TITLE：

Introduction to algebraic approaches for solving isogeny path－finding problems （Theory and Applications of Supersingular Curves and Supersingular Abelian Varieties）

AUTHOR（S）：

FUKASAKU，Ryoya；IKEMATSU，Yasuhiko；KUDO， Momonari；YASUDA，Masaya；YOKOYAMA，Kazuhiro

```
CITATION:
FUKASAKU，Ryoya ．．．［et al］．Introduction to algebraic approaches for solving isogeny path－finding problems（Theory and Applications of Supersingular Curves and Supersingular Abelian Varieties）．数理解析研究所講究録別冊 2022，B90：169－ 184
```


ISSUE DATE：

```
2022－06
URL：
http：／／hdl．handle．net／2433／276280
RIGHT：
© 2022 by the Research Institute for Mathematical Sciences，an
International Joint Usage／Research Center located in Kyoto University．
All rights reserved．Printed in Japan．
```


Introduction to algebraic approaches for solving isogeny path-finding problems

By
Ryoya Fukasaku *, Yasuhiko Ikematsu **, Momonari Kudo ***,
Masaya Yasuda ${ }^{\dagger}$ and Kazuhiro Yokoyama ${ }^{\ddagger}$

Abstract

The isogeny path-finding is a computational problem that finds an isogeny connecting two given isogenous elliptic curves. The hardness of the isogeny path-finding problem supports the fundamental security of isogeny-based cryptosystems. In this paper, we introduce an algebraic approach for solving the isogeny path-finding problem. The basic idea is to reduce the isogeny problem to a system of algebraic equations using modular polynomials, and to solve the system by Gröbner basis computation. We report running time of the algebraic approach for solving the isogeny path-finding problem of 3 -power isogeny degrees on supersingular elliptic curves. This is a brief summary of [16] with implementation codes.

§ 1. Introduction

Since proposals of the hash function of [3] and the key exchange of [11], supersingular isogeny-based cryptography has received attention as post-quantum cryptography (PQC). The National Institute of Standards and Technology (NIST) has proceeded PQC standardization since 2016. For the PQC standardization process, Jao et al. [10] submitted algorithms of supersingular isogeny key encapsulation, called SIKE, that is based

[^0]on [11]. In 2020, NIST selected 15 proposals for the third-round of the standardization process, of which SIKE was selected as an alternate candidate (see [13] for details).

The security of supersingular isogeny-based cryptography is based on the hardness of finding an isogeny connecting two given isogenous supersingular elliptic curves. The meet-in-the-middle approach is a practical way to solve the isogeny path-finding problem. Specifically, it builds two trees of isogenies of prime degrees from both the sides of E and \widetilde{E}, respectively, and it finds a collision between the two trees to find the shortest path from E to \widetilde{E}. In this paper, we introduce a new approach for solving the isogeny path-finding problem. The basic strategy is to reduce the isogeny problem to a system of algebraic equations using modular polynomials. In particular, we divide a system of algebraic equations into two parts like the meet-in-the-middle approach, and compute their Gröbner bases to efficiently find j-invariants of intermediate curves between given two isogenous elliptic curves E and \widetilde{E}. We report running time of the algebraic approach for solving the isogeny problem of 3 -power degrees on supersingular elliptic curves over $\mathbb{F}_{p^{2}}$ with 503 -bit prime p, extracted from SIKE-p503 parameters [10], in order to compare with the meet-in-the-middle approach.

§ 2. Mathematical background

We review basic definitions and properties of elliptic curves and their isogenies.

§ 2.1. Elliptic curves over finite fields

Let $p \geq 5$ be a prime, and q a p-power integer. An elliptic curve over the finite field \mathbb{F}_{q} is given by the (short) Weierstrass form

$$
\begin{equation*}
E: y^{2}=x^{3}+a x+b \quad\left(a, b \in \mathbb{F}_{q}\right) \tag{2.1}
\end{equation*}
$$

with discriminant $\Delta(E)=-16\left(4 a^{3}+27 b^{2}\right) \neq 0$. The j-invariant of E is defined as $j(E)=-1728 \frac{(4 a)^{3}}{\Delta(E)}$. There exists an elliptic curve over \mathbb{F}_{q} with j-invariant equal to a given $j_{0} \in \mathbb{F}_{q}$. Two elliptic curves are isomorphic over the algebraic closure $\overline{\mathbb{F}}_{q}$ of \mathbb{F}_{q} if and only if they both have the same j-invariant. The set of \mathbb{F}_{q}-rational points on E

$$
E\left(\mathbb{F}_{q}\right)=\left\{(x, y) \in \mathbb{F}_{q}^{2}: y^{2}=x^{3}+a x+b\right\} \cup\left\{\mathcal{O}_{E}\right\}
$$

forms an abelian group, where \mathcal{O}_{E} denotes the infinity point on E (see [15, Chapter III] for the group law). The number of \mathbb{F}_{q}-rational points on E, denoted by $\# E\left(\mathbb{F}_{q}\right)$, is represented as $\# E\left(\mathbb{F}_{q}\right)=q+1-t$ where t denotes the trace of the $q^{\text {th }}$-power Frobenius map. The trace holds $|t| \leq 2 \sqrt{q}$ by Hasse's theorem. An elliptic curve E over \mathbb{F}_{q} is said supersingular if the characteristic p of the base field divides the trace t. Otherwise E is said ordinary. Every supersingular elliptic curve over $\overline{\mathbb{F}}_{p}$ has its j-invariant defined
over $\mathbb{F}_{p^{2}}\left[15\right.$, Theorem 3.1, Chapter V], and it is isomorphic over $\overline{\mathbb{F}}_{q}$ to one defined over $\mathbb{F}_{p^{2}}$. There are about $\frac{p}{12}$ isomorphism classes of supersingular elliptic curves over $\overline{\mathbb{F}}_{p}$. For every $n \geq 2$, we let

$$
E[n]=\left\{P \in E\left(\overline{\mathbb{F}}_{q}\right): n P=\mathcal{O}_{E}\right\}
$$

denote the subgroup of $E\left(\overline{\mathbb{F}}_{q}\right)$ of torsion points of order n.

§ 2.2. Isogenies between elliptic curves

A morphism $\phi: E \longrightarrow E^{\prime}$ between two elliptic curves E and E^{\prime} satisfying $\phi\left(\mathcal{O}_{E}\right)=$ $\mathcal{O}_{E^{\prime}}$ is called an isogeny. Two curves are called isogenous (over \mathbb{F}_{q}) if there is a non-zero isogeny (over \mathbb{F}_{q}) between them. Tate's theorem [17] states $\# E\left(\mathbb{F}_{q}\right)=\# E^{\prime}\left(\mathbb{F}_{q}\right)$ if two curves E and E^{\prime} are isogenous over \mathbb{F}_{q}. Every non-zero isogeny $\phi: E \longrightarrow E^{\prime}$ induces an injection between function fields $\phi^{*}: \overline{\mathbb{F}}_{q}\left(E^{\prime}\right) \longrightarrow \overline{\mathbb{F}}_{q}(E)$ [15, Chapter III]. The degree of a non-zero isogeny ϕ is defined as the extension degree between function fields:

$$
\operatorname{deg} \phi=\left[\overline{\mathbb{F}}_{q}(E): \phi^{*} \overline{\mathbb{F}}_{q}\left(E^{\prime}\right)\right] .
$$

A non-zero isogeny ϕ is said separable if the extension $\overline{\mathbb{F}}_{q}(E) / \phi^{*} \overline{\mathbb{F}}_{q}\left(E^{\prime}\right)$ is separable. In particular, a non-zero isogeny is separable if its degree $\operatorname{deg} \phi$ is not divisible by the characteristic p of the base field. A non-zero isogeny $\phi: E \longrightarrow E^{\prime}$ also induces a surjective group homomorphism from $E\left(\overline{\mathbb{F}}_{q}\right)$ to $E^{\prime}\left(\overline{\mathbb{F}}_{q}\right)$, and its kernel is a finite subgroup of $E\left(\overline{\mathbb{F}}_{q}\right)$, denoted by $E[\phi]$. It satisfies $\operatorname{deg} \phi=\# E[\phi]$ if ϕ is separable. Conversely, given a finite subgroup C of $E\left(\overline{\mathbb{F}}_{q}\right)$, there is a unique elliptic curve E^{\prime} and a separable isogeny $\phi: E \longrightarrow E^{\prime}$ with $E[\phi]=C\left[15\right.$, Proposition 4.12 , Chapter III]. The target curve E^{\prime} and the corresponding isogeny ϕ are denoted by E / C and ϕ_{C}, respectively.
2.2.1. Vélu's formula Given a finite subgroup C of $E\left(\overline{\mathbb{F}}_{q}\right)$, Vélu [18] gave an explicit representation of $\phi_{C}: E \longrightarrow E / C$ and the Weierstrass equation for E / C. Let $P=$ $\left(x_{P}, y_{P}\right)$ be a point of prime order $\ell \neq p$ on an elliptic curve E defined by (2.1). For the cyclic subgroup $C=\langle P\rangle$, we present Vélu's formula for $\ell=2$ and 3 below:

- For $\ell=2$, let $v=3 x_{P}^{2}+a, a^{\prime}=a-5 v, b^{\prime}=b-7 v x_{P}$. Then the Weierstrass equation for E / C is given by $Y^{2}=X^{3}+a^{\prime} X+b^{\prime}$. The image $\phi_{C}(x, y)$ of the isogeny ϕ_{C} for $(x, y) \in E\left(\overline{\mathbb{F}}_{q}\right)$ is given by

$$
\left(x+\frac{v}{x-x_{P}}, y-\frac{v y}{\left(x-x_{P}\right)^{2}}\right) .
$$

- For $\ell=3$, let $u=4 y_{P}^{3}, v=3 x_{P}^{2}+a, a^{\prime}=a-5 v, b^{\prime}=b-7\left(u+v x_{P}\right)$. The Weierstrass equation for E / C is given by the same form as in the case $\ell=2$. The image $\phi_{C}(x, y)$ of the isogeny ϕ_{C} for $(x, y) \in E\left(\overline{\mathbb{F}}_{q}\right)$ is given by

$$
\left(x+\frac{v}{x-x_{P}}+\frac{u}{\left(x-x_{P}\right)^{2}}, y\left\{1-\frac{v}{\left(x-x_{P}\right)^{2}}+\frac{2 u}{\left(x-x_{P}\right)^{3}}\right\}\right) .
$$

2.2.2. Modular polynomials For every $\ell \geq 2$, the modular polynomial $\Phi_{\ell}(X, Y)$ parameterizes pairs of elliptic curves with a cyclic isogeny of degree ℓ between them (see [14, Exercise 2.18, Chapter II]). For two curves E and E^{\prime}, there is an isogeny of degree ℓ from E to E^{\prime} with cyclic kernel if and only if $\Phi_{\ell}\left(j(E), j\left(E^{\prime}\right)\right)=0$. The modular polynomial is symmetric in each variable, and its integer coefficients become very large as ℓ increases. For a prime ℓ, the modular polynomial $\Phi_{\ell}(X, Y)$ is equal to the form

$$
\begin{equation*}
X^{\ell+1}-X^{\ell} Y^{\ell}+Y^{\ell+1}+\sum_{i, j \leq \ell, i+j<2 \ell} a_{i j} X^{i} Y^{j} \quad\left(a_{i j} \in \mathbb{Z}\right) \tag{2.2}
\end{equation*}
$$

since there are precisely $\ell+1$ subgroups of the ℓ-torsion group of an elliptic curve E.
2.2.3. Supersingular isogeny graphs For each prime $\ell \neq p$, any two supersingular elliptic curves E and E^{\prime} over $\mathbb{F}_{p^{2}}$ are connected by a chain of isogenies of degree ℓ. Such two curves can be connected by m isogenies of degree ℓ for $m=O(\log p)[12$, Theorem 79]. The supersingular ℓ-isogeny graph over $\mathbb{F}_{p^{2}}$ is the graph $\mathcal{G}_{\ell}\left(\overline{\mathbb{F}}_{p^{2}}\right):=(V, G)$ whose vertices V is the set of the $\overline{\mathbb{F}}_{p^{2}}$-isomorphism classes of supersingular elliptic curves over $\mathbb{F}_{p^{2}}$ labeled by their j-invariants $\left(\# V \approx \frac{p}{12}\right)$, and whose edges G are the pairs $\left(j(E), j\left(E^{\prime}\right)\right)$ for ℓ-isogenous curves E and E^{\prime}. The ℓ-isogeny graph $\mathcal{G}_{\ell}\left(\overline{\mathbb{F}}_{p^{2}}\right)$ is regular with regularity degree $\ell+1$. When $p \equiv 1 \bmod 12$, it is a Ramanujan graph, an optimal expander graph on which random walks quickly reach the uniform distribution.

§ 3. Computational isogeny problems

There are a number of computational problems related to isogenies for the security of (supersingular) isogeny-based cryptography. A template is the general isogeny problem [8, Definition 1]; "Given two elements j, j^{\prime} in \mathbb{F}_{q}, find an isogeny $\phi: E \longrightarrow E^{\prime}$, if exists, such that $j(E)=j$ and $j\left(E^{\prime}\right)=j^{\prime}$." There are a variety of representations of ϕ, such as a chain of isogenies of low degrees, a sequence of j-invariants of intermediate curves, and a path in an isogeny graph between E and E^{\prime}. Below we present typical cryptographic schemes and their related isogeny problems:

§3.1. The isogeny path-finding problem

The first cryptographic construction over a supersingular isogeny graph is the hash function in [3]. For a large prime p and a small prime ℓ (e.g., $\ell=2$ or 3), we consider the supersingular ℓ-isogeny graph over $\mathbb{F}_{p^{2}}$. We fix j_{0} as the initial vertex in the graph, and determine the order of the edges at each vertex by sorting the j-invariants of $\ell+1$ neighbours. Given a message $\left(m_{0}, m_{1}, \ldots, m_{N-1}\right)$, the hash function proceeds as below:

1. We first choose the edge of j_{0} according to the value of m_{0}, and compute the corresponding neighbour j_{1}.
2. For $1 \leq k<N$, we repeat to choose the edge of j_{k} according to m_{k} (excluding the edge between j_{k-1} and j_{k}), and compute the corresponding neighbour j_{k+1}.
3. We return the final invariant j_{N} as the output value of the hash function.

The security of the hash function is based on the hardness of the following problem: "Let p and ℓ be distinct prime numbers, e a positive integer, and E and E^{\prime} two supersingular elliptic curves over $\mathbb{F}_{p^{2}}$. Suppose that there exists an isogeny of degree ℓ^{e} between E and E^{\prime}. Find an isogeny of degree ℓ^{e} from E to E^{\prime}." In terms of cryptography, it is preimage resistant if and only if, given two supersingular invariants j and j^{\prime}, it is computationally hard to compute an isogeny $\phi: E \longrightarrow E^{\prime}$ of prime power degree ℓ^{e} with $j=j(E)$ and $j^{\prime}=j\left(E^{\prime}\right)$. It is also collision resistant if and only if, given one supersingular invariant $j=j(E)$ for some elliptic curve E, it is computationally hard to compute an endomorphism $\varphi: E \longrightarrow E$ of prime power degree ℓ^{e}.

§ 3.2. The computational supersinglular isogeny problem

Let $p=\ell_{A}^{e_{A}} \ell_{B}^{e_{B}}-1$ be a large prime, where ℓ_{A} and ℓ_{B} are distinct small primes satisfying $\ell_{A}^{e_{A}} \approx \ell_{B}^{e_{B}} \approx p^{1 / 2}$. Take a supersingular elliptic curve E over $\mathbb{F}_{p^{2}}$ such that $\# E\left(\mathbb{F}_{p^{2}}\right)=(p+1)^{2}$. Then the group $E\left(\mathbb{F}_{p^{2}}\right)$ has all torsion points of order $p+1$ and it contains two torsion groups $E\left[\ell_{A}^{e_{A}}\right]$ and $E\left[\ell_{B}^{e_{B}}\right]$. Two bases $\left\{P_{A}, Q_{A}\right\}$ and $\left\{P_{B}, Q_{B}\right\}$ for $E\left[\ell_{A}^{e_{A}}\right]$ and $E\left[\ell_{B}^{e_{B}}\right]$ are fixed in the supersingular isogeny Diffie-Hellman (SIDH) key agreement scheme [11]. The procedure of SIDH between Alice and Bob is as below:

1. Alice randomly selects $m_{A}, n_{A} \in\left[0, \ell_{A}^{e_{A}}-1\right]$, not both divisible by ℓ_{A}, and computes the isogeny $\phi_{A}: E \longrightarrow E_{A}=E /\left\langle R_{A}\right\rangle$ with $R_{A}=m_{A} P_{A}+n_{A} Q_{A} \in E\left[\ell_{A}^{e_{A}}\right]$. While keeping m_{A}, n_{A}, R_{A} and ϕ_{A} secret, she transmits $E_{A}, \phi_{A}\left(P_{B}\right)$ and $\phi_{A}\left(Q_{B}\right)$ to Bob.
2. Similarly, Bob randomly selects $m_{B}, n_{B} \in\left[0, \ell_{B}^{e_{B}}-1\right]$, not both divisible by ℓ_{B}, and $\phi_{B}: E \longrightarrow E_{B}=E /\left\langle R_{B}\right\rangle$ with $R_{B}=m_{B} P_{B}+n_{B} Q_{B} \in E\left[\ell_{B}^{e_{B}}\right]$. While keeping m_{B}, n_{B}, R_{B} and ϕ_{B} secret, Bob transmits $E_{B}, \phi_{B}\left(P_{A}\right)$ and $\phi_{B}\left(Q_{A}\right)$ to Alice.
3. After that, Alice computes $m_{A} \phi_{B}\left(P_{A}\right)+n_{A} \phi_{B}\left(Q_{A}\right)=\phi_{B}\left(R_{A}\right)$ and $E_{B} /\left\langle\phi_{B}\left(R_{A}\right)\right\rangle$ whereas Bob computes $m_{B} \phi_{A}\left(P_{B}\right)+n_{B} \phi_{A}\left(Q_{B}\right)=\phi_{A}\left(R_{B}\right)$ and $E_{A} /\left\langle\phi_{A}\left(R_{B}\right)\right\rangle$. Then the two compositions of isogenies

$$
E \xrightarrow{\phi_{A}} E_{A} \longrightarrow E_{A} /\left\langle\phi_{A}\left(R_{B}\right)\right\rangle \quad \text { and } \quad E \xrightarrow{\phi_{B}} E_{B} \longrightarrow E_{B} /\left\langle\phi_{B}\left(R_{A}\right)\right\rangle
$$

have the common kernel $\left\langle R_{A}, R_{B}\right\rangle$, and thus the two target curves are isomorphic. Hence Alice and Bob can share the same j-invariant of these curves as a secret.

The security of SIDH relies on the hardness of the computational supersingular isogeny problem [6]; "Given two curves E, E_{A} and two points $\phi_{A}\left(P_{B}\right), \phi_{A}\left(Q_{B}\right)$ on E_{A}, compute an isogeny $\phi_{A}: E \longrightarrow E_{A}$ of degree $\ell_{A}^{e_{A}} . "$

Remark 3.1. As discussed in [4], there exists a reduction between the computational supersingular isogeny problem and the isogeny path-finding problem. In the below sections, we shall focus on the isogeny path-finding problem. The computational hardness of the problem assures the security of the hash function [3] as mentioned in this section, and it is also deeply connected with the security of SIDH.

§ 4. Algebraic approach for solving the isogeny path-finding problem

We introduce an algebraic approach for solving the isogeny path-finding problem. Let us define our setting of problem; "Let $\ell=\ell_{0}^{e}$ be a power of a small odd prime ℓ_{0}. Suppose that there exists an isogeny of degree ℓ between two elliptic curves E and \widetilde{E} over \mathbb{F}_{q}. Given $\ell, j=j(E)$ and $\tilde{\jmath}=j(\widetilde{E})$, find an isogeny $\phi: E \longrightarrow \widetilde{E}$ of degree ℓ."

§4.1. 2-section method: A basic approach

Consider a chain of isogenies ϕ_{k} of prime degree ℓ_{0} from E to \widetilde{E} as

$$
E \xrightarrow{\phi_{1}} E_{1} \xrightarrow{\phi_{2}} E_{2} \xrightarrow{\phi_{3}} \cdots \xrightarrow{\phi_{e-1}} E_{e-1} \xrightarrow{\phi_{e}} \widetilde{E} .
$$

Let j_{k} denote the j-invariant of E_{k} for every $1 \leq k<e$. We here regard j-invariants j_{k} 's as variables (cf., two elements $j, \tilde{\jmath}$ are in \mathbb{F}_{q}). Then we consider a system of algebraic equations using modular polynomials

$$
\left\{\begin{align*}
\Phi_{\ell_{0}}\left(j, j_{1}\right) & =0 \tag{4.1}\\
\Phi_{\ell_{0}}\left(j_{k}, j_{k+1}\right) & =0 \quad(1 \leq k \leq e-2) \\
\Phi_{\ell_{0}}\left(j_{e-1}, \tilde{\jmath}\right) & =0
\end{align*}\right.
$$

A solution of this system gives all j-invariants j_{k} 's of intermediate curves E_{k}. We introduce a method to solve the system (4.1) by Gröbner basis algorithms. (See textbooks $[1,5]$ for Gröbner basis computation.) For simplicity, assume that the exponent e of the isogeny degree ℓ is even with $e=2 e_{0}$ for a positive integer e_{0}. We divide the system (4.1) into two parts like the meet-in-the-middle approach. In terms of Gröbner basis computation, we consider two ideals in different multivariate polynomial rings

$$
\begin{align*}
& I=\left\langle\Phi_{\ell_{0}}\left(j, j_{1}\right), \Phi_{\ell_{0}}\left(j_{1}, j_{2}\right), \ldots, \Phi_{\ell_{0}}\left(j_{e_{0}-1}, j_{e_{0}}\right)\right\rangle \subset \mathbb{F}_{q}\left[j_{1}, \ldots, j_{e_{0}}\right], \tag{4.2}\\
& \widetilde{I}=\left\langle\Phi_{\ell_{0}}\left(j_{e_{0}}, j_{e_{0}+1}\right), \Phi_{\ell_{0}}\left(j_{e_{0}+1}, j_{e_{0}+2}\right), \ldots, \Phi_{\ell_{0}}\left(j_{e-1}, \tilde{\jmath}\right)\right\rangle \subset \mathbb{F}_{q}\left[j_{e_{0}}, \ldots, j_{e-1}\right]
\end{align*}
$$

Both ideals I and \widetilde{I} are zero-dimensional since $j, \tilde{\jmath} \in \mathbb{F}_{q}$. The dimensions of $\mathbb{F}_{q^{-}}$-vector spaces $\mathbb{F}_{q}\left[j_{1}, \ldots, j_{e_{0}}\right] / I$ and $\mathbb{F}_{q}\left[j_{e_{0}}, \ldots, j_{e-1}\right] / \widetilde{I}$ are both at most $\left(\ell_{0}+1\right)^{e_{0}}$ due to the form (2.2) of the modular polynomial. Moreover, the generators in (4.2) form a Gröbner basis for the ideal I (resp., the ideal \widetilde{I}) with the lex term order with respect to

$$
\left.j_{e_{0}} \succ \cdots \succ j_{2} \succ j_{1} \quad \text { (resp., } j_{e_{0}} \succ \cdots \succ j_{e-2} \succ j_{e-1}\right) .
$$

Then we can efficiently compute minimal polynomials g and \tilde{g} of the variable $j_{e_{0}}$ with respect to ideals I and \widetilde{I}, respectively, by using the FGLM algorithm [7]. Both degrees of g and \tilde{g} are equal to $\left(\ell_{0}+1\right) \ell_{0}^{e_{0}-1}$, which is equal to the number of subgroups of exact order $\ell_{0}^{e_{0}}$ respectively in E and \widetilde{E}. By the GCD computation over the univariate polynomial ring $\mathbb{F}_{q}\left[j_{e_{0}}\right]$, we obtain a common root of two minimal polynomials g and \tilde{g}. Such a common root is a solution of $j_{e_{0}}$. Once a solution of $j_{e_{0}}$ is found, the isogeny problem is divided into two isogeny problems of smaller degree $\ell_{0}^{e_{0}}=\sqrt{\ell}$ (i.e., a divide-and-conquer strategy). By repeating this procedure, we can solve the whole problem.

§4.2. 3-section method: An improvement

The idea is simple to divide the system (4.1) into three parts. Using two parameters e_{1} and e_{2} satisfying $1<e_{1}<e_{0}<e_{2}<e$ and $e_{1} \approx e-e_{2}$, consider two ideals in different multivariate polynomial rings

$$
\begin{aligned}
I_{\left[1: e_{1}\right]} & =\left\langle\Phi_{\ell_{0}}\left(j, j_{1}\right), \Phi_{\ell_{0}}\left(j_{1}, j_{2}\right), \ldots, \Phi_{\ell_{0}}\left(j_{e_{1}-1}, j_{e_{1}}\right)\right\rangle \\
\widetilde{I}_{\left[e_{2}: e-1\right]} & =\left\langle\Phi_{\ell_{0}}\left(j_{e_{2}}, j_{e_{2}+1}\right), \Phi_{\ell_{0}}\left(j_{e_{2}+1}, j_{e_{2}+2}\right), \ldots, \Phi_{\ell_{0}}\left(j_{e-1}, \tilde{\jmath}\right)\right\rangle
\end{aligned}
$$

As in the 2 -section method, we use the lex term order with $j_{e_{1}} \succ \cdots \succ j_{2} \succ j_{1}$ (resp., $j_{e_{2}} \succ j_{e_{2}+1} \succ \cdots \succ j_{e-1}$) for the zero-dimensional ideal $I_{\left[1: e_{1}\right]}$ (resp., $\widetilde{I}_{\left[e_{2}: e-1\right]}$). Then a Gröbner basis for the ideal $I_{\left[1: e_{1}\right]}$ (resp., $\left.\widetilde{I}_{\left[e_{2}: e-1\right]}\right)$ includes a polynomial $g\left(j_{e_{1}}\right)$ (resp., $\left.\tilde{g}\left(j_{e_{2}}\right)\right)$ such that its roots coincide with those of $\Phi_{\ell^{\prime}}\left(j, j_{e_{1}}\right)$ of level $\ell^{\prime}=\ell_{0}^{e_{1}}$ (resp., $\Phi_{\tilde{\ell^{\prime}}}\left(j_{e_{2}}, \tilde{\jmath}\right)$ of level $\tilde{\ell}^{\prime}=\ell_{0}^{e-e_{2}}$). In other words, the polynomials g and \tilde{g} are minimal polynomials for zero-dimensional ideals $I_{\left[1: e_{1}\right]}$ and $\widetilde{I}_{\left[e_{2}: e-1\right]}$, respectively. We then consider a new ideal

$$
J_{\left[e_{1}: e_{2}\right]}=\left\langle g\left(j_{e_{1}}\right), \Phi_{\ell_{0}}\left(j_{e_{1}}, j_{e_{1}+1}\right), \ldots, \Phi_{\ell_{0}}\left(j_{e_{2}-1}, j_{e_{2}}\right), \tilde{g}\left(j_{e_{2}}\right)\right\rangle .
$$

For this zero-dimensional ideal, we use the grevlex term order with

$$
j_{e_{1}} \prec j_{e_{2}} \prec j_{e_{1}+1} \prec j_{e_{2}-1} \prec \cdots \prec j_{e_{0}}
$$

in order to find intermediate j-invariants from $j_{e_{1}}$ to $j_{e_{2}}$. With these j-invariants, we can recover the other j-invariants as in the 2 -section method.

§ 5. Implementation and experiments

We report experimental results of the algebraic approach and the meet-in-themiddle approach for solving the isogeny path-finding problem of 3 -power degrees.

§ 5.1. Implementation

We describe details of our implementation for the algebraic approach and the meet-in-the-middle approach with Magma [2], a computational algebra system. See Appendix for Magma codes of the algebraic approach.
5.1.1. For the algebraic approach We used a combination of the modular polynomials $\Phi_{N}(X, Y)$ for $N=3,3^{2}, 3^{3}$, which are pre-computed in MAGMA, in order to obtain the minimal polynomials g, \tilde{g}. For example, for $\ell=3^{10}$, we computed Gröbner bases for $I=\left\langle\Phi_{3^{3}}\left(j, j_{3}\right), \Phi_{3^{2}}\left(j_{3}, j_{5}\right)\right\rangle, \widetilde{I}=\left\langle\Phi_{3^{2}}\left(j_{5}, j_{7}\right), \Phi_{3^{3}}\left(j_{7}, \tilde{J}\right)\right\rangle$ with the MAGMA command GroebnerBasis to obtain $g, \tilde{g} \in \mathbb{F}_{p^{2}}\left[j_{5}\right]$, then computed the GCD of g, \tilde{g} with the Magma commands GCD for the 2 -section method.
5.1.2. For the meet-in-the-middle approach We constructed two sets J and \widetilde{J} of sequences $\left(j, j_{1}, \ldots, j_{e_{0}}\right)$ and ($\left.\tilde{\jmath}, \tilde{\jmath}_{1}, \ldots, \tilde{\jmath}_{e_{0}}\right)$ of j-invariants of elliptic curves E_{k} and \widetilde{E}_{k}, respectively. Here E_{k-1} and E_{k} (resp., \widetilde{E}_{k-1} and \widetilde{E}_{k}) are isogenous of degree 3 for every $1 \leq k \leq e_{0}$, where we set $E_{0}=E$ (resp., $\widetilde{E}_{0}=\widetilde{E}$) for convenience. To construct sequences in J and \widetilde{J}, we used the modular polynomial of level 3 . For example, we added each solution of $\Phi_{3}\left(j_{k-1}, x\right)$ to a sequence $\left(j, j_{1}, \ldots, j_{k-1}\right)$ of length k. (We used the Magma command Roots to find a solution.) In constructing such sequences, we removed a sequence whose ending point already appeared in the other sequences, in order to reduce the sizes of two sets J and \widetilde{J}. In our experiments, it terminated when we find a pair of two sequences of J and \widetilde{J} satisfying $j_{e_{0}}=\tilde{\jmath}_{e_{0}}$ (i.e., a collision).

§5.2. Experiments

5.2.1. Input parameters We fix parameters $p=2^{250} \cdot 3^{159}-1, q=p^{2}$ and $E: y^{2}=$ $x^{3}+x$, extracted from SIKE-p503 parameters [10]. (The quadratic extension field $\mathbb{F}_{p^{2}}$ is represented as $\mathbb{F}_{p}[z] /\left(z^{2}+1\right)$.) The initial curve E is a supersingular elliptic curve defined over $\mathbb{F}_{p^{2}}$ having $\# E\left(\mathbb{F}_{p^{2}}\right)=(p+1)^{2}=\left(2^{250} \cdot 3^{159}\right)^{2}$ and $j=j(E)=1728$. We also take 3 -powers $\ell=3^{e}$ (i.e., $\ell_{0}=3$) as isogeny degrees for even exponents $e=2 e_{0}$. (cf., SIKE uses a combination of isogenies of degrees 2 and 3.) We follow the method in [10] to generate the target supersingular curve \widetilde{E}, isogenous to E of degree ℓ.
5.2.2. Experimental results In Table 1, we summarize average running times of the algebraic approach and the meet-in-the-middle approach for solving the isogeny problem of degrees $\ell=3^{e}$ with even e from $e=6$ up to 14 . We measured the running time of every approach until it finds the j-invariant or the Weierstrass coefficients of an intermediate curve between two isogenous curves E and \widetilde{E}. We also experimented 5 times for every parameter set. All the experiments were performed using Magma $2.24-5$ on 4.20 GHz Intel Core i7 CPU with 16 GByte memory.
5.2.3. Discussion From Table 1, the algebraic approach by the 3 -section method is the fastest for isogeny degrees up to $\ell=3^{10}$. For isogeny degrees larger than $\ell=3^{12}$, the meet-in-the-middle approach is faster than the algebraic approach. With respect to the memory usage, the algebraic approach by the 2 -section method requires about 64,221 and 526 MByte for $\ell=3^{10}, 3^{12}$ and 3^{14}, respectively, while the meet-in-themiddle approach requires about 24,26 and 32 MByte for the same isogeny degrees. The

Table 1. Average running times (seconds) of the algebraic and the meet-in-the-middle approaches for solving the isogeny problem of degrees $\ell=3^{e}$ on supersingular elliptic curves over $\mathbb{F}_{p^{2}}$ with 503 -bit prime $p=2^{250} \cdot 3^{159}-1$, extracted from SIKE-p503 [10]

Isogeny degree $\ell=3^{e}$	Algebraic approach		
2-section	3-section	Meet-in-the-middle approach	
$3^{6}=729$	0.11	0.14	2.93
$3^{8}=6561$	0.19	0.40	9.61
$3^{10}=59049$	7.98	2.72	31.09
$3^{12}=531441$	287.77	58.43	96.75
$3^{14}=4782969$	5071.16	1775.45	292.82

algebraic approach is applicable in the collision search step of the meet-in-the-middle approach. Such combination could make it faster in practice and reduce the memory size of the meet-in-the-middle approach. See a subsequent work [9] for such combination. On the other hand, the algebraic approach would be (much) slower for degrees $\ell=\ell_{0}^{e}$ with larger prime ℓ_{0}, since the ℓ_{0}-th modular polynomial has total degree $\ell_{0}+1$ (see the form (2.2)).

References

[1] Thomas Becker and Volker Weispfenning. Gröbner bases, volume 141 of Graduate Texts in Mathematics. Springer, 1993.
[2] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The user language. Journal of Symbolic Computation, 24(3-4):235-265, 1997. Computational algebra and number theory (London, 1993).
[3] Denis X Charles, Kristin E Lauter, and Eyal Z Goren. Cryptographic hash functions from expander graphs. Journal of Cryptology, 22(1):93-113, 2009.
[4] Anamaria Costache, Brooke Feigon, Kristin Lauter, Maike Massierer, and Anna Puskás. Ramanujan graphs in cryptography. IACR ePrint 2018/593, 2018.
[5] David Cox, John Little, and Donal O'Shea. Ideals, varieties, and algorithms: An introduction to computational algebraic geometry and commutative algebra. Springer Science \& Business Media, 2013.
[6] Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. Journal of Mathematical Cryptology, 8(3):209-247, 2014.
[7] Jean-Charles Faugere, Patrizia Gianni, Daniel Lazard, and Teo Mora. Efficient computation of zero-dimensional gröbner bases by change of ordering. Journal of Symbolic Computation, 16(4):329-344, 1993.
[8] Steven D Galbraith and Frederik Vercauteren. Computational problems in supersingular elliptic curve isogenies. Quantum Information Processing, 17(10):265, 2018.
[9] Yasuhiko Ikematsu, Ryoya Fukasaku, Momonari Kudo, Masaya Yasuda, Katsuyuki Takashima, and Kazuhiro Yokoyama. Hybrid meet-in-the-middle attacks for the isogeny
path-finding problem. In Proceedings of the 7th ACM Workshop on ASIA Public-Key Cryptography-APKC 2020, pages 36-44, 2020.
[10] D Jao, R Azarderakhsh, M Campagna, C Costello, L DeFeo, B Hess, A Jalali, B Koziel, B LaMacchia, P Longa, et al. SIKE: Supersingular isogeny key encapsulation. submission to the NIST standardization process on post-quantum cryptography, 2017.
[11] David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. In Post-Quantum Cryptography-PQCrypto 2011, volume 7071 of Lecture Notes in Computer Science, pages 19-34. Springer, 2011.
[12] David Kohel. Endomorphism rings of elliptic curves over finite fields. PhD thesis, University of California at Berkeley, 1996.
[13] Dustin Moody, Gorjan Alagic, Daniel C Apon, David A Cooper, Quynh H Dang, John M Kelsey, Yi-Kai Liu, Carl A Miller, Rene C Peralta, Ray A Perlner, et al. Status report on the second round of the NIST post-quantum cryptography standardization process. NISTIR 8309, 2020.
[14] Joseph H Silverman. Advanced topics in the arithmetic of elliptic curves, volume 151 of Graduate Texts in Mathematics. Springer-Verlag New York, 1994.
[15] Joseph H Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts in Mathematics. Springer Science \& Business Media, second edition, 2009.
[16] Yasushi Takahashi, Momonari Kudo, Ryoya Fukasaku, Yasuhiko Ikematsu, Masaya Yasuda, and Kazuhiro Yokoyama. Algebraic approaches for solving isogeny problems of prime power degrees. Journal of Mathematical Cryptology, 15:31-44, 2021.
[17] John Tate. Endomorphisms of abelian varieties over finite fields. Inventiones mathematicae, 2(2):134-144, 1966.
[18] Jacques Vélu. Isogénies entre courbes elliptiques. CR Acad. Sci. Paris Sér. AB, 273:238241, 1971.

Appendix: Magma codes of the algebraic approach

In this appendix, we present a part of MAGMA codes of the algebraic approach for solving the isogeny path-finding problem of 3-power isogeny degrees. Please visit
https://www2.math.kyushu-u.ac.jp/~fukasaku/software/Isogeny_Problem
to obtain the full codes.

```
/*--------------------------------------------------------------*/
/*** solve 3^e-degree isogeny problem ***/
/*** by computing 3-isogenous j-invariant sequence ***/
/*--------------------------------------------------------------*/
/*** generate the ideals I, \tilde{I} ***/
function ideal_I_O(e0, F_p2, mod_poly_3, jE)
    /* Step 1: generate the polynomial ring */
        W := [];
        for i in [1..e0] do
            Wi := [];
            for j in [1..e0] do
            if i eq j then Wi[j] := 1;
            else Wi[j] := 0; end if;
        end for;
```

```
        W := Wi cat W;
    end for;
    Rj := PolynomialRing(F_p2,e0,"weight",W);
/* Step 2: generate j-invariants */
    j := []; j[1] := Rj!jE;
    for i in [1..e0] do
        j[1+i] := Rj.i;
    end for;
/* Step 3: generate the ideal */
    G := [];
    for i in [1..e0] do
            G[i] := Rj!Evaluate(mod_poly_3,[j[i],j[i+1]]);
    end for;
    I := ideal<Rj|G>;
    return j, G, I, Rj;
end function;
/*** generate the ideal J, \tilde{J} ***/
function ideal_J_0(e0, F_p2, mod_poly_3, g, R1)
    /* Step 1: generate a polynomial ring */
        W := [];
        for i in [1..e0] do
            Wi := [];
            for j in [1..e0] do
                if i eq j then Wi[j] := 1;
                else Wi[j] := 0; end if;
            end for;
            W := Wi cat W;
        end for;
        Rj := PolynomialRing(F_p2,e0,"weight",W);
    /* Step 2: generate j-invariants */
        j := [];
        for i in [1..e0] do
            j[i] := Rj.i;
        end for;
    /* Step 3: generate the ideal */
        G := [Rj!Evaluate(g,Rj.1)];
        for i in [1..e0-1] do
            G[i+1] := Rj!Evaluate(mod_poly_3,[j[i],j[i+1]]);
        end for;
        I := ideal<Rj|G>;
        return j, G, I, Rj;
end function;
function ideal_J_append(F_p2, mod_poly, g, g_tilde, R1, middle_ord)
    Rj := PolynomialRing(F_p2,2,middle_ord);
    j := [Rj.1,Rj.2];
    p := Evaluate(g,Rj.1);
    p_tilde := Evaluate(g_tilde,Rj.2);
    m := Evaluate(mod_poly, [Rj.1,Rj.2]);
    j := [Rj.1,Rj.2];
    G := [p,m,p_tilde];
    I := ideal<Rj|G>;
    return j, G, I, Rj;
end function;
```

```
/*** compute minimal polynomials ***/
function mini_pol_GB(eO, F_p2, R1, j, I, Rj)
    /* Step 0: generate a polynomial ring */
        MarkGroebner(I);
        W := [];
            for i in [1..(e0-1)] do
            Wi := [];
            for j in [1..e0] do
                if i eq j then Wi[j] := 1;
                else Wi[j] := 0; end if;
            end for;
            W := Wi cat W;
        end for;
        for i in [1..e0] do
            if i eq e0 then W[e0*(e0-1)+i] := 1;
            else W[eO*(e0-1)+i] := 0; end if;
        end for;
        RjN := PolynomialRing(F_p2,e0,"weight",W);
        I := ChangeOrder(I, RjN);
    /* Step 1: compute a GB of I */
        print "compute a GB of I ..."; print ""; print "";
        Subtimer1 := Cputime();
        G := GroebnerBasis(I);
        print ""; print "";
        print "GB computation time:", Cputime(Subtimer1);
    /* Step 2: compute the minimal polynomial of I w.r.t. j_{e0} */
        for i in [1..#G] do
            boolean,Gi_uni := IsUnivariate(G[i],e0);
            if boolean then
                print "non-sq-deg: ", Degree(R1!Gi_uni);
                    g := SquarefreePart(R1!Gi_uni);
                    print "sq-deg: ", Degree(g); break i;
            end if;
            if i eq #G then
                error("Fail to compute forward poly.");
            end if;
        end for;
        print "the minimal polynomial: ", g; return(g);
end function;
function append_GB(k, H, J, Rk, R1)
    /* Step 1: compute a GB of I w.r.t. j_1 >_{lex}...>_{lex} j_{e0} by FGLM */
        print "compute a GB of I w.r.t. j_1 <_{grevlex} j_{2} ...";
        print ""; print "";
        Subtimer1 := Cputime();
        G := GroebnerBasis(J);
        print ""; print ""; print "GB computation time:",Cputime(Subtimer1);
        print "GB: ", G; return(G);
end function;
/*** 2-SECTION ***/
// mini_pol_2: a parameter "GB", skip_2: a parameter 0, gf_2: O or GF(p^2)
functionj_invariant_2_section(e,jE,jE_tilde:mini_pol_2:="GB",
skip_2:=0,gf_2:=0,cycle_2:=0,Al_2:=0)
```

```
/* Step 1: generate the modular polynomials */
    if e lt 2 then error("Require e >= 2"); end if;
    if e mod 2 ne O then error("Require e is even"); end if;
    Timer := Cputime();
    if Type(gf_2) eq Type(0) then
        p := 2^250*3^159-1;
        F_p := ResidueClassRing(p);
        R1<t> := PolynomialRing(F_p);
        P := ideal<R1 | t^2+1>;
        F_p2<t> := quo<R1 | P>;
    else
        F_p2 := gf_2;
    end if;
    R1<Z> := PolynomialRing(F_p2); R2<X,Y> := PolynomialRing(F_p2,2);
/* Step 2: generate the ideal I, \tilde{I} */
    e0 := e div 2;
    if skip_2 eq 0 then
        mod_poly_3 := R2!ClassicalModularPolynomial(3);
        j, G, I, Rj := ideal_I_O(e0, F_p2, mod_poly_3, jE);
        j_tilde, G_tilde, I_tilde, Rj_tilde := ideal_I_O(e0, F_p2,
        mod_poly_3, jE_tilde);
    end if;
/* Step 3: compute the minimal polynomials of I, \tilde{I} */
    print "I: ", I; print "tilde{I}: ", I_tilde;
    if mini_pol_2 eq "GB" then
        g := mini_pol_GB(eO, F_p2, R1, j, I, Rj);
        g_tilde := mini_pol_GB(e0, F_p2, R1, j_tilde, I_tilde, Rj_tilde);
    end if;
/* Step 2: compute the GCD of g, \tilde{g} */
    print "compute GCD(g,\tilde{g})...";
    Subtimer := Cputime(); gcd_mod := R1!Gcd(g,g_tilde);
    print "the GCD: ", gcd_mod;
    print "GCD computation time:",Cputime(Subtimer);
    /* Step 3: output a j-invariant */
    if Type(gf_2) eq Type(0) then boolean,J_half := HasRoot(gcd_mod,F_p);
    else boolean,J_half := HasRoot(gcd_mod,F_p2);
    end if;
    if boolean eq false then
        error("Fail to compute J as a root of GCD");
    end if;
    print "a", ((e-1) div 2)+2, "-th j-invariant: ", J_half; print"";
    print "total time:",Cputime(Timer); return J_half,((e-1) div 2)+2;
end function;
```

```
/*** 3-SECTION ***/
```

/*** 3-SECTION ***/
// mini_pol_3: "GB", skip_3/skip_mid_3: 0, gf_3: 0 or GF(p^2), middle_ord_3:
// mini_pol_3: "GB", skip_3/skip_mid_3: 0, gf_3: 0 or GF(p^2), middle_ord_3:
a term order
a term order
function j_invariant_3_section(e,jE,jE_tilde:
function j_invariant_3_section(e,jE,jE_tilde:
mini_pol_3:="GB",skip_3:=0,skip_mid_3:=0,gf_3:=0,
mini_pol_3:="GB",skip_3:=0,skip_mid_3:=0,gf_3:=0,
middle_ord_3:="grevlex",cycle_3:=0,Al_3:=0)
middle_ord_3:="grevlex",cycle_3:=0,Al_3:=0)
/* Step 0: test */
/* Step 0: test */
if e lt 2 then error("Require e >= 2"); end if;
if e lt 2 then error("Require e >= 2"); end if;
if e mod 2 ne 0 then error("Require e is even"); end if;
if e mod 2 ne 0 then error("Require e is even"); end if;
if e eq 2 then

```
    if e eq 2 then
```

```
        print "use j_invariant_2_section since e = 2";
        return j_invariant_2_section(e,jE,jE_tilde:
        mini_pol_2:=mini_pol_3,skip_2:=skip_3,Al_2:=Al_3);
    end if;
/* Step 1: generate the modular polynomials */
    Timer := Cputime();
    if Type(gf_3) eq Type(0) then
        p := 2^250*3^159-1;
        F_p := ResidueClassRing(p);
        R1<t> := PolynomialRing(F_p);
        P := ideal<R1 | t^2+1>;
        F_p2<t> := quo<R1 | P>;
    else F_p2 := gf_3; end if;
    R1<Z> := PolynomialRing(F_p2); R2<X,Y> := PolynomialRing(F_p2,2);
    mod_poly_3 := R2!ClassicalModularPolynomial(3);
    mod_poly_9 := R2!ClassicalModularPolynomial(9);
    mod_poly_27:= R2!ClassicalModularPolynomial(27);
    mod_poly_81:= R2!list_mod_poly(81,F_p2);
/* Step 2: generate the ideal I, \tilde{I} */
    e0 := e div 2;
    if skip_mid_3 eq O or e0 le 2 then e1 := e0 - 1;
    elif skip_mid_3 eq 1 or e0 le 3 then e1 := e0 - 2;
    elif skip_mid_3 eq 2 or e0 le 4 then e1 := e0 - 3;
    else e1 := e0 - 4; end if;
    if skip_3 eq O or e0 le 1 then
        j, G, I, Rj := ideal_I_O(e0, F_p2, mod_poly_3, jE);
    end if;
    if skip_3 eq O or e1 le 1 then
        j_tilde, G_tilde, I_tilde, Rj_tilde := ideal_I_0(e1, F_p2, mod_poly_3, jE_tilde);
    end if;
    print "I: ", I; print "tilde{I}: ", I_tilde;
/* Step 3: compute the minimal polynomials of I, \tilde{I} w.r.t. j_{e_0} */
    if mini_pol_3 eq "GB" then
        g := mini_pol_GB(e0, F_p2, R1, j, I, Rj);
        g_tilde := mini_pol_GB(e1, F_p2, R1, j_tilde, I_tilde, Rj_tilde);
    end if;
/* Step 4: compute the minimal polynomial w.r.t. e_0 */
/* Step 4-1: generate the ideal J */
    if skip_mid_3 eq 0 or ((e-1)-(e1-1))-e0 le 1 then
        k, H, J, Rk := ideal_J_append(F_p2, mod_poly_3,
        g, g_tilde, R1, middle_ord_3);
    elif skip_mid_3 eq 1 or ((e-1)-(e1-1))-e0 le 2 then
        k, H, J, Rk := ideal_J_append(F_p2, mod_poly_9,
        g, g_tilde, R1, middle_ord_3);
    elif skip_mid_3 eq 2 or ((e-1)-(e1-1))-e0 le 3 then
            k, H, J, Rk := ideal_J_append(F_p2, mod_poly_27,
            g, g_tilde, R1, middle_ord_3);
    else
            k, H, J, Rk := ideal_J_append(F_p2, mod_poly_81, g, g_tilde, R1, middle_ord_3);
    end if;
    print "J: ", J;
/* Step 4-2: compute the minimal polynomial h, \tilde{h} */
    print "compute a GB ..."; Subtimer := Cputime();
    GB := append_GB(k, H, J, Rk, R1);
```

```
/* Step 4: output a j-invariant */
    if Type(gf_3) eq Type(0) then J_half := VarietySequence(ideal<Rk|GB>);
    else J_half := VarietySequence(ideal<Rk|GB>);
    end if;
    if J_half eq [] then error("Fail to compute J as a root of GB"); end if;
    print "a", ((e-1) div 2)+2, "-th j-invariant: ", J_half;
    print""; print "total time:",Cputime(Timer);
    return J_half[1][1],((e-1) div 2)+2;
end function;
```

/*** 3-SECTION (Symmetric Version) ***/
// mini_pol_3_s: "GB", skip_3_s/skip_mid_3_s: 0, gf_3_s: 0 or GF(p^2), middle_ord_3_s:
a term order
function j_invariant_3_section_symmetric (e,jE,jE_tilde:
mini_pol_3_s:="GB",skip_3_s:=0,skip_mid_3_s:=0,gf_3_s:=0,
middle_ord_3_s:="grevlex",Al_3_s:=0)
/* Step 0: test */
if e lt 2 then error("Require e >= 2"); end if;
if e mod 2 ne 0 then error("Require e is even"); end if;
if e eq 2 then
print "use j_invariant_2_section since e = 2";
return j_invariant_2_section(e,jE,jE_tilde:mini_pol_2:=mini_pol_3_s,
skip_2:=skip_3_s,Al_2:=Al_3_s);
end if;
/* Step 1: generate the modular polynomials */
Timer := Cputime();
if Type(gf_3_s) eq Type(0) then
p := 2^250*3^159-1;
F_p := ResidueClassRing(p);
R1<t> := PolynomialRing(F_p);
P := ideal<R1 | t^2+1>;
F_p2<t> := quo<R1 | P>;
else
F_p2 := gf_3_s;
end if;
R1<Z> := PolynomialRing(F_p2); R2<X,Y> := PolynomialRing(F_p2,2);
mod_poly_3 := R2!ClassicalModularPolynomial(3);
mod_poly_9 := R2!ClassicalModularPolynomial(9);
mod_poly_27:= R2!ClassicalModularPolynomial(27);
mod_poly_81:= R2!list_mod_poly(81,F_p2);
/* Step 2: generate the ideal I, \tilde\{I\} */
eO := e div 2;
if skip_mid_3_s eq 0 or e0 le 1 then e1 := e0; e2 := e1-1;
elif skip_mid_3_s eq 1 or e0 le 2 then e1 := e0 - 1; e2 := e1;
elif skip_mid_3_s eq 2 or e0 le 3 then e1 := e0 - 1; e2 := e1-1;
else e1 :=e0-2; e2 := e1; end if;
if skip_3_s eq 0 or e1 le 1 then
j, G, I, Rj := ideal_I_O(e1, F_p2, mod_poly_3, jE);
end if;
if skip_3_s eq 0 or e2 le 1 then
j_tilde, G_tilde, I_tilde, Rj_tilde := ideal_I_O(e2, F_p2, mod_poly_3, jE_tilde);
end if;
print "I: ", I; print "tilde\{I\}: ", I_tilde;
/* Step 3: compute the minimal polynomials of I, \tilde\{I\} w.r.t. j_\{e_0\} */

```
    if mini_pol_3_s eq "GB" then
        g := mini_pol_GB(e1, F_p2, R1, j, I, Rj);
        g_tilde := mini_pol_GB(e2, F_p2, R1, j_tilde, I_tilde, Rj_tilde);
    end if;
    /* Step 4: compute the minimal polynomial w.r.t. e_0 */
    /* Step 4-1: generate the ideal J */
    if skip_mid_3_s eq 0 or (e-e2)-e1 le 1 then
        k, H, J, Rk := ideal_J_append(F_p2, mod_poly_3, g, g_tilde, R1, middle_ord_3_s);
    elif skip_mid_3_s eq 1 or (e-e2)-e1 le 2 then
        k, H, J, Rk := ideal_J_append(F_p2, mod_poly_9, g, g_tilde, R1, middle_ord_3_s);
    elif skip_mid_3_s eq 2 or (e-e2)-e1 le 3 then
        k, H, J, Rk := ideal_J_append(F_p2, mod_poly_27, g, g_tilde, R1, middle_ord_3_s);
    else
        k, H, J, Rk := ideal_J_append(F_p2, mod_poly_81, g, g_tilde, R1, middle_ord_3_s);
    end if;
    print "J: ", J;
    /* Step 4-2: compute the minimal polynomial h, \tilde{h} w.r.t. e_0 */
    print "compute a GB ..."; Subtimer := Cputime();
    // mini_pol w.r.t. Rk.1, where Rk = F_p2[j_1,j_2] and j_1 = j_{e_0}
    GB := append_GB(k, H, J, Rk, R1);
/* Step 4: output a j-invariant */
    if Type(gf_3_s) eq Type(0) then J_half := VarietySequence(ideal<Rk|GB>);
    else J_half := VarietySequence(ideal<Rk|GB>);
    end if;
    if J_half eq [] then
        error("Fail to compute J as a root of GB");
    end if;
    print [e1+1,e-e2], "-th j-invariants: ", J_half; print"";
    print "total time:",Cputime(Timer); return J_half, [e1+1,e-e2];
end function;
```


[^0]: Received December 11, 2020. Revised April 19, 2021.
 2020 Mathematics Subject Classification(s): Primary: 14G50, Secondary: 94A60
 Key Words: Elliptic curves, Isogenies, Isogeny problems, Gröbner basis computation
 Supported by JSPS KAKENHI Grant Numbers 19K22847 and 20K14301, Japan
 *Faculty of Mathematics, Kyushu University, Fukuoka 819-0395, Japan.
 e-mail: fukasaku@math.kyushu-u.ac.jp
 ** Institute of Mathematics for Industry, Kyushu University, Fukuoka 819-0395, Japan. e-mail: ikematsu@imi.kyushu-u.ac.jp
 *** Department of Mathematical Informatics, The University of Tokyo, Tokyo 113-8654, Japan. e-mail: kudo@mist.u-tokyo.ac.jp
 ${ }^{\dagger}$ Department of Mathematics, Rikkyo University, Tokyo 171-8501, Japan. e-mail: myasuda@rikkyo.ac.jp
 ${ }^{\ddagger}$ Department of Mathematics, Rikkyo University, Tokyo 171-8501, Japan. e-mail: kazuhiro@rikkyo.ac.jp

