, the receiver offset set
up in the simulations is smaller than that of a real sonic logging
tool. The change in receiver offset does not affect the extrac-
tion of the dispersion property of flexural waves because the
geometry and physical properties are not changed along the
borehole axis. We placed a cross-dipole source at the lower
part of the model and plural receivers along the centre of the
borehole axis with an interval of 2 cm. The receiver spacing is
set denser than that in a real sonic logging tool to avoid spa-
tial aliasing. These receivers record the particle velocity in the
borehole radial direction. The diameter of the borehole is 20
cm. We assumed the width of the fracture changing from 2 to
4 mmwith the depth varying in the range from 0 cm (i.e. with-
out fracture) to infinity. In the infinite depth model, the tensile
fracture reaches to the model edge, i.e. entirely separating the
numerical model. The direction of the fracture plane is parallel
to the maximum principal stress direction. We test two types
of surrounding formations, i.e. fast and slow formations. The
differential stress in the horizontal plane induces tensile frac-
tures along the borehole and causes the azimuthal anisotropy

in seismic wave velocities as a function of the magnitude of the
differential horizontal stress. In the present study, we assume
that both the slow and fast formations exhibit 5% P-wave
and S-wave velocity anisotropy induced by the crustal stress,
as listed in Table 1 (Kimura et al., 2016).

The source wavelet is a Ricker wavelet with 4 kHz centre
frequency. The particle spacing and time steps are 2 mm and
0.000325 ms, respectively, in the numerical simulation. The
total numbers of the iterations for the fast and slow forma-
tions are 10,000 and 15,000, respectively. We use the message
passing interface parallel computing with four nodes for effi-
cient calculations. An absorbing boundary condition (Cerjan
et al., 1985) is applied to suppress the artificial boundary re-
flection at the model edges.

Validation of the method

Takekawa et al. (2014b,c) investigated the numerical accuracy
of the Hamiltonian particle method (HPM) for simulating the
surface waves and wave propagation in cracked media. They
investigated their method in the two-dimensional models and
did not look into the applicability of the method to the prop-
agation of flexural waves. It is, therefore, necessary to con-
firm the calculation accuracy of the HPM method for three-
dimensional borehole models. We simulated flexural wave
propagation in borehole without fractures in an isotropic for-
mation model. In an isotropic formation model, full waveform
and theoretical dispersion curve can be calculated by the semi-
analytical approach noted in Tang and Cheng (2004). Figure 2
shows a comparison of shot gathers that are obtained from
HPM and the discrete wavenumber integration method (Bou-
chon and Aki, 1977; Cheng and Toksöz, 1981) for a 4-kHz
dipole source. The horizontal and vertical axes represent time
and receiver offset, respectively. There is no visible difference
between the waveforms, which indicates that the HPM can
calculate seismic wavefield in a fluid-filled borehole with high
accuracy. Figure 3 shows a comparison of the two dispersion
curves, one for numerically simulated waveforms using HPM
and the other theoretically predicted by the dispersion equa-
tion. Red circles represent numerical dispersion curves, and a
cyan solid curve shows the theoretical dispersion curve. Both
results have good agreement with each other, especially in the
low-frequency range. In the fast formation model, the numer-
ical result gradually deviates from the theoretical curve with
increasing frequency. In the slow formation model, the slow-
ness cannot be obtained by the modified matrix pencil algo-
rithm for more than 8 kHz. Since it is difficult to calculate
accurate seismic wavefield for high frequency component due
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Dispersion of flexural waves in fractured borehole 601

Table 1 Physical properties used in numerical experiments

C11 (GPa) C22 (GPa) C12 (GPa) C44 (GPa) C55 (GPa)

Fluid 2.25 2.25 2.25 0.00 0.00
Fast formation 26.95 24.32 12.00 6.80 7.53
Slow formation 8.71 7.86 6.59 0.84 0.93

Figure 2 Comparison of shot gathers that are obtained from HPM (solid red lines) and discrete wavenumber integration method (dotted grey
lines: overlapped with the red line) for (a) a fast formation and (b) a slow formation. The horizontal and vertical axes represent time and offset,
respectively.

to the numerical dispersion, the error of the estimated slow-
ness would be generated. Therefore, we restrict ourselves to
use only around the peak frequency and do not use such high
frequency ranges in this study.At 8 kHz, the errors of the slow-
ness of the flexural wave between numerical and theoretical
results are about 1.5% and 0.5% for the fast and slow for-
mation models, respectively. We believe that our method can
calculate the seismic wavefield and dispersion curves with suf-
ficient accuracy. We could confirm the appropriateness of our
numerical method quantitatively.

Simulation results

Figure 4 shows the snapshots of the numerical simulations in
a cross-section parallel to the borehole axis using the fast and
slow formation models. The fracture depth is set to 0 cm, i.e.
without tensile fracture. In the fast formation, we can observe
the refraction S-wave in the borehole, whereas the slow for-
mation model does not generate the refraction S-wave because
the S-wave velocity of the formation is slower than the P-wave

velocity of the inner fluid. In both models, the flexural wave
propagating along the borehole can be observed.

Figure 5 shows shot gathers for the fast and slow forma-
tion models with 10 cm fracture depth. Red and blue lines
represent recorded components parallel and perpendicular to
the tensile fracture, respectively. In each figure, clear flexural
waves can be identified. The difference in arrival time due to
velocity anisotropy and tensile fracture is also observed. We
apply the modified matrix pencil algorithm to the recorded
waveforms in order to obtain the dispersion curves.

RESULTS AND DISCUSS ION

At first, we investigate the effect of the fracture width on the
dispersion curve. Figure 6 shows the dispersion curves of the
fast and slow formation models with the fracture width of 2
and 4 mm. The penetration depth of the fracture is fixed to
10 cm. Red and blue symbols represent the dispersion curves
obtained from the waveforms recorded in the directions par-
allel and perpendicular to the fracture plane, respectively. In
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602 K. Kayama, H. Mikada and J. Takekawa

Figure 3 Comparison of numerical and theoretical dispersion curves for (a) a fast formation and (b) a slow formation. The horizontal and vertical
axes represent frequency and slowness, respectively. Red circles and cyan solid curve represent numerical and theoretical curves, respectively. A
horizontal straight red line depicts S-wave slowness of the surrounding formation.

Figure 4 Two-dimensional cross-sectional snapshots of the wavefield for (a) a fast formation and (b) a slow formation. Contour colour represents
the particle velocity in the x-direction.

the case of perpendicular direction (blue symbol), the disper-
sion curves obtained by both fracture width overlap with each
other. On the other hand, for the case of parallel component,
the clear difference between the 2 mm and 4 mm cases can be
observed in both models. The results indicate that the paral-
lel component is sensitive to the difference of fracture width
whereas the dispersion curve obtained by the perpendicular
component is not so much affected by the change of fracture
width as that of the parallel component.

Next, we investigate the effect of fracture depth on the
dispersion curve. Fracture width is fixed to 2 mm. Figure 7
shows the dispersion curves of the fast and slow formation
models with the fracture depths of 0 cm and 10 cm. Red and

blue symbols represent dispersion curves in the directions of
the parallel and perpendicular directions, respectively. Disper-
sion curves with different penetration depths in the parallel
direction are nearly unchanged while those in the perpendic-
ular direction show apparent change, especially in the low-
frequency range. This result indicates that the perpendicular
direction has the sensitivity to the fracture depth. Since our
purpose is to evaluate the detectability of fracture growth (i.e.
penetration depth of the fracture) by analysing the dispersion
curve,we focus our attention on the perpendicular component
in the following study.

We calculate the dispersion curves with various fracture
depths, as shown in Figure 8. In high frequency range, the
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Dispersion of flexural waves in fractured borehole 603

Figure 5 Shot gathers for (a) fast formation and (b) slow formation containing a 10-cm deep fracture. The horizontal and vertical axes represent
time and offset, respectively. Red (0 [deg]) and blue (90 [deg]) waveforms, respectively, correspond to the data acquired in the directions parallel
and perpendicular to the maximum horizontal stress direction.

Figure 6 Dispersion curves for (a) fast formation and (b) slow formation containing fractures of different width. Red and blue symbols are the
results of parallel and perpendicular components, respectively. Circles and crosses, respectively, represent the dispersion curves for fractures of 2
and 4 mm width. Red and blue lines are fast and slow S-wave slowness of the surrounding formation. The axes are the same as in Figure 3.

dispersion curves with each penetration depth are nearly iden-
tical. In low frequency range, on the other hand, each curve
shows a clear distinction for both models. The deviations of
the dispersion curves start around 7 and 4 kHz for fast and
slow formation models. The wavelengths corresponding to
these frequencies are almost the same as the diameter of the
borehole, i.e. 20 cm. The relation of wavelength with the bore-
hole diameter indicates that the size of the borehole primar-
ily dominates the behaviour of the flexural wave in the high

frequency range, and, therefore, the dispersion curves in the
frequency range lower than the frequencies of wavelengths of
the borehole diameter would be sensitive to the penetration
depth of the fracture. To investigate the effect of fracture depth
on the estimated slowness, we focus the slowness in the low-
frequency range, which is around the centre frequency of the
source wavelet. The variations of the slowness at 4 kHz for
the fast formation model and 3 kHz for the slow formation
model with the fracture depths are depicted in Figure 9. The
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604 K. Kayama, H. Mikada and J. Takekawa

Figure 7 Dispersion curves for (a) fast formation and (b) slow formation containing fractures of different depth. Circles and crosses respectively
represent the results for fractures of 0 and 10 cm depth. Other details are the same as in Figure 6.

Figure 8 Dispersion curves of flexural waves polarized in the direction perpendicular to the fracture with fracture depth of 0 cm, 5 cm, 10 cm
and 20 cm for (a) fast formation and (b) slow formation. Details are the same as in Figure 6.

horizontal and vertical axes are the fracture depth and the S-
wave slowness, respectively. We can observe that the slowness
increases with increasing the fracture depth and approaches
the slowness of infinite depth case.

We show the change of the dispersion curves for both fast
and slow formation models. In the dispersion curves in the
direction perpendicular to the fracture plane, the estimated
slowness monotonically increases as the fracture depth: S-
wave slownesses increased by about 4.6% at 4 kHz in the fast,
and about 1.2% at 3 kHz in the slow formations. The effect of
tensile fracture appears more significant in the fast formation
than in the slow formation. We observe in both models that
the higher the slownesses, the deeper the fracture penetration.
These results would indicate that the penetration depth of the
lateral fracture is estimated in the analysis of the dispersion

curve of flexural waves polarized perpendicular to the frac-
ture plane.

In the practice of hydraulic fracturing, the orientation and
the dimension of artificially created fractures are monitored in
microseismic monitoring, which may not directly indicate the
zones of permeable fractures in the vicinity of the borehole.
The present study would imply that time-lapse well logging
to acquire the dispersion of flexural waves before and after
the fracturing is a possible candidate to locate permeable frac-
tures using the relation between the depth of artificially cre-
ated tensile fractures and the change in S-wave slownesses in
the vicinity of the borehole regardless of the formation to be
fast or slow.

For accurate interpretation of the result of cross-dipole
anisotropy measurements, estimating the penetrating depth of
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Dispersion of flexural waves in fractured borehole 605

Figure 9 Slowness variations versus fracture depth for (a) fast formation at 4 kHz and (b) slow formation at 3 kHz. The dashed line represents
the slowness of infinite fracture depth model.

induced fractures is one of the key factors (Zheng et al., 2009).
The implication of this study shows the possibility of more
accurate interpretation of anisotropy of surrounding forma-
tions by combining the estimated penetration depth with rock
physics models (Xu et al., 2018).

CONCLUSIONS

We investigated the relationship between the penetration
depth of the tensile fracture and the flexural dispersion in the
borehole environment using numerical simulations. We first
confirmed the validity of the numerical method through com-
paring the shot gathers and dispersion curves obtained from
a semi-analytical approach and Hamiltonian particle method
for an isotropic formation model without fracture. Our nu-
merical results show good agreement with the shot gathers
obtained from the discrete wavenumber integration method
and the theoretical dispersion curves for fast and slow forma-
tionmodels.We then evaluated the variations of the dispersion
curves with the penetration depth of the fracture. The slow-
ness of flexural waves polarized perpendicular to the plane of
fracture at low frequency monotonically and asymptotically
increases with increasing fracture depth. The size of the bore-
hole and the slowness of formation shear waves determine
an appropriate frequency range for evaluating the penetra-
tion depth. The variation of the slowness of flexural waves
is a function of the depth of the fracture. Therefore, this rela-
tion could be utilized to estimate fracture growth in hydraulic
fracturing using cross-dipole measurement.
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APPENDIX

Hami l t on i an pa r t i c l e me thod

This appendix briefly introduces the concept of the HPM
method for calculating elastic wave field. In HPM, the error
function ei is defined as follows:

ei =
∑
j

∥∥∥Fir0i j − ri j
∥∥∥
2

. (A1)

where F is the deformation gradient tensor, r0 and r are the
position vector at the initial and current time step, respectively.
Subscripts i and j are indices for the target particle and its
surrounding particles. ri j means the relative position vector
between particles i and j. The deformation gradient tensor F
at position i is determined by minimizing the error function.
The partial derivative of ei with respect to Fi is as follows:

∂ei
∂Fi

= 2
∑
j

(
Fir0i j − ri j

)
⊗ r0i j

= 2

⎛
⎝∑

j

Fir0i j ⊗ r0i j −
∑
j

ri j ⊗ r0i j

⎞
⎠

= 2

⎛
⎝Fi

∑
j

r0i j ⊗ r0i j −
∑
j

ri j ⊗ r0i j

⎞
⎠ , (A2)

where ⊗ means the tensor product. The deformation gradient
tensor can be obtained by setting the above equation to zero.

Fi
∑
j

r0i j ⊗ r0i j −
∑
j

ri j ⊗ r0i j = 0.

Fi =
⎛
⎝∑

j

ri j ⊗ r0i j

⎞
⎠ A−1

i .

Ai =
∑
j

r0i j ⊗ r0i j . (A3)

The strain energy V can be defined by using the stress and
strain tensors.

V =
∑
i

(Ei : Si�Bi) /2 . (A4)
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where �Bi is the volume of particle i, Si is the stress tensor, Ei
is the strain tensor which can be calculated by the deforma-
tion gradient tensor. The total energy of the system defines the
Hamiltonian H.

H = V +
∑
i

mi‖vi‖2/2 . (A5)

where mi and vi are the mass and velocity of particle i. The
equation of motion for each particle is obtained as follows:

mj
∂v j
∂t

=
∑
i

FiSiA−1
i r0i j�Bi. (A6)

We apply a symplectic scheme to update position vectors
of each particle. Details of the method can be found in the
literature (Takekawa et al., 2014a).
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