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a b s t r a c t

Research into pharmacokinetics plays an important role in the development process of new drugs.
Accurately predicting human pharmacokinetic parameters from preclinical data can increase the success
rate of clinical trials. Since clearance (CL) which indicates the capacity of the entire body to process a drug is
one of the most important parameters, many methods have been developed. However, there are still rooms
to be improved for practical use in drug discovery research; “improving CL prediction accuracy” and
“understanding the chemical structure of compounds in terms of pharmacokinetics”. To improve those, this
research proposes a multimodal learning method based on deep learning that takes not only the chemical
structure of a drug but also rat CL as inputs. Good results were obtained compared with the conventional
animal scale-up method; the geometric mean fold error was 2.68 and the proportion of compounds with
prediction errors of 2-fold or less was 48.5%. Furthermore, it was found to be possible to infer the partial
structure useful for CL prediction by a structure contributing factor inference method. The validity of these
results of structural interpretation of metabolic stability was confirmed by chemists.
© 2021 The Authors. Published by Elsevier Inc. on behalf of the American Pharmacists Association®. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).

Introduction

Research into pharmacokinetics during drug development plays
an important role in the development of new drugs throughout the
entire process, from searching for seed compounds to conducting
clinical trials.1 It has been reported that prior to 1985, the reason for
around 40% of dropouts during drug development was due to

pharmacokinetics.2 With the subsequent introduction of new
experimental systems, including those using human-derived
specimens such as human liver microsomes and hepatocytes, and
the development of various methods related to in vitroein vivo
extrapolation (IVIVE), the proportion of dropouts due to pharma-
cokinetics in the 2000s improved to around 10%.3,4 However,
although the proportion of dropouts due to factors arising from
drug effects and toxicity has been increasing, it is thought that this
may also include cases where exposure to the drug target could not
be controlled appropriately, and that not all of the problems, in
terms of pharmacokinetics in human clinical settings, have neces-
sarily been solved. As a result, one strategy for further improving
the success rate of clinical trials is inference of human clinical
dosages that show the best drug effect profile. For this, it is
necessary to predict the human pharmacokinetic parameters from
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preclinical data accurately before transitioning to human clinical
trials.5 In general, the parameters that have a large effect on the
blood concentration profile of a drug are the volume of distribution
(Vd), which quantifies the distribution of the drug inside the hu-
man body, and total body clearance (CLtot), which shows the drug
processing capacity in the entire body. There are many points
where Vd is determined by the physical properties of the drug, such
as protein binding and membrane permeability, and predictions
from preclinical data have been relatively good.6,7 However, pre-
dicting CLtot is extremely difficult because of the factors described
below.

For practical use in drug discovery research, two problems of
CLtot prediction method are “improving the prediction accuracy”
and “extracting the features of the chemical structure of the drug
that determine themagnitude of CLtot”. The background that makes
predicting the former difficult is that there are multiple drug
clearance pathways, including metabolism mainly by the liver, bile
excretion of unchanged drug, and excretion in urine. Even for
metabolism alone, in recent years, the number of drug candidate
compounds that are metabolized by various kinds of not only cy-
tochrome P450 (CYP) molecular species, but also non-CYP Phase I
enzymes (Aldehyde Oxidase, Carboxylesterase) and Phase II
conjugation enzymes (UDP-Glucuronosyltransferase), has been
growing.8,9 Furthermore, for some drugs, it is known that mem-
brane permeation in the liver and kidneys occurs via a variety of
transporters, and cases have also been reported where such
membrane permeation acts as the rate-limiting step in organ
clearance.10 Although the IVIVE method, where the intrinsic
clearance obtained by in vitro studies using human hepatocytes
and microsomes is scaled up to determine hepatic clearance, is
frequently used as a method for predicting clearance, many cases
cannot necessarily be scaled accurately because of problems such
as differences in experimental systems and variations in lots be-
tween human specimens. Thus, no suitable in vitro experimental
systems currently exist for other organs, and application is diffi-
cult.11 The weight power law, used to scale rat data to fit pharma-
cokinetic parameters, results in two-fold predictions errors.
However, verification has not been performed on external data
sets.12 Furthermore, establishment of the above method originated
from the mutual similarity in kidney structure between animals,
and it is expected to be difficult to establish for pharmaceuticals
that are not excreted via the kidneys. It must be said that many
differences are found in the repertoire and substrate recognition of
metabolic enzymes and transporter molecular species between
animals of different species, and handling the wide variety of
structures of drugs using a uniform methodology is fundamentally
difficult. In addition, techniques have been proposed for employing
machine learningmethods that use chemical structure fingerprints,
physicochemical parameters, animal clearance, and other factors as
explanatory variables.13e15 Although these methods produced
relatively high accuracies, all of them could not solve the problem
described in the next paragraph.

In the drug discovery stage, medicinal chemists search for
compounds with low clearance. To achieve it, not only accurate
clearance prediction but also interpreting chemical structure con-
tributes to clearance are needed. This problem is a form of the
“black box” problem that often occurs when using machine
learning methods.16,17 In the case of conventional methods, such as
IVIVE and animal scale-up methods, which do not use the chemical
structure and prediction methods that convert the chemical
structure into a useful descriptor, none were able to obtain hints on
how to optimize pharmacokinetics by converting the chemical
structures in this way. Among the clearance prediction methods, if
the partial structure of the drug that mainly determines the
magnitude of the metabolic clearance could be inferred, it would

lead to positive proposals for candidate structures for new com-
pounds with improved pharmacokinetic properties.

To solve these two problems, this research proposes a new CLtot
prediction method that uses Deep Tensor.18 Deep Tensor is a deep
learning technique that works on graph data, where “graph data”
means data representing the connections between objects and
chemical structures can be represented as graph data by focusing
on the connections between atoms. Deep Tensor handles the graph
data represented in tensor (multidimensional array) form. The
graph data is decomposed into a core tensor and factor matrices by
Structure Restricted Tensor Decomposition (SRTD) and then the
core tensor is inputted into a neural network. The core tensor is
expected to include the important features of the graph data and to
enable an effective prediction. SRTD uses a “target core tensor,”
which guides the decomposition into desirable one. The optimal
target core tensor and the parameters of the neural network are
obtained using Extended Backpropagation algorithm. Deep Tensor
can also explain the prediction results using structure contributing
factor inference method. This method learns an interpretable
model (linear regressionmodel) which locally approximates a black
box model (neural network). The interpretable model gives the
contributions of the core tensor to the prediction result and then
these contributions are converted to those of the graph data by
inverse conversion of SRTD. As a result, it becomes clear which
connection of the graph data is important for the prediction. For the
first problem of “improving prediction accuracy”, the proposed
method learns the Deep Tensor model whose explanatory variables
are the chemical structure and the rat CLtot. This multimodal model
can be expected to achieve better prediction accuracy like the
existing machine learning methods mentioned above. For the
second problem of “extracting the features of the chemical struc-
ture of the drug that determine the magnitude of CLtot”, the
chemical structure that contributes to CLtot prediction is extracted
using structure contributing factor inference method for Deep
Tensor. The contributions of the extracted chemical structure are
inferred according to the elimination pathway, thereby providing
hints for improving pharmacokinetics. The proposed method is
expected to increase the success rate of clinical trials and lead to
drug development.

Materials and Methods

Data Set

Data were extracted for 748 compounds for which human CL
data were available from Lombardo et al.12 and ChEMBL ver.
2319(see Supplementary_Dataset.pdf). Among these, 394 com-
pounds had rat CL data. Preprocessing consisted of calculating the
human and rat CL data using the following equation for the
respective data sets:

z¼ log10x� m

s

where z is the value after preprocessing, x is the original data, m is
the mean value of log10x, and s is the standard deviation of log10.
These two data sets were taken as the gold standard for cross-
validation (CV) testing. Note that although virtually none of the
elimination pathways have been identified in the compounds used
in this work, when the data set of Lombardo et al., which has a large
collection of data accumulated for drugs, is compared with the data
of Varma et al., which investigated human kidney elimination, of
the 231 compounds that were compared, 157 had a kidney elimi-
nation rate of 50% or less of CLtot and 74 had 50% or more.20

Furthermore, although data were collected during intravenous
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administration, for eptaloprost, it was shown that there were errors
in the cited reference, and the human data were from oral
administration. Then, although the value of clearance of artesunate
was too high from the viewpoint of physiology, this data was used
to consider a large clearance compound into our model.

Deep Tensor

To predict CL in humans, a deep learning technique for graph data
called Deep Tensor18 was used (Fig.1). The chemical structure (graph)
and/or rat CLwere used as explanatory variables for Deep Tensor. The
chemical structure was represented as graph data in the previously
reported18 way. When the chemical structure and rat CL were taken
as explanatory variables, the rat CL was inputted to the neural
network without SRTD. In other words, the input to the neural
network consisted of the core tensor corresponding to the chemical
structure and the rat CL. The core tensor size was set to 50� 50. The
neural network structure was set to two intermediate layers with
1000 neurons in each layer, and the number of neurons in the output
layer was 1. In the intermediate layers, the ReLU function21 was used
as the activation function, and batch normalization22 with a decay
rate of moving average ¼ 0.9 and epsilon value ¼ 2e-5, and dropout
with rate¼ 0.523 were applied. The number of epochs of learningwas
set to 50 and the minibatch size was set to 100.

The partial structures of the compounds that contributed to
each prediction were visualized for the Deep Tensor prediction
results. First, a previously reported18 method was used to calculate
the degree of contribution of each explanatory variable to the
prediction result. The level of contribution of each bond in the
compound was calculated for the case where the compound was
taken as the explanatory variable. The levels of contribution of each
bond in the compound and the rat CL were calculated for the case
where the chemical structure and rat CL were taken as explanatory
variables. In the latter case, the inputs of the interpretable model
were the core tensor corresponding to the chemical structure and
the rat CL. The value of s was set to 10 for the calculation of the
proximity measure.

Performance Evaluation Protocol

The accuracies of the animal scale-up method (baseline), SVR
method, and proposed method using Deep Tensor were evaluated
by using a data set of compounds with assigned human and rat CL
data. The animal scale-up method is a linear model that uses rat CL
data. For the two types of machine learning methods, a total of four
methods were evaluated with a method where the only input was
the structure information of the compound and a method where
the input was both compound information and rat CL information.

To evaluate the accuracy of the predictions, 5-fold CV tests were
performed. First, the gold standard data set was randomly divided
into five subsets. Next, one of the subsets was used as the evalua-
tion set, and the remaining four were used as training sets. A pre-
diction model was then constructed using the training sets. Finally,
the prediction scores of all of the pairs in the evaluation set were
calculated.

The geometric mean fold error (GMFE) and percent of k-fold
error (k ¼ 2,3,5) were used as evaluation indicators of the predic-
tion accuracy of the method. For the GMFE, the case of GMFE ¼ X
can be interpreted as the difference between the actual and pre-
dicted values having a mean of X times. The GMFE is expressed by
the following equation:

GMFE¼ 10meanjlog10ðPredicted=ObservedÞj

GMFE values closer to 1 indicate better accuracy. Furthermore,
the percent of k-fold error is the proportion of data within an error
of k times (correct value/k � predicted value � k � correct value).
The value of percent of k-fold error indicates better accuracy the
closer it is to 100%.

We compared the proposed method with two previous
methods: animal scale-up methodand support vector regression
(SVR) with the Gaussian radial basis function (RBF) kernel. The
reasonwhy we selected SVR was high accuracy was observed in the
model of the recent study.15 Animal scale-up methodand SVR were
implemented using the scikit-learn library.24 The rat CL data with
the best accuracy in a previous report12 were used as the explan-
atory variable for animal scale-up method. Furthermore, the
extended connectivity fingerprint with bond diameter four (ECFP4)
and/or rat CL was used as the explanatory variables for SVR. The
ECFP4 compound descriptor was calculated using RDKit with pa-
rameters of radius 2, 1,024 dimensions, and other parameters at
default. The SVR hyperparameters were searched over all combi-
nations of 16 values of hyperparameter C (2�5, 2�4, …, 29, 210), 11
values of hyperparameter ε (2�10, 2�9, …, 2�1, 20), and 21 values of
hyperparameter g (2�20, 2�19,…, 2�1, 20). The final parameters used
the combination with the highest squared correlation coefficient
value in the 5-fold CV.

Results

Performance Evaluation of Human Clearance Prediction

The upper half of Table 1 shows the evaluation results for the
data set where human and rat CL data were assigned (Fig. 2). First,
the animal scale-up method, which was the conventional method
used as the baseline, had a GMFE of 2.65 and a 2-fold error of 47.2%
in the 5-fold CV. Next, a comparison was performed between
chemical structure information only and a multimodal model of

Fig. 1. Overview of human CL prediction using multimodal Deep Tensor model.

H. Iwata et al. / Journal of Pharmaceutical Sciences 110 (2021) 1834-18411836

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



chemical structure information and rat CL information. In the case
of the SVR method, for chemical structure information (ECFP4
descriptor) only, the GMFE was 2.96 and the proportion of com-
pounds with prediction errors of 2-fold or less was 41.9%. On the
other hand, for the multimodal model of chemical structure
(ECFP4) and rat CL information, the GMFE was 2.88 and the pro-
portion of compounds with prediction errors of 2-fold or less was
43.9%. In the SVR results, the accuracy of the multimodal model
with the rat CL was higher than that of chemical structure infor-
mation only. Similarly, in the case of the Deep Tensor method, for
chemical structure information only, the GMFE was 3.23 and the

proportion of compounds with prediction errors of 2-fold or less
was 38.3%. On the other hand, for the multimodal model of
chemical structure information and rat CL information, the GMFE
was 2.68 and the proportion of compounds with prediction errors
of 2-fold or less was 48.5%. In the results of the Deep Tensor
method, the accuracy of the multimodal model was higher than
that of chemical structure information only. Furthermore, similar
trends were observed in the results for percent of 3-fold and 5-fold
errors. It is thought that these results show the multimodal effect.

The lower half of Table 1 shows the evaluation results for the
data set where human CL data were assigned (Supplementary

Table 1
The GMFE and % of 2-, 3-, and 5-Fold Errors in the CV Experiments for Three Methods.

Regression Algorithm Animal Scale-Up Method Support Vector Regression Deep Tensor

Explanatory Parameters Rat CL ECFP4 Rat CL þ ECFP4 Chemical Graph Rat CL þ Chemical Graph

Compounds including human and rat CL
GMFE 2.65 2.96 2.88 3.23 2.68
% of 2-fold error 47.2 41.9 43.9 38.3 48.5
% of 3-fold error 66.2 60.7 61.9 55.8 67.3
% of 5-fold error 83.5 77.9 78.4 74.6 84.0

Compounds including human CL
GMFE e 2.72 e 2.93 e

% of 2-fold error e 44.4 e 42.1 e

% of 3-fold error e 65.2 e 63.0 e

% of 5-fold error e 80.9 e 78.5 e

Fig. 2. Plot of cross-validation regression. The x-axis shows the actual measured value, and the y-axis shows the predicted value. (a) Allometric linear regression. (b-1) ECFP4. (b-2)
ECFP4 þ rat CL by support vector regression (SVR). (c-1) Chemical structure. (c-2) Chemical structure þ rat CL by Deep Tensor.
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Fig. S1). When SVR was used taking ECFP4 as the explanatory
variable, the GMFE was 2.72 and the compounds with prediction
errors of 2-fold or less were 44.4%, 3-fold or less were 65.2%, and 5-
fold or less were 80.9%. Furthermore, when Deep Tensor was used
taking the chemical structure information as the explanatory var-
iable, the GMFE was 2.93 and the compounds with prediction er-
rors of 2-fold or less were 42.1%, 3-fold or less were 63.0%, and 5-
fold or less were 78.5%. This result suggests that machine
learning methods using only chemical structure information give
good prediction accuracy, even under conditions where there is
absolutely no in vitro or animal experimental data. Since prediction
is possible by inputting only the structure formula, this may also
make a large contribution to compound design in the early stages of
drug development.

Discussion

Although items, where there was a large difference between the
prediction and actual measurement were investigated in all of the
models created up to this point, obtaining a discussion was difficult
from the perspective of physical properties. However, when the fold
errors in the actual and predicted values were plotted for actually
measured human CL, a trend was found in all of the models for the
fold error to be larger in compounds where the actually measured
human CL was significantly small or significantly large (Fig. 3 and
Supplementary Fig. S2). This indicates that the training was insuffi-
cient in regions of human CL values where there were few data in the
training data set. However, in the rat multimodal deep learning
model, this trend was comparatively small, and compounds, where
the human CL valuewas significantly small or significantly largewere
predicted more accurately compared with other models (Fig. 3).

For the compounds where the difference between the predicted
results by the Deep Tensor method and actual measured values

were 3-fold or less than the actual measurement results, inference
of the chemical structures that contribute to CL prediction using a
structure contributing factor inference method was performed, and
the validity of this was evaluated by chemists. First, inference of the
chemical structure that contributes to CL prediction (human:
20mL/min/kg, rat: 70mL/min/kg) (Fig. 4a and b) was performed on
the eight high CL compounds (Fig. 4a), where the actual measured
human and rat values are greater than or equal to the hepatic blood
flow rates (human: 20 mL/min/kg, rat: 70 mL/min/kg). Note that
the compounds where inference was performed below are those
that are all known to be eliminated mainly as a result of meta-
bolism. Since the model used for estimating structure contributing
factor is the rat multimodal deep learning model, the contribution
of rat CL was evaluated before confirming the contribution of the
chemical structures. The results showed that the contribution of rat
CL was larger than any other chemical structure in these eight high
CL compounds.

Although the human data for eptaloprost was for oral admin-
istration, they were predicted with good accuracy. While the
metabolism of eptaloprost is via the process of beta oxidation of
carbonic acid into the metabolite cicaprost,25 the predicted regions
matched this area, and these findings were thought to indicate a
valid level of contribution. Although the most easily metabolized
part of R-apomorphine was the catechol part,26 the predicted re-
gion was the neighboring aromatic ring part with high lipid sol-
ubility, and it is thought that this is a valid suggestion as the
structure contributing factor inferred to degrade the metabolic
stability. The metabolisms that propofol undergoes are known to
be O-glucuronic acid conjugation of the phenol and hydroxylation
of the para position of its OH group.27 The inferred structure
contributing regions indicate phenol metabolism and metabolism
of the para position of the phenol, and this completely reflects
experimental facts, which suggests that the prediction results are

Fig. 3. A plot of fold error and human CL. The x-axis shows the actual measured value, and the y-axis shows the fold error (>1). (a) Allometric linear regression. (b-1) ECFP4. (b-2)
ECFP4 þ rat CL by support vector regression (SVR) (c-1) Chemical structure. (c-2) Chemical structure þ rat CL by Deep Tensor. Lines show five times, three times, and two times
starting from the top.
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valid. It is also known that cocaine is mainly metabolized in two
ester moieties by esterase and that an NeMe demethylation re-
action occurs because of CYP, which converts it into norcocaine.28

One of the inferred contributing structures is part of the benzene
ring, and it is thought that lipophilicity, which is a cause of
metabolic instability, was identified in this predicted region.
Another predicted region indicated the NeMe demethylation re-
action site, and it is thought that the inferred structure factor was
a valid suggestion. For isosorbide dinitrate, it has been reported
that the nitric ester is the main site of metabolism,29 and the
inferred structure contributing factor matched this part and was
thought to be valid. The main metabolic pathways of vorinostat
are O-glucuronic acid conjugation of hydroxamic acid and its beta-
oxidation.30 The inferred structure contributing factor was the
amide part, and interpretation of the predicted structure for the
site of metabolism was difficult. However, the inferred amide part
could be inferred to be metabolically unstable from the perspec-
tive of medicinal chemistry. For idarubicin, it is known that the
main metabolic pathway is the reductive metabolism of the ke-
tone on the side chain.31 The inferred structure contributing factor
is the metabolically unstable phenol part, and although this does
not match the experimental site of metabolism, it can be inferred
to be metabolically unstable from the perspective of medicinal

chemistry. For nalbuphine, it is known that the sites of metabolism
are hydroxylation of the cyclobutane and O-glucuronic acid
conjugation of the cyclohexanol near the ether.32 The two inferred
structure contributing factors suggest that the methoxy and the
para position of the phenol are readily metabolized, and although
they do not match the experimental site of metabolism, they can
be inferred to be metabolically unstable sites from the perspective
of medicinal chemistry.

From the above, the results for the eight compounds with high
CL largely match the sense of the medicinal chemist.

Among the compounds where the difference between the pre-
dicted results by the Deep Tensor method and actual measured
values were 3-fold or less, there were nine low CL compounds
where the actual measured human and rat values were less than or
equal to 1/50th of the hepatic blood flow. However, the three
compounds caspofungin, micafungin, and teicoplanin A2-1, which
have huge molecules, were excluded from the discussion (Fig. 5a
and b). The contribution of rat CL was estimated for the low CL
compounds as well as the high CL compounds. The contribution of
rat CL was larger than any other chemical structure in these six low
CL compounds.

The predicted region in warfarin was part of the coumarin
structure. The coumarin structure is an endocyclic ester and also

Fig. 4. Inference results for chemical structures that contribute to CL prediction by the Deep Tensor structure contributing factor inference method on high CL compounds. (a) Data
for compounds where the difference between the predicted results and actual measured values is three times or less from among the high CL compounds where the human and rat
actual measured values were greater than or equal to the hepatic blood flow. (b) Inference results for the chemical structures that contribute to CL prediction for the compounds
shown in (a). Structures that contribute 5% or more in the stable direction (coefficient is negative) for these metabolically stable compounds are shown highlighted in red. In other
words, the structures highlighted in red show the atoms that contribute to the prediction of high CL.
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has keto-enol tautomerism, which can be interpreted as contrib-
uting to metabolic stability. Although the ethyl group on the side
chain in phenobarbital is thought to be the most easily metabo-
lized, the benzene ring containing the predicted region can be
interpreted as blocking themetabolism of the ethyl group sterically,
and the level of contribution is thought to be valid. Since the sul-
fonamide indicated at the predicted region in meloxicam is less
likely to be metabolized, the level of contribution is thought to be
valid. The sulfonamide, the predicted region in tolbutamide, can be
interpreted as making a large contribution to metabolic stability. In
sulfinpyrazone, if the metabolism of the keto-enol part is assumed
to dominate, then the benzene ring containing the predicted region
can be interpreted as blocking metabolism. In Ro25-6833, it is
suggested that the carbonyl group, one predicted region, was
introduced to block the metabolism. This idea is based on the
assumption that the original structure was the hydroxy group,
which is the most easily metabolized, and was replaced by the
carboxy group. The aminothiadiazole, another predicted region, is a
polar group, suggesting metabolic stability.

From the above, the results for the six compounds with low CL
largely match the sense of the chemist. Then, huge molecules were
removed from only the above discussion from the structural
viewpoint; however, if we had removed from the analysis itself,
there would be some possibility of the increasing of the prediction
accuracy.

We developed a new CL prediction method using Deep Tensor,
which is a type of deep learning model, to predict human CL data.
Training was performed using a multimodal model that takes the
chemical structure and rat CL information, which is a form of pre-
clinical data, as inputs. As a result, the constructed prediction
model achieved higher accuracy than models that take only the
chemical structure as input. Furthermore, a relatively good model
could be constructed, even for models that take only the chemical
structure as input, and it was found that compounds, where there is
no preclinical data could be predicted to some degree.

In this research, we collected the dataset of clearance regardless
the clearance routes. As we mentioned in the Material and method
section, most of compounds clearance routes were not able to be
determined. However, if we could identify each compound's clear-
ance route, it is considered that the prediction accuracy would be
improved.

Furthermore, since the developed prediction model is used by
inputting the chemical structure as a graph, it can predict the
chemical structures that contribute to the prediction. When a
chemist evaluated eight high and six low CL compounds, good re-
sults were largely obtained for the inference of metabolically stable
structures. Since the chemical structure that contributes to meta-
bolism can be inferred, this gives hints for improving pharmaco-
kinetics. The proposed method is expected to increase the success
rate of clinical trials and lead to drug development.

Fig. 5. Inference results for chemical structures that contribute to CL prediction by the Deep Tensor structure contributing factor inference method on low CL compounds. (a) Data
for compounds where the difference between the predicted results and actual measured values is three times or less from among the low CL compounds where the human and rat
actual measured values were less than or equal to 1/50th of the hepatic blood flow. (b) Inference results for the chemical structures that contribute to CL prediction for the
compounds shown in (a). Structures that contribute 5% or more in the unstable direction (coefficient is positive) for these metabolically unstable compounds are shown highlighted
in blue. In other words, the structures highlighted in blue show the atoms that contribute to the prediction of low CL.
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