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A Robust and Accurate Deep-learning-based Method for the  
Segmentation of Subcortical Brain: Cross-dataset  

Evaluation of Generalization Performance

Naoya Furuhashi, Shiho Okuhata, and Tetsuo Kobayashi*

Purpose: To analyze subcortical brain volume more reliably, we propose a deep learning segmentation 
method of subcortical brain based on magnetic resonance imaging (MRI) having high generalization per-
formance, accuracy, and robustness.
Methods: First, local images of three-dimensional (3D) bounding boxes were extracted for seven subcor-
tical structures (thalamus, putamen, caudate, pallidum, hippocampus, amygdala, and accumbens) from a 
whole brain MR image as inputs to the neural network. Second, dilated convolution layers, which input 
information of variable scope, were introduced to the blocks that make up the neural network. These blocks 
were connected in parallel to simultaneously process global and local information obtained by the dilated 
convolution layers. To evaluate generalization performance, different datasets were used for training and 
testing sessions (cross-dataset evaluation) because subcortical brain segmentation in clinical analysis is 
assumed to be applied to unknown datasets.
Results: The proposed method showed better generalization performance that can obtain stable accuracy 
for all structures, whereas the state-of-the-art deep learning method obtained extremely low accuracy for 
some structures. The proposed method performed segmentation for all samples without failing with signifi-
cantly higher accuracy (P < 0.005) than conventional methods such as 3D U-Net, FreeSurfer, and Functional 
Magnetic Resonance Imaging of the Brain’s (FMRIB’s) Integrated Registration and Segmentation Tool in the 
FMRIB Software Library (FSL-FIRST). Moreover, when applying this proposed method to larger datasets, 
segmentation was robustly performed for all samples without producing segmentation results on the areas 
that were apparently different from anatomically relevant areas. On the other hand, FSL-FIRST produced 
segmentation results on the area that were apparently and largely different from the anatomically relevant 
area for about one-third to one-fourth of the datasets.
Conclusion: The cross-dataset evaluation showed that the proposed method is superior to existing  
methods in terms of generalization performance, accuracy, and robustness.
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Introduction
Volumetric analyses of each subcortical brain structure based 
on magnetic resonance imaging (MRI) have suggested a  
relationship between the subcortical brain volume and 

pathologic state of psychiatric and neurological diseases such 
as schizophrenia, autism, and Parkinson’s disease.1–4 For 
example, in individuals with schizophrenia, the subcortical 
brain volume of structures such as the hippocampus, amyg-
dala, thalamus, accumbens, and pallidum are significantly 
altered as compared with those of healthy controls.1,2

To measure the volume of the subcortical brain based on 
MRI, each structure must be identified from a whole brain 
image. However, even when performed by experts, the manual 
segmentation of 3D MR images is time-consuming and labor 
intensive. Therefore, many studies use automatic segmentation 
software such as FreeSurfer (http://surfer.nmr.mgh.harvard.
edu/) and Functional Magnetic Resonance Imaging of the 
Brain’s (FMRIB’s) Integrated Registration and Segmentation 
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Tool in the FMRIB Software Library (FSL-FIRST; https://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/FIRST/).1,2,4

Compared with FreeSurfer, FSL-FIRST obtains higher 
segmentation accuracy with a smoother shape of the seg-
mented area.5,6 However, previous studies7,8 indicated that 
FSL-FIRST produces segmentation results that are appar-
ently and largely different from the anatomically relevant 
area when it is used on brains with shapes that are largely 
different from the standard brain in MNI space (we call these 
cases “failures”). In fact, the volumetric meta-analysis of 
subcortical brain2 excluded some samples that FSL-FIRST 
failed to properly segment.

Recently, image analysis techniques using deep learning 
have been studied. Deep learning is a method of machine 
learning based on multilayer neural networks, and it is good 
for recognizing images, sounds, and natural languages. The 
convolutional neural network also reduces the calculation cost 
by reducing the number of learning parameters of the neural 
network to relatively few. Additionally, it processes input 
while maintaining a positional relationship of image ele-
ments.9,10 Deep learning has also been used for image analysis 
for MR brain images, for classification of psychiatric and neu-
rological diseases,11,12 detection of cerebral microbleeds,13 and 
segmentation of brain tumors and structures.14–18

It is important to evaluate the generalization performance 
of the technique used for subcortical structure segmentation 
based on MR brain images. Nevertheless, most studies15–17 do 
not evaluate cross-dataset performance using plural super-
vised datasets. Although a previous study18 showed state-of-
the-art accuracy of subcortical brain segmentation when 
training and testing in the same dataset, it also showed that 
there was less accuracy in cross-dataset evaluation. This was 
because the intensity distribution of images obtained by dif-
ferent MRI scanners greatly differed, and the output distribu-
tions of the intermediate layer of the neural network that took 
them as input were largely different.18 Accordingly, the deep 
learning segmentation methods in the previous studies have 
not been used for analyses of large datasets because of their 
limited generalization performance.

However, there are some ways to improve generalization 
performance. A commonly used data augmentation tech-
nique increases the number of samples by randomly 
enlarging, reducing, rotating, or adding noise to the image to 
provide sample diversity.10 Transfer learning is a technique 
in which a small target dataset is adapted on the basis of a 
model that was already learned with another dataset.19,20 
However, the technique requires at least one target datum 
with ground truth, which is difficult to create for 3D medical 
image segmentation such as MR images. In addition, a con-
siderable amount of training data is required when per-
forming transfer learning on a large dataset composed of a 
plurality of datasets obtained by many MRI scanners.

In this study, we proposed a method using a new neural 
network based on MRI that enables high accuracy and generali-
zation performance for the segmentation of seven subcortical 

structures (thalamus, putamen, caudate, pallidum, hippocampus, 
amygdala, and accumbens) of the human brain. Moreover, the 
method is so robust to abnormal brain shape that it segments all 
samples without failing.

Using this method, we evaluated cross-dataset generali-
zation performance using the local 3D bounding box con-
taining each structure instead of a whole brain image as 
input. As a result, generalization performance and robustness 
were improved because the neural network was less suscep-
tible to brain shape and image quality. In addition, the neural 
network processes global and local information by dilated 
convolution21 in parallel for accurate segmentation.

Materials and Methods
Proposed method
Bounding box extraction
We extracted a local bounding box image containing each 
structure from a whole brain image. We targeted seven 
subcortical brain structures: the thalamus, putamen, caudate, 
pallidum, hippocampus, amygdala, and accumbens (Fig. 1).

Fig. 1 Seven subcortical structures (accumbens, caudate, putamen, 
pallidum, thalamus, hippocampus, and amygdala) represented 
on two axial images. Thal, thalamus; Puta, putamen; Caud, cau-
date; Pall, pallidum; Hipp, hippocampus; Amyg, amygdala; Accu, 
accumbens.
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Other segmentation methods15,16,18 input a whole brain 
image into the neural networks by converting a 3D image 
into multiple 2D images. This is done because the whole 3D 
brain image would exceed the capacity of a general 
 computer’s memory, and converting the image to 2D images 
reduces memory usage.

Dolz et al.17 used 3D bounding boxes sampled randomly 
from larger brain regions as input, but this random technique 
made learning difficult and inefficient. In our new approach, 
we extracted the local 3D bounding box contained in each 
structure, as shown in Fig. 2a. This not only reduced the need 
for as much computer memory while maintaining the 3D 

structure but also specified a target structure. It also reduced 
the variety of the image and contributed to improved gener-
alization performance.

The 3D bounding box of each structure was extracted 
independently on the basis of the center coordinates of the 
structures. We specified the center coordinates using Free-
Surfer for automation, although we could have done this with 
visual inspection. The sizes of the 3D bounding boxes for 
each structure were determined to match the size of the struc-
ture by using the number of axial ´ coronal ´ saggital voxels. 
The results were as follows: thalamus, 40 ́  48 ́  48; putamen, 
40 ´ 56 ´ 48; caudate, 32 ´ 64 ´ 56; pallidum, 32 ´ 32 ´ 32; 

Fig. 2 (a) Flow chart of proposed method. (b) Dilated convolution block, convolution block, and their receptive fields. The blocks in (b) 
are connected as shown in (a). The dilated convolution block, represented as Dn, has the dilated convolution with dilation rate set to n. 
Concat represents a concatenation of inputs. The input image is processed by one convolution block and then input to the six dilated 
convolution blocks, the immediate summation, and the concat layer. Arrays connected in the concat layer are processed in the convo-
lution block and convolution layer, and a segmentation image is output. The dilation rates of the dilated convolutions are set to 1–6. The 
filter size of the intermediate convolution layers is 3 ´ 3 ´ 3 and that of the last convolution layer is 1 ´ 1 ´ 1. The number of channels of 
intermediate layers is 32.

a b
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hippocampus, 48 ´ 48 ´ 56; amygdala, 32 ´ 24 ´ 32; and 
accumbens, 24 ´ 24 ´ 24.

We used this method to determine the sizes of the 3D 
bounding boxes because imbalance in the number of seg-
mentation labels would impede neural network learning. The 
small variety of location, volume, and angle of structure in 
the bounding box does not matter because of the augmenta-
tion technique when actual implication of the proposed 
method to the clinical images.

Neural network
Dilated convolution21 was used as a part of the convolutional 
layers that composed the neural network, and it was performed 
with an arbitrary voxel interval (dilation rate). Receptive 
fields, shown at the top of Fig. 2b, affect a normal convolution 
(right) and the dilated convolution (left) with 3 ´ 3 (3 ´ 3 ´ 3 
in the case of 3D convolution) filters. In the figure, circles rep-
resent the pixels (voxels in the case of 3D images) to be con-
volved. The larger the dilation rate the convolution has, the 
wider the receptive field, meaning it can obtain more global 
information. When the dilation rate is 1, the dilated convolu-
tion is equivalent to the normal convolution. In this study, 3D 
dilated convolutions with different dilation rates were incorpo-
rated into the neural network in parallel. The dilation rates 
were determined by validation session.

As shown in Fig. 2, the neural network was built on the 
basis of blocks that consisted of multiple layers. The network 
introduced shortcut connections22 that made it easy to propa-
gate gradient in a backward manner. In addition, we used 
group normalization23 to normalize the input and suppress the 
output from becoming too small or too large. This facilitated 
learning by preventing gradient vanishing or explosion. A 
leaky rectified linear unit,24 applied after linear transformation, 
was used for the activation function. We made the dilated con-
volution block and convolution block shown in Fig. 2b. They 
were connected in parallel as shown in Fig. 2a, and thus, global 
and local information were obtained by a plurality of dilated 
convolution blocks that were simultaneously processed. Sub-
sequently, they were integrated via the concat layer.

MRI datasets
To validate the proposed method, we used supervised and 
unsupervised MRI datasets.

Supervised datasets
First, we applied our method to two supervised MRI datasets, 
which consisted of both T1-weighted and ground truth images 
for segmentation of seven subcortical brain structures.

The first dataset was the Internet Brain Segmentation 
Repository (IBSR; https://www.nitrc.org/projects/ibsr/). This 
consists of images of 18 healthy subjects (14 males and four 
females, 7–71 years old) and expert-labeled segmentations 
of their subcortical brains. T1-weighted images were obtained 
by 1.5T MRI scanner (Sonata, Siemens, Munich, Germany; 
Signa, General Electric, Boston, MA, USA). The voxel sizes 

were 0.9375 ´ 0.9375 ´ 1.5, 0.837 ´ 0.837 ´ 1.5 mm3, and 
1.0 ´ 1.0 ´ 1.5 mm3.

The second dataset was the Medical Image Computing 
and Computer Assisted Intervention (MICCAI) Multi-Atlas 
Labeling Challenge 2012 (https://my.vanderbilt.edu/masi/
workshops/). This consists of images of 35 healthy subjects 
(13 males and 22 females, 19–90 years old) and expert-
labeled segmentations of their subcortical brains. The sub-
jects were divided into two groups of 15 and 20 people each 
to evaluate generalization performance using the MICCAI 
Multi-Atlas Labeling Challenge 2012. T1-weighted images 
were obtained by 1.5T MRI scanner (Vision, Siemens) using 
magnetization-prepared rapid acquisition of gradient echo 
(MPRAGE). The voxel size was 1.0 ´ 1.0 ´ 1.0 mm3.

Unsupervised datasets
The two unsupervised MRI datasets consisted of T1-weighted 
images without ground truth images for segmentation of subcor-
tical brain structures. These unsupervised datasets were used to 
qualitatively evaluate whether proposed segmentation could be 
performed for more data obtained by various MRI scanners.

The first dataset was the Open Access Series of Imaging 
Studies 3 (OASIS-3; https://www.oasis-brains.org). It con-
sisted of images of 609 healthy controls and 489 Alzheimer’s 
disease patients (487 males and 611 females, 42–95 years 
old) and was collected at The Charles F. and Joanne Knight 
Alzheimer Disease Research Center (Department of Neu-
rology at Washington University School of Medicine). The 
total number of images was 2057 because most of the sub-
jects underwent multiple image acquisitions. T1-weighted 
images were obtained by 1.5T MRI scanners (Vision or 
Sonata, Siemens) using MPRAGE. The voxel sizes were 
1.0 ´ 1.0 ´ 1.3 and 1.0 ´ 1.0 ´ 1.0 mm3. In addition, 
T1-weighted images are obtained by 3T MRI scanners (Tim 
Trio, BioGraph mMR PET-MR, Siemens) using MPRAGE. 
The voxel sizes were 1.0 ´ 1.0 ´ 1.0 and 1.2 ´ 1.1 ´ 1.1 mm3.

The second dataset was the Information eXtraction from 
Images (IXI; https://brain-development.org/ixi-dataset/), 
which consisted of images of 619 healthy subjects  
(277 males and 342 females, 20–107 years old). The dataset 
was collected at three hospitals in London: the Hammersmith 
Hospital using a 3T MRI scanner (Intera; Philips, Amsterdam, 
The Netherlands), Guy’s Hospital using a 1.5T MRI scanner 
(Gyroscan Intera; Philips), and the Institute of Psychiatry 
using a 1.5T MRI scanner (Signa; General Electric). The 
voxel sizes were 0.94 ´ 0.94 ´ 1.2 mm3.

Evaluation metrics
The segmentation accuracy was evaluated by the dice coef-
ficient as in previous studies.14–18 The dice coefficient is 
expressed by the following equation:

dice V V
V V

V V1 2
1 2

1 2

2
,( ) =

+

Ç
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where V1 and V2 are the two segmentation areas and V  is 
the volume of area V. The dice coefficient ranges between  
0 and 1. It is 0 when the two areas do not overlap at all and 1 
when they overlap completely. In this study, we evaluated the 
dice coefficient of the ground truth segmentation area and the 
estimated segmentation area.

Experiments
For all samples, the left and right brain structures were 
treated without distinction by inverting the left brain struc-
tures to the right. This resulted in doubling the number of 
samples of each structure.

We used a part of the MICCAI dataset, which consisted 
of the 15 people used in the MICCAI competition to validate 
hyperparameters such as the dilation rates. The validation 
data were not used following testing.

For evaluation of the generalization performance, we 
conducted two cross-dataset experiments.

In the first experiment, to compare our method with two 
deep learning methods, 3D U-Net25 and Kushibar,18 we con-
ducted (1) training with the IBSR dataset and testing with the 
MICCAI dataset and (2) training with the MICCAI dataset 
and testing with the IBSR dataset. 3D U-Net25 is a popular 
network for 3D segmentation. We input the bounding box to 
the network. Kushibar’s method, based on a simple convolu-
tional neural network inputting 2D whole brain images, is a 
state-of-the-art method of subcortical brain segmentation 
when training and testing in the same dataset. We cited the 
dice coefficient score of the cross-dataset evaluation used in 
Kushibar.18 The augmentation was not performed to match 
the conditions of the experiment.

In the second experiment, to compare our method with 
the conventional methods using FreeSurfer and FSL-FIRST, 
we conducted (1) training with the augmented IBSR dataset 
and testing with the MICCAI dataset and (2) training with 
the augmented MICCAI dataset and testing with the IBSR 
dataset. In this case, the training datasets were augmented by 
randomly enlarging, reducing, and translating images. In 
addition, Gaussian noise was added to the images.

Furthermore, the proposed method and FSL-FIRST were 
applied to unsupervised OASIS-3 and IXI datasets to qualita-
tively evaluate whether segmentation was correctly performed 
for more data without depending on MRI scanners. For the 
proposed method, we utilized the preceding model trained 
with the augmented datasets in the second experiment.

To optimize the neural network, the Adam method26 was 
used. The learning rate was set to 1 ´ 10−5. A batch size was 
2 because of the memory capacity. Training ended when the 
dice coefficient decreased after 1000 iterations. In these 
experiments, the TensorFlow (https://www.tensorflow.org/) 
framework on Python was used. We used a personal com-
puter with Intel Core i7-9750H 2.60 GHz central processing 
unit (CPU) and a NVIDIA RTX 2060 (6 GB memory) 
graphics processing unit. Training the proposed network for 
all structures took about 2 days. In the proposed method, 

FreeSurfer took about 5 h to segment the structures for 
extracting bounding boxes from whole brain image on the 
single core of the CPU, and the proposed network took <1 s 
to segment each structure from the bounding box. On the 
other hand, FSL-FIRST took about 5 min to segment all 
structures from whole brain image on the single core of the 
CPU, and Kushibar’s method was reported to take <5 min.18

Results
Comparison with the deep learning methods
Figure 3a shows the dice coefficient of the IBSR dataset seg-
mented by Kushibar’s method,18 3D U-Net,25 and the pro-
posed method trained with the MICCAI dataset for seven 
subcortical brain structures. Kushibar’s method showed 
extremely low dice coefficients, < 0.2 for the thalamus, 
whereas the proposed method and 3D U-Net showed dice 
coefficients of ≥ 0.6 for all structures. As a result of the 
 Wilcoxon signed-rank test, the dice coefficients of the pro-
posed method were significantly higher than those of 3D 
U-Net for the caudate, pallidum, and hippocampus and sig-
nificantly lower for the accumbens (P < 0.005).

Figure 3b shows the dice coefficients of the MICCAI 
dataset segmented using Kushibar’s method,18 3D U-Net,25 
and the proposed method trained with the IBSR dataset for 
seven subcortical brain structures. In this case as well, 
Kushibar’s method showed extremely low dice coefficients, 
< 0.3 on some structures such as pallidum and accumbens, 
whereas the proposed method and 3D U-Net showed dice 
coefficients of ≥ 0.6 for all structures. As a result of the 
 Wilcoxon signed-rank test, the dice coefficients of the pro-
posed method were significantly higher than those of 3D 
U-Net for the thalamus, putamen, caudate, pallidum, hip-
pocampus, and accumbens and significantly lower for the 
amygdala (P < 0.005).

Wilcoxon signed-rank tests between Kushibar’s method 
and the proposed method or 3D U-Net were not performed 
because the dice coefficient of each sample found using 
Kushibar’s method was not published.

Comparison with conventional segmentation methods
Figure 3c shows the dice coefficients of the IBSR dataset 
segmented by FreeSurfer, FSL-FIRST, and the proposed 
method trained with the augmented MICCAI dataset. Exam-
ples of the ground truth segmentation and their estimated 
segmentation are shown in Fig. 4a. As a result of the Wil-
coxon signed-rank test, the dice coefficient of the proposed 
method was significantly higher than those of FreeSurfer for 
the thalamus, putamen, caudate, pallidum, accumbens, and 
all structures as one group (P < 0.005). Compared with FSL-
FIRST, the dice coefficient of the proposed method was sig-
nificantly higher for the caudate and accumbens and 
significantly lower for the thalamus and amygdala 
(P < 0.005). For the IBSR dataset, all samples were seg-
mented by FSL-FIRST without the process failing.
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Figure 3d shows the dice coefficient of the MICCAI 
dataset segmented by FreeSurfer, FSL-FIRST, and the pro-
posed method trained with the augmented IBSR dataset. As a 
result of the Wilcoxon signed-rank test, the dice coefficient 
of the proposed method was significantly higher than that of 
FreeSurfer for the pallidum, amygdala, accumbens, and all 
structures as one group (P < 0.005). Compared with FSL-
FIRST, the dice coefficient of the proposed method was sig-
nificantly higher for the caudate, amygdala, accumbens, and 
all structures as one group and was significantly lower in the 

thalamus (P < 0.005). For FSL-FIRST, 13 out of 35 samples 
were excluded because the segmentation process failed.

Application to unsupervised datasets
Figure 4b shows examples of the segmentation results from 
the proposed method in the unsupervised OASIS-3 and IXI 
datasets. The proposed method produced anatomically rele-
vant segmentation results for all the target structures for all 
samples successfully. On the other hand, FSL-FIRST pro-
duced apparently and largely different segmentation from 

Fig. 3 (a) The dice coefficient of the Internet Brain Segmentation Repository (IBSR) dataset segmented by Kushibar’s method (L, structures 
in left hemisphere; R, structures in right hemisphere), 3D U-Net, and the proposed method trained with the MICCAI dataset. (b) The dice 
coefficient of the Medical Image Computing and Computer Assisted Intervention (MICCAI) dataset segmented by Kushibar’s method, 
3D U-Net, and the proposed method trained with the IBSR dataset. (c) The dice coefficient of the IBSR dataset segmented by FreeSurfer, 
Functional Magnetic Resonance Imaging of the Brain’s Integrated Registration and Segmentation Tool in the FMRIB Software Library (FSL-
FIRST), and the proposed method trained with the augmented MICCAI dataset. (d) The dice coefficient of the MICCAI dataset segmented 
by FreeSurfer, FSL-FIRST, and the proposed method trained with the augmented IBSR dataset. Wilcoxon signed-rank tests of the differences 
between Kushibar’s method and the proposed method or 3D U-Net, FreeSurfer, and FSL-FIRST were not performed. Thal, thalamus; Puta, 
putamen; Caud, caudate; Pall, pallidum; Hipp, hippocampus; Amyg, amygdala; Accu, accumbens.

a

c

b

d
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anatomically relevant areas in 488 out of 2057 samples for 
the OASIS-3 dataset and 190 samples out of 619 images for 
the IXI dataset. In the “failure” cases, dice coefficients of the 
segmentation area and ground truth had to be zero.

Discussion
The proposed method and 3D U-Net25 with bounding boxes 
as input showed better generalization performance as com-
pared with the state-of-the-art Kushibar’s deep learning 
method using 2D whole brain images as input. Kushibar’s 
method showed extremely low dice coefficient for certain 
structures. It might be caused by confusion of left and right 
structures because of the use of the whole brain image as 
input.18 On the other hand, the segmentation results of the 
methods that deal with the bounding box as input showed 
stable dice coefficients for all structures. There are two 

reasons why the methods reached significant generalization 
performance.

First, the proposed method was less susceptible to the dif-
ferences in brain shape and image quality among datasets 
because it used local bounding boxes that contained each 
structure instead of a whole brain image. Second, the proposed 
method directly input 3D images of bounding boxes without 
dividing them into multiple 2D images. By doing so, the pro-
posed method maintained 3D information of the structure, and 
therefore, it is less susceptible to head position during MRI 
acquisition. Thus, inputting local 3D bounding boxes con-
taining each structure not only reduced required computer 
memory but also improved generalization performance.

It is important to evaluate generalization performance in 
tasks that deal with a small amount of data, such as medical 
images. Moreover, medical images such as MR images 
greatly vary in quality depending on the type of scanner, 

Fig. 4 (a) Ground truth (GT), 
FreeSurfer, Functional Magnetic 
Resonance Imaging of the Brain’s 
Integrated Registration and 
Segmentation Tool in the FMRIB 
Software Library (FSL-FIRST), and 
proposed method segmentation. 
(b) Proposed method segmenta-
tion of unsupervised dataset.
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even with the same T1-weighted images.18 Therefore, suffi-
cient generalization performance cannot be obtained when 
the neural network is trained with one small dataset. Namely, 
the same performance is not expected to be achieved when 
testing on other datasets. When performing segmentation of 
medical images, subjects and imaging devices are usually 
different from those used with training datasets. It is neces-
sary to evaluate cross-dataset generalization performance in 
cases when the properties of datasets are largely different or 
when datasets comprise a small number of samples, such as 
in medical image segmentation.

With the proposed method, highly accurate segmenta-
tion was possible. As shown in Fig. 3, dice coefficients of the 
proposed method were significantly higher than those of 3D 
U-Net25 and FreeSurfer for many structures. In addition, 
those of the proposed method were comparable with those of 
FSL-FIRST. This was because the global and local informa-
tion obtained by dilated convolution were processed in par-
allel and integrated without down sampling. 3D U-Net also 
integrated the global and local information by skip connec-
tion, but its pooling layer reduced information by down sam-
pling. In addition, this also suggests that whole brain 
information is not necessarily indispensable for segmenting 
the subcortical structures. The image of the bounding box 
that includes each target structure may be sufficient for 
highly accurate segmentation.

The proposed method would be highly robust to the 
images of various subjects and MRI scanners. There was no 
sample that failed in anatomically relevant segmentation not 
only in IBSR and MICCAI but also in larger OASIS-3 and 
IXI datasets. The robustness is achieved by less variation in 
the local bounding box images containing each structure and 
by specifying and reducing the input area. On the other hand, 
FSL-FIRST failed segmentation in about one-third to one-
fourth of the MICCAI, OASIS-3, and IXI datasets. FSL-
FIRST tends to fail in segmentation for brain images that are 
largely different from the standard brain because individual 
brains are linearly transformed into the standard brain in the 
process.7 Because human brains are very different from 
person to person, a certain number of samples usually fail 
during the segmentation process of FSL-FIRST. These sam-
ples had to be removed from the preceding statistical anal-
yses of brain images, which may have caused an analysis 
bias. On the basis of these results, the proposed method 
improved robustness in brain MR image analyses compared 
with FSL-FIRST.

In this study, we extracted a bounding box for each struc-
ture by specifying the center coordinates of the structures 
using FreeSurfer, which takes a relatively long time for auto-
mation, although it was possible on the basis of visual inspec-
tion. On the basis of the recently developed neural networks 
of object detection,13,27 bounding boxes containing each 
structure can be detected from the whole brain MRI without 
utilizing FreeSurfer. The object detection network may be 
combined with the segmentation network of the present 

study to realize end-to-end, automated, and fasten segmenta-
tion for all subcortical structures.

Conclusion
In this study, we proposed a method that segments seven sub-
cortical structures based on MRI. The network devised for 
the proposed method input a local 3D bounding box for each 
structure and processed it via dilated convolutions in parallel. 
According to cross-dataset evaluations, the proposed method 
was found to be superior to currently used methods from the 
three viewpoints of generalization performance, accuracy, 
and robustness. It enables highly reliable analysis of subcor-
tical brain volume of individuals with psychiatric and neuro-
logical diseases.
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