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Introduction to algebraic approaches

for solving isogeny path-finding problems

By

Ryoya Fukasaku ∗, Yasuhiko Ikematsu ∗∗, Momonari Kudo ∗∗∗,

Masaya Yasuda † and Kazuhiro Yokoyama ‡

Abstract

The isogeny path-finding is a computational problem that finds an isogeny connecting two

given isogenous elliptic curves. The hardness of the isogeny path-finding problem supports the

fundamental security of isogeny-based cryptosystems. In this paper, we introduce an algebraic

approach for solving the isogeny path-finding problem. The basic idea is to reduce the isogeny

problem to a system of algebraic equations using modular polynomials, and to solve the system

by Gröbner basis computation. We report running time of the algebraic approach for solving

the isogeny path-finding problem of 3-power isogeny degrees on supersingular elliptic curves.

This is a brief summary of [16] with implementation codes.

§ 1. Introduction

Since proposals of the hash function of [3] and the key exchange of [11], supersin-

gular isogeny-based cryptography has received attention as post-quantum cryptography

(PQC). The National Institute of Standards and Technology (NIST) has proceeded PQC

standardization since 2016. For the PQC standardization process, Jao et al. [10] sub-

mitted algorithms of supersingular isogeny key encapsulation, called SIKE, that is based
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on [11]. In 2020, NIST selected 15 proposals for the third-round of the standardization

process, of which SIKE was selected as an alternate candidate (see [13] for details).

The security of supersingular isogeny-based cryptography is based on the hard-

ness of finding an isogeny connecting two given isogenous supersingular elliptic curves.

The meet-in-the-middle approach is a practical way to solve the isogeny path-finding

problem. Specifically, it builds two trees of isogenies of prime degrees from both the

sides of E and Ẽ, respectively, and it finds a collision between the two trees to find the

shortest path from E to Ẽ. In this paper, we introduce a new approach for solving the

isogeny path-finding problem. The basic strategy is to reduce the isogeny problem to

a system of algebraic equations using modular polynomials. In particular, we divide

a system of algebraic equations into two parts like the meet-in-the-middle approach,

and compute their Gröbner bases to efficiently find j-invariants of intermediate curves

between given two isogenous elliptic curves E and Ẽ. We report running time of the

algebraic approach for solving the isogeny problem of 3-power degrees on supersingular

elliptic curves over Fp2 with 503-bit prime p, extracted from SIKE-p503 parameters [10],

in order to compare with the meet-in-the-middle approach.

§ 2. Mathematical background

We review basic definitions and properties of elliptic curves and their isogenies.

§ 2.1. Elliptic curves over finite fields

Let p ≥ 5 be a prime, and q a p-power integer. An elliptic curve over the finite

field Fq is given by the (short) Weierstrass form

(2.1) E : y2 = x3 + ax+ b (a, b ∈ Fq)

with discriminant ∆(E) = −16(4a3 + 27b2) 6= 0. The j-invariant of E is defined as

j(E) = −1728 (4a)3

∆(E) . There exists an elliptic curve over Fq with j-invariant equal to a

given j0 ∈ Fq. Two elliptic curves are isomorphic over the algebraic closure Fq of Fq if

and only if they both have the same j-invariant. The set of Fq-rational points on E

E(Fq) =
{
(x, y) ∈ F

2
q : y2 = x3 + ax+ b

}
∪ {OE}

forms an abelian group, where OE denotes the infinity point on E (see [15, Chapter

III] for the group law). The number of Fq-rational points on E, denoted by #E(Fq), is

represented as #E(Fq) = q+1− t where t denotes the trace of the qth-power Frobenius

map. The trace holds |t| ≤ 2
√
q by Hasse’s theorem. An elliptic curve E over Fq is said

supersingular if the characteristic p of the base field divides the trace t. Otherwise E

is said ordinary. Every supersingular elliptic curve over Fp has its j-invariant defined
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over Fp2 [15, Theorem 3.1, Chapter V], and it is isomorphic over Fq to one defined over

Fp2 . There are about p
12 isomorphism classes of supersingular elliptic curves over Fp.

For every n ≥ 2, we let

E[n] =
{
P ∈ E(Fq) : nP = OE

}

denote the subgroup of E(Fq) of torsion points of order n.

§ 2.2. Isogenies between elliptic curves

A morphism φ : E −→ E′ between two elliptic curves E and E′ satisfying φ(OE) =

OE′ is called an isogeny. Two curves are called isogenous (over Fq) if there is a non-zero

isogeny (over Fq) between them. Tate’s theorem [17] states #E(Fq) = #E′(Fq) if two

curves E and E′ are isogenous over Fq. Every non-zero isogeny φ : E −→ E′ induces

an injection between function fields φ∗ : Fq(E
′) −→ Fq(E) [15, Chapter III]. The degree

of a non-zero isogeny φ is defined as the extension degree between function fields:

deg φ =
[
Fq(E) : φ∗

Fq(E
′)
]
.

A non-zero isogeny φ is said separable if the extension Fq(E)/φ∗
Fq(E

′) is separable.

In particular, a non-zero isogeny is separable if its degree deg φ is not divisible by

the characteristic p of the base field. A non-zero isogeny φ : E −→ E′ also induces a

surjective group homomorphism from E(Fq) to E
′(Fq), and its kernel is a finite subgroup

of E(Fq), denoted by E[φ]. It satisfies deg φ = #E[φ] if φ is separable. Conversely, given

a finite subgroup C of E(Fq), there is a unique elliptic curve E′ and a separable isogeny

φ : E −→ E′ with E[φ] = C [15, Proposition 4.12, Chapter III]. The target curve E′

and the corresponding isogeny φ are denoted by E/C and φC , respectively.

2.2.1. Vélu’s formula Given a finite subgroup C of E(Fq), Vélu [18] gave an explicit

representation of φC : E −→ E/C and the Weierstrass equation for E/C. Let P =

(xP , yP ) be a point of prime order ℓ 6= p on an elliptic curve E defined by (2.1). For

the cyclic subgroup C = 〈P 〉, we present Vélu’s formula for ℓ = 2 and 3 below:

• For ℓ = 2, let v = 3x2
P +a, a′ = a−5v, b′ = b−7vxP . Then the Weierstrass equation

for E/C is given by Y 2 = X3 + a′X + b′. The image φC(x, y) of the isogeny φC for

(x, y) ∈ E(Fq) is given by
(
x+

v

x− xP
, y − vy

(x− xP )2

)
.

• For ℓ = 3, let u = 4y3P , v = 3x2
P +a, a′ = a−5v, b′ = b−7(u+vxP ). The Weierstrass

equation for E/C is given by the same form as in the case ℓ = 2. The image φC(x, y)

of the isogeny φC for (x, y) ∈ E(Fq) is given by
(
x+

v

x− xP
+

u

(x− xP )2
, y

{
1− v

(x− xP )2
+

2u

(x− xP )3

})
.



172 R. Fukasaku, Y. Ikematsu, M. Kudo, M. Yasuda and K. Yokoyama

2.2.2. Modular polynomials For every ℓ ≥ 2, the modular polynomial Φℓ(X,Y )

parameterizes pairs of elliptic curves with a cyclic isogeny of degree ℓ between them

(see [14, Exercise 2.18, Chapter II]). For two curves E and E′, there is an isogeny of

degree ℓ from E to E′ with cyclic kernel if and only if Φℓ(j(E), j(E′)) = 0. The modular

polynomial is symmetric in each variable, and its integer coefficients become very large

as ℓ increases. For a prime ℓ, the modular polynomial Φℓ(X,Y ) is equal to the form

(2.2) Xℓ+1 −XℓY ℓ + Y ℓ+1 +
∑

i,j≤ℓ,i+j<2ℓ

aijX
iY j (aij ∈ Z),

since there are precisely ℓ+ 1 subgroups of the ℓ-torsion group of an elliptic curve E.

2.2.3. Supersingular isogeny graphs For each prime ℓ 6= p, any two supersingular

elliptic curves E and E′ over Fp2 are connected by a chain of isogenies of degree ℓ. Such

two curves can be connected by m isogenies of degree ℓ for m = O(log p) [12, Theorem

79]. The supersingular ℓ-isogeny graph over Fp2 is the graph Gℓ(Fp2) := (V,G) whose

vertices V is the set of the Fp2 -isomorphism classes of supersingular elliptic curves

over Fp2 labeled by their j-invariants (#V ≈ p
12 ), and whose edges G are the pairs

(j(E), j(E′)) for ℓ-isogenous curves E and E′. The ℓ-isogeny graph Gℓ(Fp2) is regular

with regularity degree ℓ+1. When p ≡ 1 mod 12, it is a Ramanujan graph, an optimal

expander graph on which random walks quickly reach the uniform distribution.

§ 3. Computational isogeny problems

There are a number of computational problems related to isogenies for the security

of (supersingular) isogeny-based cryptography. A template is the general isogeny prob-

lem [8, Definition 1]; “Given two elements j, j′ in Fq, find an isogeny φ : E −→ E′, if

exists, such that j(E) = j and j(E′) = j′.” There are a variety of representations of

φ, such as a chain of isogenies of low degrees, a sequence of j-invariants of intermediate

curves, and a path in an isogeny graph between E and E′. Below we present typical

cryptographic schemes and their related isogeny problems:

§ 3.1. The isogeny path-finding problem

The first cryptographic construction over a supersingular isogeny graph is the hash

function in [3]. For a large prime p and a small prime ℓ (e.g., ℓ = 2 or 3), we consider

the supersingular ℓ-isogeny graph over Fp2 . We fix j0 as the initial vertex in the graph,

and determine the order of the edges at each vertex by sorting the j-invariants of ℓ+ 1

neighbours. Given a message (m0,m1, . . . ,mN−1), the hash function proceeds as below:

1. We first choose the edge of j0 according to the value of m0, and compute the

corresponding neighbour j1.
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2. For 1 ≤ k < N , we repeat to choose the edge of jk according to mk (excluding the

edge between jk−1 and jk), and compute the corresponding neighbour jk+1.

3. We return the final invariant jN as the output value of the hash function.

The security of the hash function is based on the hardness of the following prob-

lem: “Let p and ℓ be distinct prime numbers, e a positive integer, and E and E′ two

supersingular elliptic curves over Fp2 . Suppose that there exists an isogeny of degree ℓe

between E and E′. Find an isogeny of degree ℓe from E to E′.” In terms of cryptogra-

phy, it is preimage resistant if and only if, given two supersingular invariants j and j′,

it is computationally hard to compute an isogeny φ : E −→ E′ of prime power degree

ℓe with j = j(E) and j′ = j(E′). It is also collision resistant if and only if, given one

supersingular invariant j = j(E) for some elliptic curve E, it is computationally hard

to compute an endomorphism ϕ : E −→ E of prime power degree ℓe.

§ 3.2. The computational supersinglular isogeny problem

Let p = ℓeAA ℓeBB − 1 be a large prime, where ℓA and ℓB are distinct small primes

satisfying ℓeAA ≈ ℓeBB ≈ p1/2. Take a supersingular elliptic curve E over Fp2 such that

#E(Fp2) = (p + 1)2. Then the group E(Fp2) has all torsion points of order p + 1 and

it contains two torsion groups E[ℓeAA ] and E[ℓeBB ]. Two bases {PA, QA} and {PB , QB}
for E[ℓeAA ] and E[ℓeBB ] are fixed in the supersingular isogeny Diffie-Hellman (SIDH) key

agreement scheme [11]. The procedure of SIDH between Alice and Bob is as below:

1. Alice randomly selects mA, nA ∈ [0, ℓeAA −1], not both divisible by ℓA, and computes

the isogeny φA : E −→ EA = E/〈RA〉 with RA = mAPA + nAQA ∈ E[ℓeAA ]. While

keeping mA, nA, RA and φA secret, she transmits EA, φA(PB) and φA(QB) to Bob.

2. Similarly, Bob randomly selects mB , nB ∈ [0, ℓeBB −1], not both divisible by ℓB , and

φB : E −→ EB = E/〈RB〉 with RB = mBPB + nBQB ∈ E[ℓeBB ]. While keeping

mB , nB , RB and φB secret, Bob transmits EB , φB(PA) and φB(QA) to Alice.

3. After that, Alice computes mAφB(PA) + nAφB(QA) = φB(RA) and EB/〈φB(RA)〉
whereas Bob computes mBφA(PB) + nBφA(QB) = φA(RB) and EA/〈φA(RB)〉.
Then the two compositions of isogenies

E
φA−→ EA −→ EA/〈φA(RB)〉 and E

φB−→ EB −→ EB/〈φB(RA)〉

have the common kernel 〈RA, RB〉, and thus the two target curves are isomorphic.

Hence Alice and Bob can share the same j-invariant of these curves as a secret.

The security of SIDH relies on the hardness of the computational supersingular

isogeny problem [6]; “Given two curves E, EA and two points φA(PB), φA(QB) on EA,

compute an isogeny φA : E −→ EA of degree ℓeAA .”
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Remark 3.1. As discussed in [4], there exists a reduction between the compu-

tational supersingular isogeny problem and the isogeny path-finding problem. In the

below sections, we shall focus on the isogeny path-finding problem. The computational

hardness of the problem assures the security of the hash function [3] as mentioned in

this section, and it is also deeply connected with the security of SIDH.

§ 4. Algebraic approach for solving the isogeny path-finding problem

We introduce an algebraic approach for solving the isogeny path-finding problem.

Let us define our setting of problem; “Let ℓ = ℓe0 be a power of a small odd prime ℓ0.

Suppose that there exists an isogeny of degree ℓ between two elliptic curves E and Ẽ

over Fq. Given ℓ, j = j(E) and ̃ = j(Ẽ), find an isogeny φ : E −→ Ẽ of degree ℓ.”

§ 4.1. 2-section method: A basic approach

Consider a chain of isogenies φk of prime degree ℓ0 from E to Ẽ as

E
φ1−−−−→ E1

φ2−−−−→ E2
φ3−−−−→ · · · φe−1−−−−→ Ee−1

φe−−−−→ Ẽ.

Let jk denote the j-invariant of Ek for every 1 ≤ k < e. We here regard j-invariants jk’s

as variables (cf., two elements j, ̃ are in Fq). Then we consider a system of algebraic

equations using modular polynomials

(4.1)





Φℓ0(j, j1) = 0,

Φℓ0(jk, jk+1) = 0 (1 ≤ k ≤ e− 2),

Φℓ0(je−1, ̃) = 0.

A solution of this system gives all j-invariants jk’s of intermediate curves Ek. We intro-

duce a method to solve the system (4.1) by Gröbner basis algorithms. (See textbooks

[1, 5] for Gröbner basis computation.) For simplicity, assume that the exponent e of

the isogeny degree ℓ is even with e = 2e0 for a positive integer e0. We divide the

system (4.1) into two parts like the meet-in-the-middle approach. In terms of Gröbner

basis computation, we consider two ideals in different multivariate polynomial rings

(4.2)
I = 〈Φℓ0(j, j1),Φℓ0(j1, j2), . . . ,Φℓ0(je0−1, je0)〉 ⊂ Fq[j1, . . . , je0 ],

Ĩ = 〈Φℓ0(je0 , je0+1),Φℓ0(je0+1, je0+2), . . . ,Φℓ0(je−1, ̃)〉 ⊂ Fq[je0 , . . . , je−1].

Both ideals I and Ĩ are zero-dimensional since j, ̃ ∈ Fq. The dimensions of Fq-vector

spaces Fq[j1, . . . , je0 ]/I and Fq[je0 , . . . , je−1]/Ĩ are both at most (ℓ0 + 1)e0 due to the

form (2.2) of the modular polynomial. Moreover, the generators in (4.2) form a Gröbner

basis for the ideal I (resp., the ideal Ĩ) with the lex term order with respect to

je0 ≻ · · · ≻ j2 ≻ j1 (resp., je0 ≻ · · · ≻ je−2 ≻ je−1).
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Then we can efficiently compute minimal polynomials g and g̃ of the variable je0 with

respect to ideals I and Ĩ, respectively, by using the FGLM algorithm [7]. Both degrees

of g and g̃ are equal to (ℓ0 + 1)ℓe0−1
0 , which is equal to the number of subgroups of

exact order ℓe00 respectively in E and Ẽ. By the GCD computation over the univariate

polynomial ring Fq[je0 ], we obtain a common root of two minimal polynomials g and g̃.

Such a common root is a solution of je0 . Once a solution of je0 is found, the isogeny

problem is divided into two isogeny problems of smaller degree ℓe00 =
√
ℓ (i.e., a divide-

and-conquer strategy). By repeating this procedure, we can solve the whole problem.

§ 4.2. 3-section method: An improvement

The idea is simple to divide the system (4.1) into three parts. Using two parameters

e1 and e2 satisfying 1 < e1 < e0 < e2 < e and e1 ≈ e−e2, consider two ideals in different

multivariate polynomial rings

I[1:e1] = 〈Φℓ0(j, j1),Φℓ0(j1, j2), . . . ,Φℓ0(je1−1, je1)〉 ,
Ĩ[e2:e−1] = 〈Φℓ0(je2 , je2+1),Φℓ0(je2+1, je2+2), . . . ,Φℓ0(je−1, ̃)〉 .

As in the 2-section method, we use the lex term order with je1 ≻ · · · ≻ j2 ≻ j1

(resp., je2 ≻ je2+1 ≻ · · · ≻ je−1) for the zero-dimensional ideal I[1:e1] (resp., Ĩ[e2:e−1]).

Then a Gröbner basis for the ideal I[1:e1] (resp., Ĩ[e2:e−1]) includes a polynomial g(je1)

(resp., g̃(je2)) such that its roots coincide with those of Φℓ′(j, je1) of level ℓ′ = ℓe10
(resp., Φℓ̃′(je2 , ̃) of level ℓ̃′ = ℓe−e2

0 ). In other words, the polynomials g and g̃ are

minimal polynomials for zero-dimensional ideals I[1:e1] and Ĩ[e2:e−1], respectively. We

then consider a new ideal

J[e1:e2] = 〈g(je1),Φℓ0(je1 , je1+1), . . . ,Φℓ0(je2−1, je2), g̃(je2)〉 .

For this zero-dimensional ideal, we use the grevlex term order with

je1 ≺ je2 ≺ je1+1 ≺ je2−1 ≺ · · · ≺ je0

in order to find intermediate j-invariants from je1 to je2 . With these j-invariants, we

can recover the other j-invariants as in the 2-section method.

§ 5. Implementation and experiments

We report experimental results of the algebraic approach and the meet-in-the-

middle approach for solving the isogeny path-finding problem of 3-power degrees.

§ 5.1. Implementation

We describe details of our implementation for the algebraic approach and the

meet-in-the-middle approach with Magma [2], a computational algebra system. See

Appendix for Magma codes of the algebraic approach.
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5.1.1. For the algebraic approach We used a combination of the modular poly-

nomials ΦN (X,Y ) for N = 3, 32, 33, which are pre-computed in Magma, in order to

obtain the minimal polynomials g, g̃. For example, for ℓ = 310, we computed Gröbner

bases for I = 〈Φ33(j, j3),Φ32(j3, j5)〉, Ĩ = 〈Φ32(j5, j7),Φ33(j7, ̃)〉 with the Magma com-

mand GroebnerBasis to obtain g, g̃ ∈ Fp2 [j5], then computed the GCD of g, g̃ with the

Magma commands GCD for the 2-section method.

5.1.2. For the meet-in-the-middle approach We constructed two sets J and J̃

of sequences (j, j1, . . . , je0) and (̃, ̃1, . . . , ̃e0) of j-invariants of elliptic curves Ek and

Ẽk, respectively. Here Ek−1 and Ek (resp., Ẽk−1 and Ẽk) are isogenous of degree 3 for

every 1 ≤ k ≤ e0, where we set E0 = E (resp., Ẽ0 = Ẽ) for convenience. To construct

sequences in J and J̃ , we used the modular polynomial of level 3. For example, we

added each solution of Φ3(jk−1, x) to a sequence (j, j1, . . . , jk−1) of length k. (We used

the Magma command Roots to find a solution.) In constructing such sequences, we

removed a sequence whose ending point already appeared in the other sequences, in

order to reduce the sizes of two sets J and J̃ . In our experiments, it terminated when

we find a pair of two sequences of J and J̃ satisfying je0 = ̃e0 (i.e., a collision).

§ 5.2. Experiments

5.2.1. Input parameters We fix parameters p = 2250 ·3159−1, q = p2 and E : y2 =

x3 + x, extracted from SIKE-p503 parameters [10]. (The quadratic extension field Fp2

is represented as Fp[z]/(z
2 + 1).) The initial curve E is a supersingular elliptic curve

defined over Fp2 having #E(Fp2) = (p+ 1)2 = (2250 · 3159)2 and j = j(E) = 1728. We

also take 3-powers ℓ = 3e (i.e., ℓ0 = 3) as isogeny degrees for even exponents e = 2e0.

(cf., SIKE uses a combination of isogenies of degrees 2 and 3.) We follow the method in

[10] to generate the target supersingular curve Ẽ, isogenous to E of degree ℓ.

5.2.2. Experimental results In Table 1, we summarize average running times of

the algebraic approach and the meet-in-the-middle approach for solving the isogeny

problem of degrees ℓ = 3e with even e from e = 6 up to 14. We measured the running

time of every approach until it finds the j-invariant or the Weierstrass coefficients of

an intermediate curve between two isogenous curves E and Ẽ. We also experimented

5 times for every parameter set. All the experiments were performed using Magma

2.24-5 on 4.20 GHz Intel Core i7 CPU with 16 GByte memory.

5.2.3. Discussion From Table 1, the algebraic approach by the 3-section method is

the fastest for isogeny degrees up to ℓ = 310. For isogeny degrees larger than ℓ = 312,

the meet-in-the-middle approach is faster than the algebraic approach. With respect

to the memory usage, the algebraic approach by the 2-section method requires about

64, 221 and 526 MByte for ℓ = 310, 312 and 314, respectively, while the meet-in-the-

middle approach requires about 24, 26 and 32 MByte for the same isogeny degrees. The
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Table 1. Average running times (seconds) of the algebraic and the meet-in-the-middle

approaches for solving the isogeny problem of degrees ℓ = 3e on supersingular elliptic

curves over Fp2 with 503-bit prime p = 2250 · 3159 − 1, extracted from SIKE-p503 [10]

Isogeny degree Algebraic approach Meet-in-the-middle

ℓ = 3e 2-section 3-section approach

36 = 729 0.11 0.14 2.93

38 = 6561 0.19 0.40 9.61

310 = 59049 7.98 2.72 31.09

312 = 531441 287.77 58.43 96.75

314 = 4782969 5071.16 1775.45 292.82

algebraic approach is applicable in the collision search step of the meet-in-the-middle

approach. Such combination could make it faster in practice and reduce the memory size

of the meet-in-the-middle approach. See a subsequent work [9] for such combination.

On the other hand, the algebraic approach would be (much) slower for degrees ℓ = ℓe0
with larger prime ℓ0, since the ℓ0-th modular polynomial has total degree ℓ0 + 1 (see

the form (2.2)).
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Appendix: Magma codes of the algebraic approach

In this appendix, we present a part of Magma codes of the algebraic approach for

solving the isogeny path-finding problem of 3-power isogeny degrees. Please visit

https://www2.math.kyushu-u.ac.jp/~fukasaku/software/Isogeny_Problem

to obtain the full codes.

/*---------------------------------------------------------*/

/*** solve 3^e-degree isogeny problem ***/

/*** by computing 3-isogenous j-invariant sequence ***/

/*---------------------------------------------------------*/

/*** generate the ideals I, \tilde{I} ***/

function ideal_I_0(e0, F_p2, mod_poly_3, jE)

/* Step 1: generate the polynomial ring */

W := [];

for i in [1..e0] do

Wi := [];

for j in [1..e0] do

if i eq j then Wi[j] := 1;

else Wi[j] := 0; end if;

end for;
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W := Wi cat W;

end for;

Rj := PolynomialRing(F_p2,e0,"weight",W);

/* Step 2: generate j-invariants */

j := []; j[1] := Rj!jE;

for i in [1..e0] do

j[1+i] := Rj.i;

end for;

/* Step 3: generate the ideal */

G := [];

for i in [1..e0] do

G[i] := Rj!Evaluate(mod_poly_3,[j[i],j[i+1]]);

end for;

I := ideal<Rj|G>;

return j, G, I, Rj;

end function;

/*** generate the ideal J, \tilde{J} ***/

function ideal_J_0(e0, F_p2, mod_poly_3, g, R1)

/* Step 1: generate a polynomial ring */

W := [];

for i in [1..e0] do

Wi := [];

for j in [1..e0] do

if i eq j then Wi[j] := 1;

else Wi[j] := 0; end if;

end for;

W := Wi cat W;

end for;

Rj := PolynomialRing(F_p2,e0,"weight",W);

/* Step 2: generate j-invariants */

j := [];

for i in [1..e0] do

j[i] := Rj.i;

end for;

/* Step 3: generate the ideal */

G := [Rj!Evaluate(g,Rj.1)];

for i in [1..e0-1] do

G[i+1] := Rj!Evaluate(mod_poly_3,[j[i],j[i+1]]);

end for;

I := ideal<Rj|G>;

return j, G, I, Rj;

end function;

function ideal_J_append(F_p2, mod_poly, g, g_tilde, R1, middle_ord)

Rj := PolynomialRing(F_p2,2,middle_ord);

j := [Rj.1,Rj.2];

p := Evaluate(g,Rj.1);

p_tilde := Evaluate(g_tilde,Rj.2);

m := Evaluate(mod_poly, [Rj.1,Rj.2]);

j := [Rj.1,Rj.2];

G := [p,m,p_tilde];

I := ideal<Rj|G>;

return j, G, I, Rj;

end function;
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/*** compute minimal polynomials ***/

function mini_pol_GB(e0, F_p2, R1, j, I, Rj)

/* Step 0: generate a polynomial ring */

MarkGroebner(I);

W := [];

for i in [1..(e0-1)] do

Wi := [];

for j in [1..e0] do

if i eq j then Wi[j] := 1;

else Wi[j] := 0; end if;

end for;

W := Wi cat W;

end for;

for i in [1..e0] do

if i eq e0 then W[e0*(e0-1)+i] := 1;

else W[e0*(e0-1)+i] := 0; end if;

end for;

RjN := PolynomialRing(F_p2,e0,"weight",W);

I := ChangeOrder(I, RjN);

/* Step 1: compute a GB of I */

print "compute a GB of I ..."; print ""; print "";

Subtimer1 := Cputime();

G := GroebnerBasis(I);

print ""; print "";

print "GB computation time:", Cputime(Subtimer1);

/* Step 2: compute the minimal polynomial of I w.r.t. j_{e0} */

for i in [1..#G] do

boolean,Gi_uni := IsUnivariate(G[i],e0);

if boolean then

print "non-sq-deg: ", Degree(R1!Gi_uni);

g := SquarefreePart(R1!Gi_uni);

print "sq-deg: ", Degree(g); break i;

end if;

if i eq #G then

error("Fail to compute forward poly.");

end if;

end for;

print "the minimal polynomial: ", g; return(g);

end function;

function append_GB(k, H, J, Rk, R1)

/* Step 1: compute a GB of I w.r.t. j_1 >_{lex}...>_{lex} j_{e0} by FGLM */

print "compute a GB of I w.r.t. j_1 <_{grevlex} j_{2} ...";

print ""; print "";

Subtimer1 := Cputime();

G := GroebnerBasis(J);

print ""; print ""; print "GB computation time:",Cputime(Subtimer1);

print "GB: ", G; return(G);

end function;

/*** 2-SECTION ***/

// mini_pol_2: a parameter "GB", skip_2: a parameter 0, gf_2: 0 or GF(p^2)

functionj_invariant_2_section(e,jE,jE_tilde:mini_pol_2:="GB",

skip_2:=0,gf_2:=0,cycle_2:=0,Al_2:=0)
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/* Step 1: generate the modular polynomials */

if e lt 2 then error("Require e >= 2"); end if;

if e mod 2 ne 0 then error("Require e is even"); end if;

Timer := Cputime();

if Type(gf_2) eq Type(0) then

p := 2^250*3^159-1;

F_p := ResidueClassRing(p);

R1<t> := PolynomialRing(F_p);

P := ideal<R1 | t^2+1>;

F_p2<t> := quo<R1 | P>;

else

F_p2 := gf_2;

end if;

R1<Z> := PolynomialRing(F_p2); R2<X,Y> := PolynomialRing(F_p2,2);

/* Step 2: generate the ideal I, \tilde{I} */

e0 := e div 2;

if skip_2 eq 0 then

mod_poly_3 := R2!ClassicalModularPolynomial(3);

j, G, I, Rj := ideal_I_0(e0, F_p2, mod_poly_3, jE);

j_tilde, G_tilde, I_tilde, Rj_tilde := ideal_I_0(e0, F_p2,

mod_poly_3, jE_tilde);

end if;

/* Step 3: compute the minimal polynomials of I, \tilde{I} */

print "I: ", I; print "tilde{I}: ", I_tilde;

if mini_pol_2 eq "GB" then

g := mini_pol_GB(e0, F_p2, R1, j, I, Rj);

g_tilde := mini_pol_GB(e0, F_p2, R1, j_tilde, I_tilde, Rj_tilde);

end if;

/* Step 2: compute the GCD of g, \tilde{g} */

print "compute GCD(g,\tilde{g})...";

Subtimer := Cputime(); gcd_mod := R1!Gcd(g,g_tilde);

print "the GCD: ", gcd_mod;

print "GCD computation time:",Cputime(Subtimer);

/* Step 3: output a j-invariant */

if Type(gf_2) eq Type(0) then boolean,J_half := HasRoot(gcd_mod,F_p);

else boolean,J_half := HasRoot(gcd_mod,F_p2);

end if;

if boolean eq false then

error("Fail to compute J as a root of GCD");

end if;

print "a", ((e-1) div 2)+2, "-th j-invariant: ", J_half; print"";

print "total time:",Cputime(Timer); return J_half,((e-1) div 2)+2;

end function;

/*** 3-SECTION ***/

// mini_pol_3: "GB", skip_3/skip_mid_3: 0, gf_3: 0 or GF(p^2), middle_ord_3:

a term order

function j_invariant_3_section(e,jE,jE_tilde:

mini_pol_3:="GB",skip_3:=0,skip_mid_3:=0,gf_3:=0,

middle_ord_3:="grevlex",cycle_3:=0,Al_3:=0)

/* Step 0: test */

if e lt 2 then error("Require e >= 2"); end if;

if e mod 2 ne 0 then error("Require e is even"); end if;

if e eq 2 then
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print "use j_invariant_2_section since e = 2";

return j_invariant_2_section(e,jE,jE_tilde:

mini_pol_2:=mini_pol_3,skip_2:=skip_3,Al_2:=Al_3);

end if;

/* Step 1: generate the modular polynomials */

Timer := Cputime();

if Type(gf_3) eq Type(0) then

p := 2^250*3^159-1;

F_p := ResidueClassRing(p);

R1<t> := PolynomialRing(F_p);

P := ideal<R1 | t^2+1>;

F_p2<t> := quo<R1 | P>;

else F_p2 := gf_3; end if;

R1<Z> := PolynomialRing(F_p2); R2<X,Y> := PolynomialRing(F_p2,2);

mod_poly_3 := R2!ClassicalModularPolynomial(3);

mod_poly_9 := R2!ClassicalModularPolynomial(9);

mod_poly_27:= R2!ClassicalModularPolynomial(27);

mod_poly_81:= R2!list_mod_poly(81,F_p2);

/* Step 2: generate the ideal I, \tilde{I} */

e0 := e div 2;

if skip_mid_3 eq 0 or e0 le 2 then e1 := e0 - 1;

elif skip_mid_3 eq 1 or e0 le 3 then e1 := e0 - 2;

elif skip_mid_3 eq 2 or e0 le 4 then e1 := e0 - 3;

else e1 := e0 - 4; end if;

if skip_3 eq 0 or e0 le 1 then

j, G, I, Rj := ideal_I_0(e0, F_p2, mod_poly_3, jE);

end if;

if skip_3 eq 0 or e1 le 1 then

j_tilde, G_tilde, I_tilde, Rj_tilde := ideal_I_0(e1, F_p2, mod_poly_3, jE_tilde);

end if;

print "I: ", I; print "tilde{I}: ", I_tilde;

/* Step 3: compute the minimal polynomials of I, \tilde{I} w.r.t. j_{e_0} */

if mini_pol_3 eq "GB" then

g := mini_pol_GB(e0, F_p2, R1, j, I, Rj);

g_tilde := mini_pol_GB(e1, F_p2, R1, j_tilde, I_tilde, Rj_tilde);

end if;

/* Step 4: compute the minimal polynomial w.r.t. e_0 */

/* Step 4-1: generate the ideal J */

if skip_mid_3 eq 0 or ((e-1)-(e1-1))-e0 le 1 then

k, H, J, Rk := ideal_J_append(F_p2, mod_poly_3,

g, g_tilde, R1, middle_ord_3);

elif skip_mid_3 eq 1 or ((e-1)-(e1-1))-e0 le 2 then

k, H, J, Rk := ideal_J_append(F_p2, mod_poly_9,

g, g_tilde, R1, middle_ord_3);

elif skip_mid_3 eq 2 or ((e-1)-(e1-1))-e0 le 3 then

k, H, J, Rk := ideal_J_append(F_p2, mod_poly_27,

g, g_tilde, R1, middle_ord_3);

else

k, H, J, Rk := ideal_J_append(F_p2, mod_poly_81, g, g_tilde, R1, middle_ord_3);

end if;

print "J: ", J;

/* Step 4-2: compute the minimal polynomial h, \tilde{h} */

print "compute a GB ..."; Subtimer := Cputime();

GB := append_GB(k, H, J, Rk, R1);
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/* Step 4: output a j-invariant */

if Type(gf_3) eq Type(0) then J_half := VarietySequence(ideal<Rk|GB>);

else J_half := VarietySequence(ideal<Rk|GB>);

end if;

if J_half eq [] then error("Fail to compute J as a root of GB"); end if;

print "a", ((e-1) div 2)+2, "-th j-invariant: ", J_half;

print""; print "total time:",Cputime(Timer);

return J_half[1][1],((e-1) div 2)+2;

end function;

/*** 3-SECTION (Symmetric Version) ***/

// mini_pol_3_s: "GB", skip_3_s/skip_mid_3_s: 0, gf_3_s: 0 or GF(p^2), middle_ord_3_s:

a term order

function j_invariant_3_section_symmetric(e,jE,jE_tilde:

mini_pol_3_s:="GB",skip_3_s:=0,skip_mid_3_s:=0,gf_3_s:=0,

middle_ord_3_s:="grevlex",Al_3_s:=0)

/* Step 0: test */

if e lt 2 then error("Require e >= 2"); end if;

if e mod 2 ne 0 then error("Require e is even"); end if;

if e eq 2 then

print "use j_invariant_2_section since e = 2";

return j_invariant_2_section(e,jE,jE_tilde:mini_pol_2:=mini_pol_3_s,

skip_2:=skip_3_s,Al_2:=Al_3_s);

end if;

/* Step 1: generate the modular polynomials */

Timer := Cputime();

if Type(gf_3_s) eq Type(0) then

p := 2^250*3^159-1;

F_p := ResidueClassRing(p);

R1<t> := PolynomialRing(F_p);

P := ideal<R1 | t^2+1>;

F_p2<t> := quo<R1 | P>;

else

F_p2 := gf_3_s;

end if;

R1<Z> := PolynomialRing(F_p2); R2<X,Y> := PolynomialRing(F_p2,2);

mod_poly_3 := R2!ClassicalModularPolynomial(3);

mod_poly_9 := R2!ClassicalModularPolynomial(9);

mod_poly_27:= R2!ClassicalModularPolynomial(27);

mod_poly_81:= R2!list_mod_poly(81,F_p2);

/* Step 2: generate the ideal I, \tilde{I} */

e0 := e div 2;

if skip_mid_3_s eq 0 or e0 le 1 then e1 := e0; e2 := e1-1;

elif skip_mid_3_s eq 1 or e0 le 2 then e1 := e0 - 1; e2 := e1;

elif skip_mid_3_s eq 2 or e0 le 3 then e1 := e0 - 1; e2 := e1-1;

else e1 := e0 - 2; e2 := e1; end if;

if skip_3_s eq 0 or e1 le 1 then

j, G, I, Rj := ideal_I_0(e1, F_p2, mod_poly_3, jE);

end if;

if skip_3_s eq 0 or e2 le 1 then

j_tilde, G_tilde, I_tilde, Rj_tilde := ideal_I_0(e2, F_p2, mod_poly_3, jE_tilde);

end if;

print "I: ", I; print "tilde{I}: ", I_tilde;

/* Step 3: compute the minimal polynomials of I, \tilde{I} w.r.t. j_{e_0} */
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if mini_pol_3_s eq "GB" then

g := mini_pol_GB(e1, F_p2, R1, j, I, Rj);

g_tilde := mini_pol_GB(e2, F_p2, R1, j_tilde, I_tilde, Rj_tilde);

end if;

/* Step 4: compute the minimal polynomial w.r.t. e_0 */

/* Step 4-1: generate the ideal J */

if skip_mid_3_s eq 0 or (e-e2)-e1 le 1 then

k, H, J, Rk := ideal_J_append(F_p2, mod_poly_3, g, g_tilde, R1, middle_ord_3_s);

elif skip_mid_3_s eq 1 or (e-e2)-e1 le 2 then

k, H, J, Rk := ideal_J_append(F_p2, mod_poly_9, g, g_tilde, R1, middle_ord_3_s);

elif skip_mid_3_s eq 2 or (e-e2)-e1 le 3 then

k, H, J, Rk := ideal_J_append(F_p2, mod_poly_27, g, g_tilde, R1, middle_ord_3_s);

else

k, H, J, Rk := ideal_J_append(F_p2, mod_poly_81, g, g_tilde, R1, middle_ord_3_s);

end if;

print "J: ", J;

/* Step 4-2: compute the minimal polynomial h, \tilde{h} w.r.t. e_0 */

print "compute a GB ..."; Subtimer := Cputime();

// mini_pol w.r.t. Rk.1, where Rk = F_p2[j_1,j_2] and j_1 = j_{e_0}

GB := append_GB(k, H, J, Rk, R1);

/* Step 4: output a j-invariant */

if Type(gf_3_s) eq Type(0) then J_half := VarietySequence(ideal<Rk|GB>);

else J_half := VarietySequence(ideal<Rk|GB>);

end if;

if J_half eq [] then

error("Fail to compute J as a root of GB");

end if;

print [e1+1,e-e2], "-th j-invariants: ", J_half; print"";

print "total time:",Cputime(Timer); return J_half, [e1+1,e-e2];

end function;




