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We predict a new mechanism to induce collective excitations and a nonequilibrium phase transition of
fermionic superfluids via a sudden switch on of two-body loss, for which we extend the BCS theory to fully
incorporate a change in particle number. We find that a sudden switch on of dissipation induces an
amplitude oscillation of the superfluid order parameter accompanied by a chirped phase rotation as a
consequence of particle loss. We demonstrate that when dissipation is introduced to one of the two
superfluids coupled via a Josephson junction, it gives rise to a nonequilibrium dynamical phase transition
characterized by the vanishing dc Josephson current. The dissipation-induced collective modes and
nonequilibrium phase transition can be realized with ultracold fermionic atoms subject to inelastic
collisions.

DOI: 10.1103/PhysRevLett.127.055301

Introduction.—Collective excitations of superconductors
and superfluids have been widely studied in condensed
matter physics [1–20]. Recent experimental progress in
ultracold atoms has enabled studies of out-of-equilibrium
dynamics of superfluids [21–24]. For example, a periodic
modulation of the amplitude of the order parameter excites
the Higgs amplitude mode, which has been observed with
ultracold fermions [23] and in solid-state systems by light
illumination on BCS superconductors [25–33]. As for
collective phase modes, the Nambu-Goldstone mode exists
in neutral superfluids, and the relative-phase Leggett mode
has been predicted for multiband superfluids [2,33–38]. In
particular, ultracold atoms allow for a dynamical control of
various system parameters, offering an ideal playground to
investigate collective modes. However, they suffer from
atom loss due to inelastic scattering, which has received
little attention in literature.
In dissipative open quantum systems, the dynamics, after

environmental degrees of freedom are traced out, is
nonunitary and described by a completely positive and
trace-preserving map [39,40]. Such nonunitary dynamics is
relevant for atomic, molecular, and optical systems, dras-
tically changing various aspects of physics such as quan-
tum critical phenomena [41,42], quantum phase transitions

[43–45], quantum transport [46,47], and superfluidity
[48,49]. In particular, high controllability of parameters
in ultracold atoms has enabled investigations of nonequili-
brium quantum dynamics induced by dissipation [49–63],
and studies of fermionic superfluidity in ultracold atoms
undergoing inelastic collisions have achieved remarkable
progress [48,49,64–71]. The effect of particle loss in
fermionic superfluids has been studied in the framework
of the non-Hermitian BCS theory [49]; however, it ignores
a significant change in particle number due to quantum
jumps. It is crucially important to go beyond the non-
Hermitian framework to describe the long-time dynamics
of a superfluid and associated collective modes of the order
parameter.
In this Letter, we theoretically investigate collective

excitations and a nonequilibrium phase transition of fer-
mionic superfluids driven by a sudden switch on of two-
particle loss due to inelastic collisions between atoms. By
formulating a dissipative BCS theory that fully incorporates
a change in particle number, we find that dissipation
fundamentally alters the superfluid order parameter and
induces collective oscillations in its amplitude and phase. In
particular, we elucidate that a coupling between the order
parameter and dissipation leads to a chirped phase rotation,
in sharp contrast to the case of an interaction quench in
closed systems [see Fig. 1(a)].
To experimentally observe the collective phenomena

induced by dissipation, we propose introducing a particle
loss in one of two coupled superfluids to induce a relative-
phase oscillation analogous to the Leggett mode [2,33–38]
[see Fig. 1(b)]. The phase mode causes an oscillation of a
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Josephson current around a nonvanishing dc component.
Remarkably, when dissipation becomes strong, the coupled
system undergoes a nonequilibrium phase transition char-
acterized by the vanishing dc Josephson current, which can
be regarded as a generalization of a dynamical phase
transition [11,12,72,73] to dissipative quantum systems.
Our findings can experimentally be tested with ultracold
atoms through introduction of dissipation via a photo-
association process [50,59].
Dissipative BCS theory.—We consider ultracold fer-

mionic atoms described by the three-dimensional attractive
Hubbard model

H ¼
X

kσ

ϵkc
†
kσckσ − UR

X

i

c†i↑c
†
i↓ci↓ci↑; ð1Þ

where UR > 0, ϵk is the single-particle energy dispersion,
and ckσ (ciσ) denotes the annihilation operator of a spin-σ
fermion with momentum k (at site i). When the system is
subject to inelastic collisions, scattered atoms are lost to a
surrounding environment, resulting in dissipative dynamics
as observed experimentally [50,55,56,58]. Here, we study
the time evolution of the density matrix ρ which is
described by the Lindblad equation [39,40]

dρ
dt

¼ Lρ ¼ −i½H; ρ� − γ

2

X

i

ðfL†
i Li; ρg − 2LiρL

†
i Þ; ð2Þ

where Li ¼ ci↓ci↑ is a Lindblad operator that describes
two-body loss with loss rate γ > 0. We note that the kinetic
energy of lost atoms is large because of large internal
energy of atoms before inelastic collisions. Under such
situations, atoms after inelastic collisions are quickly lost
into the surrounding environment and the Born-Markov
approximation is justified [74–76].
We first study how the standard BCS theory is

generalized in open dissipative systems by formulating a
time-dependent mean-field theory in terms of a closed-
time-contour path integral [77,78]. We start with a gen-
erating functional defined as

Z ¼ trρ ¼
Z

D½c−; c̄−; cþ; c̄þ�eiS ¼ 1; ð3Þ

with an action

S ¼
Z

∞

−∞
dt

�X

kσ

ðc̄kσþi∂tckσþ − c̄kσ−i∂tckσ−Þ −Hþ

þH− þ iγ
2

X

i

ðL̄iþLiþ þ L̄i−Li− − 2LiþL̄i−Þ
�
; ð4Þ

where the subscripts þ and − denote forward and back-
ward paths, Hα¼

P
kσ ϵkc̄kσαckσα−UR

P
i c̄i↑αc̄i↓αci↓αci↑α,

Liα ¼ ci↓αci↑α, and L̄iα ¼ c̄i↑αc̄i↓α ðα ¼ þ;−Þ. Note that
the action has U(1) symmetry under ciσα → eiθciσα though
the particle number of the system is not conserved [79,80].
By introducing auxiliary fields via the Hubbard-
Stratonovich transformation, we rewrite the action in a
quadratic form of fermionic Grassmann fields as [49,81]

S ¼
Z

dt

�X

k

�
ψ̄ t
kþ

�
i∂t − ϵk −Δ
−Δ� −i∂t þ ϵk

�
ψkþ

− ψ̄ t
k−

�
i∂t − ϵk −Δ
−Δ� −i∂t þ ϵk

�
ψk−

��
; ð5Þ

where ψ̄kα ¼ ð c̄k↑α; c−k↓α Þt and ψkα ¼ ð ck↑α; c̄−k↓α Þt
ðα ¼ þ;−Þ, with t denoting transposition. Here Δ is the
superfluid order parameter which can be determined from
the requirement that the action be extremal as [81]

Δ ¼ −
U
N0

X

k

trðc−k↓ck↑ρÞ≡ −
U
N0

X

k

hc−k↓ck↑i; ð6Þ

where U ¼ UR þ iγ=2 is an effective complex coupling
constant including a contribution from the atom loss [49],
and N0 is the number of sites. Importantly, the order
parameter includes the loss rate γ, which leads to dis-
sipation-induced collective modes as discussed below. The
action (5) describes the mean-field time-evolution equation
of the density matrix as

dρ
dt

¼ −i½Heff ; ρ�; ð7Þ

Heff ¼
X

k

Ψ†
k

�
ϵk Δ
Δ� −ϵk

�
Ψk; ð8Þ

where Ψk ¼ ð ck↑; c†−k↓ Þt is the Nambu spinor. In the
Supplemental Material [81], we show that Eq. (7) can be
derived from two different methods, i.e., the mean-field
theory for the Lindblad equation and the time-dependent
Bogoliubov–de Gennes analysis. While Eq. (7) describes
unitary evolution, it is consistent with the original Lindblad

FIG. 1. (a) Schematic illustration of the amplitude and phase
modes in a Mexican-hat free-energy potential as a function of the
complex order parameter Δ, when either the interaction UR or the
dissipation γ is suddenly switched on. A sudden quench of the
interaction UR and that of the dissipation γ kick Δ in a direction
parallel and perpendicular to the radial direction, respectively.
Note that a finite change of γ excites both the phase and amplitude
modes. (b) Two superfluids coupled via a Josephson junction,
where one superfluid (system 2) is subject to two-body loss.
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equation (2) as a consequence of the time-dependent BCS
ansatz [81].
We use Anderson’s pseudospin representation

[1,7–12,14,32] defined by σk ¼ 1
2
Ψ†

k · τ · Ψk and Heff ¼
2
P

k bk · σk, where τ ¼ ð τx; τy; τz Þ is the vector of the
Pauli matrices. The pseudospins satisfy the commutation
relations ½σjk; σkk� ¼ iϵjklσlk. For simplicity of notation, we
omit the bracket and regard σk as the expectation value of
the pseudospin operator. By using the commutation rela-
tion of the pseudospins, Eq. (7) is mapped to the Bloch
equation:

dσk
dt

¼ 2bk × σk; ð9Þ

bk ¼ ðReΔ;−ImΔ; ϵk Þ: ð10Þ

Equation (9) shows that the superfluid dynamics is char-
acterized by precession of a pseudospin in an effective
magnetic field bk. Here, the order parameter is determined
self-consistently from the pseudospin expectation value as

Δ ¼ jΔjeiθ ¼ −
U
N0

X

k

ðσxk − iσykÞ: ð11Þ

It is noteworthy that the norm of the pseudospin is
conserved by the Bloch equation (9). The time evolution
of the particle number due to particle loss is obtained from
Eq. (7) as

1

N0

dN
dt

¼ −
2γjΔj2
jUj2 ; ð12Þ

which reflects the dynamics of the order parameter.
Collective excitations: Phase and amplitude modes.—

We numerically solve the Bloch equation (9) self-
consistently under the condition (11). As an initial state,
we prepare a BCS ground state with γ ¼ 0, whose pseudo-
spin representation is given by σxkð0Þ¼−Δ0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵk

2þΔ2
0

p
,

σykð0Þ ¼ 0 and σzkð0Þ ¼ −ϵk=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵk

2 þ Δ2
0

p
with Δ0 ∈ R. The

single-particle energy ϵk is measured from the Fermi energy
of the initial state. The bandwidthW is defined by the energy
difference between the upper and lower edges of the energy
spectrumwith a constant density of states.We then switch on
the atom loss γ at t ¼ 0. The ensuing dynamics shown in
Fig. 2 are obtained by the second-order Runge-Kutta
method. In the long-time limit, the amplitude of the super-
fluid order parameter Δ is suppressed due to dissipation,
indicating a decay of superfluidity [see Fig. 2(a)]. We note
that the order parameter decays in the long-time limit due to a
decrease of the particle number [see Fig. 2(b)], and such
behavior has no counterpart in the quench in isolated
systems [10,11]. Remarkably, after the dissipation γ is
introduced, the U(1) phase of the order parameter rotates
and shows chirping, i.e., its angular velocity increases with

time [see Figs. 2(a) and 2(b)] as a consequence of the
dynamical shift of the Fermi level [81]. This property is
unique to the dissipative superfluid and distinct from the
usual dynamics in isolated systems where the U(1) phase
stays constant [10–12]. The phase rotation is under-
stood from an initial-state free energy as a function of Δ
[see Fig. 1(a)]. When dissipation is introduced, the sudden
quench of the imaginary part of U in Eq. (11) pushes the
order parameter towards the direction perpendicular
to the radial direction irrespective of the initial choice of
the gauge. Another way to understand the phase rotation
is to introduce an effective chemical potential as ΔðtÞ ¼
exp½−2i R t

0 μeffðtÞdt�ΩðtÞ ðΩ ∈ RÞ. By performing a global
gauge transformation from Δ to Ω, the Bloch equation is
written in the Larmor frame on which the energy dispersion
is given by ξkðtÞ ¼ ϵk − μeffðtÞ. This gauge transformation
indicates that the phase rotation corresponds to a decrease of
the effective chemical potential, which is consistent with the
behaviors of _θ andN in Fig. 2(b). This result can naturally be
understood from the fact that the phase and the particle
number are conjugate variables.
We also find amplitude oscillations in jΔj as shown in

Fig. 2(a). The amplitude oscillations are more pronounced
when the interaction and the dissipation are simultaneously
quenched [81]. The mechanism behind the oscillations is
that the quench of the imaginary part of U changes the
absolute value of Δ [see Fig. 1(a)]. The frequency of the
amplitude oscillation is close to 2Δ0 at an early stage, and
increases as time evolves. This behavior is distinct from
that of an isolated system, where the amplitude mode is
characterized by the constant frequency. Such behavior can
be observed from the measurement of the time-dependent
particle number via Eq. (12).
Collective excitations: Leggett mode.—To observe the

chirped phase rotation of the superfluid order parameter
that is a unique feature of dissipative superfluids, we
propose that the phase rotation induced by dissipation
can be detected when two superfluids are connected via a
Josephson junction, which has been realized in ultracold
atoms [85–91]. As the phase difference in the two super-
fluid order parameters is gauge-invariant, it leads to an

FIG. 2. Dynamics of a superfluid after the atom loss with γ ¼
2.81Δ0 is switched on for the initial state with UR ¼ 12.2Δ0 and
bandwidth W ¼ 46.8Δ0, where Δ0 is the superfluid order
parameter in the absence of the atom loss. (a) Real parts (light
green), imaginary parts (blue), and the amplitude (violet) of the
order parameter. (b) Angular velocity (pink) and particle number
(yellow) plotted against time. The figures indicate a chirped phase
rotation and an amplitude oscillation of Δ.
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observable Josephson current. We introduce dissipation to
one of the two superfluids as schematically illustrated in
Fig. 1(b) and assume that they are coupled via a tunneling
Hamiltonian [2,38]

Htun ¼ −
V
N0

X

kk0
ðc†1k↑c†1−k↓c2−k0↓c2k0↑ þ H:c:Þ; ð13Þ

where V > 0 is the amplitude of Cooper-pair tunneling
between system 1 without dissipation and system
2 with two-particle loss. By performing a mean-field
analysis, we can write the system Hamiltonian as Hsyst¼
H1þH2þHtun¼H0

1þH0
2, where Hi ≡P

kσ ϵkc
†
ikσcikσ þP

kðΔic
†
ik↑c

†
i−k↓ þ H:c:Þ (i¼1;2) is the mean-field

Hamiltonian of system i and H0
i ≡Hi − ðV=N0Þ

P
kk0

ðhcj−k0↓cjk0↑ic†ik↑c†i−k↓ þ H:c:Þ [ði;jÞ¼ð1;2Þ or (2,1)]. In
the pseudospin respresentation, the Hamiltonian is written
as H0

i ¼ 2
P

k bik · σik with an effective magnetic field
bik¼ðReΔ0

i;−ImΔ0
i;ϵik Þ, which yields the Bloch equation

dσik=dt ¼ 2bik × σik. The self-consistent conditions for the
order parameters read Δ1¼jΔ1jeiθ1¼−ðUR=N0Þ

P
kðσx1k−

iσy1kÞ and Δ2¼jΔ2jeiθ2¼−ðU=N0Þ
P

kðσx2k−iσy2kÞ, where
N0 is the number of sites of each system. Here, the
relations Δ0

i¼Δi−ðV=N0Þ
P

kðσxjk− iσyjkÞ [ði; jÞ ¼ ð1; 2Þ
or (2,1)] are satisfied. Then, the Josephson current between
the two superfluids is given by the rate of change in the
particle number of system 1:

1

N0

dN1

dt
¼ −

4VjΔ1jjΔ2j
URjUj sin ðθ2 − θ1 þ δÞ; ð14Þ

where δ ¼ tan−1ð−γ=2URÞ is the phase shift due to the
sudden switch on of the atom loss.
We numerically solve the coupled Bloch equations for

σik. We assume that dissipation γ and tunneling V are
turned on at t ¼ 0 for the BCS ground state. The numerical
results for weak dissipation are shown in Figs. 3(a1)–3(d1).
In Figs. 3(a1) and 3(b1), the dynamics of two superfluids

almost synchronize with each other because the timescale
of particle loss is comparable with the inverse tunneling
rate. In the pseudospin picture, the dynamics of particle
numbers shown in Fig. 3(c1) can be interpreted as the
nutation of pseudospins. Importantly, we see that, although
the particle number of the system decreases in time, the
corresponding amplitude of the order parameter stays
almost constant. This implies that the condensate fraction
against the total particle number becomes larger than that of
the initial state. As inferred from Fig. 3(d1), the Josephson
current oscillates around its dc component. Such behavior
is reminiscent of Shapiro steps in a Josephson junction
under irradiation of a microwave [92]; however, in the
present case, the Josephson current oscillates spontane-
ously without any external field. Moreover, from
Fig. 3(d1), the frequency of the oscillation of the phase
difference between the two systems is close to that
of the relative-phase mode known as the Leggett mode
[2,38] whose dispersion relation is given by ωL ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðλ12 þ λ21ÞjΔ1jjΔ2j= det λ
p

, where λ11 ¼ λ22 ¼ UR=W,
λ12 ¼ λ21 ¼ V=W, and det λ ¼ λ11λ22 − λ12λ21. We note
that ωL includes the effect of loss through the order
parameters. The Leggett mode with frequency ωL has been
discussed in the context of a collective mode in a multiband
superconductor irradiated by light [38]. The agreement
between the frequencies of the relative-phase modes in very
different situations can be understood as follows.
When dissipation is weak, the time evolution of an order
parameter is given by ΔiðtÞ ¼ exp½−2i R t

0 dtμieffðtÞ�jΔiðtÞj
with an effective chemical potentials μieff . Then, by
performing a global gauge transformation from cikσ to
cikσ expði

R
t
0

P
i μieffdt=2Þ, we can linearize the Bloch

equation with respect to the relative phase difference
between Δi’s by following Ref. [38].
Nonequilibrium phase transition.—In the presence of

strong dissipation, the order parameter of system 2 oscil-
lates faster than that of system 1 [see Figs. 3(a2) and 3(b2)]
and the phase difference monotonically increases in time
[see Fig. 3(d2)]. This is because the dissipation rate larger
than the tunneling rate makes system 1 fail to follow the

FIG. 3. Dynamics of two fermionic superfluids after the switch on of the atom loss γ and the tunnel coupling V ¼ 0.02Δ0 with
UR ¼ 3.06Δ0 and bandwidth W ¼ 5.11Δ0, where γ ¼ 0.03Δ0 for (a1)–(d1) and γ ¼ 0.06Δ0 for (a2)–(d2). (a),(b) Real parts (light
green), imaginary parts (blue), and amplitudes (violet) of the order parameter for systems 1 and 2. (c) Particle numbers of system 1 (red)
and system 2 (yellow), and their difference [green, in (c1)]. (d) Josephson current (pink) and phase difference (light blue) between the
two systems. The black curve in (d1) shows an oscillation at frequency ωL for comparison.
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decay of system 2, resulting in the dynamics similar to that
of a single superfluid shown in Fig. 2. In particular, the
chirped phase rotation of the superfluid order parameter
of system 2 can be detected from the Josephson current
[Fig. 3(d2)]. As the superfluidity of system 2 is suppressed,
the Josephson current also decays, and the particle number
of system 1 settles to a constant after some transient time
[see Fig. 3(c2)]. The latter behavior is attributed to the
continuous quantum Zeno effect [49,74,75,93–95], which
states that strong dissipation prevents tunneling and inhibits
loss in system 1. In fact, an effective decay rate of system 1
is given by γeff ≡ jVeff j2=γ with an effective tunneling rate
Veff ¼ VΔ2=UR from Eq. (13), leading to suppression of
decay γeff → 0 for jΔ2j2=γ → 0.
The two dynamically distinct regimes of superfluid

behaviors suggest the existence of dynamical phases of
matter [72,73] in dissipative superfluids. The qualitative
change in the superfluid behaviors with respect to the
dissipation strength highlights a dynamical phase transition
characterized by the vanishing dc Josephson current
[Fig. 4(a)], where the dc component of the Josephson
oscillation is defined by [max0≤t≤tffsin ðθ2ðtÞ − θ1ðtÞþ
δÞg þmin0≤t≤tffsin ðθ2ðtÞ − θ1ðtÞ þ δÞg�=2 [see Eq. (14)]
after a sufficiently long time evolution with tf ¼ 97.9=Δ0.
We emphasize that the dynamical phase transition in
dissipative superfluids is essentially distinct from the phase
transition between ground states in a non-Hermitian BCS
superfluid [49]. The former is caused by a change in
particle number in the long-time dynamics, whereas the
latter is caused by an exceptional point of a non-Hermitian
BCS Hamiltonian, which is relevant to the short-time
dynamics during which the number of particles does not
change [96]. From Fig. 4(b), we see that the phase
difference θ2 − θ1 starts to increase monotonically at the
critical point and that the difference in particle number
ðN2 − N1Þ=N0 becomes much larger. The behavior of the
phase difference is reminiscent of the localization-diffusion
transition of a quantum-mechanical particle moving
in a washboard potential in the presence of frictional force
[97–99]. However, the origin of the transition shown in
Fig. 4 is essentially different from frictional force, since it

cannot change the particle number. In fact, as shown in the
Supplemental Material [81], the dynamical phase transition
in Fig. 4 is triggered by the competition between the
Josephson coupling and particle loss. Moreover, as the
steady state is a vacuum due to the particle loss, the
dynamical phase transition is observed only in the transient
dynamics, and thus distinct from steady-state transitions.
Conclusions.—We have investigated the loss-quench

dynamics of fermionic superfluids, and have demonstrated
that the dynamics exhibits amplitude and phase modes with
chirped oscillations, the latter of which is a salient feature
of a dissipative superfluid. To observe the chirped phase
rotation, we have proposed a Josephson junction comprised
of dissipative and nondissipative superfluids. We have
shown that the relative-phase Leggett mode can be detected
from the Josephson current for weak dissipation.
Remarkably, when dissipation becomes strong, the super-
fluids exhibit the unique nonequilibrium phase transition
triggered by particle loss. Our prediction can be tested with
ultracold atomic systems of 6Li [86–90], for example, by
introducing dissipation using photoassociation processes
[50,59,100]. It is of interest to explore how the dimension-
ality or confinement by a trap potential affects the dynamics
and associated collective modes [15–18].
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FIG. 4. (a) dc component of the Josephson oscillation defined
by [max0≤t≤tffsin ðθ2ðtÞ − θ1ðtÞ þ δÞg þmin0≤t≤tffsin ðθ2ðtÞ−
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