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a b s t r a c t

Visual properties that primarily attract bottom-up attention are collectively referred to as saliency. In
this study, to understand the neural activity involved in top-down and bottom-up visual attention,
we aim to prepare pairs of natural and unnatural images with common saliency. For this purpose,
we propose an image transformation method based on deep neural networks that can generate new
images while maintaining the consistent feature map, in particular the saliency map. This is an ill-
posed problem because the transformation from an image to its corresponding feature map could
be many-to-one, and in our particular case, the various images would share the same saliency map.
Although stochastic image generation has the potential to solve such ill-posed problems, the most
existing methods focus on adding diversity of the overall style/touch information while maintaining
the naturalness of the generated images. To this end, we developed a new image transformation
method that incorporates higher-dimensional latent variables so that the generated images appear
unnatural with less context information but retain a high diversity of local image structures. Although
such high-dimensional latent spaces are prone to collapse, we proposed a new regularization based
on Kullback–Leibler divergence to avoid collapsing the latent distribution. We also conducted human
experiments using our newly prepared natural and corresponding unnatural images to measure overt
eye movements and functional magnetic resonance imaging, and found that those images induced
distinctive neural activities related to top-down and bottom-up attentional processing.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

One of the remaining enigmas in the mammalian visual sys-
tem is the mechanisms in dynamic control of its processing
resources; the animal visual system is equipped with an efficient
system to extract useful information from a tremendous amount
of visual information input to the retina, that is, visual atten-
tion. Elucidating visual attention mechanisms is also important
for developments of human harmonic systems; for example, the
detection of driver’s awareness/unawareness of pedestrians is
serious for assuring the security of semi-automatic mobile sys-
tems (Dollar, Wojek, Schiele, & Perona, 2011), and general object
detection with head-mounted cameras is an important issue for
enlarging the applicability of agile robots to a variety of industrial
scenes (Jiang et al., 2021; Weng et al., 2021). For awake animals,

∗ Correspondence to: 36-1 Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501
, Japan.

E-mail address: ishii@i.kyoto-u.ac.jp (S. Ishii).

there are presumably two streams of attentional processing. One
is bottom-up processing, which is assumed to process the char-
acteristic portions of images or image-series with high priority.
Saliency maps have been developed for comprehensively repre-
senting the image regions to attract mostly bottom-up attention
as heat maps (Harel, Koch, & Perona, 2006; Itti, Koch, & Niebur,
1998). The other is top-down processing, which is assumed to
process the contexts and scenes by checking them in light of
prior knowledge and past experiences of individuals. There is
a series of studies that discussed the relationship between the
saliency map and voluntary eye movements (Itti, 2005, 2006;
Veale, Hafed, & Yoshida, 2017; Yoshdia et al., 2010). Since the
two kinds of processing above are mixed in the awake animal’s
visual processing, however, it has been a long-term challenge
to dissociate them and then to examine them distinctively in
research on mammalian visual processing.

Keeping the above background in mind, the purpose of this
study is to develop an image transformation method for prepar-
ing a set of image pairs that have the same visual saliency map

https://doi.org/10.1016/j.neunet.2022.08.015
0893-6080/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).
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but are natural on one side and unnatural images with minor
context information on the other side. If the saliency map well
represents the bottom-up attention, the generated and unnatural
image would exhibit comparable or even better consistency with
the eye movements in an awake and overt environment, but have
less association with the top-down context. That is, we assume
the top-down attention would be reduced to a large extent when
we look at unnatural images with destroyed context information.
The validity of this assumption was examined by behavioral
experiments with human subjects. After checking the validity, we
performed human experiments with functional magnetic reso-
nance imaging (fMRI); the comparison between fMRI-based brain
activities when looking at natural and unnatural images provides
us with an insight into neural bases involved in top-down and
bottom-up attention, respectively.

Although some prior works proposed to estimate the saliency
map of a given natural image, based on deep learning tech-
niques (Kruthiventi, Ayush, & Babu, 2017; Pan et al., 2017), there
has been no study to propose an inverse transformation from a
saliency map to natural/unnatural images. Since the transforma-
tion from an image to its saliency map is many-to-one, due to the
lower dimensionality of the saliency map space, image genera-
tion constrained on a specific saliency map is a typical ill-posed
problem. This observation would make the generation of multiple
images that share the same saliency map seemingly easy, but
it is not so in practice, because generated images are prone to
lose their diversity due to mode collapse in general generative
processes, or too complicated ones due to the high-dimensional
artifacts usually introduced during the inverse process. Such gen-
erated images would not work for our purpose; we expect the
image transformation transforms from a natural image to an
unnatural one such that local structures therein are destroyed
to enable human observers not to understand the context of the
original images. To obtain such pairs, the diversity in terms of
local structures of images is of our focus.

To achieve diversity in the image generation, existing studies
introduced perturbations to the network, with stochastic masking
such as Dropouts (Isola, Zhu, Zhou, & Efros, 2017) and stochastic
sampling at the level of intermediate representations (Kingma
& Welling, 2013). Among those, BicycleGAN (Zhu et al., 2017)
successfully generated pairs of images with different styles, us-
ing stochastic sampling based on a combination of variational
autoencoder (VAE) (Kingma & Welling, 2013) and generative
adversarial network (GAN) (Goodfellow et al., 2014). The same
authors utilized a technique of latent regressor (LR) to realize
a diverse transformation between the image pair. Although this
method is suitable for image generation with different styles,
it could not be used for our purpose, because its skip connec-
tions (Ronneberger, Fischer, & Brox, 2015) worked for making
local structures consistent between the pair of images by preserv-
ing the spatially local image features. This is an advantage when
transforming styles or touches, which are mostly global features
of images, but is a disadvantage when generating unnatural im-
ages in which local structures such as local shapes or colors must
be collapsed to destroy context information.

In the present study, we developed a new image transfor-
mation method based on deep neural networks (DNNs), that
transforms a given natural image to an unnatural and decon-
structed image, while their saliency maps are kept very similar.
Considering possible applications to examining the human vi-
sual attentional system, we needed to emerge diversity in local
structures of generated images. To this end, we proposed a new
Kullback–Leibler (KL) divergence-based regularization to prevent
the latent distribution of relatively large degrees of freedom
(DOFs) from being collapsed. In the existing implementation of
the KL divergence-based regularizer, it was averaged over mul-
tiple DOFs. In our implementation, however, we introduced a

Fig. 1. Aim of the study. Our main objective is to develop a deep learning-based
image transformation method to generate a deconstructed image from a given
natural image, both with the consistent visual saliency map. In the upper panel,
an example input image (left) and the corresponding generated image (right)
are shown. In the lower, visual saliency maps of the images in the upper, each
estimated by fθ , are shown.

regularization term with high DOFs intact, which was effective
in diverse image generation.

Fig. 1 exemplifies our image transformation results. To demon-
strate the utility of the generated images by our deconstruction
method, we performed human behavioral experiments including
measurements of overt eye movements, to see if our method
could generate artificial images that were unnatural enough but
simultaneously associated with comparable eye movements.
Moreover, we performed non-invasive brain imaging experiments
with functional magnetic resonance imaging (fMRI), in which a
different set of subjects passively viewed the images and we
compared the brain activities during the natural and unnatural
(generated) image presentation. The experimental results sug-
gested that our DNN-based image transformation could be a new
tool to elucidate the distinctive networks in the human visual
system between bottom-up and top-down attention.

The major contributions of our study are as follows:

• A new concept of image transformation that transforms
some features and maintains others. In particular, the trans-
formed features are context and local structure, while the
maintained feature are saliency maps. To realize this idea,
a new loss function is introduced that encourages the im-
age generator (deconstructor) to output an image whose
saliency map is similar to that of the original image.

• Another methodological contribution is a device to enrich
the local variability in terms of color contrasts and shapes
by enlarging the latent space to a three-dimensional tensor.
This latent space expansion allows the generator to produce
a variety of fake images with different local colors and
shapes.

• The applicability of our new methodology was examined
in several experiments with human subjects. The behav-
ioral experiments suggested that the deconstructed images
evoked eye movements comparable to or even better than
the original natural images, but the context was not per-
ceived. The fMRI experiments suggested a possible dissoci-
ation of the functional basis between bottom-up and top-
down attention.

The remaining parts are organized as follows. In Section 2,
we introduce related works that are important for presenting our
method. In Section 3, we propose our method of deep learning-
based image deconstruction with maintained saliency map. Hu-
man experimental methods are also described. In Section 4, we
evaluate our deconstructed images in a quantitative manner. In
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addition, we show human behavioral experimental results, as
well as human brain imaging results. Section 5 is devoted to
conclusion of our work.

2. Preliminaries and related works

2.1. Saliency map

A saliency map is a heat map that visualizes the salient regions
in images or movies, such to attract mainly bottom-up attention.
There have been a number of studies to present the way to
construct saliency maps (Harel et al., 2006; Itti et al., 1998;
Pan et al., 2017). Among those, Itti and colleagues presented a
computational model to obtain a saliency map, in which low-
level image/movie features such as color, contrast, orientation,
and motion direction are integrated (Itti et al., 1998). The usage
of Gaussian pyramid with different spatial scales allowed their
method to extract locally salient regions whose feature values
are different from those of their surroundings. These basic oper-
ations correspond to the functions of simple cells that work as
first-order filters and complex cells that work as second-order
filters, which are assumed to consist of mammalian early visual
systems (Anzai, Ohzawa, & Freeman, 1999; Ohzawa & Freeman,
1986). Since the saliency map well reproduces eye gaze dis-
tribution (fixation map) of humans, it has been recognized as
representation of salient regions that attract eye gaze (Itti, 2005).
In this study, we used the Itti’s computation model registered
in the GBVS toolbox (Harel et al., 2006), which exhibited good
consistency with the fixation map (KL = 1.03), according to
MIT300 benchmark (Bylinskii et al., 0000).

2.2. SALICON and SalGAN

SALICON is a large-scale dataset containing pairs of natu-
ral images of various scenes and their corresponding saliency
maps annotated by humans (Jiang, Huang, Duan, & Zhao, 2015).
Each saliency map was estimated based on trajectories of cursors
operated by multiple human annotators registered in Amazon
Mechanical Turk. The dataset was designed for machine learning
competitions; it consisted of 10,000 pairs of training data, 5000
pairs of verification data, and 5000 natural images for testing
(with no saliency map).

SalGAN is a GAN-based estimation method of saliency maps
(Pan et al., 2017), which was trained using the SALICON dataset,
and showed comparable performance with those by other model-
based methods in the MIT300 benchmark (Bylinskii et al., 0000).

2.3. Stochastic image generation

Here, we introduce the existing approaches to diverse image
generation or transformation.

2.3.1. Pix2Pix
Pix2Pix is a well-known method for image-to-image transla-

tion; that is, an image could be generated from an input label
image (Isola et al., 2017). One typical application of Pix2Pix is
to generate a painted image from an input image that only in-
cludes the outline of the image. This paining problem is ill-posed,
because what color would be used for a texture surrounded by
outline is not unique. Pix2Pix used two techniques to solve such
an ill-posed image generation problem. One is to use Dropout to
generate diversity in the image generation, and the other is to
employ U-net-based generator to make the generated image to
well maintain the structures of the input label image, in which
multi-scale skip connections are effective.

2.3.2. Variational autoencoder
Variational autoencoder (VAE) is a stochastic generation model

that introduces latent space to the intermediate representation
(Kingma & Welling, 2013). It has an encoder–decoder architec-
ture, in which the encoder reduces dimensionality into an inter-
mediate representation that also includes a latent space, while
the decoder reconstructs the input to compensate for the stochas-
tic factor in the intermediate representation. To avoid excessive
randomness, VAE encourages the posterior of the latent variable
not to diverge from the standard normal distribution (with mean
0 and variance 1). This idea is good for stability in learning,
whereas the stochastic image generation by the decoder may
sometimes work harmfully for generating clear images.

2.3.3. Posterior collapse
A phenomenon called posterior collapse occurs especially

when the KL regularization term works more powerfully than the
primary objective like the minimization of reconstruction errors,
so that the whole optimization process falls into a local opti-
mum (He, Spokoyny, Neubig, & Berg-Kirkpatrick, 2019; Huang,
Tan, Lacoste, & Courville, 2018). In such a local optimum, the
posterior distribution of the latent variable p(z|x) becomes the
same as the prior distribution p(z), so that the latent variable z
works as just a random number to obey the standard normal dis-
tribution, regardless of the input x. This causes input information
to be neglected when the decoder attempts to reconstruct the
input. Because of this, balancing the regularization term and the
objective term has been a handcraft issue.

Moreover, in the conventional implementation, the KL regu-
larization term was averaged over the latent variables which may
have multiple degrees of freedom (DOFs) and over training sam-
ples in mini-batches (Kingma & Welling, 2013). Since this aver-
aged regularizer encourages the latent variables to take correlated
values with each other, the image generation/transformation may
lack diversity, leading to difficulty in decoder learning.

When the mean µ has a large variation dependent on the
input, and the variance σ2 is close to 0, in the latent space of
the intermediate representation, the reconstruction error in the
decoder would be small; in this extreme case, VAE just reduces
to autoencoder (AE). The KL regularization term can be seen to
work against this model reduction, and hence work to facilitate
learning under a good tuning of the balancing hyperparame-
ter (Bowman et al., 2015). Several studies have attempted to
avoid the issue of posterior collapse, by, for example, carefully
designing loss functions (Xu & Durrett, 2018), quantizing the
latent space (van den Oord, Vinyals, et al., 2017), and so on.

2.3.4. VAEGAN
VAEGAN is a combination of VAE and GAN, each of which

makes up for their respective weak points (Larsen, Sønderby,
Larochelle, & Winther, 2015). GAN (Goodfellow et al., 2014; Rad-
ford, Metz, & Chintala, 2015) generates relatively clean images
through indirect learning based on adversarial losses, in which a
pair of networks, a generator and a discriminator, compete with
each other, so that the latter works as the regularizer for the
former. However, GAN is prone to lose diversity due to mode
collapse and may suffer from instability due to the gradient
elimination. This defect can be eased by combining GAN with
VAE. On the other hand, blurring of generated images, which is a
major issue of VAE, can be eased by GAN.

2.3.5. BicycleGAN
BicycleGAN is an image transformation method in which pre-

transformed and post-transformed images are conditioned on
their individual label images. The architecture of BicycleGAN
consists of VAE, GAN, and LR (Latent Regressor) (Zhu et al., 2017).
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Fig. 2. Our architecture to generate deconstructed images with maintained saliency. It consists of three kinds of networks. The encoder network (red) is similar to
that in VAE. The map generator network (green) is an encoder–decoder network to transform from an input image x to an output saliency map, whose intermediate
representation is zθ . There are two generators (purple), one is to generate a reconstructed input image, Gφ , and the other is to generate a transformed image, Gψ .
The two purple modules, Gφ and Gψ , share their weights, i.e., they are the same. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

LR was introduced to maintain the bijection (one-to-one) rela-
tionship between two latent variables incorporated into a pair
of VAEs. The loss function for the LR part was added to the
loss functions of VAE and GAN. This combined loss function was
expected to work well for generating diverse images from a pair
of random numbers sampled in the dual latent space. BicycleGAN
used VAE and GAN to generate realistic images, while LR was also
incorporated to generate more diverse images. Consequently, this
method exhibited excellent image transformation performance
with good naturalness and diversity, whose balance-taking had
been thought as of a typical dilemma.

Although all the above methods have shown excellent perfor-
mance in the image-to-image transformation, they have mostly
focused on transformation of styles or touches, which are global
features over the whole image, whereas local image structures
like shapes or colors have been maintained. Such an image trans-
formation in the level of global features was realized by main-
taining the local features; for example, BicycleGAN used skip-
connections (Ronneberger et al., 2015) that transmit spatially
local features extracted by the lower-layer networks to higher-
layer networks. This technique was indeed effective in learning
the global structures of images, though they cause a lack in local
diversity in the generated images.

2.4. Techniques for improving image generation

We here describe a couple of techniques to improve the qual-
ity of image generation.

2.4.1. Feature matching
If there is a couple of networks, like in many image transfor-

mation methods, one simple technique to keep good correspon-
dence between the two networks is to minimize the difference in
the output between their corresponding intermediate layers (Sal-
imans et al., 2016). Here, the intermediate layers are expected
to represent image features. By measuring loss in the level of
image features, instead of that in the level of input/output pixels,
the image transformation or image discrimination can be robust
against positional deviation, so that the generated images are less
blurred.

2.4.2. Inception module
A conventional idea has been like: the deeper, the better,

in the fields of DNN-based image processing. However, there is
an opposite idea; that is, we can employ multiple and parallel
small-sized network modules, called inception modules, each
consisting of multiple convolution layers and a pooling layer, and
an integration over the outputs from those modules becomes the
whole-network output (Szegedy, Ioffe, Vanhoucke, & Alemi, 2017;
Szegedy, Vanhoucke, Ioffe, Shlens, & Wojna, 2016). This makes it
possible to enlarge the network effective size without increasing
its depth, thus expecting enlargement in the image generation
capacity while keeping efficiency in training the whole network.

3. Method

3.1. General learning scheme

Fig. 2 depicts the proposed architecture for image transforma-
tion. It consists of three major modules, saliency map generator,
image reconstructor, and image deconstructor, which in total
generate a reconstructed color image x̂ ∈ R3×H×W and a trans-
formed color image y ∈ R3×H×W , given an input color image x ∈

R3×H×W , where we expect x̂ and y to have similar saliency maps.
H and W denote the height and width of the input, reconstructed,
and transformed images. This architecture enables us to obtain a
diversely deconstructed but still clear image which has a similar
saliency map to that of the input image.

The saliency map generator fθ is a module that estimates
its visual saliency map based on the input image x and is also
used to estimate the visual saliency map of the stochastically
generated image y. Although there is a number of definitions
of visual saliency map, we used the one presented by Itti and
colleagues (Itti et al., 1998), because of its general recognition in
the field of computational neuroscience. Fig. 3 shows its encoder–
decoder architecture, and the whole network was trained by min-
imization of adversarial loss and feature matching loss, Eq. (1).

The middle layer representation zθ ∈ RC×H/22×W/22 of the
saliency map generator fθ was expected to include essential fea-
tures for generating saliency maps, and then used for augmenting
the inputs to the generator modules, Gφ and Gψ . The size of zθ
was comparable to that of the latent variable in the image recon-
structor, i.e., zφ ∈ R2C×H/22×W/22 , to allow it to have information
sufficient for reconstructing the input image. C is the number of
channels (in our particular implementation, C = 8).

227

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



K. Fujimoto, K. Hayashi, R. Katayama et al. Neural Networks 155 (2022) 224–241

Fig. 3. Saliency map generator. This module outputs a visual saliency map,
given an input image. It has been pre-trained based on the supervised dataset,
consisting of pairs of a natural image taken from the SALICON dataset and the
corresponding saliency map obtained by the method by Itti and colleagues (Itti
et al., 1998). Note that the sole encoder part was used in the network in Fig. 2
for generating deconstructed images.

3.2. Training details

Here, we describe the loss functions used for training the three
modules; saliency map generator fθ = {Eθ ,Gθ }, image reconstruc-
tor fφ = {Eφ,Gφ}, and image deconstructor fψ = {Gψ }. Note that
the image generator is represented by a sole decoder Gψ , which
is actually the same as the decoder of the image reconstructor Gφ .

3.2.1. Saliency map generator
This module transforms an input image into its saliency map,

and is trained to minimize the following loss function:

Lθ = LFM
θ + λAdvθ LAdv

θ , (1)

where λAdvθ is a pre-determined constant, a hyperparameter, to
balance the two loss terms. They are defined by

LFM
θ (Eθ ,Gθ ,Dθ ) = E

[∑
l

∥Dl
θ (x, t) − Dl

θ

(
x, xmap

)
∥2

]
, (2)

LAdv
θ (Eθ ,Gθ ,Dθ ) = E

[
− log

(
Dθ

(
x, xmap

))]
, (3)

where x and t are a natural image taken from SALICON and its
corresponding saliency map calculated by the Itti’s method (Itti
et al., 1998), and xmap ∈ R1×H×W is the output of the saliency map
generator for x, i.e., xmap = fθ (x). Dθ

(
x, xmap

)
denotes the output

of the discriminator, which attempts to discriminate between a
real pair (x and t), whose ideal output is one, and a fake pair
(x and xmap), whose ideal output is zero. Dl

θ denotes the feature
vector of the lth layer of the discriminator Dθ . Note that the
intermediate representation, zθ , of fθ was used as inputs for fφ
and fψ .

3.2.2. Image reconstructor
The loss function of the image reconstructor module fφ is given

by

Lφ = LFM
φ + λKLLKL

φ + λAdvφ LAdv
φ , (4)

which consists of three terms, LFM
φ , LKL

φ and LAdv
φ . λKL and λAdvφ are

predetermined constants (hyperparameters).
The first term, LFM

φ , is the feature matching loss, given by

LFM
φ (Eφ,Gφ,Dφ) = E

[∑
l

∥Dl
φ(x) − Dl

φ

(
x̂
)
∥2

]
, (5)

where Dl
φ denotes the feature vector of the lth layer of the

discriminator Dφ , and x̂ is the output of the image reconstructor
when x is input, i.e., fφ (x, zθ ). Here, the feature matching loss is
used as a reconstruction error between the input image x and the
reconstructed image x̂.

The second term, LKL
φ , is a regularization term for the latent

variable, given below, which is different from the conventional
KL regularization term.

LKL
φ (Eφ) = DKL

(
N (E[µi], V[µi] + E[σ2

i ]) ∥ N (0, I)
)

+DKL
(
N (E[σ2

i ], V[µi]) ∥ N (α, (1 − α)I)
)
. (6)

Here, N (0, I) denotes a standard normal distribution. This stan-
dard normal prior has been used in many existing VAE-based
image transformation (Zhu et al., 2017). Its benefit mainly comes
from the calculation efficiency; the constraint loss in terms of the
KL-divergence can be calculated in a closed form based on the
mean and variance that are outputs of the VAE encoder. We can
use a different distribution as a latent prior. In the case of general
prior, however, it would be difficult to perform backpropagation-
based training of the VAE encoder, because we need to evaluate
the difference in the higher order statistics between the prior and
the empirical distribution represented by the VAE encoder. To
avoid such a difficulty, we simply introduced the standard normal
prior to the VAE latent space. See Section 3.4 for more details.

The third term, LAdv
φ , is the adversarial loss, given by

LAdv
φ (Eφ,Gφ,Dφ) = E

[
− log

(
Dφ

(
x̂
))]
, (7)

where Dφ
(
x̂
)
is the discriminator output when the reconstructed

image x̂ is the input. Here, the ideal output of Dφ for an input x̂
is zero. This loss was effective in generating clearer images.

3.2.3. Image deconstructor
Since there is no ground truth for a deconstructed image,

we trained the image deconstructor module, the sole generator,
indirectly as to minimize the following loss function:

Lψ = λlatentLlatent
ψ + λmapLmap

ψ + λAdvψ LAdv
ψ , (8)

where λlatent, λmap and λAdvψ are the predetermined constants (hy-
perparameters). Note that λlatent is not necessarily one, because
we need to balance Lφ (Eq. (4)) and Lψ (Eq. (8)) when training
the same generator, Gφ = Gψ .

The first term, Llatent
ψ , is the latent reconstruction error, given

by

Llatent
ψ (Eφ,Gψ ) = E

[
∥ε − Eφ (y) ∥2

]
, (9)

where Eφ (y) is the output of the encoder of the image reconstruc-
tor for y, which is in turn the output of the image deconstructor
Gψ (ε, zθ ). This term encourages the consistency of the latent
variable ε when going through a network consisting of the gener-
ator Gψ and Eφ , but alleviates mode collapse and helps a diversity
of the image deconstructor. Although this loss function is defined
by Eφ , only the parameters of the image deconstructor part Gψ
were updated based on Eq. (9), as in BicycleGAN.

The second term, Lmap
ψ , is the loss between the saliency map

for the input image x and that for the stochastically generated
image y, measured in terms of binary cross-entropy (BCE):

Lmap
ψ (Gψ , Eθ ,Gθ ) = E[−{fθ (x) log (fθ (y))

+ (1 − fθ (x)) log(1 − fθ (y))}]. (10)

The third term, LAdv
ψ , is the adversarial loss, given by

LAdv
ψ (Gψ ,Dψ ) = E

[
− log

(
Dψ (y)

)]
, (11)

where Dψ (y) is the output of the discriminator Dψ for the input
y; because y is a fake image, its ideal output would be zero.
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3.2.4. Discriminators
In addition to the three major modules, we employed three

discriminators for improving three generated images, xmap, x̂ and
y for a given input image x. The individual discriminator was
trained to discriminate if the input was a real image (or image
pair) or a fake image (or image pair).

LAdv
θ = E [log (Dθ (x, t))] + E

[
log

(
1 − Dθ

(
x, xmap

))]
, (12)

LAdv
φ = E

[
log

(
Dφ (x)

)]
+ E

[
log

(
1 − Dφ

(
x̂
))]
, (13)

LAdv
ψ = E

[
log

(
Dψ (x)

)]
+ E

[
log

(
1 − Dψ (y)

)]
. (14)

As in BicycleGAN, the discriminators Dφ and Dψ are independent,
and not conditioned by the label image (here, t).

3.3. Latent matrix

In BicycleGAN, the latent variables were vectors of relatively
small dimensionalities, so that they could include little positional
information. This caused that latent variables tended to carry
global information of the images like styles and touches, and
then, the output images likely shared local information like con-
texts and local structures with the input images. As a result,
it was difficult for generated images to have a wide variety, in
which local shapes/colors and then context information had been
largely changed. In this study, we made it easy for the latent
variables to have positional information, changing the latent vari-
ables from vectors to feature maps of three-dimensional matrix
(tensor), each of which is called a latent matrix. In addition, we
did not use a fully-connected layer to convert a latent matrix
into a one-dimensional vector; in the existing VAE learning, a
fully-connected layer to convert a latent vector into another low-
dimensional vector was employed (Zhu et al., 2017) and then
positional information of the latent vector was diminished.

Since it is difficult to quantitatively evaluate unnaturalness of
generated images, on the other hand, it is also difficult to set the
loss function for the latent matrix. We then assumed that images
with large complexity in its local shapes and colors are of high
unnaturalness.

3.4. Processing for the minibatch of KL regularization terms

The increase in the component number of the loss function
makes it difficult to balance by means of heuristic tuning of
hyperparameters, often leading to the phenomenon of posterior
collapse with a relatively strong KL regularization.

Let the latent variable obey a D-dimensional normal distribu-
tion:

N (µi, σ2
i I) i = 1, 2, . . . , N (15)

which is assumed to be independent among samples in a mini-
batch. Here, N is the number of samples in this minibatch (in our
implementation, N = 10), while µi and σ2

i are the mean and
variance of the latent variable, respectively, for the ith sample.
Note here that the mean and variance of each latent variable are
assumed to be random variables conditioned on the input image,
although they are in practice deterministic variables and outputs
of the encoder neural network.

The conventional KL regularization term is given by

E
[
DKL(N (µi, σ2

i I) ∥ N (0, I))
]
, (16)

where E denotes the expectation over the empirical distribution
in the minibatch.

It is obvious that the regularization based on Eq. (16) en-
courages all the latent variables in the minibatch to approach
individually to the standard normal distribution; with poor hy-
perparameter tuning, it causes posterior collapse, leading to loss

of information associated with the input image. To avoid this, we
developed a new regularizer by considering the variance of the la-
tent variables, according to the reparameterization trick (Kingma
& Welling, 2013):

V
[
N (µi, σ2

i I)
]

= E
[
(µi + εi · σ i)2

]
−

(
E [(µi + εi · σ i)]

)2
= V [µi] + E

[
σ2
i

]
, (17)

where εi is a D-dimensional random number sampled from the
D-dimensional standard normal distribution, while E and V de-
note the expectation and variance over the empirical distribution
of samples in the minibatch. Note that the left-hand side just
denotes the empirical variance of the latent variables.

Since we have assumed that the latent variables obey nor-
mal distributions with different means and different variables,
their marginal distribution over the minibatch becomes an N-
component normal (Gaussian) mixture distribution. Under the
simplification that this Gaussian mixture distribution can be ap-
proximated by a single-mode normal distribution, the KL regular-
ization term becomes:

DKL
(
N (E[µi], V[µi] + E[σ2

i ]) ∥ N (0, I)
)
. (18)

On the other hand, a too strong regularization based on Eq. (18)
results in V[µi] → 0, E[σ2

i ] → 1 or V[µi] → 1, E[σ2
i ] → 0.

To avoid such posterior collapses, we introduced a new regu-
larization term, given by Eq. (19) with a pre-determined hyper-
parameter 0 < α < 1, which encourages the individual latent
distributions not to overlap with each other.

Although the second term in Eq. (19) is just a heuristic, thanks
to this term, there is no need to take a careful balance between
the reconstruction error and the KL regularization term. As a con-
sequence, the new regularization term has significantly reduced
the time and effort for tuning the hyperparameter.

DKL
(
N (E[µi], V[µi] + E[σ2

i ]) ∥ N (0, I)
)

+ DKL
(
N (E[σ2

i ], V[µi]) ∥ N (α, (1 − α)I)
)
. (19)

In comparison to the well-established ridge (L2) regulariza-
tion, we found the new regularization, Eq. (19), exhibited
increased diversity and improved sharpness of the generated
images.

3.5. Implementation details

The inception module was used for each layer of the networks.
We used PatchGAN (Isola et al., 2017) for the discriminators Dφ
and Dψ , and also used a technique called minibatch standard
deviation. The minibatch standard deviation (Karras, Aila, Laine,
& Lehtinen, 2017) is a technique to introduce perturbations to the
last layer of the discriminators, based on the standard deviation
over the minibatch. Without this perturbation, discriminators can
easily identify fake inputs, because the diversity of fake images
is often collapsed leading to peaky distribution that is quite
different from the real image distribution.

The saliency map generator fθ was pre-trained using the su-
pervised dataset of pairs of a natural image taken from the
SALICON dataset and the corresponding saliency map obtained by
the Itti’s method (Itti et al., 1998), and used with the fixed weights
when training the entire architecture for image deconstruction.
All images, including those used for pretraining of the saliency
map generator fθ , were downscaled to the half in height and
width, i.e., to the size of 96 × 128 (pixels). When training the
saliency map generator, we used saliency maps of 96 × 128
(pixels) for supervised outputs; they were obtained by applying a
downscaling after generating higher resolution saliency maps of
192 × 256 (pixels) for the original high resolution natural images
according to the Itti’s method (Itti et al., 1998). Each building
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block was composed of 3 inception modules and 2 pooling layers;
for example, it had five modules: the first inception module, the
first up-sampling (down-sampling) block, the second inception
module, the second up-sampling (down-sampling) block, and the
third inception module. The last layer of each encoder reduced
the dimensionality from 256 to 16, so the size of the latent
variables zφ was set to [N, 16, 24, 32]. Here, N is the size of
the minibatch (N = 10), and the size of the intermediate rep-
resentation zθ of the saliency map generator fθ was set to 8.
Further details of the network architecture are presented in the
Appendix A.

We set the hyperparameter values to λAdvθ = 0.1, λKLφ = 10,
λAdvφ = 0.1, λlatentψ = 0.1, λmap

ψ = 0.001 and λAdvψ = 0.01. Since
GAN sometimes causes loss in diversity due to the mode collapse,
we set the hyperparameters so that the discriminator becomes
slightly stronger than the generator. The minibatch size was set
to 10 and the learning rate to 0.0003, and Adam (Kingma & Ba,
2014) was used to optimize the network parameters.

3.6. Human experiments

To demonstrate the utility of our image transformation-based
methodology for investigating the neural mechanisms involved
in top-down and bottom-up visual attentions in awake ani-
mals/humans, we conducted human behavioral and non-invasive
brain imaging experiments.

All human experiments described in this section were done
in accordance with the Declaration of Helsinki (World Medi-
cal Association, 1964) and approved by the two ethics commit-
tees of Graduate School of Informatics, Kyoto University (Kyoto,
Japan) and Advanced Telecommunications Research Institute In-
ternational (ATR) (Kyoto, Japan). The fMRI experiment was also
approved by the safety committee of ATR. All subjects were vol-
unteers, had normal or corrected-to-normal vision and provided
written informed consent to participate in the experiment.

First, we conducted a human behavioral experiment of a vi-
sual discrimination task to examine the degree of naturalness
of the original natural images and the artificially generated im-
ages. We obtained 10,000 pairs of natural images from the SALI-
CON database and their corresponding transformed images with
saliency map maintained, and then selected the top 400 image
pairs with the smallest mean squared error (MSE) between the
original natural image x and its reconstructed image x̂. These
400 pairs, 800 images in total, were used as experimental stim-
uli. Eight subjects observed each image on a computer display
for three seconds and responded by pressing a computer key
if they understood the context of the displayed image. Each
subject performed two sessions consisting of 200 natural and
200 transformed/generated images. Any pair of the generated
and the corresponding natural image was not presented in the
same session, and the order of the images was randomized but
common across the eight subjects.

Next, in a separate behavioral experiment, eye movements
were measured while another set of human subjects viewed
natural and generated images. Thirteen subjects (eight females,
ages 20∼29), who had no ocular (color) dysfunctions and normal
or corrected-to-normal sight (more than 0.5 vision) were par-
ticipated. Each still image was presented for 4 s on a 23.6-inch
monitor (Iiyama ProLite B2409HDS, Mouse Computer Co. Ltd.,
Tokyo, Japan), and the subjects watched it overtly at a distance of
0.6 m from the display in a dark room. A chin rest was used and
the visual angle of each image was 32.5◦. Eye movements were
measured with 120 Hz by an LED-based eye tracker (Tobii Pro X3-
120, Tobii Technology, Tokyo, Japan). Each subject participated
in eight sessions, each of which consisted of 12 natural images,
12 generated images, 12 shuffled images, and 12 shuffled images

whose spatial frequency amplitudes were maintained from those
of the original natural images (hereafter referred to as ‘amp’
images). Each shuffled image was created by pixel-wise shuffling
from the original natural image, but the color of each pixel was
not changed, and each amp image was obtained by applying
additional constraints so that the image was similarly shuffled but
the amplitude of each spatial frequency band was maintained at
that of the original natural image (Fourier transform was applied
for normalization: the maximum and minimum amplitudes were
0 and 1, respectively). The order of presentation of the four cat-
egories of images was random but common across the subjects.
When evaluating how well the saliency map of a specific image
represents its associated eye movements, we first obtained the
fixation density map (FDM) by applying kernel density estimation
using non-isotropic Gaussian kernels to the histogram of eye gaze
points of 13 subjects as they viewed the image, and then took the
KL divergence between the FDM and the normalized saliency map
(corresponding to a probabilistic density map).

To further demonstrate the utility of our image deconstruction
method, a functional magnetic resonance imaging (fMRI) exper-
iment was conducted to measure brain activity while subjects
viewed the four categories of still images. As the image stimuli,
we selected 96 image pairs from the 400 image pairs used in
the first behavioral experiment, which had the smallest mean
squared error (MSE) between the original natural image x and its
reconstructed image x̂. Five healthy subjects (four females, ages
21 ∼ 48) participated in the experiment. At the beginning of
each trial, a fixation cross was displayed for 2–4 s, followed by
one of four different visual stimuli (natural, generated, shuffled,
or amp) flashing at 2.5 Hz for 4 s Each subject performed 8
sessions, each session consisting of 12 natural, 12 generated, 12
shuffled, and 12 amp image trials and 4 test trials. The order of
trials was random but common across the five subjects. The test
trials were introduced to ensure that the subjects were engaged
in the experiment; a natural image with an additional red cross
was presented and subjects were instructed to press a button.
Results showed that only one subject failed to respond to the test
image twice (2/32, error rate: 6.3%), while the other four subjects
responded to the test image 100% correctly.

Neuroimaging data was acquired with a 3T Siemens Prisma
scanner (Siemens Healthcare GmbH, Erlangen, Germany) with
the standard 64 channel phased array head coil. Whole-brain
functional images were collected with a multiband echo EPI se-
quence (TR = 1000 ms, TE = 30 ms, flip angle = 50, field of
view = 100 mm), and 66 slices (voxel size 2× 2× 2.5 mm) were
acquired per volume. High resolution T1-weighted structural im-
ages (TR = 2250 ms, TE = 3.06 ms, voxel size 1×1×1 mm) using
standard MPRAGE sequence were also obtained.

All imaging analyses were conducted using SPM12 (Welcome
Department of Cognitive Neurology, UCL, London, UK) in MATLAB
(MathWorks Inc., Natick, USA). For preprocessing, all functional
images were realigned and resliced to the reference functional
volume, coregistered to the individual high-resolution anatomical
image, spatially normalized to the standard East Asian Brain
template with a resample voxel size of 2×2×2 mm, and spatially
smoothed with a Gaussian kernel filter (FWHM, 8 mm). After
preprocessing, we conducted statistical imaging analysis using a
generalized linear model (GLM).

We examined BOLD signals when the subjects were observing
the natural and three kinds of unnatural images using a boxcar
regressor for each condition, aligned to the onsets of the image
presentation trials with 4 s. duration. Although the unnatural
condition included the generated, shuffled, and shuffled with the
maintained spatial frequency amplitude (amp) images, we inte-
grated the last two classes, because there was no characteristic
difference in evoked fMRI activities between the two classes. Each
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Fig. 4. Images generated by the proposed method. The left and right panels are for different input images; images used for training the image deconstructor (left)
and those not used for the training (right). On each row, the images are as follows: the input natural image x, the reconstructed image x̂, the deconstructed image
y which is the result of the transformation to an unnatural image while maintaining the visual saliency, the saliency map of the input image xmap , and the saliency
map of the deconstructed image ymap , from the left column to the right column.

Fig. 5. Diversity in the deconstructed image. Even when the same input was provided to the trained network (the left panel, a pair of a natural image and its
saliency map), it could generate a variety of deconstructed images (the right panel, they well maintained the input saliency map).

boxcar function was then convolved with the canonical hemo-
dynamic response function and entered as an orthogonalized re-
gressor into a standard generalized linear convolution model. The
six motion parameters produced during realignment were also
used as regressors in the imaging analysis to account for residual
effects of scan-to-scan head motions. Due to the small sample
size, we applied a multi-subject conjunction analysis (FWE, p <
0.05) to localize the brain voxels that were distinctively activated,
commonly over the subjects, during the observations between the
natural, generated, and the other (shuffled + amp) images.

4. Results

4.1. Quality of the generated images

Fig. 4 presents images generated by the proposed method. The
reconstructed images x̂ in the second column well reconstructed
the input image x overall, while some details were distorted. In
the deconstructed images y in the third column, on the other
hand, local shapes and local colors in the input images were well
collapsed, while keeping their saliency maps ymap in the fifth
column similar to the original ones xmap shown in the fourth
column. These observations were consistent regardless of the
input image being in the training data or in the validation data.

Fig. 5 demonstrates the diversity in the deconstructed images
produced by our method. Since the latent distribution is close
to the standard normal distribution, a variety of deconstructed
images could have been obtained by the latent variable with
its sufficient stochasticity. The global arrangement of the objects
agreed with that of the input image, whereas the local structures

Table 1
Cosine similarity (CS) between the saliency map predicted by our saliency map
generator (SMG) and those obtained by the Itti’s method. We examined the
Itti’s saliency map with two different spatial resolutions; one is of high spatial
resolution of 192 × 256, and the other is low spatial resolution of 96 × 128.
We used 5000 natural images registered in the validation dataset in SALICON.
Since this matrix of CS is symmetric and the diagonal elements should be the
unity, we signified unnecessary entries by the mark –.

SMG Itti(192 × 256) Itti(96 × 128)

SMG – 0.960 ± 0.019 0.898 ± 0.050
Itti(192 × 256) – – 0.921 ± 0.042
Itti(96 × 128) – – –

and colors of the deconstructed images were fairly distant from
those of the input image, which was preferable for our objective.

The local colors were blurred and cluttered. This would have
occurred because of the relatively large DOFs of the latent space
we used. Since the mapping from the original colored object
space to the color-based saliency space is many-to-one, there
was an innumerable number of possible local color assignments
to produce the same color-based saliency map. This character is
also preferable for us because the object color is one of the most
informative features for understanding the context of the whole
image.

Because the performance of our image deconstructor depends
on that of the saliency map generator (SMG), generalization ca-
pability of the SMG not only for natural images but also for gen-
erated (deconstructed) images was examined. Table 1 shows the
results. Although the cosine similarity (CS) between the saliency
map predicted by our SMG and that by the Itti’s method with the
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Fig. 6. Generated images after applying ablations to the proposed method. Input images (left-most panel), generated images by our proposed method (‘ours’,
second-left panel), our method but with the conventional KL regularization term (Eq. (19)) (‘conventional KL term’, second-right panel), and our method but trained
without the map loss function (Eq. (10)) (‘without Lmap

ψ ’, right-most panel).

Table 2
Fréche Inception Distance (FID) and Cosine Similarity (CS) between saliency
maps. Each FID score represents the one over 5000 test images. Note that those
test images were not used for training each of the three image transforma-
tion/generation methods. In the case of the CS score, the mean and standard
deviation (SD) over 5000 test images are shown. Since the FID score is given for
each method, there is no SD shown. The results for a lower image resolution of
48 × 64 are also shown. In the lower spatial resolution case, our method’s CS
was significantly improved over those of its ablated ones, while in the higher
spatial resolution case of 96 × 128, its improvement over that without the map
loss function was incremental.
Model FID CS

48 × 64 96 × 128 48 × 64 96 × 128

Ours 269.16 322.95 0.931 ± 0.020 0.908 ± 0.029
Conventional KL term 125.46 176.00 0.968 ± 0.012 0.950 ± 0.019
Without Lmap

ψ 264.19 319.11 0.913 ± 0.026 0.903 ± 0.030

low resolution of 96 × 128 (pixels) was slightly lower, the general
concordance between the saliency map predicted by our SMG and
that by the Itti’s method was satisfactorily high, suggesting the
reliable generalization of the SMG. The relatively low CS between
the SMG-based saliency map and that of the Itti’s with the low
resolution occurred, possibly because of the underlying resolution
discrepancy between the two saliency maps. Actually, the size
of the SMG output was 96 × 128, while the Itti’s low-resolution
saliency map was obtained by downscaling after getting a high-
resolution saliency map by inputting a high-resolution natural
image. Note that we used images and saliency maps of the con-
sistent resolution of 96 × 128 (pixels) in this study; this was due
to the restriction of the computer resources.

To evaluate the efficiency of our method, we measured the
computational time required for the image deconstructor to learn
a single input image in terms of FLOPs (number of floating-point
operations). In our case of the input image size of 96 × 126, the
saliency map generator, encoder, decoder and the discriminator,
required 8.4 GFLOPs, 3.85 GFLOPs, 4.60 GFLOPs, and 0.97 GFLOPs,
respectively. When we used NVIDIA DGX A100 (40 GB), it took
approximately 8 h for learning with 30 epochs and approxi-
mately 5 mins to transform 10,000 natural images by the trained
network.

There are two important components in our proposed method;
one is the newly presented KL regularization term LKL

φ (Eq. (19),
conventional methods used Eq. (16)), and the other is the map
loss function Lmap

ψ (Eq. (10)) used to keep the saliency to be main-
tained in the generated image. Here, we performed an ablation
study to examine how well the two components above worked.

Fig. 6 displays the generated images by our proposed method,
our method but with the conventional KL regularization term,

and our method but trained without the map loss function. When
we used the conventional KL regularization (Eq. (16)) instead of
our newly developed KL regularization (Eq. (19)), the generated
images y became similar to the reconstructed ones x̂, probably
because the image deconstructor emphasized on the encoded
features of the input images, zθ , much more on the stochastic
features z . This is a typical example of posterior collapse; the reg-
ularizer was too strong to generate diverse images. If we remove
the map loss function (Eq. (10)) from the loss function of the
image deconstructor (Eq. (8)), the generated images were fairly
diverse and unnatural, but their saliency maps were a little apart
from those of the input images (Fig. 6 (right-most)). In contrast
to those, our proposed method generated diverse and unnatural
images, whereas their saliency maps were consistent with those
of the input images (Fig. 6 (second-left)). Such favorable charac-
ters were owing to the newly developed KL regularization term,
which was also effective in avoiding local optima in the training
of the image deconstructor, and the map loss to keep the saliency
map not to be much changed.

These visual inspections were further supported in a quanti-
fied manner. Table 2 shows the Fréche Inception Distance (FID),
which has been used for evaluating the naturalness of the gen-
erated images in the field of image transformation/generation
(Heusel, Ramsauer, Unterthiner, Nessler, & Hochreiter, 2017),
and Cosine Similarity (CS) of a pair of saliency maps between
the input image and the deconstructed image. A low (high)
FID score suggests the naturalness (unnaturalness) of the trans-
formed/generated images in terms of the distribution difference
from the set of input images. A low (high) CS score suggests that
the saliency map of the input image xmap and the one of the
transformed/generated image ymap are quite different (similar).
Our image deconstructor incorporated several techniques devel-
oped in the field of natural image transformation/recognition,
such as feature matching, inception module, PatchGAN, and mini-
batch standard deviation. Further ablation study supported their
effectiveness in generating unnatural images with high variability
(Appendix D).

To further examine the image deconstruction performance of
our method, we compared our method with a couple of exist-
ing image transformation methods, Pix2Pix [1] and AdaIN [2].
Although AdaIN is an image style transformation method, and
hence cannot deal in principle with ill-conditioned problem like
our image deconstruction, we examined a modified version of
AdaIN by attaching an additional loss function to facilitate the
maintenance of the saliency map; this additional loss is given as
Lmap
ψ , being the same as the one used in our method.
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Fig. 7. Images generated by a couple of existing methods. These results show when testing the Pix2Pix (left panels) and AdaIN (right panels) methods after trained
with the same image dataset as in our image deconstruction method. In the left panel, an original natural image, an image generated by Pix2Pix, the saliency map
of the original image, and the saliency map of the generated image, are shown from the left to the right on each column. In the right panel, a natural, content
image, a natural style image, an image generated by AdaIN, the saliency map of the input content image, and the saliency map of the generated image, are shown
from the left to the right on each column.

Table 3
Cosine Similarity (CS) between the saliency map of an input natural image
and that of a generated image. This table shows the saliency map consistency
between the input image (or the content image in the case of AdaIN) and the
output image.
Model CS

Ours 0.908 ± 0.029
Pix2Pix 0.911 ± 0.028
AdaIN 0.890 ± 0.037

We trained Pix2Pix to transform an input saliency map to an
output natural image, based on a training dataset of pairs of nat-
ural images (in SALICON) and the corresponding saliency maps;
the latter was obtained according to the Itti’s method. Fig. 7(left)
shows the artificial images generated by Pix2Pix, which were
found to be likely burred but still natural-like images that cor-
responded to the input saliency maps. The generator in Pix2Pix
was of the U-net architecture with multi-resolution skip connec-
tions, while the image generation process from a saliency map
to an artificial image would not have necessarily required such
a shape-reserving transformation. Actually, the images generated
by Pix2Pix maintained the global/local structures from those of
the original natural images; this was different from what we
expected.

In our implementation of AdaIN, we chose a couple of natural
images randomly from the natural image set (i.e., SALICON), and
set either one as a content image and the other as a style image.
The objective of the AdaIN training is to transform the content
image into the one of the style image-like style. The images gen-
erated by AdaIN maintained the global structures of the content
images, but their styles looked similar to those of the style images
(Fig. 7(right)).

Table 3 shows the Cosine Similarity (CS) between the saliency
map of the input (in the case of Pix2Pix) or the content image
(in the case of AdaIN), and that of the generated image (in
both cases). We see that the saliency map of the Pix2Pix-based
generated image was more similar to the input saliency map than
that by our method; this was natural, because the objective of

the Pix2Pix training was to perform the inverse process of the
generation of saliency maps from natural images. However, the
generated image by Pix2Pix was much similar to the original
natural image, which was apart from our purpose. On the other
hand, the saliency map of the AdaIN-based generated image less
maintained than that by our method, though the AdaIN and our
method used the same loss function to maintain the saliency map.

Appendix E describes further details of the implementations
of Pix2Pix and AdaIN used here.

These results suggested that our proposed method was effec-
tive in generating diverse deconstructed/unnatural images while
keeping their saliency maps similar to those of the corresponding
input images.

4.2. Behavioral experiment results

In the visual discrimination task, each subject was asked to
answer whether the presented image was natural or not in its
context. Fig. 8 shows the results of the visual discrimination task.
The fairly high accuracy for the 400 image pairs (97.9 ± 5.3%,
SD is over the eight subjects) suggests that the original images
taken from SALICON was deemed natural enough, whereas our
generated images were deemed unnatural enough. Fig. 9 shows
examples of generated images with a high accuracy rate (judged
to be unnatural) in the behavioral experiment.

Next, we measured eye movements during thirteen human
subjects were looking at natural, generated, shuffled, and shuf-
fled but maintained spatial frequency amplitudes (amp) images.
Fig. 10 shows the KL divergence, averaged over the 13 sub-
jects, between the FDMs and the saliency maps. As there was
no characteristic difference in eye movements between for the
shuffled and for the amp images, they were merged together.
The similarity between the FDM and the Itti’s saliency map was
highest when the generated images were presented, which was
significantly better than when looking at natural images. We con-
sider that this difference may be due to the fact that in unnatural
situations where the generated images are presented, the eye
gaze is mainly directed to bottom-up attentive regions in the
images that match the Itti’s saliency map well, whereas in natural
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Fig. 8. Histogram of accuracy for 400 image pairs consisting of natural and
generated images. If each subject answered natural for the original image taken
from SALICON database or unnatural for the generated image, the answer was
considered correct, otherwise incorrect. In the actual experiment, subjects were
asked whether they could understand the context of each image shown on the
computer display. The horizontal axis is the rate of correct answers of the eight
subjects (accuracy rate) and the vertical axis is the number of images for which
the accuracy rate (or correct response rate) was the value on the horizontal axis
(blue: original natural images, orange: generated images). Note that the values
on the horizontal axis are discrete: 1/8, 2/8, 3/8, 4/8, 5/8, 6/8, 7/8 and 8/8.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

situations the eye gaze is also attracted to top-down attentional
regions that are not sufficiently represented by the Itti’s saliency
map. We also found that the FDMs when viewing shuffled images
were closer to the saliency maps than when viewing natural
images. This is because the saliency map is uniform in shuffled
images, and the FDM is distributed around the center of the image
because, by default, subjects tended to gaze near the image center
when presented images without obvious saliency. In fact, the KL
distance to the FDMs with shuffled images became the smallest
with a single-mode Gaussian density centered on the image’s
center; in this case, the Gaussian density was estimated based on
all the FDMs of the four image categories.

4.3. fMRI analysis results

We performed differential analysis of brain activities when the
subjects observed the natural images and the images generated
by our image deconstructor (Fig. 11). When observing the natu-
ral images, bilateral extrastriate visual area (BA7/19/37) showed
significantly higher activities, but not the primary visual cortex

(Fig. 11(a)). In contrast, bilateral primary visual cortices (BA17/18)
and bilateral inferior parietal lobules (BA39/40) showed greater
activities when viewing generated images (Fig. 11(b)).

We also compared the brain activities while viewing the nat-
ural, and the shuffled and amp images (images with preserved
spatial frequency amplitudes). The latter two kinds of images are
as unnatural as the generated images, but do not have the same
saliency maps as the original natural images. The results of the
differential analysis showed no prominent differences between
natural vs. generated and natural vs. shuffled (+ amp) (Fig. 12),
suggesting that the contextual information was collapsed in the
generated images as well as in the shuffled and amp images.

In addition, brain activity was compared while the subjects
were observing the generated and the shuffled/amp images
(Fig. 13). Note that they shared the same color histogram. When
the subjects observed the generated images, bilateral extrastriate
cortices (BA18/19) showed significantly higher activation than
when they observed the shuffled/amp images.

5. Discussions

5.1. Limitation in the methodology

The diversity of the generated deconstructed images was due
to the distribution of the latent variable. To this end, we applied
a regularization term to facilitate the distribution of all the latent
variables to approach the standard normal distribution. When
we examined the latent distribution, we found it had larger
kurtosis than that of normal distribution, while its expectation
and variance were close to 0 and 1, respectively. This has arisen
because we encouraged the latent distribution over a minibatch,
which should be a mixture Gaussian distribution, to approach to
a unimodal Gaussian distribution. This may be improved by con-
sidering the KL divergence under an assumption that the target
latent distribution is approximated by a multi-modal distribution
like mixture Gaussian with several components.

We also examined a technique to add the adversarial loss
which makes all the latent distributions individually close to nor-
mal distributions (Makhzani, Shlens, Jaitly, Goodfellow, & Frey,
2015; Mescheder, Nowozin, & Geiger, 2017; Rosca, Lakshmi-
narayanan, Warde-Farley, & Mohamed, 2017). Although we found
that the latent distributions well approached the standard normal
distributions, there arose posterior collapse by ignoring the input
information in the posterior latent distribution. Because of this,
we have given up to proceed to this direction.

Since the latent distribution is important for the diversity of
the generated images, the development of further sophisticated
regularizer remains as a future study.

Fig. 9. Generated unnatural images. The generated image y were considered as sufficiently unnatural in the behavioral experiment, whereas they shared very
consistent visual saliency maps with the original images x.
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Fig. 10. The difference between the fixation density map (FDM) and the saliency map. Box-plots of KL divergence between the FDM based on eye movements of
13 subjects and the saliency map calculated by the Itti’s method. Each box extends from the lower to upper quartiles, with a horizontal line at the median. The
whiskers show 1.5×IQR, and cross markers indicate the outliers. The presented images were categorized natural, generated, and others (shuffled and shuffled but
maintaining spatial frequency amplitude (amp)). Student t test showed that the FDM for the generated images was significantly more similar to the Itti’s saliency
map than the other images’ FDM (natural: p = 1.26e−15 , others: p = 5.37e−7) and the FDM for the shuffled images was significantly more similar to the saliency
map than the FDM for the natural images (p = 1.12e−12).

Fig. 11. Differential brain activity analysis between viewing the natural images and viewing the generated images. While the subjects observed the natural images,
the bilateral extrastriatal cortices (Broadmann areas (BAs) 7/19/37, left: MNI coordinate = −44,−74,−6, right: 55,−66,−6) showed significantly higher activations
(panel (a)). During the artificial image viewing, in contrast, the bilateral primary visual cortices (BA17/18, left: −6,−84,−12, right: 10,−78,−6), the bilateral inferior
parietal lobules (BA39/40, left:,−48,−58, 46, right: 50,−50, 42) showed greater activities (panel (b)). The results are based on a multi-subject conjunction analysis
(FWE, p < 0.05) and visualized using xjView toolbox (https://www.alivelearn.net/xjview).
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Fig. 12. Differential brain activity analysis between viewing the natural images and viewing the shuffled images. While the subjects observed the natural images,
the bilateral extrastriatal cortices (Broadmann areas (BAs) 7/19/37, left: MNI coordinate = −44, 76,−6, right: 44,−76,−2), and the bilateral dorsolateral frontal
cortices (BA9, left: −48, 6, 38, right: 40,14,28) showed significantly higher activations (panel (a)). During the shuffled image viewing, in contrast, the bilateral primary
visual cortices (BA17/18, left: −6,−90, 20, right: 6,−86, 16), the bilateral inferior parietal lobules (BA39/40, left:,−56,−58, 36, right: 54,−50, 44) showed greater
activities. The results are based on a multi-subject conjunction analysis (FWE, p < 0.05) and visualized using the xjView toolbox.

Fig. 13. Differential brain activity analysis between viewing the generated images and viewing the shuffled images. While the subjects observed the natural images,
the bilateral extrastriatal cortices (Broadmann areas (BAs) 18/19, left: MNI coordinate = −42,−76,−6, right: 44,−78,−4) showed significantly higher activations.

5.2. Neuroscientific implications

In this study, we conducted two kinds of behavioral experi-
ments. The results from the visual discrimination task of image
context suggested that our image deconstructor produced col-
lapsed images with loss of context information. The results from
eye movement measurement experiments also indicated that our
image deconstructor retains the saliency map of the original im-
age well, as the fixation density map (FDM) representing the eye
movements corresponded best to the Itti’s saliency map. In con-
trast, the FDM for the natural images did not resemble the Itti’s
saliency map. These results support the hypothesis that the Itti’s
saliency map mainly represents bottom-up attentional regions,
but that eye movements are also modified by top-down attention,
especially for the natural images. Based on this hypothesis, the
images artificially generated by our image deconstructor could
be used to dissociate the neural activity involved in bottom-up
attention, even in overt image observation environments.

Although the main objective of this study is to present a new
tool for computational neuroscientists to investigate the visual
attention system, we conducted our own human non-invasive
imaging experiments to demonstrate the usefulness of our tool.
The results of the fMRI experiments showed that the brain ac-
tivities while viewing the natural and the shuffled images were
similar to those seen when comparing the natural and gener-
ated images, suggesting that the generated images lost context
information that could be recognized by humans. The results of
the differential analysis of brain activities for the two types of
unnatural images, the generated and the shuffled image, showed
significantly stronger activity in the middle-level visual cortices
including V2 and V3, when the generated images were observed.
This result is interesting because both the generated and shuffled
images are unnatural, but with a saliency map that is not uniform
for the former but almost uniform for the latter. Although the
present imaging study was preliminary and these results require
further evaluation studies, we believe that our proposed method
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Table A.4
Detailed architectures of the sub-networks used in our image deconstructor. Block(Cin , Cout , k, activation) means a single block (Fig. A.14(a)), where Cin , Cout , and k
mean the sizes of input channel, output channel, and kernel, respectively, and activation signifies the activation function. ‘Down’ and ‘Up’ mean a downsample and
an upsample module (Fig. A.14(b)(c)), respectively, and ‘Inc(C)’ means an inception module of its input/output channel size being C . ‘Conv(Cin , Cout , k)’ means a block
from which the batch normalization and the activation function were removed from a normal Block module. ‘DeConv(Cin , Cout , k)’ is a deconvolution block with a
sigmoidal activation function. The deconvolution block used in the ‘Map Decoder’ and ‘Decoder’ employed convolution operations that were transformed from those
in the corresponding convolution Block.
Map generator Encoder Decoder Discriminator

Block(3, 64, 1, L) Block(3, 64, 1, L) Block(24, 256, 1, L) Block(3, 32, 1, L)
Inc(64), Down Inc(64), Down Inc(256), Up Inc(32), Down
Inc(128), Down Inc(128), Down Inc(128), Up Inc(64), Down
Inc(256) Inc(256) Inc(64) Inc(128)
Block(256, 8, 1, L) Conv(256, 16, 1) DeConv(64, 3, 1), Sigmoid DeConv(129, 1, 1), Sigmoid
Block(8, 256, 1, L)
Inc(256), Up
Inc(128), Up
Inc(64)
DeConv(64, 1, 1), Sigmoid

may provide a novel experimental tool to dissociate the neural
bases involved in bottom-up and top-down attention.

6. Conclusion

In this study, we presented a new deep learning-based image
transformation method with a relatively large latent space, which
output deconstructed images based on the input natural images
with maintaining the saliency maps of the input images. As a
new latent regularization, KL regularization was proposed for the
distribution of all latent variables, avoiding the collapse of the
latent distribution and stabilizing the learning process.

The results of the behavioral analyses well validated that our
new image transformation is effective in destroying contextual
information embedded in natural images while preserving local
structures. In addition, the results of fMRI experimental study
suggested that different brain networks were evoked between
when natural images were presented and when deconstructed
images with the consistent saliency maps were presented.
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Appendix A. Detailed network architectures of the proposed
method

First, we present specifications of the modules used in our
DNN-based image deconstructor (Fig. A.14). A Block was a con-
volution layer employing a leaky ReLU or no activation function
(panel (a)). In a Downsample (an Upsample) module, the chan-
nel size C , image height H , and image width W were halved
(doubled) between the input and output (panel (b) and (c), re-
spectively). We did not change the size of channel, image height,
or image width, in our inception modules (panel (d)).

Table A.4 shows the detailed architectures of the sub-networks
used in our image deconstructor. We did not use an activation

function for the Encoder output, and used sigmoidal activation
for outputs from other networks. The channel size of the decon-
volution block of the Discriminator was 129, not 128, because the
usage of the minibatch standard deviation increased the channel
size by one. Although we employed multiple Discriminators in
our image deconstructor, they used the common architecture
displayed here, but different parameters adjusted according to
different loss functions. We did not use skip connections between
the Encoder and the Decoder, and used deconvolution block,
instead of full-connection block, for the output from the Encoder.
These modifications were for making the latent space a three-
dimensional tensor, and hence enabling the latent variable to
convey information of local structures. Since there were two
kinds of outputs from the Encoder, µ and σ 2, we employed two
deconvolution blocks in parallel for the respective outputs. The
channel size of the Decoder was 24, because it concatenated
the middle-layer of the Map Generator (channel size = 8), and
the output of the Encoder (dimensionality = 16); the latter was
obtained by the reparametrization trick from its latent variable.

Appendix B. Transformed images obtained by BicycleGAN

Here, we examined if the most related existing image trans-
former, BicycleGAN, could be used for our objective. Fig. B.15
shows the transformed/generated images by the BicycleGAN,
where left and right panels present the results when the original
image was used and not used for training the Bicycle GAN,
respectively. We can see that the reconstructed image was fairly
apart from the original image, and in addition, the saliency map
was not maintained in the image generated by the BycycleGAN
from that of the original image. This was because the saliency
map was of significant short of the information of the original
image, and/or the latent dimensionality of the Bicycle GAN was
as small as 8.

The similarity (in terms of Cosine Similarity (CS)) of the
saliency map between the original image and the corresponding
generated image was 0.883 ± 0.050 for 5000 validation images
that were not used for training. This similarity was significantly
smaller than that by our method (Table 2); in Fig. B.15, we
actually see the saliency maps of some generated images were
fairly different from those of their original images.

Fig. B.16 shows multiple images generated by probabilistic
image generation with multiple random variables applied to the
latent space of the BicycleGAN. The BicycleGAN tends to generate
images with different color painting from that of the original
image; this degenerated variability was due to the relatively low-
dimensional latent space and the skip connections used in U-nets
that consist of the whole image transformer.
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Fig. A.14. Specifications of modules used in our image deconstructor. (a) A Block is a single convolution layer, where Cin , Cout , and k denote the input channel size,
the output channel size, and the kernel size, respectively. When an activation function is signified by L and N , we use a leaky ReLU activation and no activation
(identity), respectively. (b) A downsample module. (c) An upsample module. (d) An inception module. [N, C,H,W ] next to a sign ’Previous layer’ (’Next layer’)
means the size of input (output) features, where N is the sample number in the minibatch, and C , H , and W are the channel size, image height, and image width,
respectively.

Fig. B.15. Image transformation by BicycleGAN. These results show when testing the BycycleGAN after being trained with the same image dataset as in our image
deconstruction method, for several training images (a) and several validation images (b). The latter set of images was not used for training the BycycleGAN. Each
panel shows an original natural image, a reconstructed image, a generated image, the saliency map of the original image, and the saliency map of the generated
image, from the left to the right on each column.

Appendix C. Loss functions for the saliency map

Here, we examined how the generated images would depend
on the loss function used for evaluating the saliency map. In our

basic implementation, we used BCE, Eq. (10). Fig. C.17 shows
the results when we used mean squared error (MSE) instead
of the BCE in the training of the saliency map generator. Each
column presents an original natural image, a reconstructed image,
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Fig. B.16. Diversity in the images transformed by the BicycleGAN. Due to the standard normal variable applied to the latent space, the BycycleGAN could produce
images with a certain variability, but they were different mostly in the global features.

Fig. C.17. Image deconstruction when the loss function of the saliency map generator, Eq. (10) was replaced by mean squared error (MSE). We used the same
visualization as in Fig. 4.

Table C.5
Cosine Similarity (CS) between saliency maps. This table shows the CS of the
saliency maps, between of the original image and of the generated image. The
comparison was done for two kinds of loss functions used for training the
saliency map generator.
Model CS

BCE 0.908 ± 0.029
MSE 0.898 ± 0.031

a generated image, the saliency map for the original image, and
the saliency map for the generated image, from the left to the
right on each row.

When we examined the similarity in terms of CS between the
saliency map of an original image and that of the corresponding
generated image, over the validation set of 5000 images, the
training with the MSE was slightly lower than that with the BCE,
but the difference was not significant (Table C.5 and Fig. C.17).

Appendix D. Further ablation study

Our image deconstructor used several techniques that had
been proposed in the field of image transformation; i.e., feature
matching, PatchGAN, minibatch standard deviation, and inception
module, for improving the performance of our image deconstruc-
tor. Table 2 in the main text presents the results of a couple of
ablation studies. Here, we present the results of further ablation
studies; that is, each of the four techniques above was removed
from the full model of our image deconstructor (Table D.6). This
table suggests that the performance of the image deconstructor,

Table D.6
Fréche Inception Distance (FID) (Heusel et al., 2017) in ablation studies. This
table shows the FID score when either of the feature matching, PatchGAN,
minibatch standard deviation, or inception module was removed from the full
model of our image deconstructor.
Model FID

Ours 322.95
Without feature matching 460.47
Without PatchGAN 415.27
Without minibatch standard deviation 321.01
Without inception module 382.15

in terms of the FID score, was substantially worse when we re-
moved feature matching, PatchGAN, or inception module. We also
found that minibatch standard deviation was minorly effective in
our image deconstruction task.

Fig. D.18 shows the images generated by the four kinds of
ablated models; the results are for validation images. Without
the feature matching, the generated images were rough. Without
the PatchGAN, the generated images were blurred, suggesting the
PatchGAN was important for improving local structures of the
generated images. Without the minibatch standard deviation, the
generated images were a little distorted, which was commonly
observed over many generated images. Although Table D.6 sug-
gested a minor improvement by our full model over this ablated
model, we consider the usage of the minibatch standard deviation
was effective in removing such minor distortions. Without the
inception module, the generated images became rough, suggest-
ing the advantage of using the inception module in our image
deconstruction method.
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Fig. D.18. Images produced by our additional ablation studies. Images generated by the full model of our image deconstructor (OURS), and by ablated models without
the feature matching (FM), PatchGAN (PG), minibatch standard deviation (MSD), or inception modules (IM), respectively. In the ablated model IM, INC(n) in Table A.4
was replaced with ‘Block(n, n, 3, L)’; that is, the inception module was replaced with a simpler convolution Block.

Appendix E. Implementations of Pix2Pix and AdaIN

E.1. Pix2Pix

Pix2Pix employs a typical GAN architecture; that is, there
are a couple of modules, Generator and Discriminator, and the
former is of an encoder–decoder architecture with the usage of
U-net. The input and output of the Generator are a saliency map
and its corresponding natural image, respectively. The natural
image was taken from the SALICON dataset, and its corresponding
saliency map was obtained by the Itti’s method. This Generator
was trained to lower a combined loss function of an L1 norm,
which measures the discrepancy between the original natural
image (for the input saliency map) and the image generated by
the Generator, and an adversarial loss to fool the Discriminator.
On the other hand, the Discriminator was trained to well dis-
criminate between a pair of a natural (i.e., true) image and its
saliency map and a pair of a generated (i.e., fake) image (output
from the Generator) and its saliency map (input to the Generator).
As well as in the original implementation of Pix2Pix, we also
introduced Dropouts to the Generator training, which was found
to be effective in attaining diversity in the generated images.

E.2. AdaIN

AdaIN has an encoder–decoder architecture, but there is no
encoder training. The Encoder consisted of several convolution
layers of VGG19 that was pretrained to perform well in the image
classification task and then fixed. Although the architecture of
the Decoder is of an upright one of the Encoder, the former was
trained based on the loss function below. An input to Encoder was
a pair of a content image and a style image, which were randomly
chosen from a set of natural images taken from SALICON. After
obtaining a couple of outputs, i.e., the feature vectors, of the
Encoder, when input by a content image and a style image, we
transformed the feature vector for the content image input such
to make the feature-wise mean and variance to be consistent with
those of the feature vector for the style image input. Then, this
transformed feature vector was input to the Decoder. We used
a loss function consisting of three terms, to train the Decoder;
one is the content loss, which measures the Euclidian distance
between the feature vector when the image generated by the De-
coder was input to the Encoder and the feature vector input to the

Decoder to generate the image; second is the style loss, the sum
of the Euclidian distance of the mean and variance of activities
of middle layer units between when the image generated by the
Decoder and the style image were input to the Encoder; and, the
maintenance loss of the saliency map, Lmap

ψ . Note that the third
loss function was not used in the original AdaIN implementation.
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