
RIGHT:

URL:

CITATION:

AUTHOR(S):

ISSUE DATE:

TITLE:

Introduction to algebraic approaches for
solving isogeny path-finding problems
(Theory and Applications of Supersingular
Curves and Supersingular Abelian Varieties)

FUKASAKU, Ryoya; IKEMATSU, Yasuhiko; KUDO,
Momonari; YASUDA, Masaya; YOKOYAMA, Kazuhiro

FUKASAKU, Ryoya ...[et al]. Introduction to algebraic approaches for solving isogeny path-finding problems (Theory and
Applications of Supersingular Curves and Supersingular Abelian Varieties). 数理解析研究所講究録別冊 2022, B90: 169-
184

2022-06

http://hdl.handle.net/2433/276280

© 2022 by the Research Institute for Mathematical Sciences, an
International Joint Usage/Research Center located in Kyoto University.
All rights reserved. Printed in Japan.

RIMS Kôkyûroku Bessatsu
B90 (2022), 169–184

Introduction to algebraic approaches

for solving isogeny path-finding problems

By

Ryoya Fukasaku ∗, Yasuhiko Ikematsu ∗∗, Momonari Kudo ∗∗∗,

Masaya Yasuda † and Kazuhiro Yokoyama ‡

Abstract

The isogeny path-finding is a computational problem that finds an isogeny connecting two

given isogenous elliptic curves. The hardness of the isogeny path-finding problem supports the

fundamental security of isogeny-based cryptosystems. In this paper, we introduce an algebraic

approach for solving the isogeny path-finding problem. The basic idea is to reduce the isogeny

problem to a system of algebraic equations using modular polynomials, and to solve the system

by Gröbner basis computation. We report running time of the algebraic approach for solving

the isogeny path-finding problem of 3-power isogeny degrees on supersingular elliptic curves.

This is a brief summary of [16] with implementation codes.

§ 1. Introduction

Since proposals of the hash function of [3] and the key exchange of [11], supersin-

gular isogeny-based cryptography has received attention as post-quantum cryptography

(PQC). The National Institute of Standards and Technology (NIST) has proceeded PQC

standardization since 2016. For the PQC standardization process, Jao et al. [10] sub-

mitted algorithms of supersingular isogeny key encapsulation, called SIKE, that is based

Received December 11, 2020. Revised April 19, 2021.
2020 Mathematics Subject Classification(s): Primary: 14G50, Secondary: 94A60
Key Words: Elliptic curves, Isogenies, Isogeny problems, Gröbner basis computation

Supported by JSPS KAKENHI Grant Numbers 19K22847 and 20K14301, Japan
∗Faculty of Mathematics, Kyushu University, Fukuoka 819-0395, Japan.
e-mail: fukasaku@math.kyushu-u.ac.jp

∗∗Institute of Mathematics for Industry, Kyushu University, Fukuoka 819-0395, Japan.
e-mail: ikematsu@imi.kyushu-u.ac.jp

∗∗∗Department of Mathematical Informatics, The University of Tokyo, Tokyo 113-8654, Japan.
e-mail: kudo@mist.u-tokyo.ac.jp

†Department of Mathematics, Rikkyo University, Tokyo 171-8501, Japan.
e-mail: myasuda@rikkyo.ac.jp

‡Department of Mathematics, Rikkyo University, Tokyo 171-8501, Japan.
e-mail: kazuhiro@rikkyo.ac.jp

© 2022 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

170 R. Fukasaku, Y. Ikematsu, M. Kudo, M. Yasuda and K. Yokoyama

on [11]. In 2020, NIST selected 15 proposals for the third-round of the standardization

process, of which SIKE was selected as an alternate candidate (see [13] for details).

The security of supersingular isogeny-based cryptography is based on the hard-

ness of finding an isogeny connecting two given isogenous supersingular elliptic curves.

The meet-in-the-middle approach is a practical way to solve the isogeny path-finding

problem. Specifically, it builds two trees of isogenies of prime degrees from both the

sides of E and Ẽ, respectively, and it finds a collision between the two trees to find the

shortest path from E to Ẽ. In this paper, we introduce a new approach for solving the

isogeny path-finding problem. The basic strategy is to reduce the isogeny problem to

a system of algebraic equations using modular polynomials. In particular, we divide

a system of algebraic equations into two parts like the meet-in-the-middle approach,

and compute their Gröbner bases to efficiently find j-invariants of intermediate curves

between given two isogenous elliptic curves E and Ẽ. We report running time of the

algebraic approach for solving the isogeny problem of 3-power degrees on supersingular

elliptic curves over Fp2 with 503-bit prime p, extracted from SIKE-p503 parameters [10],

in order to compare with the meet-in-the-middle approach.

§ 2. Mathematical background

We review basic definitions and properties of elliptic curves and their isogenies.

§ 2.1. Elliptic curves over finite fields

Let p ≥ 5 be a prime, and q a p-power integer. An elliptic curve over the finite

field Fq is given by the (short) Weierstrass form

(2.1) E : y2 = x3 + ax+ b (a, b ∈ Fq)

with discriminant ∆(E) = −16(4a3 + 27b2) 6= 0. The j-invariant of E is defined as

j(E) = −1728 (4a)3

∆(E) . There exists an elliptic curve over Fq with j-invariant equal to a

given j0 ∈ Fq. Two elliptic curves are isomorphic over the algebraic closure Fq of Fq if

and only if they both have the same j-invariant. The set of Fq-rational points on E

E(Fq) =
{
(x, y) ∈ F

2
q : y2 = x3 + ax+ b

}
∪ {OE}

forms an abelian group, where OE denotes the infinity point on E (see [15, Chapter

III] for the group law). The number of Fq-rational points on E, denoted by #E(Fq), is

represented as #E(Fq) = q+1− t where t denotes the trace of the qth-power Frobenius

map. The trace holds |t| ≤ 2
√
q by Hasse’s theorem. An elliptic curve E over Fq is said

supersingular if the characteristic p of the base field divides the trace t. Otherwise E

is said ordinary. Every supersingular elliptic curve over Fp has its j-invariant defined

Algebraic approaches for solving isogeny path-finding problems 171

over Fp2 [15, Theorem 3.1, Chapter V], and it is isomorphic over Fq to one defined over

Fp2 . There are about p
12 isomorphism classes of supersingular elliptic curves over Fp.

For every n ≥ 2, we let

E[n] =
{
P ∈ E(Fq) : nP = OE

}

denote the subgroup of E(Fq) of torsion points of order n.

§ 2.2. Isogenies between elliptic curves

A morphism φ : E −→ E′ between two elliptic curves E and E′ satisfying φ(OE) =

OE′ is called an isogeny. Two curves are called isogenous (over Fq) if there is a non-zero

isogeny (over Fq) between them. Tate’s theorem [17] states #E(Fq) = #E′(Fq) if two

curves E and E′ are isogenous over Fq. Every non-zero isogeny φ : E −→ E′ induces

an injection between function fields φ∗ : Fq(E
′) −→ Fq(E) [15, Chapter III]. The degree

of a non-zero isogeny φ is defined as the extension degree between function fields:

deg φ =
[
Fq(E) : φ∗

Fq(E
′)
]
.

A non-zero isogeny φ is said separable if the extension Fq(E)/φ∗
Fq(E

′) is separable.

In particular, a non-zero isogeny is separable if its degree deg φ is not divisible by

the characteristic p of the base field. A non-zero isogeny φ : E −→ E′ also induces a

surjective group homomorphism from E(Fq) to E
′(Fq), and its kernel is a finite subgroup

of E(Fq), denoted by E[φ]. It satisfies deg φ = #E[φ] if φ is separable. Conversely, given

a finite subgroup C of E(Fq), there is a unique elliptic curve E′ and a separable isogeny

φ : E −→ E′ with E[φ] = C [15, Proposition 4.12, Chapter III]. The target curve E′

and the corresponding isogeny φ are denoted by E/C and φC , respectively.

2.2.1. Vélu’s formula Given a finite subgroup C of E(Fq), Vélu [18] gave an explicit

representation of φC : E −→ E/C and the Weierstrass equation for E/C. Let P =

(xP , yP) be a point of prime order ℓ 6= p on an elliptic curve E defined by (2.1). For

the cyclic subgroup C = 〈P 〉, we present Vélu’s formula for ℓ = 2 and 3 below:

• For ℓ = 2, let v = 3x2
P +a, a′ = a−5v, b′ = b−7vxP . Then the Weierstrass equation

for E/C is given by Y 2 = X3 + a′X + b′. The image φC(x, y) of the isogeny φC for

(x, y) ∈ E(Fq) is given by
(
x+

v

x− xP
, y − vy

(x− xP)2

)
.

• For ℓ = 3, let u = 4y3P , v = 3x2
P +a, a′ = a−5v, b′ = b−7(u+vxP). The Weierstrass

equation for E/C is given by the same form as in the case ℓ = 2. The image φC(x, y)

of the isogeny φC for (x, y) ∈ E(Fq) is given by
(
x+

v

x− xP
+

u

(x− xP)2
, y

{
1− v

(x− xP)2
+

2u

(x− xP)3

})
.

172 R. Fukasaku, Y. Ikematsu, M. Kudo, M. Yasuda and K. Yokoyama

2.2.2. Modular polynomials For every ℓ ≥ 2, the modular polynomial Φℓ(X,Y)

parameterizes pairs of elliptic curves with a cyclic isogeny of degree ℓ between them

(see [14, Exercise 2.18, Chapter II]). For two curves E and E′, there is an isogeny of

degree ℓ from E to E′ with cyclic kernel if and only if Φℓ(j(E), j(E′)) = 0. The modular

polynomial is symmetric in each variable, and its integer coefficients become very large

as ℓ increases. For a prime ℓ, the modular polynomial Φℓ(X,Y) is equal to the form

(2.2) Xℓ+1 −XℓY ℓ + Y ℓ+1 +
∑

i,j≤ℓ,i+j<2ℓ

aijX
iY j (aij ∈ Z),

since there are precisely ℓ+ 1 subgroups of the ℓ-torsion group of an elliptic curve E.

2.2.3. Supersingular isogeny graphs For each prime ℓ 6= p, any two supersingular

elliptic curves E and E′ over Fp2 are connected by a chain of isogenies of degree ℓ. Such

two curves can be connected by m isogenies of degree ℓ for m = O(log p) [12, Theorem

79]. The supersingular ℓ-isogeny graph over Fp2 is the graph Gℓ(Fp2) := (V,G) whose

vertices V is the set of the Fp2 -isomorphism classes of supersingular elliptic curves

over Fp2 labeled by their j-invariants (#V ≈ p
12), and whose edges G are the pairs

(j(E), j(E′)) for ℓ-isogenous curves E and E′. The ℓ-isogeny graph Gℓ(Fp2) is regular

with regularity degree ℓ+1. When p ≡ 1 mod 12, it is a Ramanujan graph, an optimal

expander graph on which random walks quickly reach the uniform distribution.

§ 3. Computational isogeny problems

There are a number of computational problems related to isogenies for the security

of (supersingular) isogeny-based cryptography. A template is the general isogeny prob-

lem [8, Definition 1]; “Given two elements j, j′ in Fq, find an isogeny φ : E −→ E′, if

exists, such that j(E) = j and j(E′) = j′.” There are a variety of representations of

φ, such as a chain of isogenies of low degrees, a sequence of j-invariants of intermediate

curves, and a path in an isogeny graph between E and E′. Below we present typical

cryptographic schemes and their related isogeny problems:

§ 3.1. The isogeny path-finding problem

The first cryptographic construction over a supersingular isogeny graph is the hash

function in [3]. For a large prime p and a small prime ℓ (e.g., ℓ = 2 or 3), we consider

the supersingular ℓ-isogeny graph over Fp2 . We fix j0 as the initial vertex in the graph,

and determine the order of the edges at each vertex by sorting the j-invariants of ℓ+ 1

neighbours. Given a message (m0,m1, . . . ,mN−1), the hash function proceeds as below:

1. We first choose the edge of j0 according to the value of m0, and compute the

corresponding neighbour j1.

Algebraic approaches for solving isogeny path-finding problems 173

2. For 1 ≤ k < N , we repeat to choose the edge of jk according to mk (excluding the

edge between jk−1 and jk), and compute the corresponding neighbour jk+1.

3. We return the final invariant jN as the output value of the hash function.

The security of the hash function is based on the hardness of the following prob-

lem: “Let p and ℓ be distinct prime numbers, e a positive integer, and E and E′ two

supersingular elliptic curves over Fp2 . Suppose that there exists an isogeny of degree ℓe

between E and E′. Find an isogeny of degree ℓe from E to E′.” In terms of cryptogra-

phy, it is preimage resistant if and only if, given two supersingular invariants j and j′,

it is computationally hard to compute an isogeny φ : E −→ E′ of prime power degree

ℓe with j = j(E) and j′ = j(E′). It is also collision resistant if and only if, given one

supersingular invariant j = j(E) for some elliptic curve E, it is computationally hard

to compute an endomorphism ϕ : E −→ E of prime power degree ℓe.

§ 3.2. The computational supersinglular isogeny problem

Let p = ℓeAA ℓeBB − 1 be a large prime, where ℓA and ℓB are distinct small primes

satisfying ℓeAA ≈ ℓeBB ≈ p1/2. Take a supersingular elliptic curve E over Fp2 such that

#E(Fp2) = (p + 1)2. Then the group E(Fp2) has all torsion points of order p + 1 and

it contains two torsion groups E[ℓeAA] and E[ℓeBB]. Two bases {PA, QA} and {PB , QB}
for E[ℓeAA] and E[ℓeBB] are fixed in the supersingular isogeny Diffie-Hellman (SIDH) key

agreement scheme [11]. The procedure of SIDH between Alice and Bob is as below:

1. Alice randomly selects mA, nA ∈ [0, ℓeAA −1], not both divisible by ℓA, and computes

the isogeny φA : E −→ EA = E/〈RA〉 with RA = mAPA + nAQA ∈ E[ℓeAA]. While

keeping mA, nA, RA and φA secret, she transmits EA, φA(PB) and φA(QB) to Bob.

2. Similarly, Bob randomly selects mB , nB ∈ [0, ℓeBB −1], not both divisible by ℓB , and

φB : E −→ EB = E/〈RB〉 with RB = mBPB + nBQB ∈ E[ℓeBB]. While keeping

mB , nB , RB and φB secret, Bob transmits EB , φB(PA) and φB(QA) to Alice.

3. After that, Alice computes mAφB(PA) + nAφB(QA) = φB(RA) and EB/〈φB(RA)〉
whereas Bob computes mBφA(PB) + nBφA(QB) = φA(RB) and EA/〈φA(RB)〉.
Then the two compositions of isogenies

E
φA−→ EA −→ EA/〈φA(RB)〉 and E

φB−→ EB −→ EB/〈φB(RA)〉

have the common kernel 〈RA, RB〉, and thus the two target curves are isomorphic.

Hence Alice and Bob can share the same j-invariant of these curves as a secret.

The security of SIDH relies on the hardness of the computational supersingular

isogeny problem [6]; “Given two curves E, EA and two points φA(PB), φA(QB) on EA,

compute an isogeny φA : E −→ EA of degree ℓeAA .”

174 R. Fukasaku, Y. Ikematsu, M. Kudo, M. Yasuda and K. Yokoyama

Remark 3.1. As discussed in [4], there exists a reduction between the compu-

tational supersingular isogeny problem and the isogeny path-finding problem. In the

below sections, we shall focus on the isogeny path-finding problem. The computational

hardness of the problem assures the security of the hash function [3] as mentioned in

this section, and it is also deeply connected with the security of SIDH.

§ 4. Algebraic approach for solving the isogeny path-finding problem

We introduce an algebraic approach for solving the isogeny path-finding problem.

Let us define our setting of problem; “Let ℓ = ℓe0 be a power of a small odd prime ℓ0.

Suppose that there exists an isogeny of degree ℓ between two elliptic curves E and Ẽ

over Fq. Given ℓ, j = j(E) and ̃ = j(Ẽ), find an isogeny φ : E −→ Ẽ of degree ℓ.”

§ 4.1. 2-section method: A basic approach

Consider a chain of isogenies φk of prime degree ℓ0 from E to Ẽ as

E
φ1−−−−→ E1

φ2−−−−→ E2
φ3−−−−→ · · · φe−1−−−−→ Ee−1

φe−−−−→ Ẽ.

Let jk denote the j-invariant of Ek for every 1 ≤ k < e. We here regard j-invariants jk’s

as variables (cf., two elements j, ̃ are in Fq). Then we consider a system of algebraic

equations using modular polynomials

(4.1)

Φℓ0(j, j1) = 0,

Φℓ0(jk, jk+1) = 0 (1 ≤ k ≤ e− 2),

Φℓ0(je−1, ̃) = 0.

A solution of this system gives all j-invariants jk’s of intermediate curves Ek. We intro-

duce a method to solve the system (4.1) by Gröbner basis algorithms. (See textbooks

[1, 5] for Gröbner basis computation.) For simplicity, assume that the exponent e of

the isogeny degree ℓ is even with e = 2e0 for a positive integer e0. We divide the

system (4.1) into two parts like the meet-in-the-middle approach. In terms of Gröbner

basis computation, we consider two ideals in different multivariate polynomial rings

(4.2)
I = 〈Φℓ0(j, j1),Φℓ0(j1, j2), . . . ,Φℓ0(je0−1, je0)〉 ⊂ Fq[j1, . . . , je0],

Ĩ = 〈Φℓ0(je0 , je0+1),Φℓ0(je0+1, je0+2), . . . ,Φℓ0(je−1, ̃)〉 ⊂ Fq[je0 , . . . , je−1].

Both ideals I and Ĩ are zero-dimensional since j, ̃ ∈ Fq. The dimensions of Fq-vector

spaces Fq[j1, . . . , je0]/I and Fq[je0 , . . . , je−1]/Ĩ are both at most (ℓ0 + 1)e0 due to the

form (2.2) of the modular polynomial. Moreover, the generators in (4.2) form a Gröbner

basis for the ideal I (resp., the ideal Ĩ) with the lex term order with respect to

je0 ≻ · · · ≻ j2 ≻ j1 (resp., je0 ≻ · · · ≻ je−2 ≻ je−1).

Algebraic approaches for solving isogeny path-finding problems 175

Then we can efficiently compute minimal polynomials g and g̃ of the variable je0 with

respect to ideals I and Ĩ, respectively, by using the FGLM algorithm [7]. Both degrees

of g and g̃ are equal to (ℓ0 + 1)ℓe0−1
0 , which is equal to the number of subgroups of

exact order ℓe00 respectively in E and Ẽ. By the GCD computation over the univariate

polynomial ring Fq[je0], we obtain a common root of two minimal polynomials g and g̃.

Such a common root is a solution of je0 . Once a solution of je0 is found, the isogeny

problem is divided into two isogeny problems of smaller degree ℓe00 =
√
ℓ (i.e., a divide-

and-conquer strategy). By repeating this procedure, we can solve the whole problem.

§ 4.2. 3-section method: An improvement

The idea is simple to divide the system (4.1) into three parts. Using two parameters

e1 and e2 satisfying 1 < e1 < e0 < e2 < e and e1 ≈ e−e2, consider two ideals in different

multivariate polynomial rings

I[1:e1] = 〈Φℓ0(j, j1),Φℓ0(j1, j2), . . . ,Φℓ0(je1−1, je1)〉 ,
Ĩ[e2:e−1] = 〈Φℓ0(je2 , je2+1),Φℓ0(je2+1, je2+2), . . . ,Φℓ0(je−1, ̃)〉 .

As in the 2-section method, we use the lex term order with je1 ≻ · · · ≻ j2 ≻ j1

(resp., je2 ≻ je2+1 ≻ · · · ≻ je−1) for the zero-dimensional ideal I[1:e1] (resp., Ĩ[e2:e−1]).

Then a Gröbner basis for the ideal I[1:e1] (resp., Ĩ[e2:e−1]) includes a polynomial g(je1)

(resp., g̃(je2)) such that its roots coincide with those of Φℓ′(j, je1) of level ℓ′ = ℓe10
(resp., Φℓ̃′(je2 , ̃) of level ℓ̃′ = ℓe−e2

0). In other words, the polynomials g and g̃ are

minimal polynomials for zero-dimensional ideals I[1:e1] and Ĩ[e2:e−1], respectively. We

then consider a new ideal

J[e1:e2] = 〈g(je1),Φℓ0(je1 , je1+1), . . . ,Φℓ0(je2−1, je2), g̃(je2)〉 .

For this zero-dimensional ideal, we use the grevlex term order with

je1 ≺ je2 ≺ je1+1 ≺ je2−1 ≺ · · · ≺ je0

in order to find intermediate j-invariants from je1 to je2 . With these j-invariants, we

can recover the other j-invariants as in the 2-section method.

§ 5. Implementation and experiments

We report experimental results of the algebraic approach and the meet-in-the-

middle approach for solving the isogeny path-finding problem of 3-power degrees.

§ 5.1. Implementation

We describe details of our implementation for the algebraic approach and the

meet-in-the-middle approach with Magma [2], a computational algebra system. See

Appendix for Magma codes of the algebraic approach.

176 R. Fukasaku, Y. Ikematsu, M. Kudo, M. Yasuda and K. Yokoyama

5.1.1. For the algebraic approach We used a combination of the modular poly-

nomials ΦN (X,Y) for N = 3, 32, 33, which are pre-computed in Magma, in order to

obtain the minimal polynomials g, g̃. For example, for ℓ = 310, we computed Gröbner

bases for I = 〈Φ33(j, j3),Φ32(j3, j5)〉, Ĩ = 〈Φ32(j5, j7),Φ33(j7, ̃)〉 with the Magma com-

mand GroebnerBasis to obtain g, g̃ ∈ Fp2 [j5], then computed the GCD of g, g̃ with the

Magma commands GCD for the 2-section method.

5.1.2. For the meet-in-the-middle approach We constructed two sets J and J̃

of sequences (j, j1, . . . , je0) and (̃, ̃1, . . . , ̃e0) of j-invariants of elliptic curves Ek and

Ẽk, respectively. Here Ek−1 and Ek (resp., Ẽk−1 and Ẽk) are isogenous of degree 3 for

every 1 ≤ k ≤ e0, where we set E0 = E (resp., Ẽ0 = Ẽ) for convenience. To construct

sequences in J and J̃ , we used the modular polynomial of level 3. For example, we

added each solution of Φ3(jk−1, x) to a sequence (j, j1, . . . , jk−1) of length k. (We used

the Magma command Roots to find a solution.) In constructing such sequences, we

removed a sequence whose ending point already appeared in the other sequences, in

order to reduce the sizes of two sets J and J̃ . In our experiments, it terminated when

we find a pair of two sequences of J and J̃ satisfying je0 = ̃e0 (i.e., a collision).

§ 5.2. Experiments

5.2.1. Input parameters We fix parameters p = 2250 ·3159−1, q = p2 and E : y2 =

x3 + x, extracted from SIKE-p503 parameters [10]. (The quadratic extension field Fp2

is represented as Fp[z]/(z
2 + 1).) The initial curve E is a supersingular elliptic curve

defined over Fp2 having #E(Fp2) = (p+ 1)2 = (2250 · 3159)2 and j = j(E) = 1728. We

also take 3-powers ℓ = 3e (i.e., ℓ0 = 3) as isogeny degrees for even exponents e = 2e0.

(cf., SIKE uses a combination of isogenies of degrees 2 and 3.) We follow the method in

[10] to generate the target supersingular curve Ẽ, isogenous to E of degree ℓ.

5.2.2. Experimental results In Table 1, we summarize average running times of

the algebraic approach and the meet-in-the-middle approach for solving the isogeny

problem of degrees ℓ = 3e with even e from e = 6 up to 14. We measured the running

time of every approach until it finds the j-invariant or the Weierstrass coefficients of

an intermediate curve between two isogenous curves E and Ẽ. We also experimented

5 times for every parameter set. All the experiments were performed using Magma

2.24-5 on 4.20 GHz Intel Core i7 CPU with 16 GByte memory.

5.2.3. Discussion From Table 1, the algebraic approach by the 3-section method is

the fastest for isogeny degrees up to ℓ = 310. For isogeny degrees larger than ℓ = 312,

the meet-in-the-middle approach is faster than the algebraic approach. With respect

to the memory usage, the algebraic approach by the 2-section method requires about

64, 221 and 526 MByte for ℓ = 310, 312 and 314, respectively, while the meet-in-the-

middle approach requires about 24, 26 and 32 MByte for the same isogeny degrees. The

Algebraic approaches for solving isogeny path-finding problems 177

Table 1. Average running times (seconds) of the algebraic and the meet-in-the-middle

approaches for solving the isogeny problem of degrees ℓ = 3e on supersingular elliptic

curves over Fp2 with 503-bit prime p = 2250 · 3159 − 1, extracted from SIKE-p503 [10]

Isogeny degree Algebraic approach Meet-in-the-middle

ℓ = 3e 2-section 3-section approach

36 = 729 0.11 0.14 2.93

38 = 6561 0.19 0.40 9.61

310 = 59049 7.98 2.72 31.09

312 = 531441 287.77 58.43 96.75

314 = 4782969 5071.16 1775.45 292.82

algebraic approach is applicable in the collision search step of the meet-in-the-middle

approach. Such combination could make it faster in practice and reduce the memory size

of the meet-in-the-middle approach. See a subsequent work [9] for such combination.

On the other hand, the algebraic approach would be (much) slower for degrees ℓ = ℓe0
with larger prime ℓ0, since the ℓ0-th modular polynomial has total degree ℓ0 + 1 (see

the form (2.2)).

References

[1] Thomas Becker and Volker Weispfenning. Gröbner bases, volume 141 of Graduate Texts

in Mathematics. Springer, 1993.

[2] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The

user language. Journal of Symbolic Computation, 24(3-4):235–265, 1997. Computational

algebra and number theory (London, 1993).

[3] Denis X Charles, Kristin E Lauter, and Eyal Z Goren. Cryptographic hash functions from

expander graphs. Journal of Cryptology, 22(1):93–113, 2009.

[4] Anamaria Costache, Brooke Feigon, Kristin Lauter, Maike Massierer, and Anna Puskás.

Ramanujan graphs in cryptography. IACR ePrint 2018/593, 2018.

[5] David Cox, John Little, and Donal O’Shea. Ideals, varieties, and algorithms: An intro-

duction to computational algebraic geometry and commutative algebra. Springer Science

& Business Media, 2013.

[6] Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-resistant cryptosystems from

supersingular elliptic curve isogenies. Journal of Mathematical Cryptology, 8(3):209–247,

2014.

[7] Jean-Charles Faugere, Patrizia Gianni, Daniel Lazard, and Teo Mora. Efficient com-

putation of zero-dimensional gröbner bases by change of ordering. Journal of Symbolic

Computation, 16(4):329–344, 1993.

[8] Steven D Galbraith and Frederik Vercauteren. Computational problems in supersingular

elliptic curve isogenies. Quantum Information Processing, 17(10):265, 2018.

[9] Yasuhiko Ikematsu, Ryoya Fukasaku, Momonari Kudo, Masaya Yasuda, Katsuyuki

Takashima, and Kazuhiro Yokoyama. Hybrid meet-in-the-middle attacks for the isogeny

178 R. Fukasaku, Y. Ikematsu, M. Kudo, M. Yasuda and K. Yokoyama

path-finding problem. In Proceedings of the 7th ACM Workshop on ASIA Public-Key

Cryptography–APKC 2020, pages 36–44, 2020.

[10] D Jao, R Azarderakhsh, M Campagna, C Costello, L DeFeo, B Hess, A Jalali, B Koziel,

B LaMacchia, P Longa, et al. SIKE: Supersingular isogeny key encapsulation. submission

to the NIST standardization process on post-quantum cryptography, 2017.

[11] David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from supersingular

elliptic curve isogenies. In Post-Quantum Cryptography–PQCrypto 2011, volume 7071 of

Lecture Notes in Computer Science, pages 19–34. Springer, 2011.

[12] David Kohel. Endomorphism rings of elliptic curves over finite fields. PhD thesis, Uni-

versity of California at Berkeley, 1996.

[13] Dustin Moody, Gorjan Alagic, Daniel C Apon, David A Cooper, Quynh H Dang, John M

Kelsey, Yi-Kai Liu, Carl A Miller, Rene C Peralta, Ray A Perlner, et al. Status report

on the second round of the NIST post-quantum cryptography standardization process.

NISTIR 8309, 2020.

[14] Joseph H Silverman. Advanced topics in the arithmetic of elliptic curves, volume 151 of

Graduate Texts in Mathematics. Springer-Verlag New York, 1994.

[15] Joseph H Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts in

Mathematics. Springer Science & Business Media, second edition, 2009.

[16] Yasushi Takahashi, Momonari Kudo, Ryoya Fukasaku, Yasuhiko Ikematsu, Masaya Ya-

suda, and Kazuhiro Yokoyama. Algebraic approaches for solving isogeny problems of

prime power degrees. Journal of Mathematical Cryptology, 15:31–44, 2021.

[17] John Tate. Endomorphisms of abelian varieties over finite fields. Inventiones mathemati-

cae, 2(2):134–144, 1966.

[18] Jacques Vélu. Isogénies entre courbes elliptiques. CR Acad. Sci. Paris Sér. AB, 273:238–

241, 1971.

Appendix: Magma codes of the algebraic approach

In this appendix, we present a part of Magma codes of the algebraic approach for

solving the isogeny path-finding problem of 3-power isogeny degrees. Please visit

https://www2.math.kyushu-u.ac.jp/~fukasaku/software/Isogeny_Problem

to obtain the full codes.

/*---*/

/*** solve 3^e-degree isogeny problem ***/

/*** by computing 3-isogenous j-invariant sequence ***/

/*---*/

/*** generate the ideals I, \tilde{I} ***/

function ideal_I_0(e0, F_p2, mod_poly_3, jE)

/* Step 1: generate the polynomial ring */

W := [];

for i in [1..e0] do

Wi := [];

for j in [1..e0] do

if i eq j then Wi[j] := 1;

else Wi[j] := 0; end if;

end for;

Algebraic approaches for solving isogeny path-finding problems 179

W := Wi cat W;

end for;

Rj := PolynomialRing(F_p2,e0,"weight",W);

/* Step 2: generate j-invariants */

j := []; j[1] := Rj!jE;

for i in [1..e0] do

j[1+i] := Rj.i;

end for;

/* Step 3: generate the ideal */

G := [];

for i in [1..e0] do

G[i] := Rj!Evaluate(mod_poly_3,[j[i],j[i+1]]);

end for;

I := ideal<Rj|G>;

return j, G, I, Rj;

end function;

/*** generate the ideal J, \tilde{J} ***/

function ideal_J_0(e0, F_p2, mod_poly_3, g, R1)

/* Step 1: generate a polynomial ring */

W := [];

for i in [1..e0] do

Wi := [];

for j in [1..e0] do

if i eq j then Wi[j] := 1;

else Wi[j] := 0; end if;

end for;

W := Wi cat W;

end for;

Rj := PolynomialRing(F_p2,e0,"weight",W);

/* Step 2: generate j-invariants */

j := [];

for i in [1..e0] do

j[i] := Rj.i;

end for;

/* Step 3: generate the ideal */

G := [Rj!Evaluate(g,Rj.1)];

for i in [1..e0-1] do

G[i+1] := Rj!Evaluate(mod_poly_3,[j[i],j[i+1]]);

end for;

I := ideal<Rj|G>;

return j, G, I, Rj;

end function;

function ideal_J_append(F_p2, mod_poly, g, g_tilde, R1, middle_ord)

Rj := PolynomialRing(F_p2,2,middle_ord);

j := [Rj.1,Rj.2];

p := Evaluate(g,Rj.1);

p_tilde := Evaluate(g_tilde,Rj.2);

m := Evaluate(mod_poly, [Rj.1,Rj.2]);

j := [Rj.1,Rj.2];

G := [p,m,p_tilde];

I := ideal<Rj|G>;

return j, G, I, Rj;

end function;

180 R. Fukasaku, Y. Ikematsu, M. Kudo, M. Yasuda and K. Yokoyama

/*** compute minimal polynomials ***/

function mini_pol_GB(e0, F_p2, R1, j, I, Rj)

/* Step 0: generate a polynomial ring */

MarkGroebner(I);

W := [];

for i in [1..(e0-1)] do

Wi := [];

for j in [1..e0] do

if i eq j then Wi[j] := 1;

else Wi[j] := 0; end if;

end for;

W := Wi cat W;

end for;

for i in [1..e0] do

if i eq e0 then W[e0*(e0-1)+i] := 1;

else W[e0*(e0-1)+i] := 0; end if;

end for;

RjN := PolynomialRing(F_p2,e0,"weight",W);

I := ChangeOrder(I, RjN);

/* Step 1: compute a GB of I */

print "compute a GB of I ..."; print ""; print "";

Subtimer1 := Cputime();

G := GroebnerBasis(I);

print ""; print "";

print "GB computation time:", Cputime(Subtimer1);

/* Step 2: compute the minimal polynomial of I w.r.t. j_{e0} */

for i in [1..#G] do

boolean,Gi_uni := IsUnivariate(G[i],e0);

if boolean then

print "non-sq-deg: ", Degree(R1!Gi_uni);

g := SquarefreePart(R1!Gi_uni);

print "sq-deg: ", Degree(g); break i;

end if;

if i eq #G then

error("Fail to compute forward poly.");

end if;

end for;

print "the minimal polynomial: ", g; return(g);

end function;

function append_GB(k, H, J, Rk, R1)

/* Step 1: compute a GB of I w.r.t. j_1 >_{lex}...>_{lex} j_{e0} by FGLM */

print "compute a GB of I w.r.t. j_1 <_{grevlex} j_{2} ...";

print ""; print "";

Subtimer1 := Cputime();

G := GroebnerBasis(J);

print ""; print ""; print "GB computation time:",Cputime(Subtimer1);

print "GB: ", G; return(G);

end function;

/*** 2-SECTION ***/

// mini_pol_2: a parameter "GB", skip_2: a parameter 0, gf_2: 0 or GF(p^2)

functionj_invariant_2_section(e,jE,jE_tilde:mini_pol_2:="GB",

skip_2:=0,gf_2:=0,cycle_2:=0,Al_2:=0)

Algebraic approaches for solving isogeny path-finding problems 181

/* Step 1: generate the modular polynomials */

if e lt 2 then error("Require e >= 2"); end if;

if e mod 2 ne 0 then error("Require e is even"); end if;

Timer := Cputime();

if Type(gf_2) eq Type(0) then

p := 2^250*3^159-1;

F_p := ResidueClassRing(p);

R1<t> := PolynomialRing(F_p);

P := ideal<R1 | t^2+1>;

F_p2<t> := quo<R1 | P>;

else

F_p2 := gf_2;

end if;

R1<Z> := PolynomialRing(F_p2); R2<X,Y> := PolynomialRing(F_p2,2);

/* Step 2: generate the ideal I, \tilde{I} */

e0 := e div 2;

if skip_2 eq 0 then

mod_poly_3 := R2!ClassicalModularPolynomial(3);

j, G, I, Rj := ideal_I_0(e0, F_p2, mod_poly_3, jE);

j_tilde, G_tilde, I_tilde, Rj_tilde := ideal_I_0(e0, F_p2,

mod_poly_3, jE_tilde);

end if;

/* Step 3: compute the minimal polynomials of I, \tilde{I} */

print "I: ", I; print "tilde{I}: ", I_tilde;

if mini_pol_2 eq "GB" then

g := mini_pol_GB(e0, F_p2, R1, j, I, Rj);

g_tilde := mini_pol_GB(e0, F_p2, R1, j_tilde, I_tilde, Rj_tilde);

end if;

/* Step 2: compute the GCD of g, \tilde{g} */

print "compute GCD(g,\tilde{g})...";

Subtimer := Cputime(); gcd_mod := R1!Gcd(g,g_tilde);

print "the GCD: ", gcd_mod;

print "GCD computation time:",Cputime(Subtimer);

/* Step 3: output a j-invariant */

if Type(gf_2) eq Type(0) then boolean,J_half := HasRoot(gcd_mod,F_p);

else boolean,J_half := HasRoot(gcd_mod,F_p2);

end if;

if boolean eq false then

error("Fail to compute J as a root of GCD");

end if;

print "a", ((e-1) div 2)+2, "-th j-invariant: ", J_half; print"";

print "total time:",Cputime(Timer); return J_half,((e-1) div 2)+2;

end function;

/*** 3-SECTION ***/

// mini_pol_3: "GB", skip_3/skip_mid_3: 0, gf_3: 0 or GF(p^2), middle_ord_3:

a term order

function j_invariant_3_section(e,jE,jE_tilde:

mini_pol_3:="GB",skip_3:=0,skip_mid_3:=0,gf_3:=0,

middle_ord_3:="grevlex",cycle_3:=0,Al_3:=0)

/* Step 0: test */

if e lt 2 then error("Require e >= 2"); end if;

if e mod 2 ne 0 then error("Require e is even"); end if;

if e eq 2 then

182 R. Fukasaku, Y. Ikematsu, M. Kudo, M. Yasuda and K. Yokoyama

print "use j_invariant_2_section since e = 2";

return j_invariant_2_section(e,jE,jE_tilde:

mini_pol_2:=mini_pol_3,skip_2:=skip_3,Al_2:=Al_3);

end if;

/* Step 1: generate the modular polynomials */

Timer := Cputime();

if Type(gf_3) eq Type(0) then

p := 2^250*3^159-1;

F_p := ResidueClassRing(p);

R1<t> := PolynomialRing(F_p);

P := ideal<R1 | t^2+1>;

F_p2<t> := quo<R1 | P>;

else F_p2 := gf_3; end if;

R1<Z> := PolynomialRing(F_p2); R2<X,Y> := PolynomialRing(F_p2,2);

mod_poly_3 := R2!ClassicalModularPolynomial(3);

mod_poly_9 := R2!ClassicalModularPolynomial(9);

mod_poly_27:= R2!ClassicalModularPolynomial(27);

mod_poly_81:= R2!list_mod_poly(81,F_p2);

/* Step 2: generate the ideal I, \tilde{I} */

e0 := e div 2;

if skip_mid_3 eq 0 or e0 le 2 then e1 := e0 - 1;

elif skip_mid_3 eq 1 or e0 le 3 then e1 := e0 - 2;

elif skip_mid_3 eq 2 or e0 le 4 then e1 := e0 - 3;

else e1 := e0 - 4; end if;

if skip_3 eq 0 or e0 le 1 then

j, G, I, Rj := ideal_I_0(e0, F_p2, mod_poly_3, jE);

end if;

if skip_3 eq 0 or e1 le 1 then

j_tilde, G_tilde, I_tilde, Rj_tilde := ideal_I_0(e1, F_p2, mod_poly_3, jE_tilde);

end if;

print "I: ", I; print "tilde{I}: ", I_tilde;

/* Step 3: compute the minimal polynomials of I, \tilde{I} w.r.t. j_{e_0} */

if mini_pol_3 eq "GB" then

g := mini_pol_GB(e0, F_p2, R1, j, I, Rj);

g_tilde := mini_pol_GB(e1, F_p2, R1, j_tilde, I_tilde, Rj_tilde);

end if;

/* Step 4: compute the minimal polynomial w.r.t. e_0 */

/* Step 4-1: generate the ideal J */

if skip_mid_3 eq 0 or ((e-1)-(e1-1))-e0 le 1 then

k, H, J, Rk := ideal_J_append(F_p2, mod_poly_3,

g, g_tilde, R1, middle_ord_3);

elif skip_mid_3 eq 1 or ((e-1)-(e1-1))-e0 le 2 then

k, H, J, Rk := ideal_J_append(F_p2, mod_poly_9,

g, g_tilde, R1, middle_ord_3);

elif skip_mid_3 eq 2 or ((e-1)-(e1-1))-e0 le 3 then

k, H, J, Rk := ideal_J_append(F_p2, mod_poly_27,

g, g_tilde, R1, middle_ord_3);

else

k, H, J, Rk := ideal_J_append(F_p2, mod_poly_81, g, g_tilde, R1, middle_ord_3);

end if;

print "J: ", J;

/* Step 4-2: compute the minimal polynomial h, \tilde{h} */

print "compute a GB ..."; Subtimer := Cputime();

GB := append_GB(k, H, J, Rk, R1);

Algebraic approaches for solving isogeny path-finding problems 183

/* Step 4: output a j-invariant */

if Type(gf_3) eq Type(0) then J_half := VarietySequence(ideal<Rk|GB>);

else J_half := VarietySequence(ideal<Rk|GB>);

end if;

if J_half eq [] then error("Fail to compute J as a root of GB"); end if;

print "a", ((e-1) div 2)+2, "-th j-invariant: ", J_half;

print""; print "total time:",Cputime(Timer);

return J_half[1][1],((e-1) div 2)+2;

end function;

/*** 3-SECTION (Symmetric Version) ***/

// mini_pol_3_s: "GB", skip_3_s/skip_mid_3_s: 0, gf_3_s: 0 or GF(p^2), middle_ord_3_s:

a term order

function j_invariant_3_section_symmetric(e,jE,jE_tilde:

mini_pol_3_s:="GB",skip_3_s:=0,skip_mid_3_s:=0,gf_3_s:=0,

middle_ord_3_s:="grevlex",Al_3_s:=0)

/* Step 0: test */

if e lt 2 then error("Require e >= 2"); end if;

if e mod 2 ne 0 then error("Require e is even"); end if;

if e eq 2 then

print "use j_invariant_2_section since e = 2";

return j_invariant_2_section(e,jE,jE_tilde:mini_pol_2:=mini_pol_3_s,

skip_2:=skip_3_s,Al_2:=Al_3_s);

end if;

/* Step 1: generate the modular polynomials */

Timer := Cputime();

if Type(gf_3_s) eq Type(0) then

p := 2^250*3^159-1;

F_p := ResidueClassRing(p);

R1<t> := PolynomialRing(F_p);

P := ideal<R1 | t^2+1>;

F_p2<t> := quo<R1 | P>;

else

F_p2 := gf_3_s;

end if;

R1<Z> := PolynomialRing(F_p2); R2<X,Y> := PolynomialRing(F_p2,2);

mod_poly_3 := R2!ClassicalModularPolynomial(3);

mod_poly_9 := R2!ClassicalModularPolynomial(9);

mod_poly_27:= R2!ClassicalModularPolynomial(27);

mod_poly_81:= R2!list_mod_poly(81,F_p2);

/* Step 2: generate the ideal I, \tilde{I} */

e0 := e div 2;

if skip_mid_3_s eq 0 or e0 le 1 then e1 := e0; e2 := e1-1;

elif skip_mid_3_s eq 1 or e0 le 2 then e1 := e0 - 1; e2 := e1;

elif skip_mid_3_s eq 2 or e0 le 3 then e1 := e0 - 1; e2 := e1-1;

else e1 := e0 - 2; e2 := e1; end if;

if skip_3_s eq 0 or e1 le 1 then

j, G, I, Rj := ideal_I_0(e1, F_p2, mod_poly_3, jE);

end if;

if skip_3_s eq 0 or e2 le 1 then

j_tilde, G_tilde, I_tilde, Rj_tilde := ideal_I_0(e2, F_p2, mod_poly_3, jE_tilde);

end if;

print "I: ", I; print "tilde{I}: ", I_tilde;

/* Step 3: compute the minimal polynomials of I, \tilde{I} w.r.t. j_{e_0} */

184 R. Fukasaku, Y. Ikematsu, M. Kudo, M. Yasuda and K. Yokoyama

if mini_pol_3_s eq "GB" then

g := mini_pol_GB(e1, F_p2, R1, j, I, Rj);

g_tilde := mini_pol_GB(e2, F_p2, R1, j_tilde, I_tilde, Rj_tilde);

end if;

/* Step 4: compute the minimal polynomial w.r.t. e_0 */

/* Step 4-1: generate the ideal J */

if skip_mid_3_s eq 0 or (e-e2)-e1 le 1 then

k, H, J, Rk := ideal_J_append(F_p2, mod_poly_3, g, g_tilde, R1, middle_ord_3_s);

elif skip_mid_3_s eq 1 or (e-e2)-e1 le 2 then

k, H, J, Rk := ideal_J_append(F_p2, mod_poly_9, g, g_tilde, R1, middle_ord_3_s);

elif skip_mid_3_s eq 2 or (e-e2)-e1 le 3 then

k, H, J, Rk := ideal_J_append(F_p2, mod_poly_27, g, g_tilde, R1, middle_ord_3_s);

else

k, H, J, Rk := ideal_J_append(F_p2, mod_poly_81, g, g_tilde, R1, middle_ord_3_s);

end if;

print "J: ", J;

/* Step 4-2: compute the minimal polynomial h, \tilde{h} w.r.t. e_0 */

print "compute a GB ..."; Subtimer := Cputime();

// mini_pol w.r.t. Rk.1, where Rk = F_p2[j_1,j_2] and j_1 = j_{e_0}

GB := append_GB(k, H, J, Rk, R1);

/* Step 4: output a j-invariant */

if Type(gf_3_s) eq Type(0) then J_half := VarietySequence(ideal<Rk|GB>);

else J_half := VarietySequence(ideal<Rk|GB>);

end if;

if J_half eq [] then

error("Fail to compute J as a root of GB");

end if;

print [e1+1,e-e2], "-th j-invariants: ", J_half; print"";

print "total time:",Cputime(Timer); return J_half, [e1+1,e-e2];

end function;

